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Correctness

If Alice and Bob know the secret (m) and
behave honestly, Verify() returns yes.

: What Alice Knows
{ e Private Key (sk_a)
{ o Secret (m)

{ o Everyone’s Public Key A\icé

sk a m
Proof()
t\\-ﬁ ............................................ e 7

p_a: Alice's specialized

proof of knowledge of m

What Oscar Knows

+  Everyone's Public Key
o QOscar does NOT know |

the secret {(m)

What Bob Knows

o Private Key (sk_b)
e Secret (m) ~~— |
e Everyone's Public Key | Bob

SK_D m
Proof()

------------------------------------------------------------

p_b: 5805’5 specialized
proof of knowledge of m

p_a_ pb
v 2
;;’"* \\.‘:
ok _a > Verify() <« pk_b

R T e e e

‘“-'I-.-.-J-‘-.—J-.-J-J-‘-.—J-‘-.—J-.-J-J-‘-.—J-‘-.—J-‘-.-J-‘-‘-L.—J—L‘-.—L‘-.—J—‘-.—L‘-.—J—‘-J—J—‘-.—LL

V:eriﬁcatién Result:
Yes or No
v

TN
pd ™~

N

.‘f,, m
A 1 » ™
o What
r._,..f' { "

s Oscar's

o
e
\'\.

~._Conclusion? -~

. e

------

s

Pl kit - - e -t i B B Ran- - e e it Bt e e - e e e o B B - e Ran-a-a- B

' Oscar is convinced Alice and |
s:» Bob share a same secret, but
Oscar has no idea what the

secret {8

_— e e e e e e m m e e e m e m e e e e e e e e e e m m e . e e e e e m . . . e e e = = —— .

The proofs were not generated using the same message - or |

generate the proofs.

- maybe the public keys do not match the private keys used to |

Alice and Bob did not convince Oscar of anything.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr



U.S. Patent Jul. 19, 2022 Sheet 5 of 10 US 11,394,550 B2

Strong Transitivi
Verifying all proofs against Alice’s proof is

enough fo convince Oscar that Alice and all the
Bob_i share the same secret {m)

\, A Y. . U, S Y .. Y A ..£ b, AN Y.
Proof{) Proof() ~ Proof() s . Proof(}
JE - p_b1 - p_b2 0_bn
> e
ok a > Venfy() < pk b1
e S . %
S N R SR
i"‘x, .............. y [ 'I ************* )
T S I R I
p;k_ﬁ__a ........... ,N Ve“ﬁ’() € pk____bn
f,_,,.x-*”’ S~ o T T N
N  Oscar is convinced Alice and
e What . - L .
o o Peren p? ~.  All | Bobshare a same secret, but
< s Oscar's I < ™ ) )
o T 7 Yes | Oscar has no idea what the
~. Conclusion? ~ ; ..
N - | secret is |
NS e N ) S
Al Least
Oﬂze NO
¥

.........................................................................................................................
- bl

-

Only Alice and the Bob_i for which their verify() output is \“;
'Yes' convinced Oscar that they share the same secret.
=. Oscar has nothing to conclude about the others
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Knowledge Unforgeabilily
if Eve does not know the secret, she cannot
convince Oscat she shares a secret with Alice.

ririurivrinrinrinrinrinririnrinrinrivrisrinriurinrisrinrivrisriuriurivrinriuririssinaririsrin i sivrisrinriuriuriarinriuririeriririsriuririnrinrisiurisrin il rinriurivrinrinrinrinrinrinrinrinrinrinrinrinrinririsrinriuririnriuriurinriuririsrinririnsinriusirisris i rinriuriarinriuriarinriuriurisriuriurinrinriuririsrinerin il

| What Alice Knows What Eve Knows

| Private Key (sk_a) e Private Key (sk_g)

{ e Secret(m) | o Seeretm)

{ « Everyone’s Public Key | o [veryone's Public Key

sk_a m sk b
" e 2
*al :,f’f’ ™
Malicious Proof()
,x’j ."‘ /
0_a: Alice's specialized __ D_e; Eve's specialized
proof of knowledge of m What Oscar Knows | proof of knowledge of m
« Everyone's Public Key |
o Oscardoes NOT know |
the secret {m)
.*’/- | \\‘
ok_a ——» Verify() <« pK_e
e J
v
No

(with high Probability)

FIG. 6
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if Eve knows the secret but does not know
Bob's privale key, she cannot generate a proof
on behalf of Bob and convince Oscar that Bob
shares a secret with Alice.
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What Alice Knows What Eve Knows
| e Private Key (sk_a) o PrivateKey{sk-
te Secret(m) AN o Secret{(m)
{ o Everyone's PublicKey | Alice o Everyone's Public Key Eve
Sk_a m m
________________ Vo N .
/ \g ;‘f
Proof() Malicious Proof()
" Vi \
| [ ﬂ
n_a: Alice’s specialized p_b" Eve's specialized
proot of knowledge of m What Oscar Knows | proof of knowledge of m
» Everyone's Public Key | :
o QOscar does NOT know |
_____ he secret(m) |
I P
PR S Yo
pk_a > Verify() < pk_b
NO

(with high Probability)

FIG. 7
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800 ——&

4 R
Receive a First Proof Generated from a First Private Key
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Receive a Second Proof Generated from a Second Private Key
604

A 4

Verify the First Proof and the Second Proof Were Both
Generated from Shared Data Without Revealing the Shared

Data
806
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Preform an Action Based on the Verification
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900 —&
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Receive a Proofs Each Generated from a Respective Private Key
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Verify the Proofs Were Generated from Shared Data Without
Revealing the Shared Data
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Preform an Action Based on the Verification
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SYSTEMS AND METHODS PROVIDING
SPECIALIZED PROOFK OF CONFIDENTIAL
KNOWLEDGE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Patent Application

No. 63/058,918 filed on Jul. 30, 2020, which 1s herein
incorporated by reference for all purposes.

TECHNICAL FIELD

The disclosed technology relates generally to a systems
and methods for providing enhanced data verification and
cryptographic signatures.

BACKGROUND

In a classical cryptographic signature scheme, the private
key 1s the only secret data handled by the signer. The
corresponding public key 1s a publicly known data. For
example, the signing entity may store their private key and
share the corresponding public key with any other party.

The message being signed 1s public data and 1s required
by whoever 1s verilying the signature, just like the public
key corresponding to the signer’s private key.

The verifier entity may verily the message, public key,
and digital signature correspond with each other. The veri-
fication process either accepts (e.g., output “success,” etc.)
or rejects (e.g., output “fail,” etc.) the three data consistency
(1.e. that the message, public key, and digital signature
correspond with each other). If the verification process
outputs “success,” a third party 1s convinced with high
probability that the message has been signed by the holder
of the secret private key. There 1s an assumption that 1t 1s
computationally infeasible to generate a valid digital signa-
ture by the signing entity without knowing that entity’s
private key. The verifier may depend on the assumption that
identity of the signing entity 1s achieved by the enfity
possessing the private key. In some examples, the venfier
can provide goods or services to the signing entity under the
assumption of theiwr digitally determined identity. In some
examples, the verifier can perform other activities 1n
response to the vernified imformation, depending on the
application where the signature was used (e.g., approve the
contract/agreement/action on the signed document, etc.).

BRIEF SUMMARY OF EMBODIMENTS

The systems described herein employ a Specialized Proof
of Confidential Knowledge (SPoCK) scheme. This scheme
presents a scenario where a private key 1s still secret, but the
message 1s secret too. The scheme can be employed by
provers within the described systems to generate a proof
using these two secret data. In some embodiments, the
scheme allows two or more parties to provide public proof
to show that they know the same secret (e.g., the secret
message). In some embodiments, the process of generating
a prool and veritying two or more proois 1s non-interactive.
In some embodiments, every proof 1s specialized to a prover
as 1t 1s generated using the prover’s private key. In some
embodiments, the proof can be publicly revealed by a prover
while keeping the secret message secret.

Proofs may be specialized or non-specialized. A proof 1s
“specialized™ 11 1t can only be attributed to one prover user.
A “specialized” proof may be generated by using data
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2

owned only by the prover user (e.g., a private key). A
“non-specialized” proot 1s a proof that cannot be attributed
to a specific prover user and be claimed to be generated by
any prover user.

In an 1llustrative example, two prover users, A and B, both
know a secret and want to prove 1t to a verifier user or even
publicly. The prover users cannot reveal the secret publicly
(otherwise 1t 15 no longer a secret) and cannot share a
non-specialized proof of the secret. For instance, hashing the
secret and sharing the hash publicly protects the secret, but
any party can copy the hash and claim they know the secret
too. In some embodiments of the disclosure, the proof may
be generated so that the device that generated the proof 1s
only attributable to 1ts prover user. The scheme may work
with two prover users, but 1t can be generalized to any
number of prover users to show they all know the same
secret.

As an example, 1n some embodiments, a prover user may
generate a proof (e.g., a specialized proof of confidential
knowledge) using a secret message and the device’s private
key. The generated proof cannot be verified on 1ts own by a
verifier using only one prover user’s corresponding public
key. This 1s because the message 1s secret and 1s not known
by the verifier. However, 1f a second party (a second prover
user), holding a second private key, also generates a proof
(e.g., a specialized proot of confidential knowledge) using
the same secret message and this second private key, then
the verifier, using the two public keys of the prover users,
can determine whether both proofs have been generated
from the same secret message. In such embodiments, the
verifler will not have access to the contents of the secret
message, but if the verification process outputs “success,”
then the venfier can determine whether both prover users
have used the same secret message.

Accordingly, in one aspect, described herein are com-
puter-implemented methods for verifying proofs generated
from shared data without revealing the shared data. The
methods are executed by one or more processors. The
methods comprise: recerving, from a first node, a first proof
generated from a first private key associated with the first
node and data shared between the first node and a second
node; receiving, from the second node, a second proof
generated from the shared data and a second private key
associated with the second node; veritying, without reveal-
ing the shared data, the first proof and the second proof were
both generated from the shared data with a first public key
mathematically related to the first private key, and a second

public key mathematically related to the second private key;
and preforming an action based on the verification of the first
prool and the second proof both being generated from the
shared data. In some embodiments, the first proof and the
second proof are publicly revealed by the first node and the
second node respectively. In some embodiments, the action
comprises revealing publicly the vernfication of the first
prool and the second prool were both generated from the
shared data. In some embodiments, the first proof 1s only
attributable to the first node. In some embodiments, the
second proof 1s only attributable to the second node. In some
embodiments, the first proof or the second proof cannot be
verified with only the respective public key. In some
embodiments, the first proof and the second proof each
comprise a signature of the shared data generated with the
respective private key. In some embodiments, the signatures
are based on a BLS signature scheme. In some embodi-
ments, the verification of the first proof and the second proof
comprises a pairing equality check based on the two signa-
tures, the first public key, and the second public key. In some
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embodiments, veriiying the first proof and the second proof
comprises a pairing equality check. In some embodiments,
the first proof and the second prool are generated and
verified 1n a non-interactive protocol. In some embodiments,
the shared data comprises an execution trace proving an
execution of at least one transaction of a block within a
blockchain. In some embodiments, the first node comprises
a verification node employed to guarantee correctness of a
computation of an execution node. In some embodiments,
the computation comprises the execution trace. In some
embodiments, the second node comprises the execution
node employed to execute the at least one transaction of the
block. In some embodiments, the verification node publishes
the first proof as proof that the computation has been
verified. In some embodiments, the action comprises pro-
viding a state response to a client, the state response deter-
mined based on an output for the block. In some embodi-
ments, the computation 1s broken up 1nto chunks to allow a
lighter computation verification in a parallel and 1indepen-
dent manner. In some embodiments, the action comprises
arbitrating that each of the chunks are consistently generated
from the same intermediate results by the execution node
and the verification node.

In another aspect, described herein are systems for veri-
tying proolfs generated from shared data without revealing
the shared data. These systems comprise: one or more
processors; and a computer-readable storage device coupled
to the one or more processors and having instructions stored
thereon which, when executed by the one or more proces-
sors, cause the one or more processors to perform opera-
tions. These operations comprise: receiving, from a first
node, a first prool generated from a {first private key asso-
ciated with the first node and data shared between the first
node and a second node; receiving, from the second node, a
second prool generated from the shared data and a second
private key associated with the second node; verifying,
without revealing the shared data, the first proof and the
second proof were both generated from the shared data with
a first public key mathematically related to the first private
key, and a second public key mathematically related to the
second private key; and preforming an action based on the
verification of the first proot and the second proot both being
generated from the shared data. In some embodiments, the
first prootf and the second proof are publicly revealed by the
first node and the second node respectively. In some embodi-
ments, the action comprises revealing publicly the verifica-
tion of the first proof and the second proof were both
generated from the shared data. In some embodiments, the
first proof 1s only attributable to the first node. In some
embodiments, the second proof 1s only attributable to the
second node. In some embodiments, the first proof or the
second proof cannot be verified with only the respective
public key. In some embodiments, the first proof and the
second proof each comprise a signature of the shared data
generated with the respective private key. In some embodi-
ments, the signatures are based on a BLS signature scheme.
In some embodiments, the vernfication of the first proot and
the second proof comprises a pairing equality check based
on the two signatures, the first public key, and the second
public key. In some embodiments, verifying the first proof
and the second proof comprises a pairing equality check. In
some embodiments, the first proof and the second proof are
generated and verified 1n a non-interactive protocol. In some
embodiments, the shared data comprises an execution trace
proving an execution of at least one transaction of a block
within a blockchain. In some embodiments, the first node
comprises a verification node employed to guarantee cor-

10

15

20

25

30

35

40

45

50

55

60

65

4

rectness of a computation of an execution node. In some
embodiments, the computation comprises the execution
trace. In some embodiments, the second node comprises the
execution node employed to execute the at least one trans-
action of the block. In some embodiments, the verification
node publishes the first proof as proof that the computation
has been verified. In some embodiments, the action com-
prises providing a state response to a client, the state
response determined based on an output for the block. In
some embodiments, the computation 1s broken up 1nto
chunks to allow a lighter computation vernfication in a
parallel and independent manner. In some embodiments, the
action comprises arbitrating that each of the chunks are
consistently generated from the same intermediate results by
the execution node and the verification node.

In another aspect, described herein are non-transitory
computer-readable storage media coupled to one or more
processors and having instructions stored thereon which,
when executed by the one or more processors, cause the one
or more processors to perform operations. These operations
comprise: recerving, from a first node, a first proof generated
from a first private key associated with the first node and
data shared between the first node and a second node;
receiving, from the second node, a second proof generated
from the shared data and a second private key associated
with the second node; verilying, without revealing the
shared data, the first proof and the second prootf were both
generated from the shared data with a first public key
mathematically related to the first private key, and a second
public key mathematically related to the second private key;
and preforming an action based on the verification of the first
prool and the second proof both being generated from the
shared data. In some embodiments, the first proof and the
second proof are publicly revealed by the first node and the
second node respectively. In some embodiments, the action
comprises revealing publicly the verification of the first
prool and the second proof were both generated from the
shared data. In some embodiments, the first proof 1s only
attributable to the first node. In some embodiments, the
second proof 1s only attributable to the second node. In some
embodiments, the first proof or the second proof cannot be
verified with only the respective public key. In some
embodiments, the first proof and the second proof each
comprise a signature of the shared data generated with the
respective private key. In some embodiments, the signatures
are based on a BLS signature scheme. In some embodi-
ments, the verification of the first proof and the second proof
comprises a pairing equality check based on the two signa-
tures, the first public key, and the second public key. In some
embodiments, veritying the first proof and the second proof
comprises a pairing equality check. In some embodiments,
the first proof and the second proof are generated and
verified 1n a non-interactive protocol. In some embodiments,
the shared data comprises an execution trace proving an
execution of at least one transaction of a block within a
blockchain. In some embodiments, the first node comprises
a verification node employed to guarantee correctness of a
computation of an execution node. In some embodiments,
the computation comprises the execution trace. In some
embodiments, the second node comprises the execution
node employed to execute the at least one transaction of the
block. In some embodiments, the verification node publishes
the first proof as proof that the computation has been
verified. In some embodiments, the action comprises pro-
viding a state response to a client, the state response deter-
mined based on an output for the block. In some embodi-
ments, the computation 1s broken up 1nto chunks to allow a
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lighter computation verification in a parallel and 1indepen-
dent manner. In some embodiments, the action comprises
arbitrating that each of the chunks are consistently generated
from the same intermediate results by the execution node
and the verification node.

In another aspect, described herein are systems for veri-
tying prools generated from shared data without revealing
the shared data. These systems comprise: one or more
processors; and a computer-readable storage device coupled
to the one or more processors and having instructions stored
thereon which, when executed by the one or more proces-
sors, cause the one or more processors to perform opera-
tions. These operations comprise: recerving, from each of a
plurality of nodes, a respective proof generated from data
shared between the nodes and a respective private key
associated with each node; veritying, without revealing the
shared data, each of the proofs were generated from the
shared data with a plurality of public keys each mathemati-
cally related to a respective one of the private keys; and
preforming an action based on the verification of the proofs
being generated from the shared data. In some embodiments,
cach of the proofs are publicly revealed by their respective
nodes. In some embodiments, the action comprises revealing
publicly the verification of the first proof and the second
prool were both generated from the shared data. In some
embodiments, each of the proois i1s only attributable to the
respective generating node. In some embodiments, each of
the proois cannot be verified with only the respective public
key. In some embodiments, proofs each comprise a signature
of the shared data generated with the respective private key.
In some embodiments, the verification of the proofs com-
prises a pairing equality check based on the signatures and
the public keys. In some embodiments, verifying the proofs
comprises a pairing equality check. In some embodiments,
the proofs are generated and verified 1n a non-interactive
protocol. In some embodiments, the shared data comprises
an execution trace proving an execution of at least one
transaction of a block within a blockchain.

In another aspect, described herein are computer-imple-
mented methods for veritying prooifs generated from shared
data without revealing the shared data. The methods are
executed by one or more processors. The methods comprise:
receiving, from each of a plurality of nodes, a respective
prool generated from data shared between the nodes and a
respective private key associated with each node; verifying,
without revealing the shared data, each of the proofs were
generated from the shared data with a plurality of public
keys each mathematically related to a respective one of the
private keys; and preforming an action based on the verifi-
cation of the proots being generated from the shared data. In
some embodiments, each of the proots are publicly revealed
by their respective nodes. In some embodiments, the action
comprises revealing publicly the verification of the first
prool and the second prool were both generated from the
shared data. In some embodiments, each of the prooifs 1s only
attributable to the respective generating node. In some
embodiments, each of the proofs cannot be verified with
only the respective public key. In some embodiments, proofs
cach comprise a signature of the shared data generated with
the respective private key. In some embodiments, the veri-
fication of the proofs comprises a pairing equality check
based on the signatures and the public keys. In some
embodiments, verifying the prools comprises a pairing
equality check. In some embodiments, the proofs are gen-
erated and verified 1n a non-interactive protocol. In some
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embodiments, the shared data comprises an execution trace
proving an execution of at least one transaction of a block
within a blockchain.

In another aspect, described herein are non-transitory
computer-readable storage media coupled to one or more
processors and having instructions stored thereon which,
when executed by the one or more processors, cause the one
or more processors to perform operations. These operations
comprise: recerving, from each of a plurality of nodes, a
respective prool generated from data shared between the
nodes and a respective private key associated with each
node; veritying, without revealing the shared data, each of
the proofs were generated from the shared data with a
plurality of public keys each mathematically related to a
respective one of the private keys; and preforming an action
based on the verification of the proofs being generated from
the shared data. In some embodiments, each of the proois are
publicly revealed by their respective nodes. In some
embodiments, the action comprises revealing publicly the
verification of the first proof and the second proof were both
generated from the shared data. In some embodiments, each
of the proofs 1s only attributable to the respective generating
node. In some embodiments, each of the proofs cannot be
verified with only the respective public key. In some
embodiments, proolfs each comprise a signature of the
shared data generated with the respective private key. In
some embodiments, the verification of the proois comprises
a pairing equality check based on the signatures and the
public keys. In some embodiments, verifying the proofs
comprises a pairing equality check. In some embodiments,
the proois are generated and verified in a non-interactive
protocol. In some embodiments, the shared data comprises
an execution trace proving an execution ol at least one
transaction of a block within a blockchain. In some embodi-
ments, a number of verifications of the proofs 1s linear in the
number of the nodes and not quadratic. In some embodi-
ments, verifying the proofs requires one less verification
than the number of nodes.

It 1s appreciated that methods in accordance with the
present disclosure can include any combination of the
aspects and features described herein. That 1s, methods 1n
accordance with the present disclosure are not limited to the
combinations of aspects and features specifically described
herein, but also may include any combination of the aspects
and features provided.

The details of one or more embodiments of the present
disclosure are set forth in the accompanying drawings and
the description below. Other features and advantages of the
present disclosure will be apparent from the description and
drawings, and from the claims. The summary 1s not intended

to limit the scope of any mventions described herein, which
are defined solely by the claims attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

The technology disclosed herein, 1n accordance with one
or more various embodiments, 1s described 1n detail with
reference to the following figures. The drawings are pro-
vided for purposes of illustration only and merely depict
typical or example embodiments of the disclosed technol-
ogy. These drawings are provided to facilitate the reader’s
understanding of the disclosed technology and shall not be
considered limiting of the breadth, scope, or applicability
thereof. It should be noted that for clarity and ease of
illustration these drawings are not necessarily made to scale.
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FIG. 1 illustrates a distributed ledger and/or blockchain
system, as illustrated 1n various embodiments of the disclo-
SUre;

FIG. 2 depicts a non-limiting exemplary environment that
can be employed to execute implementations of the present
disclosure:

FIG. 3 depicts a non-limiting exemplary architecture for
the described system;

FIGS. 4-7 depict non-limiting exemplary tlow diagrams
that describe various properties of the scheme;

FIGS. 8-9 depict a non-limiting exemplary processes that
can be mmplemented by embodiments of the systems
described herein; and

FIG. 10 depicts a non-limiting exemplary computer sys-
tem that can be programmed or otherwise configured to
implement methods or systems of the present disclosure.

The figures are not itended to be exhaustive or to limit
the invention to the precise form disclosed. It should be
understood that the invention can be practiced with modi-
fication and alteration, and that the disclosed technology be
limited only by the claims and the equivalents thereof.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

(L]

Unless otherwise defined, all technical terms used herein
have the same meaning as commonly understood by one of
ordinary skill in the art to which the present subject matter
belongs. As used in this specification and the appended
claims, the singular forms *“a,” “an,” and “the” include plural
references unless the context clearly dictates otherwise. Any
reference to “or” herein 1s intended to encompass “and/of”
unless otherwise stated.

As used herein, the term “real-time” refers to transmitting
or processing data without intentional delay given the pro-
cessing limitations of a system, the time required to accu-
rately obtain data and images, and the rate of change of the
data and 1mages. In some examples, “real-time” 1s used to
describe the presentation of information obtained from com-
ponents of embodiments of the present disclosure.

As used herein, the term “smart contract” refers to a set
of computer-implemented instructions that can automati-
cally execute, control or document computational events and
actions 1n a digitized environment. In some examples, the
computations may be performed on a blockchain or distrib-
uted ledger of computational devices. The implementation
of the smart contract may be deployed using cryptographi-
cally signed transactions on the blockchain network. In
some examples, a smart contract implements a set of com-
puter-implemented 1nstructions related to rules and penalties
of an agreement. A smart contract may accomplish this by
taking information as input, assigning a value to that input
through the rules set out in the smart contract, and seli-
executing the computer-implemented actions required by
those rules. For example, a smart contract may determine
whether an asset should be sent to a destination entity or
whether 1t should be returned to an originating entity.

As an 1llustrative example, a smart contract may be
programed to deliver payment when an 1tem 1s received. In
this format, a smart contract may be generated as computer
code, stored and replicated on the system (e.g., 1n a block-
chain or distributed ledger, etc.), and supervised by a net-
work of computers that run the blockchain. Smart contracts
can store data. The data stored can be used to record
information, fact, associations, balances and any other infor-
mation needed to implement logic for real world contracts.
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In some embodiments, a smart contract 1s deployed, stored,
and executed within a virtual machine.

As used herein, the term “composability” includes a
system design principle that deals with the inter-relation-
ships of components. For example, a highly composable
system provides components that can be selected and
assembled 1n various combinations to satisly specific user
requirements. In the context of blockchain and smart con-
tracts, composability includes the ability to chain together
operations mvolving multiple independent smart contracts.
A recent example of composability 1s dY/dX, which 1s a
decentralized protocol for financial derivatives built on the
Ethereum blockchain. dY/dX allows for decentralized mar-
gin trading by enabling collateralized loans. A typical dY/dX
transaction combines at least three separate smart contracts:
The core dY/dX contract itsell, a decentralized exchange
like Ox, and at least one Ethereum Request for Comment
(ERC)-20 token such as DAL

As used herein, the term “sharding” generally refer to a
variety ol scaling proposals that divide the network nto a
series of subunits which interact asynchronously. The con-
cept has been widely used 1n databases, to make them more
scalable. More recently, sharding has been employed for
blockchain to improve transaction speed in the blockchain.
In a database context, for example, sharding may include a
method for horizontally partitioning data within a database.
More generally, the database 1s broken mto little pieces
called “shards,” that when aggregated together form the
original database. In distributed blockchain networks, the
network consists of a series of nodes connected 1n a peer to
peer format, with no central authority. In some examples, of
blockchain systems, each node stores all states of the net-
work and processes all of the transactions. While this
provides the high level securnity through decentralization,
especially 1n Proof of Work (PoW) systems such as Bitcoin
and Ethereum®, 1t can lead to legitimate scaling problems.
For example, a full node 1n the Ethereum network stores the
entire state of the blockchain, including account balances,
storage, and contract code. Unfortunately, as the number of
participants 1ncreases linearly, the inter-communication
overhead between them increases at an exponential pace.
This limitation 1s due to the communication needed between
the nodes needed to reach consensus. Nodes in the network
do not have special privileges and every node 1n the network
stores and processes every transaction. As a result, 1 a
network the size of Ethereum’s, 1ssues such as high gas costs
and longer transaction confirmation times become notice-
able problems when the network is strained. The network 1s
only as fast as the individual nodes rather than the sum of 1ts
parts. As such, sharding helps to alleviate these 1ssues. The
concept mvolves grouping subsets of nodes 1nto shards that
in turn process transactions specific to that shard. Employ-
ment of this type of architecture allows a system to process
many transactions in parallel.

As used herein, the term “consensus algorithm™ or *“‘con-
sensus protocol” includes a set of rules that describe how the
communication and transmission of data between electronic
devices, such as nodes, works. Consensus 1s achieved when
enough devices are 1n agreement about what 1s true and what
should be recorded onto a blockchain. Theretore, consensus
protocols are the goverming rules that allow devices that are
scattered across the world to factually come to an agreement,
allowing a blockchain network to function without being
corrupted.

As used herein, the term “Byzantine fault tolerance (BFT)
consensus algorithm,” 1n context of distributed systems,
includes the ability of a distributed computer network, such
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as the peer to peer network of nodes 1n the described system,
to function as desired and correctly reach a suflicient con-
sensus despite malicious components (nodes) of the system
failling or propagating incorrect information to other peers.
The objective 1s to defend against catastrophic system
fallures by mitigating the influence these malicious nodes
have on the correct function of the network and the right
consensus that 1s reached by the honest nodes 1n the system.

As used herein, the term “slash,” i1s to punish, for
example, a network participant, for failing to follow the
rules set out for the network. Punishment may be in the form
of a fine applied to funds they have put 1n escrow or staked.

As used herein, the term “interactive protocol” among
parties (e.g., nodes) mncludes a constraint that the parties
exchange messages 1n a kind of dialogue (e.g., via questions
and answers). In some embodiments, this exchange of
messages requires some form of synchronization in order to
send and receive the messages.

As used herein, the term “‘non-interactive protocol”
among parties (e.g., nodes) allows each of the parties to
perform actions without waiting for the others. In some
embodiments of the described system, a node generates a
proof on 1ts own and does not require mput from any of the
other nodes. Similarly, in some embodiments of the
described system, verification does not require further dis-
cussion with the users as only their 1mitial proot 1s enough.

FIG. 1 illustrates a distributed ledger and/or blockchain
system, as illustrated in various embodiments of the disclo-
sure. The distributed ledger may comprise one or more
computing devices 102, 104, 106, 108, and a network 110,
which may be used to form a peer-to-peer network. In some
embodiments, the network 110 includes a local area network
(LAN), wide area network (WAN), the Internet, or a com-
bination thereof, and connects devices (e.g., the computing,
devices 102, 104, 106, 108). In some embodiments, the
network 110 includes an intranet, an extranet, or an intranet
or extranet that 1s 1n communication with the Internet. In
some embodiments, the network 110 includes a telecommu-
nication or a data network. In some embodiments, the
network 110 can be accessed over a wired or a wireless
communications link.

A distributed ledger (e.g., a blockchain) can be described
as a ledger of any transactions or contracts maintained 1n
decentralized form across different locations and people,
climinating the need of a central authority to keep a check
against manipulation. All the imnformation on 1t i1s securely
and accurately stored using cryptography and can be
accessed using keys and cryptographic signatures. Once the
information 1s stored, 1t becomes an immutable database,
which the rules of the network govern. Distributed ledgers
are inherently harder to attack than, for example, a central-
ized ledger because all the distributed copies need to be
attacked simultaneously for an attack to be successtul.
Moreover, these records are resistant to malicious changes
by a single party.

Efficiency 1s a multi-faceted pillar that addresses two
substantial problems observed 1n the blockchain space. The
first 1s Proot of Work (PoW), which 1s consistently criticized
for 1ts excessive use ol power and ineflicient resource
allocation. PoW 1s rejected as an option for securing a
system. The second 1ssue i1s the significant amount of
duplicate eflort a blockchain requires to operate, even 1n a
Proof of Stake (PoS) based system which still requires all the
nodes to hold all the state even though they are not solving,
a PoW problem. In a traditional blockchain, for example,
cach node may perform every task associated with block
production. This duplication 1s not only a chokepoint for

10

15

20

25

30

35

40

45

50

55

60

65

10

scale, 1t 1s a poor allocation of resources that would be better
served 11 applied to their respective strengths.

Furthermore, blockchain technology may create permis-
sionless and autonomous software systems as the long-run
value of an ecosystem of autonomous, interoperable soft-
ware may 1ndeed stand as the most compelling outcome of
the decentralized revolution. The overwhelming majority of
existing proposals for open, consumer-scale blockchain sys-
tems depend on some kind of sharding. While the various
approaches to sharding may legitimately increase the num-
ber of transactions the network 1s able to handle, they may
limit the capability of those transactions. In particular, each
transaction 1s only able to read and modily information
within 1ts own shard. In some sharded blockchain imple-
mentations, communication with other shards must occur
asynchronously and—without expensive and complicated
locking operations—runs the risk of acting on stale infor-
mation. Moreover, existing proposal for a sharded block-
chain do not provide the ability for a single atomic trans-
action to interact with multiple shards. For example, a
separate transaction may be issued on each shard, and 1t
atomicity guarantees are required (for example, 1 there 1s
some reciprocal exchange of value), there may be some kind
of complex locking and commitment system built on top of
the blockchain.

An example distributed ledger 1s the commonly known
blockchain. Blockchain 1s referenced within the present
disclosure for purposes of illustration. It 1s contemplated,
however, that any appropnate distributed ledger can be used
in 1mplementations of the present disclosure. A blockchain
1s a continuously growing list of records or blocks that are
linked and secured using cryptography. Each block within
the blockchain may include transaction data provided from
transactions that have been executed in one or more con-
texts, such as negotiable nstrument transactions, digital
currency transactions, and so forth. In some examples, a
transaction includes an agreement between a buyer and
seller, a supplier and a consumer, or a provider and a
consumer that there would be exchange of assets, products
or services 1n lieu of currency, crypto-currency or some
other asset either 1n present or 1n future. In some examples,
a single block may include transaction data provided from
multiple transactions (e.g., multiple deposits of different
checks by different people). A blockchain may grow as
completed blocks are added with a new set of transactions
thus forming a ledger of the transaction. Each block may
include a hash pointer to a previous block and a timestamp
along with the transaction data 1n a permanent manner.

In some embodiments, the transactions in a block of a
blockchain are hashed and encoded into a Merkle tree (e.g.,
the transactions are leaf nodes of a Merkle tree). A Merkle
tree (or hash-based tree) 1s a hash-based data structure that
may be a generalization of a hash list. A Merkle tree includes
a tree structure in which each leal node 1s a result of a
cryptographic hash function (CHF) applied to the transac-
tion to generate a hash value or “hash” and each non-leaf
node 1s labelled with the cryptographic hash of the labels of
its child nodes. Example CHFs include the secure hash
algorithm 256 (SHA-236), SHA-3, and message digest 5
(MD?3), among others. In general, the CIF receives infor-
mation as mput, and provides a hash value as output. The
hash value can be a predetermined length. For example,
SHA-256 outputs a 256-bit (32-byte, 64-character) hash
value. In some examples, the hash value 1s a one-way hash
value, 1n that the hash wvalue cannot be ‘un-hashed’ to
determine what the mput was. Additionally, a Merkle tree
may be implemented as a k-ary tree, which 1s a rooted tree
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data structure in which each node has no more than k
chuldren. For example, a Merkle tree may be implemented as
binary tree where each node may have 0O, 1, or 2 children.
The Merkle root (or root hash) of such a binary tree can be
generated by repeatedly hashing each pair of nodes until
only one hash 1s left. In some examples, when the number
of transactions 1s odd, the last hash may be duplicated once
to create an even number of leal nodes. If a single detail in
any of the transactions or the order of the transactions
changes, so does the Merkle root. As such, the Merkle root
summarizes all of the data in the related transactions and can
be stored 1n a block to maintain the integrity of the data.
Thus, the employment of a Merkle tree allows for a quick
and simple test of whether a specific transaction 1s included
in the set or not.

In general, blocks are added to the blockchain 1n a linear,
chronological order by one or more computing devices 1n a
peer-to-peer network of mterconnected computing devices
that execute a blockchain protocol. In short, the peer-to-peer
network can be described as a plurality of interconnected
nodes, each node being a computing device that uses a client
to validate and relay transactions (e.g., deposits of checks).
Each node maintains a copy of the blockchain, which 1is
automatically downloaded to the node upon joining the
peer-to-peer network. The blockchain protocol provides a
secure and rehiable method of updating the blockchain,
copies of which are distributed across the peer-to-peer
network, without use of a central authority.

Because all entities on the blockchain network may need
to know all previous transactions (e.g., deposits, withdraw-
als, etc.) to validate a requested transaction, entities may
agree on which transactions have actually occurred, and 1n
which order. For example, 11 two entities observe diflerent
transaction histories, they may be unable to come to the
same conclusion regarding the validity of a transaction. The
blockchain enables the entities to come to an agreement as
to transactions that have already occurred, and 1 which
order. In short, and as described 1n further detail below, a
ledger of transactions 1s agreed to be based on the amount of
work required to add a transaction to the ledger of transac-
tions (e.g., add a block to the blockchain). In this context, the
work 1s a task that 1s dificult for any single node (e.g.,
computing device) in the peer-to-peer network to quickly
complete, but 1s relatively easy for a node (e.g., computing
device) to venty.

A typical peer-to-peer network may include so-called
miners (e.g., computing devices) that add blocks to a block-
chain based on the blockchain protocol. In general, multiple
miners validate transactions that are to be added to a block,
and compete (e.g., perform work, as introduced above) to
have their block added to the blockchain. Validation of
transactions may include verifying digital signatures asso-
ciated with respective transactions. For a block to be added
to the blockchain, a miner must demonstrate a PoW before
theirr provided block of transactions i1s accepted by the
peer-to-peer network. A blockchain protocol includes a PowW
scheme that 1s based on a CIF. In some embodiments, the
blockchain protocol can require multiple pieces of informa-
tion as input to the CIF. For example, the input to the CIF
can include a reference to the previous (most recent) block
in the blockchain, details of the transaction(s) that are to be
included 1n the to be created block, and a nonce value.

Multiple nodes may compete to hash a set of transactions
and provide the next block that 1s to be added to the
blockchain. The blockchain protocol may provide a thresh-
old hash to qualify a block to be added to the blockchain. For

example, the threshold hash can include a predefined num-
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ber of zeros (0’s) that the hash value must have at the
beginning (e.g., at least the first four characters of the hash
value must each be zero). The higher the number of zeros,
the more time-consuming 1t 1s to arrive at a qualifying hash
value.

In some blockchain-based platforms, for example, each
block producing node may go through a number of steps to
create a candidate block. For example, a number of trans-
actions are selected from a publicly-shared pool of pending
transactions. In some embodiments, the selected transac-
tions are assigned 1n an order in, for example, a linear list.
Typically, there 1s some mechanism to limit the maximum
number of transactions that can be included. In many
embodiments, however, there 1s no enforced minimum.
Computations specified by the transactions are performed.
In some embodiments, each computation has access to a
global shared state, and can make certain changes to that
shared state. Moreover, 1n some embodiments, the input of
one transaction could depend on the output of another
transaction. In such embodiments, 1t 1s important that these
computations are strictly performed in order. The transac-
tions may be combined with a snapshot of the final canonical
state resulting from processing those transactions. The
results are broadcast to the rest of the network. In some
embodiments, the “snapshot™ i1s a hash of the canonical state,
and can be 1 the form of, for example, the root node of a
Merkle tree.

In some embodiments, each node in the network that
receives a candidate block verifies that the computations
implied by the transaction list have been computed correctly.
These nodes may repeat each of the computations in the
order specified by the candidate block. The nodes then
compare the snapshot of the final canonical state they have
computed with the snapshot in the candidate block from the
original node. If the snapshots match, the block may be
considered a valid candidate.

In unspent transaction output (UTXO) blockchains, such
as Bitcoin, only transactions that successfully transfer
tokens can be included in a block. On the other hand, in
state-model blockchains, like Ethereum, 1t may be valid (and
even common) to include transactions that fail. In some
embodiments, these transactions are included in the block,
but do not modily the canonical state (aside from the
payment of the transaction fees). Thus, a transaction that 1s
“processed correctly” may not actually do what was
intended by user mitiating the transaction.

Once one or more valid candidate blocks are produced,
the network may use some consensus mechanism for col-
lectively agreeing on a single valid candidate. This 1is
typically “proof-of-work™ 1n current blockchains, but there
are many proposals for future networks- or evolutions of
existing networks—that use “proof-of-stake”. The embodi-
ments of the decentralized computation system, described
herein, work equally well with either family of consensus
mechanisms or when coupled with istant-finality, proot-oi-
stake consensus.

In some embodiments, an example system that can
employ the described scheme provides an architectural
approach with high throughput and no-sharding, which
results 1n composability. In some embodiments, such com-
posability provides for complex new trustless systems to be
created through a novel combination of simpler trustless
systems. The example decentralized computation system
can be employed to, for example, support decentralized
applications. In some embodiments, the example decentral-
1zed computation system divides a peer-to-peer network into
three distinct node types, each responsible for one of three
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tasks: accessing the network from outside, securing the
network from attacks, and computing the state of the net-
work. Such separation of concerns enables node specializa-
tion, which dramatically improves the throughput of the
network while enhancing the security and decentralization
possibilities of the deployed system. Additionally, compos-
ability can be a powerful manifestation of soltware reuse,
but composability without atomicity can lead to inconsistent
results (e.g., “undesired states™). The example decentralized
computation system may employ a scaling mechanism that
allows each transaction the ability to atomically access and
modily any part of the canonical state with which 1t 1s
authorized to interact.

As described above, 1n some embodiments, the example
decentralized computation system divides nodes 1n the net-
work 1nto three distinct roles: Access, Security, and Execu-
tion. This separation of concerns can enable high throughput
without sacrificing synchrony, 1n an environment that main-
tains the access, security, reliability, and verifiability guar-
antees that characterize and uphold the integrity of a decen-
tralized system. In some embodiments, the core relationship
between the different node types i1s one of checks and
balances, which ensures strong consensus on transaction
inclusion, order, and output, and determines the canonical
state of history. One of the challenges of this approach 1s
coordinating three separate groups of nodes and ensuring
cilicient interactions between them.

In some embodiments, the example decentralized com-
putation system provides the transaction capacity and com-
putational throughput to support a thriving and engaging
ccosystem that may be made available to mass market
audiences (e.g., billions of active users). In some embodi-
ments, the example decentralized computation system
handles as many as one million transactions per second
(TPS) or more.

The example decentralized computation system may not
sacrifice practical utility. In particular, in some embodi-
ments, the system preserves fully synchronous communica-
tion between smart contracts. Full synchrony ensures that
inter-contract communications retain ACID guarantees for
correctness (Atomicity, Consistency, Isolation, Durability),
without complex locking schemes prone to error or exploi-
tation. In short, synchrony may be required for one smart
contract to be sure that another smart contract 1s executed
correctly, and to allow independent smart contracts to be
composed 1mnto complex systems without sacrificing safety.

Long-term, sustained decentralization may be one aspect
provided by the example decentralized computation system.
Many blockchain-enabled systems treat decentralization as
optional or cosmetic, rather than a core value of the system.
While this may result 1n some quick wins in the short term,
those systems are likely to degrade over time. Moreover,
without explicit incentives otherwise, valuable systems with
any degree of centralization tend towards further centraliza-
tion. The qualities of decentralization provided by the
example decentralized computation system include: access,
security, reliability, and vernifiability.

In some embodiments, the example decentralized com-
putation system provides access through the ability to use
the system resources of the network at a fixed cost (provided
a user 1s able to pay for their usage). Such access provides
that there 1s no actor, or plausible group of actors, that can
deny any class of users from using the network, or who can
prioritize some trailic over others.

In some embodiments, the example decentralized com-
putation system maintains security by ensuring that each
honest participant 1n the network has the same view of
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history as other honest participants, and that this historical
record cannot be modified after-the-fact.

Reliability includes the assurance that the rules of the
system are applied uniformly, strictly enforced, and can
change only 1n predictable, transparent ways. In some
embodiments, the example decentralized computation sys-
tem provides reliability by ensuring that there 1s no actor, or
plausible cabal of actors, that can change these rules 1n a way
without allowing users of the system to opt-out of those
changes (through a hard fork, for example).

In some embodiments, the example decentralized com-
putation system 1s verifiable 1n that 1t allows for transpar-
ency of some or all actions (e.g., the high-level on chain
operations following the protocol rules, etc.). As such,
anyone can confirm, using, for example, computer resources
under their own control, that the protocol (and the rules
defined within the protocol) has been followed correctly.
This 1mplicitly includes the ability to see all on-chain
activity. For example, a user can verily a transaction they
submitted was correctly executed on chain.

The example decentralized computation system guarantee
of access, security, reliability, and verifiability, captures a
much broader set of benefits from a decentralized environ-
ment. For example, guaranteeing access may help ensure
anyone can join the network and easily understand the rules
to which the network 1s bound. Moreover, a secure network
may enact those rules without fail. This combination may
produce an environment 1 which users can reason about the
system and, with a known set of inputs, reliably predict and
ultimately verily an outcome. Together, these requirements
provide the robust criteria needed to achieve full decentral-
ization and the associated benefits of transparency,
autonomy, mteroperability, and immutabaility.

FIG. 2 depicts an example environment that can be
employed to execute implementations of the present disclo-
sure. The example system includes computing devices 102,
104, 106, 108, and a network 110, which may be used to
form a peer-to-peer network. In some embodiments, the
network 110 includes a local area network (LAN), wide area
network (WAN), the Internet, or a combination thereot, and
connects devices (e.g., the computing devices 102, 104, 106,
108). In some embodiments, the network 110 includes an
intranet, an extranet, or an intranet or extranet that 1s in
communication with the Internet. In some embodiments, the
network 110 includes a telecommunication or a data net-
work. In some embodiments, the network 110 can be
accessed over a wired or a wireless communications link.
For example, mobile computing devices (e.g., the smart-
phone device 102 and the tablet device 106), can use a
cellular network to access the network 110.

In some examples, the users 122-128 may be working as
user agents that employ agent software to interact with the
decentralized computation system. For example, the users
may employ their respective devices 102-108 to provide
transaction or to function as nodes in the described system.

In some embodiments, the computing devices 102, 104,
106, and 108 are sustainably similar to computing device
510 depicted 1n FIG. 5. Four computing devices are depicted
in FIG. 1-2 for simplicity. It 1s contemplated, however, that
implementations of the present disclosure can be realized
with any of the appropriate computing devices, such as those
mentioned previously. Moreover, implementations of the
present disclosure can employ any number of devices func-
tioning as nodes 1n a peer-to-peer network as required.

The computing devices 102, 104, 106 may each include
any appropriate type of computing device such as a desktop
computer, a laptop computer, a handheld computer, a tablet
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computer, a personal digital assistant (PDA), a cellular
telephone, a network appliance, a camera, a smart phone, an
enhanced general packet radio service (EGPRS) mobile
phone, a media player, a navigation device, an email device,
a game console, or an appropriate combination of any two
or more of these devices or other data computing devices. In
the depicted example, the computing device 102 1s a smart-
phone, the computing device 104 1s a tablet-computing
device, and the computing device 106 1s a desktop comput-
ing device.

The server computing device 108 may include any appro-
priate type of computing device, such as described above for
computing devices 102-106 as well as computing devices
with server-class hardware. In some embodiments, the
server computing device 108 may include computer systems
using clustered computers and components to act as a single
pool of seamless resources. For example, such implemen-
tations may be used 1n data center, and cloud computing. In
some embodiments, back-end system 130 1s deployed using
a virtual machine(s).

In some embodiments, the computing devices 102-108
are deployed as nodes within the example decentralized
computation system and form a peer-to-peer network. For
example, the computing devices 102-108 may be employed
within the described decentralized computation as an access
node, a security node, or an execution node, within the
formed peer-to-peer network, as illustrated in FIG. 3. In
some embodiments, the formed peer-to-peer network 1s a
distributed network where each network node (e.g., com-
puting devices 102-108) 1s connected to every other node on
the network directly or indirectly. As such, information (e.g.,
transactions) can be shared directly between nodes without
the need of a central server. In some embodiments, the nodes
employ a peer-to-peer protocol to communicate.

In some embodiments, the system may correspond with a
decentralized blockchain that may be stored on each of the
computing devices 102-108. In some embodiments, a set of
the computing devices stored the blockchain. The block-
chain includes blocks that comprise transactions. In some
embodiments, such transactions are received, verified and
executed by the example decentralized computation system.
In some embodiments, the transactions stored to the block-
chain include smart contracts. In some embodiments, a
smart contract may be extended with custom functionality
and mvoked as a part of a transaction by an execution node
within the formed peer-to-peer network, as illustrated in
FIG. 3. For example, the computing devices 102-108 may be
used by respective users 222-226 to receive transactions to
be processed and stored within a block on the blockchain. In
some embodiments, the computing devices 102-108 employ
a virtual machine as an execution runtime to execute smart
contract code. For example, such mechanism allows transi-
tions ifrom one state to another: given a certain block (in
which a number of transactions are stored), and given a state
s, performing the computation will bring the machine 1nto a
new state S'. In some embodiments, the state transition
mechanism consists of accessing transaction-related
accounts, computing operations, and updating/writing the
state of the virtual machine. Whatever 1s executed on the
virtual machine (e.g., smart contract code) may alter its
state. In some embodiments, after executing all the transac-
tions of a block, the current state may be stored.

FI1G. 3 depicts an example of a general architecture for the
example decentralized computation system, which can be
deployed through, for example, the example environment of
FIGS. 1-2. The general architecture includes a client 302,
access nodes 310, security nodes 320, and execution nodes
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330, which may be deployed through a device, such as
devices 102-108 of FIGS. 1-2. In some embodiments, the
access nodes 310 maintain network availability for the client
302 and answer queries related to the world state. In some
embodiments, the security nodes 320 ensure the safety of the
network by participating in a BFT consensus algorithm,
which provides strong guarantees for blocks. In some
embodiments, the execution nodes process the blocks (final-
1zed blocks 325) once received from the security nodes 320.
In some embodiments, the execution nodes can provide the
computational power to determine the result of transactions,
such as transaction 305, finalized by the security nodes 320,
and store a resultant world state. A more detailed explanation
of these roles 1s provided below.

In some embodiments, the example decentralized com-
putation system employs a decentralized blockchain, such as
the blockchain of FIGS. 1-2. In some embodiments, the job
of a decentralized blockchain can be divided 1nto a vaniety
of component functions; some of those functions may be
fully deterministic and have an objectively correct output,
and some of those tasks may be subjective and require
network-level consensus. The decentralized blockchain sys-
tem can create an autonomous, leaderless, and decentralized
system to reliably come to network consensus on something
that 1s naturally subjective: what transactions are included in
the shared state, and 1n what order (the “transaction log”). In
some embodiments, such a subjective task may either
require an all-powertul central authority to dictate the trans-
action log, or one of the many consensus systems that allow
a decentralized network to determine a shared view of a
canonical transaction log. Two other tasks of a blockchain
may not be subjective, and may be fully deterministic:
storing the transaction log, and determining the world state
that results from a correct application of the contents of the
log 1n consensus order. The primary bottlenecks preventing
blockchains from reaching consumer scale fall into this
second category.

In some embodiments, the example decentralized com-
putation system 1s designed so that all Byzantine faults in
deterministic processes have four important attributes:
detectability, attributably, punishably, and correctability. In
some embodiments, a deterministic process may have an
objectively correct output. Meaning even a single, honest
node 1n the network can detect deterministic faults, and
prove the error to all other honest nodes by asking them to
recreate part of the process that was executed incorrectly.
Moreover, 1n some embodiments, the deterministic pro-
cesses 1n the example decentralized computation system
may be assigned to nodes using a verifiable random function
(VRF). As such, any error that has been detected can be
clearly attributed to those nodes that were responsible for
that process. In some embodiments, all nodes participating
in the example decentralized computation system, even 1n
deterministic processes, must put up a stake that can be
slashed 1f they are found to have exhibited Byzantine
behavior. Since all errors in deterministic processes are
trivially detectable and attributable, those errors can be
reliably punished via slashing. In some embodiments, the
described system must have a means to quickly undo errors
as soon as they are detected. This serves to deter malicious
actors from inducing errors that benefit them more than the
slashing penalty.

The design of the described system was informed by the
insight that many participants are needed to support the
non-deterministic parts of the process, while far fewer are
needed for deterministic processes because their properties
dictate defimtive detection, and, therefore, the punishment
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of those who do not adhere to the protocol. Therefore, the
described system may separate deterministic processes (as
depicted 1n FIG. 3) and may assign them to fewer, more
powertul participants who are scrutinized by a broad audi-
ence. Fewer nodes make the deterministic elements of the
network much more eflicient, especially for executing com-
putation. For example, one proof of concept shows that this
approach can achieve more than 100,000 TPS, without any
degradation of security guarantees. The proof of concept for
performance 1n a testbed setup as a heterogeneous network
of more than thirty nodes runming in eleven different data
centers on five continents. This 1s just one example of the
improvements possible when problems are separated into
their deterministic and nondeterministic parts and assigned
accordingly.

In some embodiments, the access nodes 310 may mediate
information exchange with the world outside the example
decentralized computation system, which may help ensure
systematic and timely communications regarding both state
and history. In some embodiments, the access nodes 310
may be tasked with managing the transaction pool and
collecting well-formed transactions, such as transaction 303
from client 302, to provide to security nodes 320. In some
embodiments, a well-formed transaction may include cre-
dentials from a guarantor of the transaction. In some
embodiments, when an access node 310 sees a well-formed
transaction, access node 310 may hash the text of that
transaction and sign the transaction to indicate two things:
first, that 1t 1s well-formed, and second, that 1t will commit
to storing the transaction text until the execution nodes 330
have finished processing 1t. In some embodiments, when a
critical number of access nodes 310 have reviewed the
transaction and concluded 1t 1s well-formed, they may trans-
mit it to the security nodes 320 for review. The critical
number of access nodes 310 may vary by embodiment. For
example, the critical number of access nodes 310 may
depend on various protocol parameters. In some examples,
the critical number of access nodes 310 may be chosen 1n a
way that a few malicious access nodes cannot threaten the
integrity of the blockchain by prioritizing some transactions
or censoring others.

In some embodiments, after both the security nodes 320
and the execution nodes 330 have built and processed a
block, the access nodes 310 may query the execution nodes
330 for their output (e.g., the results of computations). In
some embodiments, the access nodes 310 store a cache of
that output received from the execution nodes 330. In some
embodiments, the access nodes 310 provide the client 302
with the cached results (e.g., the state response 345) of
computations without having to burden the execution nodes
330 with more direct queries. In some embodiments, a
verifiable random function (VRF) determines which outputs
from the execution nodes 330 that the access nodes 310 may
query to check they were computed correctly. Ultimately,
the access nodes 310 may keep the execution nodes 330
“honest.” This may be performed to maintain a balance of
power between the access, security, and verifiability criteria
ol decentralization provided by the described system. The
provided protocols and underlying structures of the system
are highly Byzantine fault tolerance (BF'T) because, 1n some
embodiments, even 1f there are a substantial number of
byzantine errors in the pool of access node 310, the security
nodes 320 are still required to approve the transactions they
signed were reviewed by a critical amount of the network.
The BFT protocol can protect the network from a few
malicious access nodes or security nodes (e.g., “few” mean-
ing less than some critical number) so that they cannot
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threaten the integrity and liveness of the network. Any
intentional or non-intentional mistake by a node may be
detectable, fixable, attributable, and punishable by the rest of
the network.

In some embodiments, the access nodes 310 require high
levels of bandwidth and low latency to communicate with
the public as their queries and transactions may be answered
and captured, respectively. In some embodiments, the access
nodes 310 (e.g., the users 222-228 of FIG. 2) may be paid
a flat fee (or other reward) for every transaction they
guarantee, and for each they successiully verily. In some
embodiments, the access nodes 310 are slashed 1t they
provide collections that are 1ll-formed, or 1 they fail to store
the transaction text that they said they would hold.

Slashing may be a mechanism built into blockchain
protocols (e.g., prool of stake) to discourage node misbe-
havior and maintain the overall network security and avail-
ability. Similarly, incentives may be designed to incentivize
protocol security, availability, and network participation.
Slashing 1s a form of punishment and may include the
removal of the node, monetary penalties and/or other pun-
iIshments.

In some embodiments, the security nodes 320 participate
in the consensus algorithm employed by the described
system to achieve block finality to ensure the integrity of the
blockchain. In this context, finality includes a finalized block
325 of transactions that have been signed by a cntical
majority and are confirmed to be both well-formed and
stored by the access nodes 310. In some embodiments, the
security nodes 320 contribute primarily to security and
scale, as they are able to vote quickly on candidate blocks
315 that set the order necessary to know the deterministic
output of a transaction. In some embodiments, the security
nodes 320 validate that the signed transaction hashes sub-
mitted to them by the access nodes 310 are signed by a
critical mass of access nodes as required by the described
system. In some embodiments, the critical mass of access
nodes 1s determined by a configurable threshold value.

The consensus algorithm (e.g., proof-of-stake algorithm,
etc.) performed by security nodes 320 may be a sub-
protocol. The consensus algorithm may help the security
nodes 320 to agree (e.g., reach a “consensus”) on the next
block to add to the chain.

In some embodiments, once the security nodes 320 have
successiully come to consensus that the transactions pre-
sented were signed by the critical number of the access
nodes 310, the transactions are deemed a finalized block
325. The security of the process within the described system
relies on the security of the underlying consensus algorithm,
some of the considerations of which are speed and the ability
to support a large number of participants. In some embodi-
ments, the consensus algorithm employed by the example
decentralized computation system includes a variant of
Casper CBC, Tendermint-derived SBFT, Hot Stufl, Fantom-
ctte, or others well suited to support many participants. In
some embodiments, the finalized block may determine the
order of the included transactions. In some embodiments,
the ordering of transactions 1s based on the order of collec-
tions, and of ordering of the transactions within collections.
In some embodiments, the ordering of these elements may
correspond with a pseudo-random algorithm executed by the
proposing node.

In some embodiments, the security nodes 320 provide a
checkpoint against the access nodes 310 because they are the
group checking that a critical number of the access nodes
310 reviewed and signed for the transaction. In some
embodiments, the security nodes 320 are notably held
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accountable only by fellow security nodes 320. A common
concern with PoW- and PoS-based systems 1s that a small
subset of the population can control important resources,
such as the mining or stake needed to produce and vote on
blocks, which 1s a degradation of the security of the system.
In some embodiments, by lowering the requirements to
participate, the example decentralized computation system
may make 1t more difficult or expensive to, for example,
coordinate a Byzantine cartel or other collusive activity by
bad actors.

In some embodiments, the security nodes 320 may have
mimmal bandwidth and computation requirements, allowing,
even a modest computing device, such as a smartphone or a
low-power ARM® system, to participate in the voting
process and ensure the safety of the network. Many net-
works may claim open participation through substantial to
partake 1n the decentralized network. Maintaining such a
threshold undermines the security of the network. Lowering,
the participation requirements, such as described above for
the security nodes 320, preserves the coordination problem,
which may be central to providing a high degree of BFT
because it may be exceedingly difficult for a subset of bad
actors to subvert the network. In some embodiments, the
security nodes 320 may be paid for the transactions they
include 1n a block. In some embodiments, participating 1n
the consensus process requires these nodes to put up stake,
which may be slashed 11 they sign an mvalid block. In some
embodiments, an 1nvalid block fails to have the critical
number of signatures from the access nodes 310.

In some embodiments, the execution nodes 330 compute
the outputs of the finalized blocks 325 they are provided. In
some embodiments, the execution nodes 330 execute a
candidate block 315 that may have been finalized and
provided by the security nodes 320 (e.g., finalized block
325). In some embodiments, the execution nodes 330 query
the access nodes 310 for the transaction text that matches the
hash they have been provided by the security nodes 320.
With this data, the execution nodes 330 may be able to
compute the output, which, 1n some embodiments, 1s later
randomly queried by a randomly assigned subset of access
nodes 310 to ensure honesty. In some embodiments, the
execution nodes 330 may be responsible for at least some of
the system’s improvements in scale and efliciency because
only a very small number of these powerful computer

resources are required to compute and store the historical
state.

In some embodiments, one of the execution nodes 330
presents a hashed commitment once 1t has computed the
output of the finalized block 325 or a subset of the transac-
tions within the finalized block 325. The hashed commuit-
ment may correspond with a state commitment, which may
be a hash of the entire state of the blockchain after executing,
a new block. In some examples, this hashed commitment
may correspond with a Merkle tree hash when the state of
the blockchain 1s stored 1n a Merkle tree. In some embodi-
ments, this output may be only revealed once 1ts co-execu-
tors (e.g., other execution nodes 330 as determined by, for
example, a VRF) have also submitted their outputs. This 1s
important to ensure nodes are not spoofing each other’s
work. In some embodiments, once the execution nodes 330
have submitted their answers, the output 1s revealed. In some
embodiments, once revealed, the output 1s subject to random
queries and checks run by the access nodes 310. In some
embodiments, the execution nodes 330 may have relatively
low BFT. However, this does not compromise the overall
security of the system because the process they perform 1s
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deterministic. For example, any bad actor may easily be
detected and punished by the access nodes 310.

In some embodiments, this relatively small group of
nodes (e.g., the execution nodes 330) has the most substan-
tial technical requirements for processor speed and band-
width because they may be tasked with executing or per-
forming the computations necessary to determine the output
of the network. In some embodiments, allowing for this
degree of specialization can reduce computation costs by at
least one thousand times, and possibly much more, when
compared to other traditional distributed networks.

In some embodiments, although the execution nodes 330
are responsible for computing and storing the entire world
state of the blockchain, the execution nodes 330 may not be
required to answer all external queries about that state. In
some embodiments, the execution nodes 330 may answer
the access nodes 310 at least once during the verification
period to confirm their output. In some embodiments, this
query provides the access nodes 310 the answer (e.g., the
state response 345) for future queries from the client 302,
such as described above, which spares the execution nodes
330 of those excess queries burdening them in the future.
However, 1n some embodiments, the execution nodes 330
can be punished (e.g., slashed) if they fail to provide answers
about their output to the access nodes 310 when prompted.
In some embodiments, the execution nodes 330 may be paid
for their work at the end of the verification period, once their
outputs have been verified. In some embodiments, the costs
charged by the execution nodes 330 varies by computation
and 1s likely to be based on the number of 1nstructions the
computation required.

In some embodiments, the common thread between these
different node types (e.g., access node 310, security node
320, and execution node 330) may be their relationship to,
and authority over, the state held by the network. For
example, 1n some embodiments, the entirety of the world
state may be held by each and every execution node 330 1n
order to perform computations. In some embodiments, once
the execution nodes 330 have run the computations and
determined the output, they may update the world state after
which 1t 1s validated by the access nodes 310. In some
embodiments, the execution nodes 330 must provide a
Merkle proof for the output state in question. This complex-
ity may allow for the validation of the integrity of the
outputs.

In some embodiments, the access nodes 310 may cache
the most recently updated or accessed data mn a sharded
fashion (e.g., the cached state 340), with each access node
310 holding a fraction of the overall canonical state 335.
This cached state 340 may help ensure that data i1s easily
accessible to answer user queries (e.g., provide the answer
state 345 to clients 302) 1n the event the execution nodes 330
are busy and cannot answer. This ability to provide answers
more quickly helps ensure access and the verifiability of the
network for the public. In some embodiments, the access
nodes 310 are also responsible for holding transaction data
until a transaction 1s processed and the result verified by the
execution nodes 330. In some embodiments, once pro-
cessed, the transaction 1tself becomes part of the canonical
state 345 and the access nodes 310 are no longer required to
store the cached state 340 (e.g., the transaction text).

In some embodiments, when a transaction 1s generated
(e.g., by one of the client devices 302) 1t includes: explicit
code to be run and/or explicit data (e.g., a smart contract),
and credentials from the account paying for the transaction,
which can be different from the user account generating the
transaction or the data holder. In some embodiments, this
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transaction 1s submitted to the network, where 1t 1s processed
by the access nodes 310 to, for example, check the creden-
tials. In some embodiments, the access nodes 310 sign the
transaction to commit to holding that transaction until the
execution nodes 330 have processed it and their output has
been verified. In some embodiments, once a critical mass of
the access nodes 310 have signed the transaction, 1t may be
transmitted to the security nodes 320 to verily two things: 1)
that a critical mass of access nodes 310 have seen the
transaction, agreed to store 1t, and confirmed it 1s well
formed, and 2) that the security nodes 320 will never
confirm another block at that height, unless they are pro-
vided with prootf that what they previously published was
invalid.

In some embodiments, the security nodes 320 follow a
BEF'T consensus algorithm to agree on the finalized block
325. In some embodiments, once a candidate block 305 1s
finalized by the security nodes 320, the finalized block 3235
may be transmitted to the execution nodes 330 for compu-
tation. In some embodiments, a VRF 1s employed to deter-
mine a subset of the execution nodes 330 that are responsible
for computing each finalized block 325. In some embodi-
ments, once an execution node 330 has computed the output,
the execution node 330 produces a hashed commitment of
the result. In some embodiments, when all of the selected
nodes (e.g., the execution nodes in the determined subset)
have submitted theirr commitments, they may reveal the
unencrypted result output. In some embodiments, when this
output 1s shown to be the same from all of the participating
execution nodes 330, each of the access nodes 310 uses a
VREF to select a small number of transactions to be verified.
In some embodiments, once the answer 1s provided to the
access nodes 310, they cache it to answer future queries
from the client 302. For example, when a user wants to
retrieve a state from the system, they may pose a query (e.g.,
through the client 302) to an access nodes 310. For example,
the query may be 1n a form such as “what 1s the contents of
this register at this block height?”” In some embodiments, the
access nodes 310 will erther fulfill the query through the
cached state they hold, or they can query the execution
nodes 330 for the output.

In some embodiments, a transaction, and the respective
block that 1t 1s include within, may be considered canonized
only after a verification period 1s over. In some embodi-
ments, during the verification period, for example, the
results are open to both the access nodes 310 and the public
to submit proofs of an incorrect output. In some embodi-
ments, a verification pertod may be up to a few hours long.

In some embodiments, by dividing the architecture of the
example decentralized computation system as described
above, a number of benefits may be achieved: synchrony,
elliciency, and scale, among others. For example, develop-
ing in a decentralized environment comes with many uncer-
tainties for developers, not the least of which 1s reading from
data that changes before they can write to it. With this 1n
mind, strong serializability guarantees, an outcome equiva-
lent to a sequential schedule without overlapping transac-
tions, are one of the most important things a decentralized
development environment, such as an environment provided
by the example decentralized computation system can offer.
By committing to the order of transactions, transactions can
appear to have been executed 1n an absolute order so that a
developer can reason about the system, even 1f some were
executed 1n parallel to improve throughput. Some systems
resort to locking mechanisms to preserve serializability,
especially when transactions move between shards. In some
embodiments, the example decentralized computation sys-
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tem protocol’s agreement on order before execution nodes
330 determine output, however, ensures that once a trans-
action 1s ordered, there 1s certainty about 1ts outcome.

In some embodiments, to efliciently employ resources, the
example decentralized computation system may comprise a
Prool of Stake (PoS)-based system and 1s designed to
climinate as many redundant tasks as possible. For example,
in a classic blockchain implementation, every node may be
required to review every transaction and store all the states.
By dividing deterministic and non-deterministic tasks and
assigning them to resources that can specialize i their
respective execution, the throughput of the example decen-
tralized computation system may be immensely improved.

In some embodiments, at an architecture level, the secu-
rity of the example decentralized computation system pro-
vided by 1) the division of power and accountability
between the three different node types, 2) the high degree of
participation supported by the consensus algorithm, and 3)
designating the access nodes 310 as the interfaces of the
network. These design elements may surface differently to
address each of the common attacks decentralized systems
often face. The access and verifiability requirements of the
example decentralized computation system ensure both the
broader network and the public are able to verity the process
and dispute 1t during the verification period. While the
output of a computation 1s deterministic, 1n some embodi-
ments, once 1ts order 1s set 1n the finalized block 3235, a
verification period remains for the state to be recomputed n
the event that a provable error 1s submitted to the network,
thus ensuring the opportunity for detectability. For example,
in some embodiments, the access nodes 310 sign every
transaction to assure a signatory guarantor exists to pay for
the transaction, guaranteeing attribution. In some embodi-
ments, all nodes are staked relative to the value they stand
to lose 1 they are removed from that part of the network,
which assures punishment (e.g., slashed) 11 an iniraction 1s
committed.

In the blockchain context, censorship resistance may
correspond with the difficulty for one group to deny another
group’s access to the network. As such, 1n some embodi-
ments, a role of the access nodes 310 1s to guarantee access
and ensure that anyone can audit and submit transactions. In
addition to the architecture-level measures put 1n place to
combat censorship, 1n some embodiments the security nodes
320 may only see transaction hashes. Therefore, in such
embodiments, for the security nodes 320 to censor a trans-
action, they would need to know the hash of its signatories,
data, and actions. In some embodiments, the security nodes
are generally prevented from undermining the described
system by the sheer volume of co-participants. Thus, collu-
sion on any problem would be extremely diflicult to coor-
dinate.

In some embodiments, the security nodes 320 may protect
against a double spend attack. For example, in some
embodiments, broad participation in this group materially
decreases the risk of a small group colluding to honor an
alternative block at the same height. For example, when this
pool of nodes 1s presented with a group of transactions, they
come to consensus on both a suil

icient number of the access
nodes 310 signing the group, and on that group forming the
only block they will honor at that height—both at that
moment and 1n the future. In some embodiments, any other
block presented will be rejected by the network, unless a
fraud proot to reject the block for one at a competing height
1s successiully submitted during the verification period.

In a front running attack, an adversarial node decides 1t 1s
advantageous to isert 1ts transaction before another. Such a
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move could be as simple as placing a higher bid 1n front of
a competing bid, or as devious as strategically inserting a
transaction to falsely manipulate its output. To combat this,
in some embodiments, the execution nodes 330 perform a
VRF to compute the order of the transactions. This ensures
the order of the transactions 1s neither knowable nor able to
be dictated by anyone until after the transaction has already
been deterministically ordered.

In some embodiments, the access nodes 310 and the
security nodes 320 each have a say in the transactions
included 1in a block. In such embodiments, when either
group 1s able to set the order of transactions beforehand, 1t
presents an opportunity for them to exploit that order and
prioritize their own transactions. By requiring the execution
nodes to execute a VRF to reveal the canonical order of the
transactions (the canonical state 335) 1n some embodiments,
there 1s no way for nodes to manipulate the sequence. In
some embodiments, parameters used to determine the VRFE
will be deterministic and dependent on an output from the
security nodes 320.

Resistance to a potential flurry of fake accounts and
activities 1s one aspect to maintaining the throughput of the
network, as such malicious transactions can cause immense
strain on the nodes. In some embodiments, as the interface
of the network, the access nodes 310 are aware of the
balance of each of the accounts signing a transaction. In
some embodiments, a user who pays for transactions must
also hold a minimum balance to submit a transaction to
ensure against spam.

In some embodiments, the first process performed by the
access nodes 310 1s to determine the list of transactions that
should be submitted to the security nodes 320 for inclusion
in a block, and the order in which they should occur. This
process 1s a “pure consensus problem” where there are many
possible answers to this problem, each of which 1s equally
“right.” However, the network may agree on a single answer
because different choices would lead to different canonical
state.

Once the ordered list of transactions has been agreed
upon, there may be a single, objectively-correct answer as to
what canonical state can result from processing those trans-
actions. For example, any node that processes that transac-
tion list without errors can end up with exactly the same
canonical state as any other node that correctly processes
that same transaction list. In some examples, blockchain
computations may be fully deterministic to allow them to be
verified by other nodes. Thus, there may be two problems
with two performance profiles. First, the ordering process
may be a pure consensus problem that can be solved by a
variety of BFT consensus algorithms. In some embodiments,
such a process may require a lot communication between
consensus nodes (e.g., communication messages greater
than a threshold value) but may not be computationally
complex. Network security comes directly from this process
as the more nodes that are involved in this process, the
harder i1t 1s to subvert the chain. Second, 1n some embodi-
ments, the computation process may require computation-
ally powertul nodes when the network 1s busy, but 1t does not
need a large number of nodes as any of them can objectively
“check the work” of a compute node and prove an error 1f
it occurs. In some embodiments, when a node presents an
invalid output, it loses some or all of 1ts stake and the
incorrectly processed computations can be re-run with hon-
est nodes. The result of the above process, 1n some embodi-
ments, 1s a single, unsharded network that 1s able to achieve
maximum throughput without degradation of security due to
centralization.
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Example Integration of the Schema

In some embodiments, the above example decentralized
computation system comprises a blockchain that achueves a
throughput greater than a threshold value based on a pipe-
lined architecture and the separation of node roles in the
network. As described above, the execution of the transac-
tions 1 a block are performed by the execution nodes 330.
In some embodiments, the integration of the described proof
scheme (e.g., specialized prootf of confidential knowledge)
can include execution being re-run by another type of nodes,
referred to as verification nodes (not shown), to guarantee
the correctness of the computation (e.g., acting as a user).
The execution process by each of these nodes, both the
execution nodes 330 and the verification nodes, results 1n an
execution trace, which can be considered as a proof of
executing the transactions of a block.

The execution trace can comprise a series ol steps that
trace the execution of the block transactions. The 1dentifi-
cation of the steps can include writing to and from the
blockchain state.

In some embodiments, 1n order to ensure that the verifi-
cation nodes are doing the right job of verifying the com-
putation and are not validating the execution nodes 330
results by skipping the expensive check, integration of the
prool scheme forces each verification node to publish a
prool of knowing the execution trace. Publishing the execu-
tion trace 1tself results 1 any verification node claiming they
computed the transactions. Therefore, the execution trace 1s
the secret 1n the scenario and must remain protected. The
execution nodes 330 and verification nodes publish a spe-
cialized proof of knowing the execution trace (e.g., the
proot).

In some embodiments, the access nodes 310 acting as
consensus nodes collect all the proofs and verily they were
all generated from the same execution trace. If the verifi-
cation 1s valid, the execution trace should be valid as the
protocol makes sure there 1s a threshold of honest verifica-
tion nodes that compute the execution trace correctly. Any
mismatch in the verification 1s detectable and attributable to
the dishonest party.

In some embodiments, the verification nodes re-compute
transactions in a parallel manner while consensus nodes 310
guarantee the satety of the results using the above described
prool. In some embodiments, the above described example
decentralized computation system employs a process or
protocol to mmplement the scheme that i1s concise and
cllicient. This process 1s described herein according to a
formal generic description of a scheme as well as 1ts security
definition. In some embodiments, the process includes a
construction based on the Boneh-Lynn-Shacham (BLS) sig-
nature scheme. The below description provides a proof of
security under the appropriate computation assumptions for
this scheme.

In some embodiments, the execution nodes 330 perform
the heavy computation of all transactions in a finalized
block. The described process introduces a mechanism to
detect and attribute faulty results by assigning the verifica-
tion nodes to re-compute the block transactions. In some
embodiments, this computation 1s broken up 1nto chunks to
allow a lighter computation verification 1n a parallel and
independent manner. In some embodiments, the consensus
nodes 310 commit to the block results and make sure the
computation was verilied by a majority of verification
nodes. In some embodiments, the described BLS-based
process implementation 1nvolves employing the itermedi-
ate results of a chunk computation as a proof of executing
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the transactions of that chunk with an assumption that the
intermediate results cannot be derived more cheaply than by
executing the entire chunk.

In some examples, the chunks are broken using a chunk-
ing algorithm. The chunking algorithm may divide a block
into chunks so that the chunks have comparable computation
time. In some examples, the verification nodes compute the
block 1n a lighter, parallel and independent manner thanks to
the chunks.

In some embodiments, the execution nodes 330 provide a
prool as a commitment to the computation intermediate
results of each block chunk and the verification nodes
provide another as a commitment to their own intermediate
results of each chunk they verily. In some embodiments, the
role of the consensus nodes 310 1s to arbitrate by verifying
proofs of each chunk are consistently generated from the
same 1ntermediate results. A single honest verification node
allows the protocol to detect a faulty result in a chunk
computation. This process ensures the block computation 1s
correct with high probability. Although the employed pro-
cess prevents “lazy” verification nodes from claiming they
re-computed the chunk, it does not prevent or detect collu-
sion with any party that has computed the intermediate
results. However, a single non-colluding node generating a
prool from honest results 1s enough to help the consensus
nodes 310 uncover other faulty proofs.

In some embodiments, the BLS-based process includes a
scheme that allows a party to check two or more signatures
have signed the same secret message without learning more
about the secret itself (e.g., the pairing equality check). In
some embodiments, the BLS-based process construction 1n
particular also oflers some elegant properties beyond the
ones required by a scheme employed within the example
decentralized computation system.

Relation to the Verifier’s Dilemma

In some examples, the system can help mitigate the
Verfier’s Dilemma. The Verifier’s Dilemma can arise in
distributed systems where some participating nodes are
supposed to verily the work of other node(s). Moreover, for
a system where compensation for a verifier increases (sta-
tistically) with its speed and where the results, which the
verifliers are checking, are correct with a probability sufli-
ciently close to one, most blockchains have built-in incen-
tives for nodes to run as fast as possible and to deliver
correct results. Even 1f the venfiers are compensated for
their work, blindly approving all results can still be the most
profitable strategy in such an environment, because this
strategy not only saves time but also expenditures for
hardware and energy for verification work. Also, nodes
adopting such strategy undermine the network’s resilience to
malicious actors in the long run.

In some embodiments, the described system mitigates the
Verifier’s Dilemma through 1ts architecture. Specifically, in
some embodiments, verification nodes have to prove they
know the execution trace of the chunks they were assigned
to; they are slashed for approving wrong results; and a
minority of honest verification nodes checking a wrong
result 1s suthicient to slash the execution node(s) that gen-
crated the wrong result as well as all the verification nodes
that approved 1t.

Theoretical/Mathematical Abstraction of the Problem

Let G, and G, be two cyclic groups and let g, and g, be
generators of (G, and G, respectively. The Computational
co-Diflie-Hellman (co-CDH) problem 1s to compute g,
grven (g, 2,7, £,7, 2+, 25° ). The co-CDH assumption states
that no probabilistic polynomial-time algorithm solves the
co-CDH problem with a non-negligible probability.
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A related problem 1s the Divisible Computational co-
Dithie Hellman problem (co-DCDH): given (g,, g,77, g,
g,”), compute g,”. The co-DCDH assumption 1s defined
analogously to the co-CDH problem. That two assumptions
are equivalent 1s shown.

Lemma 1

The co-DCDH and co-CDH assumptions 1n (G,, G,) are
equivalent.

Proof. An adversary A that solves the co-DCDH problem
also solves the co-CDH problem and vice versa 1s shown.

co-CDH=co-DCDH:

A 1s given a co-DCDH challenge (g,, g,7”, g, g,°) and

has access to a co-CDH solver algorithm

A __-cDH such that A_-cDH (r,, r,% r,, r,”) for any
random (r,, r,) 1n G, xG,.

A computes A_,-CDH (g, g,"7, &~ ) A,,-CDH (g,
2", g, (29", which outputs (g,**y"'=g, and
solves the co-DCDH challenge.

co-CDH<=co-DCDH.:

A 1s given a co-CDH challenge (g, g,". g,, g,°) and has
access to a co-DCDH solver algorithm

A__-DCDH such that A__-DCDH (r,, r,*?, r,, r,”) r,*”?

1=r,“, for any random (r,, r2) 1n Gle

A computes A__ -DCDH (g,, g,7, g,7, g5, g,) A__-DCDH
(815 21" &, (g5")), which outputs

and solves the co-CDH challenge.

The two problems are equivalent and therefore the two
assumptions are also equivalent.

BLS Signatures

As a brief review the BLS signature scheme, let G,, G,
and G be three cyclic groups of prime order p where (G,
(,) 1s a bilinear group pair. Let e be an efliciently comput-
able non-degenerate pairing e: G, xG,—>G, and H be a hash
function H: {0,1}*—G, (modeled as a random oracle). The
multiplicative notation 1s used for the three groups. The
signature scheme 1s defined as follows:

where and

BLS-KeyGen(
pk<g,"€G,.

BLS-Sign(sk,m)—0, where o<—H(m)"€G,.

BLS-Verify(pk, m, a)=v&{OK, FAIL}, where v is OK if
e(H(m),pk) and FAIL otherwise.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short sig-
natures from the Weil pairing. In ASIACRYPT, December
2001 (herein after Boneh et al) proved the signature scheme
1s secure against existential forgery under the chosen mes-
sage attack, i the random oracle and under co-CDH
assumption 1n (G,, G,).

Registered Key and Knowledge of Secret Key Models

Thomas Ristenpart and Scott Yilek. The power of proofs-
of-possession: Securing multiparty signatures against rogue-
key attacks. In EUROCRYPT, May 2007 (herein after
Ristenpart et al.) define the registered key model, which 1s
a protocol R=(Reg-Prove, Reg-Verily):

Reg-Prove(sk, pk)—m generates a registration proof.

Reg-Verify(pk, m)—{OK, FAIL} outputs OK if the proof

1s valid for pk and FAIL otherwise.

I1 no key registration 1s required, (Reg-Prove, Reg-Verily)
can be replaced with vacuous functions as follows: Reg-
Prove outputs the empty string, and Reg-Verily outputs OK
on any input.

R
)—(sk,pk), sk < /,
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In the proof based on BLS Signatures section below, a
class of key registration protocols 1s considered in which
parties prove knowledge of the secret corresponding to their
public key; this 1s called the knowledge ofsecret key
(KOSK) model. In this model, all parties have access to the
functions R, ,..~(KOSK-Prove, KOSK-Verity), which
generate and verily proofs, respectively.

To 1instantiate this model, parties are required to use a
zero-knowledge proof of knowledge (ZKPK) of their secret.
Key registration protocols based on ZKPKs provide two
additional algorithms, KOSK-Simulate and KOSK-Extract,
which they inherit from the underlying ZKPK:

KOSK-Simulate(pk)—m 1s a simulator that, given access
to the randomness used for proof verification, outputs
a proof that 1s computationally indistinguishable from
a real proof.

KOSK-Extract(pk, m)—sk 1s an extractor that interacts
with (1n particular, rewinds) the party who generated w
to output sk from a convincing proof.

Simulation and extraction are standard notions
/KPKs, so they are not defined more formally.

Proof Scheme

In the example decentralized computation system, honest
execution and verification nodes generate a proof using their
staking private keys and a secret referred to herein as
confidential knowledge. A consensus node verifies the
prools generated by execution and verification nodes using,
the corresponding public keys. The verification process
should ensure that all proofs were generated based upon the
same confidential knowledge. Based on this use-case, a
generic defimtion of a scheme 1s given.

for

Scheme Definition

Definition 1

A Specialized Proof of Confidential Knowledge may
comprise four algorithms:
SP-Setup(1”)—pp. Generate public parameters pp, which
are an 1mplicit mput to the remaining algorithms.

R

SP-KeyGen < (sk, pk) Output a private and public key
pair.

SP-Prove(sk, m)—a. Generate prool a for message m
under secret key sk.

SP-Verity (pk,,, 0, pk,, 0,)—=vE{OK, FAIL}. For sk, the
secret corresponding to pk , and likewise sk, to pk,,
return OK 11
dm: SP-Prove(sk , m)=c_/\SP-Prove(sk,, m)=0,and

FAIL otherwise, except with at most negligible prob-
ability.

It the proofs are generated honestly from the same con-
fidential knowledge, SP-Verily i1s required to output OK
with high probability, which defines the correctness of the
scheme.

Definition 2

Correctness. A scheme 1s correct 1t

(skq, pk,) < Sp-KeyGen()
(sky, pky) < Sp-KeyGen()

Pr

|V

Sp-Verify(pk,, o, pky, 0p,) = OK m e 0, 1

o, « SP-Prove(sk,, m)

oy — SP-Prove(sk,, m) |
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-continued

1 —negl(A)

where negl()) 1s a negligible function in the security param-
eter A.

The scheme 1s also defined 1n the Registered Key Model
section above. In this case, the correctness condition holds
only with respect to registered keys.

The SP-Veniy definition only requires the existence of a
message m consistent with 0~ and o~,. While this definition
suilices for two parties, extending it to three or more parties
1s more subtle. To see why, consider the case that the owners
of sk_and sk, share a secret m,, while the owners ot sk _ and
sk, share a secret m,. By the definition of SP-Verily,
SP-Verity(pk_, o, pk,, 0,) and SP-Verity(pk , o, pk_, 0 _)
might both output OK even when m,=m,. As a result, these
two checks are not suflicient to guarantee that the owners of
sk, and sk _, share any secret.

Recall, however, that 1n the example decentralized com-
putation system the verification process can be employed to
ensure that the holders of sk _, sk, , and sk , all share the same
secret knowledge m (and likewise for groups larger than
three). To reflect this property, strong transitivity for a

scheme 1s defined.

Definition 3

Strong transitivity. A scheme satisfies strong transitivity if
for all integer n=3, for all valid key-pairs (sk;, pk;), . . ..
(sk , pk,), and tor all proots o,, . . . , 0,, the tfollowing
property 1s satisfied:

, 1}

( Yiell, ... ]
=
Sp — Verify(pk,, o1, pk;, o;,)

o |

, i}, SP— Prove(sk;, m) = o

(W={1,...

If there exists a message m such that for all 1, SP-Prove
(sk,, m)=0,, then all the proofs o, verily against each other,
1.e., for all 1=1,)=n,;, SP-Verity(pk,, o,, pk,, 0,)=success.

The strong transitivity definition states that i1 multiple
proofs verily against a same reference prool o,, then not only
these proois should verity against each other (transitivity),
but there exists a message m from which all these proofs
(including the reference proof) could be generated.

In the example decentralized computation system, an
execution node generates a reference proof, while multiple
proofs are generated by the different verification nodes. For
a scheme satisiying strong transitivity, 1t suflices to verity all
prools against the single execution node’s proof to ensure all
nodes share the same secret knowledge.

Scheme Security

A consensus node does not require any information about
the confidential knowledge, other than two proofs and the
corresponding keys, to run the SP-Verily algorithm. Intui-
tively, the confidential knowledge should remain secret to all
parties 1n the network except those who executed a block.
This means that a proof should not allow recovering the
confidential knowledge.

More specifically, the scheme should be resistant against
malicious actors that either recover the secret knowledge or
forge a prool without access to that knowledge. In the
example decentralized computation system, such attacks
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might be mounted by “lazy” verification nodes that aim to
skip costly block execution while claiming they know the
secret. Attackers may also attempt to forge a proof on behalf
ol another node, for example, to accumulate more “votes”
on a faulty result.

Intuitively, generating a prool requires knowing two
secrets, a key sk and a message m. This ituition 1s formal-
1zed below via two security games, each between a chal-
lenger C and an adversary A. The first game, knowledge-
forgery, models the ability of a lazy node to forge a proof
under 1ts own key without knowing the confidential knowl-
edge m. The second game, key-forgery, models the ability of
a malicious node to create a proof for some chosen m under
another node’s public key without knowing the correspond-
ing secret key. These games are defined assuming a key
registration scheme (Reg-Prove, Reg-Verily), which can be
the vacuous scheme 1f no registration 1s required.

Definition 4

The knowledge-forgery game.

R
Setup. C samples a random message m* {0,1}%*.

Query. A makes any number of queries to C. On each such

R
query, C samples a fresh key (sk;, pk,) < SP-KeyGen(
), computes a registration prool m<—Reg-Prove(sk,
pk.) and a proof o,<—SP-Prove(sk, m), and sends (pk.,,
T, O;) to A.

Output. The adversary outputs (pk_, 7 _,
game 11

pk &{pk,}/\Reg-Verify (pk , = ,)=OK/\3i: SP-Verify
(pkﬂﬂ Oaﬂ pkiﬂ OI)ZOK

o), winning the

Definition 5

The key-forgery game.

R

Setup. C samples (sk_, pk )< SP-KeyGen( ), computes
n<—Reg-Prove(sk , pk_), and sends (pk_, ) to A. C
also 1mitializes two lists: L, which 1s mitially empty,
and [,, which 1mitially contains the tuple (sk , pk ).

Query. A may make any number of two types of query, in
any order:

Q1: A sends (m;, pk ) to C. C retrieves the first tuple
(sk, pk) in L; for which pkxpk,; if there 1s no such
tuple, C returns L. Otherwise, C computes 0,«<—SP—
Prove(sk,, m,) and sends o, to A. Finally, 11 pk pk
C adds m,mi to the list L.

Q2: A sends an empty query to C, who samples (sk,,

R
pk.) < SP-KeyGen( ), (sk,, pk,) to the list L,, com-
putes <~ Reg—-Prove(sk, pk,), and sends (pk,, m,) to
A.

Output. A outputs (m_, o_, pk ) and wins 1f

m &L A3k, pk)EL,: pk=pk /\SP-Verify (pk,
SP-Prove(sk, m_), pk , o )=0OK
One could define a third game to capture the case where
an adversary does not have either the confidential knowl-
edge or the secret key. This case corresponds to forging a
prool 1n the example decentralized computation system to
claim a target node has access to some secret when the
attacker does not know either the secret or the target’s key.
This forgery 1s clearly harder than the two other games: an
adversary with an algorithm that succeeds at such a forgery
could easily win either of the other two games. Therefore,
this game 1s not considered.
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Definition 6

Unforgeability. A scheme 1s secure against knowledge-
forgery 11 no probabilistic polynomial-time adversary A wins
knowledge-forgery, except with at most negligible probabil-
ity. A scheme 1s secure against key-forgery i1f no probabi-
listic polynomial-time adversary A wins key-forgery, except
with at most negligible probability. A scheme 1s unforgeable
if 1t 1s secure against both knowledge-forgery and key-
forgery.

One further property ol a scheme, non-malleability, 1s
defined. Intuitively, for a proof o, and two public keys, pk
and pk,, given a proof aa that verifies against (o, pk,, pk )
it 1s infeasible to produce a distinct proof o', that also
verifies against (o,, pk,, pk ). Implementations of the
scheme via various systems, such as the above example
decentralized computation system, do not require to have
this property, but 1n practice non-malleability can eliminate
subtle attacks.

Definition 7

Non-malleability. A scheme 1s non-malleable if for all
probabilistic polynomial-time adversaries A,

(skq, pk,) « Sp- KeyGen()
($kp, pk;) < Sp- KeyGen( )
o, Foa N\

R
: m < {0, 1}
Sp-Verify(pk,, o, pk,, op,) = OK

Pr

IA

o, « SP-Prove(sk,, m)
ap « SP- Prove(sky, m)

GJ

f

— A(pkga G-ﬂ!' Pkba G-ba) _

negl(A)

A slightly stronger notion related to non-malleability 1s
uniqueness:

Definition 8—Uniqueness

A scheme satisfies uniqueness if for all proots o and for
all public keys pk _ and pk,, there exists a umique proof ab
such that SP-Venity (pk , o, pk,, 0,)=OK.

Corollary 1

A scheme satisfying uniqueness 1s also non-malleable.

A scheme based on BLS signatures

In this section, the scheme 1s implemented with BLS

signatures and defined. This may be referred to a BLS-
SPoCK scheme, or incorporating the BLS signatures with
the Specialized Proof of Confidential Knowledge scheme
discussed herein.

Definition 9

BLS-SPoCK comprises four algorithms: BS P-Setup,
BSP-KeyGen, BSP-Prove and BSP-Verity.
BSP—Setup(1™)—pp,, .. Output public parameters com-
prising:
A bilinear group pair (G,, G,) of order p with genera-
tors g, and g,, respectively.
A target group G, of order p.
A non-degenerate pairing e: G, xG,—=>G .
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A hash function H: {0,1}*—G, modeled as a random

oracle.
BSP-KeyGen( )—(sk, pk): Output (sk, pk)<—BSP-Key-
Gen( )&(Z,xG,).

BSP-Prove(sk, m)—o0: Output o<—BSP-Sign(sk, m)&G,.

In other words, a 1s a BLS signature of the message m
under the private key sk.

BSP-Verify(pk,,, o, pk,, 0,)—=v&{0OK, FAIL}: Output

OK 1f (0, pk,)-e(o,, pk,)

Otherwise, output FAIL.

As such, verification may be done using a pairing equity
check, mcluding using the pairing feature discussed herein.

Lemma 2

The BLS-SPoCK scheme 1s a correct scheme.

Proof. For any message m, and key pairs (sk_, pk ), (sk,,
pk,), by the definition of e the following 1n provided:

e(BSP-Prove(sk_,m).pk,)=e(H(m)*.g,"*)~e(H(m).g,)

sha'sks—e(H(m)™, g.5%).
This means that e(BSP-Prove(sk , m), pk,)=e(BSP-Prove
(sk,, m), pk ), satisfying Definition 2.

Lemma 3

The BLS-SPoCK scheme satisfies strong transitivity.

Proof Let an integer n be larger than 3, and let a set ol n
valid key-pairs be (sk,, pk,), ..., (sk,, pk ), and a set of n
proofs be o,, ..., o, such that:

Vie{2, . . ., n}: BSP-Verify(pk,, o,, pk,, 0,)=0OK

By the bilinearity of the pairing e, and since G- 1s a cyclic
group of a prlme order, 015‘%*:015;“ 1s deduced and thus
0, =g %! for all l1=i=n. Then h=0," =0, 1is an
clement 1n G, for which some message m exists satisiying
H(m)=h. The message m clearly satisfies o, =H(m)"*=BSP-
Prove(sk,, m) for all 1=1=n, which establishes strong tran-
sit1vity.

Corollary 2

The BLS-SPoCK scheme satisfies uniqueness (Det 8).

Proof Let pk_, pk, &G, and o &G, . Notice that an element
ot G, that verifies against 0, pk,, and pk, can be written as
0=0, sk sk . 0 1s therefore the unique element of G, that
Verlﬁes against pk_ and pk,.

Corollary 3

The BLS-SPoCK scheme 1s non-malleable.

Security Proof

In this section, BLLS-SPoCK scheme 1s shown to be secure
against forgery as in Definition 6. That BLS-SPoCK 1s
instantiated 1n the KOSK model using a Schnorr zero-
knowledge proof of knowledge of discrete log 1s assumed.

Theorem 1

The BLS-SPoCK scheme 1s secure against knowledge
forgery under the co-CDH assumption 1n (G,, G,) i the
KOSK model.

Proof. An adversary A, __ that breaks knowledge-forgery
can be used as a black box to break co-DCDH (and thus
co-CDH; Lem 1) 1s shown. To do so, an algorithm C,, _  1s
constructed that acts as the challenger for the knowledge-
forgery game and the adversary for the co-DCDH game.

To begin, C,, _ requests a co-DCDH challenge (g,, g,"~,

R
g,, 2, 7). Oneach of A’s queries, C,, _ samplesr,< Z ; sets

pk=(g.,”)", o=(g,””)", and m, %KOSK—Slmulate(pkl) and
sends (pk,, m,, 0,) to A. Finally, A, responds with (pk_, 7t _,
o) and C,_  aborts if KOSK-Verity(pk , w_)=FAIL or if
A1: BSP-Verity(pk , o, pk,, 0,)=0K.

Assume that C does not abort, which happens with
non-negligible probability by the assumption C, _  that
A, breaks knowledge-forgery. Then C, _ wins the co-
DCDH game by first computing sk, <-KOSK-Extract(r,).
then answering o ** ' for the co- DCDH game.
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To see why this works, notice that since BSP-Verily
returned OK for some 1, that e(o,, pk.) e(crl, pk ) 1s pro-
vided, meaning that o =g, and thus o *% =g,*, the
correct co-DCDH answer. Further, all pk, m,, and o, are
distributed as 1n the real knowledge-forgery game: sk,=yr,
1s a unmiformly random secret key corresponding to pk,,
o,~(g,*)**" and m, is indistinguishable from a KOSK proof
by the definition of KOSK-Simulate.

Thus, C,  wins the co-DCDH game just when A,
wins, KOSK-Simulate outputs a convincing 7, and KOSK-
Extract outputs sk . KOSK-Simulate and KOSK-Extract
succeed with overwhelming probability by definition, so
C....., wins the co-DCDH game with non-negligible prob-
ability. By Lemma 1 this contradicts the assumption that
co-CDH 1s hard, so A, _  cannot win knowledge-forgery
with non-negligible probability.

Theorem 2

In some examples, the BLS-SPoCK scheme 1s secure
against key forgery in the random oracle model, under the
co-CDH assumption 1 (G, G,).

Proof. To win the key-forgery game, A must forge a
BLS-SPoCK proof o, for a message m, such that, for some
honestly-generated key pair (pk, sk), o, verifies against pk
pk, and BSP-Prove(sk, m). By the uniqueness of BLS-
SPoCK proofs, it must be the case that o, =H(m,_)**, which
1s the BLS signature message m_ with respect to the key pair
(sk_, pk ). In other words, winning key-forgery requires
forging a BLS signature on m. Boneh et al. prove security of
BLS signatures against existential forgery for a chosen
message (1.e., EUF-CMA security) i the random oracle
model and under the co-CDH assumption for (G,, G,),
which proves the theorem.

Corollary 4

In some examples, the BLS-SPoCK scheme 1s unforge-
able in the KOSK and may be a random oracle model under
the co-CDH assumption in (G,, G,).

FIGS. 4-7 depict example flow diagrams that describe
various above described properties of the system and/or
prool scheme. The tlowcharts depict users, Alice, Bob and
Eve, and verifier, Oscar. The users generate a proof (p_a,
p_b, p_e) or with their respective private key (sk_a, sk_b,
sk_e) and a shared message (m) (if they have access to it).
The venifier employs the Verily function to verily the
provided proofs. In some embodiments, the users and the
verifier each employ a computing device, such as the com-
puting devices 102, 104, 106, 108 depicted 1n FIGS. 1-2 and
the computing dewce 1010 deplcted in FIG. 10, to execute
the respective Proof or Verily functions, such as described in
detail above. For example, the users and verifiers may be
operating as nodes 1n a system, such as the example decen-
tralized computation system described above.

In some examples, the Verily function may correspond
with transitivity (e.g., 1llustrated in FIG. 5). The transitivity
definition states that i multiple prootfs verily against a same
reference prootf o,, then not only these proofs should verily
against each other (transitivity), but there exists a message
m from which all these proofs (including the reference
prool) could be generated. Additional information regarding
the Verily function and 1ts uses in authentication and veri-
fication 1s 1llustrated 1n FIGS. 4-7 (e.g., as “Verity ( ),” efc.).

FIG. 4 depicts a flowchart that shows the correctness
property of the scheme. As depicted, the prover users, Alice
and Bob, have access to (know) their respective private key
(sk_a, sk_b), secret data (im), and the other public keys 1n the
system. Using the Proof function, the prover users each
generate a specialized proof of knowledge (p_a, p_b) of the
secret data (m) with their respective private key (sk_a, sk_b)
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and the secret data (m). The verifier, Oscar, has access to
these generated specialized proofs (p_a, p_b) and the other
public keys in the system. Oscar specifically does not have
access to the secret data (m). Employing the Verity function
with the provided specialized proofs (p_a, p_b) and the
respective public keys (pk_a, pk_b) for each of the prover
users, Oscar can determine, without acquiring knowledge of
the contents of the secret data (m), whether the prover users
share the same secret data (m). If the provided specialized
proofs (p_a, p_b) are not verified via the Verily function
(e.g., because the proofs were not generated using the same
secret data or the public keys (pk_a, pk_b) do not match their
respective private keys (p_a, p_b) that were employed to
generate the specialized proofs), then the provided special-
1zed prootis (p_a, p_b) did not convince Oscar of anything.
FIG. 5 depicts a tlowchart that shows the strong transi-
tivity property of the scheme. As depicted, the prover users,
Alice and Bob_1 (Bob_1-Bob_n), have access to (know)
their respective private key (sk_a, sk_bl-sk_bn), secret data
(m), and the other public keys in the system. Using the Proof
function, the prover users each generate a specialized proof
(p_a, p_bl-p_bn) of the secret data (m) with their respective
private key (sk_a, sk_bl-sk_bn) and the secret data (m). The
verifier, Oscar, has access to these generated specialized
proofs (p_a, p_bl-p_bn) and the other public keys 1n the
system. Oscar specifically does not have access to the secret
data (m). Employing the Verily function with the provided
specialized proofs (p_a, p_bl-p_bn) and the respective pub-
lic keys (pk_a, pk_bl-pk_bn) for each of the prover users,
Oscar can determine, without acquiring knowledge of the
contents of the secret data (m), whether each of the prover
users Bob_1-Bob_n share the same secret data (m) with the
prover user Alice. If the provided specialized proots (p_a,
p_bi) are not verified via the Verily function, then the
provided specialized proofs (p_a, p_b1) did not convince
Oscar of anything regarding Alice and the particular Bob_1.
FIG. 6 depicts a flowchart that shows the knowledge
unforgeability property of the scheme. As depicted, the
prover users, Alice and Eve, have access to (know) their
respective private key (sk_a, sk_e) and the other public keys
in the system. However, only Alice has access to the secret
data (m); Eve does not have access to the secret data (m).
Using the Prool function, Alice generates a specialized
prool, pa, with her private key (sk_a) the secret data (m).
Because Eve does not access to the secret data (m), she
generates a prood, p_e, via a Malicious Proof function with
her private key (p_e) (e.g., Eve 1s attempting to trick Oscar
into believing that she has access to the secret data (im)). The
verifier, Oscar, has access to these generated specialized
prools (p_a, p_e) and the other public keys in the system.
Oscar specifically does not have access to the secret data
(m). Employing the Verily function with the provided spe-
cialized prootfs (p_a, p_e) and the respective public keys
(pk_a, pk_e) for each of the prover users, Oscar can deter-
mine, without acquiring knowledge of the contents of the
secret data (m), whether the prover users share the same
secret data (m). In the depicted use case, the provided
specialized proofs (p_a, p_e) do not convince Oscar that
Alice and Eve have access to the same secret data (m).
FIG. 7 depicts a flowchart that shows the key unforge-
ability property of the scheme. As depicted, the prover users,
Alice and Eve, have access to (know) the secret data (m) and
the other public keys 1n the system. However, Alice has
access to her private key (sk_a); while Eve does not have
access to Bob’s private key (pk_b). Using the Proof func-
tion, Alice generates a specialized proof, pa, with her private
key (sk_a) the secret data (m). Because Eve does not access
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to Bob’s private key, she generates the proot, p_b', via a
Malicious Proof function with the secret data (m) (e.g., Eve
1s attempting to trick Oscar into believing that Bob has
access to the secret data (m)). The verifier, Oscar, has access
to these generated specialized proofs (p_a, p_b') and the
other public keys 1n the system. Oscar specifically does not
have access to the secret data (m). Employing the Verily
function with the provided specialized proois (p_a, p_b") and
the public key associated Alice (pk_a) and the public key
associated Bob (pk_b), Oscar can determine, without acquir-
ing knowledge of the contents of the secret data (m),
whether both Alice and Bob have access to the secret data
(m). In the depicted use case, the provided specialized
proois (p_a, p_b') do not convince Oscar that Alice and Bob
have access to the same secret data (m).

FIG. 8 depicts a tlowchart of an example process 800 that
can be implemented by the various nodes (e.g., as described
in FI1G. 3) 1n the example decentralized computation system.
The process may show how the system uses the shared data
to verily prools without revealing the shared data. The
process may be performed by any other suitable system,
environment, software, and hardware, or a combination of
systems, environments, soltware, and hardware as appropri-
ate. In some embodiments, various operations of the pro-
cesses can be run 1n parallel, in combination, 1n loops, or 1n
any order.

At 802 a first proof 1s received from a first node; the first
prool generated from a first private key associated with the
first node and data shared between the first node and a
second node. From 802, the process 800 proceeds to 804.

At 804, a second proof 1s received from the second node;
the second proof generated from the shared data and a
second private key associated with the second node. From
804, the process 800 proceeds to 806.

At 806, the first proof and the second proof are verified,
without revealing the shared data, to have both been gen-
crated from the shared data. The proofs are verified using a
first public key mathematically related to the first private key
and a second public key mathematically related to the
second private key. In some embodiments, the first proof 1s
only attributable to the first node. In some embodiments, the
second proof 1s only attributable to the second node. In some
embodiments, the first proof or the second proof cannot be
verified with only the respective public key. In some
embodiments, the first proof and the second proof each
comprise a signature of the shared data generated with the
respective private key. In some embodiments, the signatures
are based on a BLS signature scheme. In some embodi-
ments, the verification of the first proof and the second proof
comprises a pairing equality check based on the two signa-
tures, the first public key, and the second public key. In some
embodiments, veritying the first proof and the second proof
comprises a pairing equality check. In some embodiments,
the first proof and the second prool are generated and
verified 1n a non-interactive protocol. From 806, the process
800 proceeds to 808.

At 808, an action 1s preformed based on the verification
of the first proof and the second proot both being generated
from the shared data. In some embodiments, the first proof
and the second proof are publicly revealed by the first node
and the second node respectively. In some embodiments, the
action comprises revealing publicly the verification of the
first proof and the second proof were both generated from
the shared data. In some embodiments, the shared data
comprises an execution trace proving an execution of at least
one transaction of a block within a blockchain. In some
embodiments, the first node comprises a verification node




US 11,394,550 B2

35

employed to guarantee correctness of a computation of an
execution node. In some embodiments, the computation
comprises the execution trace. In some embodiments, the
second node comprises the execution node employed to
execute the at least one transaction of the block. In some
embodiments, the verification node publishes the first proof
as prool that the computation has been verified. In some
embodiments, the action comprises providing a state
response to a client, the state response determined based on
an output for the block. In some embodiments, the compu-
tation 1s broken up into chunks to allow a lighter computa-
tion verification in a parallel and independent manner. In
some embodiments, the action comprises arbitrating that
cach of the chunks are consistently generated from the same
intermediate results by the execution node and the verifica-
tion node. From 808, the process 800 ends.

FI1G. 9 depicts a tflowchart of an example process 900 that
can be implemented by the various nodes (e.g., as described
in FIG. 3) 1n the example decentralized computation system.
The process may show how the system uses the shared data
to verily prooifs without revealing the shared data. The
process may be performed by any other suitable system,
environment, software, and hardware, or a combination of
systems, environments, soitware, and hardware as appropri-
ate. In some embodiments, various operations of the pro-
cesses can be run 1n parallel, 1n combination, 1n loops, or 1n
any order.

At 902 a prooft 1s received from each of a plurality of
nodes, each proof having been generated from data shared
between the nodes and a respective private key associated
with each node. In some embodiments, each of the proofs
are publicly revealed by their respective nodes. In some
embodiments, each of the proois i1s only attributable to the
respective generating node. In some embodiments, each of
the proois cannot be verified with only the respective public
key. In some embodiments, the shared data comprises an
execution trace proving an execution ol at least one trans-
action of a block within a blockchain. From 902, the process
900 proceeds to 904.

At 904, cach of the proots 1s verified, without revealing
the shared data, as having been generated from the shared
data. The proots are verified using a plurality of public keys
cach mathematically related to a respective one of the
private keys. In some embodiments, proofs each comprise a
signature of the shared data generated with the respective
private key. In some embodiments, the verification of the
proofs comprises a pairing equality check based on the
signatures and the public keys. In some embodiments, the
signatures are based on a BLS signature scheme. In some
embodiments, verifying the prools comprises a pairing
equality check. In some embodiments, the proofs are gen-
erated and verified 1n a non-interactive protocol. In some
embodiments, a number of verifications of the proofs is
linear 1n the number of the nodes and not quadratic. In some
embodiments, verilying the proois requires one less verifi-
cation than the number of nodes. From 904, the process 900
proceeds to 906.

At 906, an action 1s preformed based on the verification
of the proofs being generated from the shared data. In some
embodiments, the action comprises revealing publicly the
verification of the first proof and the second proof were both
generated from the shared data. From 906, the process 900
ends.

In some embodiments, the platforms, systems, media, and
methods described herein include a computing devices,
processors, or use of the same. In further embodiments, the
computing device includes one or more hardware central
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processing units (CPUs) or general purpose graphics pro-
cessing units (GPUs) that carry out the device’s functions. In
still further embodiments, the computing device further
comprises an operating system configured to perform
executable 1nstructions. In some embodiments, the comput-
ing device 1s optionally connected a computer network. In
further embodiments, the computing device 1s optionally
connected to the Internet such that 1t accesses the World
Wide Web. In still further embodiments, the computing
device 1s optionally connected to a cloud computing infra-
structure. In other embodiments, the computing device 1s
optionally connected to an intranet. In other embodiments,
the computing device i1s optionally connected to a data
storage device.

In accordance with the description herein, suitable com-
puting devices include, by way of non-limiting examples,
cloud computing resources, server computers, server clus-
ters, desktop computers, laptop computers, notebook com-
puters, sub-notebook computers, netbook computers, netpad
computers, handheld computers, mobile smartphones, and
tablet computers. Those of skill in the art will recognize that
many smartphones are suitable for use in the system
described herein. Those of skill 1n the art will also recognize
that select televisions, video players, and digital music
players with optional computer network connectivity are
suitable for use in the system described herein. Suitable
tablet computers include those with booklet, slate, and
convertible configurations, known to those of skill in the art.

In some embodiments, the computing device includes an
operating system configured to perform executable mstruc-
tions. The operating system 1s, for example, software,
including programs and data, which manages the device’s
hardware and provides services for execution of applica-
tions. Those of skill 1n the art will recognize that suitable
server operating systems include, by way of non-limiting

examples, FreeBSD, OpenBSD, NetBSD®, Linux, Apple®
Mac OS X Server®, Oracle® Solaris®, Windows Server®,
and Novell® NetWare®. Those of skill in the art will
recognize that suitable personal computer operating systems
include, by way of non-limiting examples, Microsoit®
Windows®, Apple® Mac OS X®, UNIX®, and UNIX-like
operating systems such as GNU/Linux®. In some embodi-
ments, the operating system 1s provided by cloud computing.
Those of skill in the art will also recognize that suitable
mobile smartphone operating systems include, by way of
non-limiting examples, Nokia® Symbian® OS, Apple®
10S®, Research In Motion® BlackBerry OS®, Google®
Android®, Microsoft® Windows Phone® OS, Microsoft®
Windows Mobile® OS, Linux®, and Palm® WebOS®.

In some embodiments, the computing device includes a
storage and/or memory device. The storage and/or memory
device 1s one or more physical apparatuses used to store data
or programs on a temporary or permanent basis. In some
embodiments, the device 1s volatile memory and requires
power to maintain stored information. In some embodi-
ments, the device 1s non-volatile memory and retains stored
information when the computing device 1s not powered. In
further embodiments, the non-volatile memory comprises
flash memory. In some embodiments, the non-volatile
memory comprises dynamic random-access memory
(DRAM). In some embodiments, the non-volatile memory
comprises ferroelectric random access memory (FRAM). In
some embodiments, the non-volatile memory comprises
phase-change random access memory (PRAM). In other
embodiments, the device 1s a storage device including, by
way of non-limiting examples, CD-ROMs, DVDs, flash
memory devices, magnetic disk drives, magnetic tapes
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drives, optical disk drives, and cloud computing based
storage. In further embodiments, the storage and/or memory
device 1s a combination of devices such as those disclosed
herein.

In some embodiments, the computing device includes a
display to send visual information to a user. In some
embodiments, the display 1s a cathode ray tube (CRT). In
some embodiments, the display 1s a liquid crystal display
(LCD). In further embodiments, the display 1s a thin film
transistor liquid crystal display (TFT-LCD). In some
embodiments, the display 1s an organic light emitting diode
(OLED) display. In various further embodiments, on OLED
display 1s a passive-matrix OLED (PMOLED) or active-
matrix OLED (AMOLED) display. In some embodiments,
the display 1s a plasma display. In other embodiments, the
display 1s a video projector. In yet other embodiments, the
display 1s a head-mounted display 1n communication with a
computer, such as a virtual reality (VR) headset. In further
embodiments, suitable VR headsets include, by way of
non-limiting examples, HTC Vive, Oculus Rift, Samsung
Gear VR, Microsoit HoloLens, Razer Open-Source Virtual
Reality (OSVR), FOVE VR, Zeiss VR One, Avegant Glyph,
Freetly VR headset, and the like. In still further embodi-
ments, the display 1s a combination of devices such as those
disclosed herein.

In some embodiments, the computing device includes an
input device to receive information from a user. In some
embodiments, the input device 1s a keyboard. In some
embodiments, the mput device 1s a pointing device includ-
ing, by way of non-limiting examples, a mouse, trackball,
track pad, joystick, game controller, or stylus. In some
embodiments, the mput device 1s a touch screen or a
multi-touch screen. In other embodiments, the mput device
1s a microphone to capture voice or other sound mnput. In
other embodiments, the mput device 1s a video camera or
other sensor to capture motion or visual iput. In further
embodiments, the mput device 1s a Kinect, Leap Motion, or
the like. In still further embodiments, the mput device 1s a
combination of devices such as those disclosed herein.

Computer control systems are provided herein that can be
used to implement the platiorms, systems, media, and meth-
ods of the disclosure. FIG. 10, depicts an example comput-
ing device 1010 that can be programmed or otherwise
configured to implement platforms, systems, media, and
methods of the present disclosure. For example, the com-
puting device 1010 can be programmed or otherwise con-
figured such as the description regarding computing devices
102, 104, 106, 108 depicted in FIGS. 1-2.

In the depicted embodiment, the computing device 1010
includes a CPU (also “processor’” and “computer processor”
herein) 1012, which 1s optionally a single core, a multi core
processor, or a plurality of processors for parallel process-
ing. The computing device 1010 also includes memory or
memory location 1017 (e.g., random-access memory, read-
only memory, flash memory), electronic storage unit 1014
(e.g., hard disk), communication mterface 1015 (e.g., a
network adapter) for communicating with one or more other
systems, and peripheral devices 1016, such as cache, other
memory, data storage or electronic display adapters.

In some embodiments, the memory 1017, storage umit
1014, communication interface 1015, and peripheral devices
1016 are in communication with the CPU 1012 through a
communication bus (solid lines), such as a motherboard. The
storage unit 1014 comprises a data storage unit (or data
repository) for storing data. The computing device 1010 1s
optionally operatively coupled to a computer network, such

as the network 110 depicted 1n FIGS. 1-2, with the aid of the
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communication interface 1015. In some embodiments, the
computing device 1010 1s configured as a back-end server
deployed within the described platform.

In some embodiments, the CPU 1012 can execute a
sequence of machine-readable instructions, which can be
embodied in a program or software. The mstructions may be
stored 1n a memory location, such as the memory 1017. The
mstructions can be directed to the CPU 1012, which can
subsequently program or otherwise configure the CPU 1012
to 1implement methods of the present disclosure. Examples
of operations performed by the CPU 1012 can include fetch,
decode, execute, and write back. In some embodiments, the
CPU 1012 1s part of a circuit, such as an integrated circuait.
One or more other components of the computing device
1010 can be optionally included in the circuit. In some
embodiments, the circuit 1s an application specific integrated
circuit (ASIC) or a field programmable gate array (FPGA).

In some embodiments, the storage unit 1014 can store
files, such as drivers, libraries and saved programs. In some
embodiments, the storage umt 1014 stores data, such as
detection logic; analysis of various threats that have been
encountered by an enterprise; metadata regarding triage
performed to mitigate threats, false positives, and perfor-
mance metrics, and so forth. In some embodiments, the
computing device 1010 includes one or more additional data
storage units that are external, such as located on a remote
server that 1s in communication through an intranet or the
Internet.

In some embodiments, the computing device 1010 com-
municates with one or more remote computer systems
through a network. For 1nstance, the computing device 1010
can communicate with a remote computer system. Examples
of remote computer systems include personal computers
(e.g., portable PC), slate or tablet PCs (e.g., Apple® 1Pad,
Samsung® Galaxy Tab, etc.), smartphones (e.g., Apple®
1Phone, Android-enabled device, Blackberry®, etc.), or per-
sonal digital assistants, such as depicted in FIGS. 1-2. In
some embodiments, a user can access the computing device
1010 via a network, such as depicted in FIGS. 1-2.

In some embodiments, the platforms, systems, media, and
methods as described herein are implemented by way of
machine (e.g., computer processor) executable code stored
on an electronic storage location of the computing device
1010, such as, for example, on the memory 1017 or the
clectronic storage unit 1014. In some embodiments, the CPU
1012 1s adapted to execute the code. In some embodiments,
the machine executable or machine-readable code 1s pro-
vided in the form of software. In some embodiments, during
use, the code 1s executed by the CPU 1012. In some
embodiments, the code i1s retrieved from the storage unit
1014 and stored on the memory 1017 for ready access by the
CPU 1012. In some situations, the electronic storage unit
1014 1s precluded, and machine-executable instructions are
stored on the memory 1017. In some embodiments, the code
1s pre-compiled. In some embodiments, the code 1s compiled
during runtime. The code can be supplied 1n a programming
language that can be selected to enable the code to execute
in a pre-compiled or as-compiled fashion.

In some embodiments, the computing device 1010 can
include or be 1n communication with an electronic display
1035. In some embodiments, the electronic display 1035
provides a user interface (UI) 1040.

In some embodiments, the platforms, systems, media, and
methods disclosed herein include one or more non-transitory
computer readable storage media encoded with a program
including instructions executable by the operating system of
an optionally networked computing device. In further
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embodiments, a computer readable storage medium 1s a
tangible component of a computing device. In still further
embodiments, a computer readable storage medium 1s
optionally removable from a computing device. In some
embodiments, a computer readable storage medium
includes, by way of non-limiting examples, CD-ROMs,
DVDs, flash memory devices, solid state memory, magnetic
disk drives, magnetic tape drives, optical disk drives, dis-
tributed computing systems including cloud computing sys-
tems and services, and the like. In some cases, the program
and instructions are permanently, substantially permanently,
semi-permanently, or non-transitorily encoded on the media.
In some embodiments, the platiorms, systems, media, and
methods disclosed herein include at least one computer
program, or use of the same. A computer program includes
a sequence of instructions, executable 1n the computing
device’s CPU, written to perform one or more specified
tasks. Computer readable instructions may be implemented
as program modules, such as functions, objects, Application
Programming Interfaces (APIs), data structures, and the like,
that perform particular tasks or implement particular abstract
data types. In light of the disclosure provided herein, those
of skill 1n the art will recognize that a computer program
may be written 1n various versions of various languages.
The functionality of the computer readable nstructions
may be combined or distributed as desired 1n various envi-
ronments. In some embodiments, a computer program com-
prises one sequence of instructions. In some embodiments,
a computer program comprises a plurality of sequences of
instructions. In some embodiments, a computer program 1s
provided from one location. In other embodiments, a com-
puter program 1s provided from a plurality of locations. In
various embodiments, a computer program includes one or
more software modules. In various embodiments, a com-
puter program includes, in part or 1n whole, one or more web
applications, one or more mobile applications, one or more
standalone applications, one or more web browser plug-ins,
extensions, add-ins, or add-ons, or combinations thereof.
In some embodiments, a computer program includes a
web application. In light of the disclosure provided herein,
those of skill 1in the art will recognize that a web application,
in various embodiments, utilizes one or more software
frameworks and one or more database systems. In some
embodiments, a web application 1s created upon a software
framework such as Microsoft® NET or Ruby on Rails
(RoR). In some embodiments, a web application utilizes one
or more database systems including, by way of non-limiting
examples, relational, non-relational, object oriented, asso-
ciative, and XML database systems. In further embodiments,
suitable relational database systems include, by way of
non-limiting examples, Microsolt® SQL Server, mySQL™,
and Oracle®. Those of skill in the art will also recognize that
a web application, 1n various embodiments, 1s written 1n one
or more versions ol one or more languages. A web appli-
cation may be written in one or more markup languages,
presentation definition languages, client-side scripting lan-
guages, server-side coding languages, database query lan-
guages, or combinations thereof. In some embodiments, a
web application 1s written to some extent in a markup
language such as Hypertext Markup Language (HTML),
Extensible Hypertext Markup Language (XHTML), or
eXtensible Markup Language (XML). In some embodi-
ments, a web application 1s written to some extent 1n a
presentation definition language such as Cascading Style
Sheets (CSS). In some embodiments, a web application 1s
written to some extent in a client-side scripting language

such as Asynchronous JavaScript and XML (AJAX), Flash®
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ActionScript, JavaScript, or Silverlight®. In some embodi-
ments, a web application 1s written to some extent 1n a
server-side coding language such as Active Server Pages
(ASP), ColdFusion®, Perl, Java™ JavaServer Pages (JSP),
Hypertext Preprocessor (PUP), Python™, Ruby, Tcl, Small-
talk, WebDNA®, or Groovy. In some embodiments, a web
application 1s written to some extent in a database query
language such as Structured Query Language (SQL). In
some embodiments, a web application integrates enterprise
server products such as IBM® Lotus Domino®. In some
embodiments, a web application includes a media player
clement. In various further embodiments, a media player
clement utilizes one or more of many suitable multimedia
technologies including, by way of non-limiting examples,
Adobe® Flash®, HTML 5, Apple® Quicklime®,
Microsoft® Silverlight®, Java™, and Unity®.

In some embodiments, a computer program includes a
mobile application provided to a mobile computing device.
In some embodiments, the mobile application 1s provided to
a mobile computing device at the time 1t 1s manufactured. In
other embodiments, the mobile application 1s provided to a
mobile computing device wvia the computer network
described herein.

In view of the disclosure provided herein, a mobile
application 1s created by techniques known to those of skill
in the art using hardware, languages, and development
environments known to the art. Those of skill in the art will
recognize that mobile applications are written 1n several
languages. Suitable programming languages include, by
way ol non-limiting examples, C, C++, C#, Objective-C,
Java™, JavaScript, Pascal, Object Pascal, Python™, Ruby,
VB.NET, WML, and XHTML/HTML with or without CSS,
or combinations thereof.

Suitable mobile application development environments
are available from several sources. Commercially available
development environments include, by way of non-limiting
examples, AirplaySDK, alcheMo, Appcelerator®, Celsius,
Bedrock, Flash Lite, NET Compact Framework, Rhomobile,
and WorklLight Mobile Platform. Other development envi-
ronments are available without cost including, by way of
non-limiting examples, Lazarus, MobiFlex, MoSync, and
Phonegap. Also, mobile device manufacturers distribute
soltware developer kits including, by way of non-limiting
examples, 1Phone and 1Pad (10S) SDK, Android™ SDK,
BlackBerry® SDK, BREW SDK, Palm® OS SDK, Sym-
bian SDK, webOS SDK, and Windows® Mobile SDK.

Those of skill in the art will recognize that several
commercial forums are available for distribution of mobile
applications including, by way of non-limiting examples,
Apple® App Store, Google® Play, Chrome WebStore,
BlackBerry® App World, App Store for Palm devices, App
Catalog for webOS, Windows® Marketplace for Mobile,
Ovi1 Store for Nokia® devices, Samsung® Apps, and Nin-
tendo® DS1 Shop.

In some embodiments, the platforms, systems, media, and
methods disclosed herein include software, server, and/or
database modules, or use of the same. In view of the
disclosure provided herein, software modules are created by
techniques known to those of skill 1n the art using machines,
software, and languages known to the art. The software
modules disclosed herein are implemented 1n a multitude of
ways. In various embodiments, a software module com-
prises a lile, a section of code, a programming object, a
programming structure, or combinations thereof. In further
various embodiments, a software module comprises a plu-
rality of files, a plurality of sections of code, a plurality of
programming objects, a plurality of programming structures,
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or combinations thereof. In various embodiments, the one or
more software modules comprise, by way of non-limiting,
examples, a web application, a mobile application, and a
standalone application. In some embodiments, software
modules are 1n one computer program or application. In
other embodiments, software modules are 1n more than one
computer program or application. In some embodiments,
solftware modules are hosted on one machine. In other
embodiments, software modules are hosted on more than
one machine. In further embodiments, software modules are
hosted on cloud computing platforms. In some embodi-
ments, software modules are hosted on one or more
machines 1n one location. In other embodiments, software
modules are hosted on one or more machines 1n more than
one location.

In some embodiments, the platforms, systems, media, and
methods disclosed herein include one or more databases, or
use of the same. In view of the disclosure provided herein,
those of skill 1n the art will recognize that many databases
are suitable for storage and retrieval of data records. In
various embodiments, suitable databases include, by way of
non-limiting examples, relational databases, non-relational
databases, object oriented databases, object databases,
entity-relationship model databases, associative databases,
and XML databases. Further non-limiting examples include
SQL, PostgreSQL, MySQL, MongoDB, Oracle, DB2, and
Sybase. In some embodiments, a database 1s web-based. In
still further embodiments, a database 1s cloud computing-
based. In other embodiments, a database 1s based on one or
more local computer storage devices.

What 1s claimed 1s:

1. A computer-implemented method for verifying proofs
generated from shared data without revealing the shared
data, the method comprising:

receiving, from a first node computing device of a dis-

tributed blockchain network, a first proof generated
from a first private key associated with the first node
computing device and data shared between the first
node computing device and a second node computing
device, wherein the first node computing device and the
second node computing device are connected 1n a peer
to peer format of the distributed blockchain network
with no central authority;

receiving, from the second node computing device, a

second proof generated from the shared data and a
second private key associated with the second node
computing device;
verilying, without revealing the shared data, the first proot
and the second prool were both generated from the
shared data with a first public key mathematically
related to the first private key, and a second public key
mathematically related to the second private key; and

performing an action based on the venifying of the first
proof and the second proot both being generated from
the shared data, wherein the action comprises revealing
publicly the veritying of the first proof and the second
prool were both generated from the shared data, and
wherein the revealing publicly causes the veritying of
the first proof and the second proof to no longer be a
secret.

2. The method of claim 1, wherein the first proof and the
second proof are publicly revealed by the first node com-
puting device and the second node computing device respec-
tively.
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3. The method of claim 1, wherein the first proof 1s only
attributable to the first node computing device, and wherein
the second proof 1s only attributable to the second node
computing device.

4. The method of claim 1, wherein the first proof or the
second prool cannot be verified with only the respective
public key.

5. The method of claim 1, wherein the first proof and the
second proof each comprise a signature of the shared data
generated with the respective private key.

6. The method of claim 5, wherein the signatures are
based on a Boneh-Lynn-Shacham (BLS) signature scheme.

7. The method of claim 5, wherein the verification of the
first proot and the second proof comprises a pairing equality
check based on the two signatures, the first public key, and
the second public key.

8. The method of claim 1, wherein verifying the first proof
and the second proof comprises a pairing equality check.

9. The method of claim 1, wherein the first proof and the
second proof are generated and verified 1n a non-interactive
protocol.

10. The method of claim 1, wherein the shared data
comprises an execution trace proving an execution of at least
one transaction of a block within the distributed blockchain
network.

11. The method of claim 10, wherein the first node
computing device comprises a verification node computing
device employed to guarantee correctness of a computation
of an execution node computing device, and wherein the
computation comprises the execution trace.

12. The method of claim 11, wherein the second node
comprises the execution node computing device employed
to execute the at least one transaction of the block, and
wherein the verification node computing device publishes
the first proof as proof that the computation has been
verified.

13. A system for verifying proois generated from shared
data without revealing the shared data, the system compris-
ng:

one or more processors; and

a computer-readable storage device coupled to the one or

more processors and having instructions stored thereon

which, when executed by the one or more processors,

cause the one or more processors to perform operations

comprising:

receiving, from a first node computing device of a
distributed blockchain network, a first proof gener-
ated from a first private key associated with the first
node computing device and data shared between the
first node computing device and a second node
computing device, wherein the first node computing,
device and the second node computing device are
connected 1n a peer to peer format of the distributed
blockchain network with no central authority;

receiving, from the second node computing device, a
second prooi generated from the shared data and a
second private key associated with the second node
computing device;

veritying, without revealing the shared data, the first
proof and the second proof were both generated from
the shared data with a first public key mathematically
related to the first private key, and a second public
key mathematically related to the second private key;
and

performing an action based on the verification of the
first proof and the second proof both being generated
from the shared data, wherein the action comprises
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providing a state response to a client, and wherein
the state response comprises a computed state of the
distributed blockchain network.

14. The system of claim 13, wherein the state response 1s
determined based on an output for a block within the
distributed blockchain network.

15. The system of claim 13, wherein the action comprises
revealing publicly the verification of the first proof and the
second proof were both generated from the shared data.

16. The system of claim 13, wherein the shared data
comprises an execution trace proving an execution of at least
one transaction of a block within the distributed blockchain
network, wherein the first node computing device comprises
a verification node computing device employed to guarantee
correctness of a computation of an execution node comput-
ing device, wherein the computation comprises the execu-
tion trace, and wherein the second node computing device
comprises the execution node computing device employed
to execute the at least one transaction of the block.

17. The system of claim 13, wherein the computation 1s
broken up into chunks to allow a lighter computation
verification 1 a parallel and independent manner, and
wherein the action comprises arbitrating that each of the
chunks are consistently generated from the same interme-
diate results by an execution node computing device and a
verification node computing device.

18. One or more non-transitory computer-readable stor-
age media coupled to one or more processors and having
instructions stored thereon which, when executed by the one
Or more processors, cause the one or more processors to
perform operations comprising:

receiving, from each of a plurality of node computing

devices of a distributed blockchain network, a respec-
tive prool generated from data shared between the node
computing devices and a respective private key asso-
ciated with each node computing device, wherein the
node computing devices are connected 1n a peer to peer
format of the distributed blockchain network with no
central authority;

veritying, without revealing shared data, each of the

proofs were generated from the shared data with a
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plurality of public keys each mathematically related to
a respective one of the private keys;

computing an execution trace proving an execution of at
least one transaction of a block within the distributed
blockchain network; and

performing an action based on the verification of the

proois being generated from the shared data, wherein
computing the execution trace 1s broken up into chunks
to allow a computation verification 1n a parallel and
independent manner, and wherein the action comprises
arbitrating that each of the chunks are generated from
same intermediate results by an execution node com-
puting device and a verification node computing
device.

19. The media of claim 18, wherein each of the proofs are
publicly revealed by their respective node computing
devices.

20. The media of claim 18, wherein the action comprises
revealing publicly the verification that each of the proofs
were generated from the shared data.

21. The media of claim 18, wherein each of the proois 1s
only attributable to the respective generating node comput-
ing device.

22. The media of claim 18, wherein each of the proois
cannot be verified with only the respective public key.

23. The media of claim 18, wherein the proofs each
comprise a signature of the shared data generated with the
respective private key, and wherein the verification of the
proofs comprises a pairing equality check based on the
signature and the public keys.

24. The media of claim 18, wherein the proofs are
generated and verified 1n a non-interactive protocol.

25. The media of claim 18, wherein a number of verifi-
cations of the proofs 1s linear 1n the number of the nodes and
not quadratic.

26. The media of claim 18, wherein veriiying the proois
requires one less verification than the number of nodes.

277. The media of claim 18, wherein veriiying the proois
comprises a pairing equality check.
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