USO011392297B2

a2 United States Patent (10) Patent No.: US 11,392,297 B2

Yang et al. 45) Date of Patent: *Jul. 19, 2022
(54) AUTOMATIC STREAM DETECTION AND (358) Field of Classification Search
ASSIGNMENT ALGORITHM CPC GO6F 3/061; GO6F 3/0611; GO6F 13/18;
GO6F 3/0659; GO6F 12/0246;
(71) Applicant: Samsung Electronics Co., Ltd., (Continued)
Suwon-s1 (KR)
(56) References Cited
(72) Inventors: Jingpei Yang, Santa Clara, CA (US);
Changho Choi, San Jose, CA (US); U.S. PATENT DOCUMENTS
Rajinikanth Pandurangan, Fremont, 6424935 BI 11000 Harst of 4]
CA (US); Vijay Balakrishnan, 8615638 B2 122013 Shirlen et al.
Mountain View, CA (US); Ramaraj .
Pandian, Cupertino, CA (US) (Continued)

FOREIGN PATENT DOCUMENTS

(73) Assignee: SAMSUNG ELECTRONICS CO.,

L1D. CN 104461393 A 3/2015
_ _ _ _ _ CN 104809075 A 7/2015
(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days. OTHER PUBLICATIONS

This patent 1s subject to a terminal dis-

claimer. Final Office Action for U.S. Appl. No. 15/389,270, dated Jul. 14,
2020.
(21) Appl. No.: 16/856,020 (Continued)
(22) Filed: Apr. 22, 2020 Primary Examiner — Tasnima Matin
(74) Attorney, Agent, or Firm — Renaissance IP Law
(65) Prior Publication Data Group LLP
US 2020/0249839 Al Aug. 6, 2020
(37) ABSTRACT
A Solid State Drive (SSD) 1s disclosed. The SSD may
Related U.S. Application Data include flash memory to store data and may support a

plurality of device streams. A SSD controller may manage
reading and writing data to the flash memory, and may store
a submission queue and a chunk-to-stream mapper. A flash

(63) Continuation of application No. 15/499,877, filed on
Apr. 27, 2017, now Pat. No. 10,656,838, which 1s a

(Continued) translation layer may include a receiver to receive a write
51y Int. Cl command, an LBA mapper to map an LBA to a chunk
(51) (;1 OESF 3 06 20060 identifier (ID), stream selection logic to select a stream 1D
COGF 13/18 (2006'0:) based on the chunk ID, a stream ID adder to add the stream
COGF 12/07 (2006.O:L) ID to the write command, a queuer to place the chunk ID 1n
(01) the submission queue, and background logic to update the
(52) US. Cl. chunk-to-stream mapper after the chunk ID 1s removed from
CPC GO6F 3/061 (2013.01); GO6L 3/0611 the submission queue.
(2013.01); GO6F 3/0655 (2013.01);
(Continued) 21 Claims, 21 Drawing Sheets
-zza\;r\
SSD Controller -« AT .
Flash Chip | | Flash Chip
Flash Translation e j—’s"'—" e
Layer ~ >
Hoslt 325 Fash Chip Flash Chip |
< injerface e o hf_l_ﬁ_:fi A15-4
Logic N -
Flash Chip tlash Chip
Storage — 3155 315-6
- e -
et Flash Chip | | Fiash Chip
305) AT g A 310 315.7 315.8
et ff”r L "\\ Ex e "
-~ d i ! N .
y : \ 340
335 ! |~
M i... '\ [Chunk-to-
\ 1 Stream

‘1 Mapper

US 11,392,297 B2

Page 2
Related U.S. Application Data 2015/0309742 A1 10/2015 Amidi et al.
2016/0139838 Al 5/2016 D’Sa et al.
continuation-in-part ol application No. 15/344,422, 2016/0162203 Al 6/2016 Grimsrud
filed on Nov. 4, 2016, now Pat. No. 10,282,324, 2016/0170639 Al 6/2016 Velayudhan et al.
which 1s a continuation-in-part of application No. gggﬁgggggg i gggg (Z:hang o
. L. 1 1 1 amp et al.
15/144,583, filed on May 2, 2016, said application 2016/0203053 Al 7/2016 Talagala et al.
No. 15/499,877 1s a continuation-in-part of Elpp]lCEl- 2016/0266792 Al* 9/2016 Amaki GO6F 3/0608
tion No. 15/090,799, filed on Apr. 5, 2016, now Pat. 2016/0283124 Al 9/2016 Hashimoto et al.
No. 10,509,770. 2016/0283125 Al 9/2016 Hashimoto et al.
2016/0306552 Al 10/2016 Liu et al.
(60) Provisional application No. 62/245,100, filed on Oct. 2016/0313943 Al 10/2016 Hashimoto et al.
22, 2015, provisional application No. 62/192,045, 2016/0328156 Al 11/2016 Swarbrick et al.
filed | i onal licat; 2016/0357437 Al 12/2016 Doerner
ed on Jul. 13, 2015, provisional app 1cat1(::11. No. 2017/0024141 Al 1/2017 Davis et al.
62/458,566, filed on Feb. 13, 2017, provisional 2017/0109096 Al 4/2017 Jean et al.
application No. 62/471,350, filed on Mar. 14, 2017, 2017/0123666 Al 5/2017 Sinclair et al.
provisional application No. 62/383,302, filed on Sep. 2017/0161100 Al 6/2017 Rashid et al.
3 2016 2017/0228157 Al 8/2017 Fang et al.
‘ ' 2017/0308722 Al 10/2017 Oikawa et al.
2017/0344470 Al 11/2017 Yang et al.
(52) U.S. (1 2018/0074700 Al 3/2018 Tsalmon et al.
CPC GO6F 3/0659 (2013.01); GO6L 3/0679 | |
(2013.01); GO6F 3/0688 (2013.01); GO6IF FOREIGN PATENT DOCUMENTS
12/0246 (2013.01); GO6F 13/18 (2013.01); N 105446890 A 39016
GO6F 2212/1016 (2013.01); GO6F 2212/1036 CN 105446038 A 32016
(2013.01); GOoF 2212/7201 (2013.01); GO6F TP 2006235960 A 9/2006
2212/7202 (2013.01); GOOF 2212/7205 JP 2013539148 A 10/2013
(2013.01) JP 5723812 B2 5/20;5
(58) Field of Classification Search Sy N A LU
GO6F 2212/7205; GO6F 2212/7201; GO6F ™W 201308074 A 2/2013
2212/1036; GO6F 2212/1016; GO6F Y 201324150 A 6/2013
2912/7200 TW 201604688 A 2/2016
q lication file £ ot h hist WO 2012020544 Al 2/2012
CC dpplicalion C 10 COIMPICIC 5CAIC ISLOLY. WO 2012039216 Al 3/2012
WO 2015005634 Al 1/2015
(56) References Cited
U.S. PATENT DOCUMENTS OTHER PUBLICAITONS
8.837.287 B2 9/2014 Dolganow et al. Notice of Allowance for U.S. Appl. No. 15/389,270, dated Aug. 12,
8,874,835 B1 10/2014 Davis et al. 2020.
8,966,201 B2 2/2015 Sela et al. Advisory Action for U.S. Appl. No. 15/389,270, dated Jan. 21,
9,003,159 B2 4/2015 Deshkar et al. 2020
9,015,311 B2 4/2015 Muniraja * . .
0.105.305 B2 /7015 Werner et al. E;{ pza(.)riegQuayle Action for U.S. Appl. No. 15/499,877, mailed Apr.
9,141,528 B2 9/2015 Gorobets et al. ; *
9.176,864 B2 11/2015 Gorobets et al. Final Office Action for U.S. Appl. No. 15/230,347, dated Apr. 18,
0,183,136 B2 11/2015 Kawamura et al. 2018.
9,201,804 B1 12/2015 Egyed Final Ofhice Action for U.S. Appl. No. 15/389,270, dated Feb. 6,
9,436,634 B2 9/2016 Canepa et al. 2019.
9,495,102 B2 11/2016 Bisht Final Office Action for U.S. Appl. No. 15/389,270, dated Oct. 31,
9,501,230 B2 11/2016 Hashimoto 2019,
9,521,201 B2 12/2()?6 Or Kang, Jeong-Uk et al., “The Multi-streamed Solid-State Drive,”
9,563,397 Bl 2/2017° Stoev et al Memory Solutions Lab., Memory Division, Samsung Electronic
9,851,909 B2 12/2017 Saxena et al. Co., 5 pages R "
10,311,545 B2 6/2019 Yoon et al. 7 .' . .
2007/0016754 Al 1/9007 Testardi Megiddo, Nimrod et al., “ARC: A Sel.f-Tunmg, Low Overhead
2009/0222617 Al 0/2009 Yano et al. Replacement Cache”, Fast 03 Proceedings of the 2nd USENIX
2012/0072662 Al 3/2012 Jess et al. Conference on File and Storage Technologies, Mar. 31, 2003, pp.
2012/0072798 Al 3/2012 Unesaki et al. 115-130.
2012/0191900 Al 7/2012 Kunimatsu et al. Notice of Allowance for U.S. Appl. No. 15/230,347, dated Jan. 24,
2012/0254524 Al 10/2012 Fuimoto 2019.
2013/0159626 Al 6/2013 Katz et al. Notice of Allowance for U.S. Appl. No. 15/499,877, dated Jan. 8,
2013/0166856 Al 6/2013 Lim et al. 2020
2014/0019701 Al 1/2014 Ohira et al ot e R AP 800 CEEE SR 24
ggt‘jfgggﬁgé it‘ gggfj g‘;ll?lf“ et al. Office Action for U.S. Appl. No. 15/230,347, dated Dec. 13, 2017.
7015/0074337 Al 39015 TJo et al. Office Action for U.S. Appl. No. 15/389,270, dated Apr. 2, 2020.
2015/0149605 Al 5/2015 de La Iglesia Office Action for U.S. Appl. No. 15/389,270, dated Jun. 21, 2019.
2015/0169230 Al* 6/2015 Asnaashari GO6F 3/0688 Office Action for U.S. Appl. No. 15/389,270, dated Sep. 7, 2018.
711/103 Office Action for U.S. Appl. No. 15/499,877, dated Oct. 4, 2018.
2015/0169449 Al1* 6/2015 Barrell GO6F 12/0806 Yang, Fel et al., “Multi-streaming RocksDB,” Memory Solutions

711/143 Group, Samsung Research Center, 2 pages.

US 11,392,297 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Yoo, Sanghyun et al., “Block Replacement Scheme based on Reuse

Interval for Hybrid SSD System”, Journal of Internet Computing
and Services, vol. 16, Issue 5, 2015, pp. 19-27.

* cited by examiner

US 11,392,297 B2

Sheet 1 of 21

Jul. 19, 2022

U.S. Patent

Il

|

103

L Ol

4§14

JOALIQ

901A8(]

Ot

:

:

AJOWBIN

18]|0J1U0N
AJOWIBIN

GLl

GEl

10SS920.4d

Obl

¢ Oid

=
Gl

US 11,392,297 B2

Sheet 2 of 21

GEl
E

10SS820.4d

0éc
92IA3(]
abelioi1g
GlLe
02

90B1I8)U]
lasn

Jul. 19, 2022

OLi

U.S. Patent

10}08UU0N

NIOM]BN

Q01

OLc

¢ Ol

US 11,392,297 B2

laddepy |\
wesns |\
opRyunyo| Y T
12% ~ N \ /
~ ~ AN \
~ I-GIE >
S GIYyD yseld
= abeliolg
m., | S0BLIBIY|
m G2t 1SOH
2 JaAe
e = uonejsuel | ysejd
diyo yseld | | diyd yseis B
e J8|J0JU0D JSS

U.S. Patent

Get

Ocl

US 11,392,297 B2

01607

punoJbMoeg 19N=NG

Sheet 4 of 21

1DPPY
| weans

Jepiuisued |

B o107y Jjadden .
uolo98es | JOAIBDOYM
wesns vd i
GiL¥ 1157

lsAe 1 uone|suel| yse

U.S. Patent

GOP

TAS

= T T , G Ol
m., . lodde ,
A | WeallS |
— -01-yunyn |
5 o/ N == — -

GES

: ” DUBWILION
e £-G0G
: Clapwnpo K B K v

e e-01
3 |uonosies rodden 2508
: |aiweeng | weens —JanunupK | oot KT val

Z-0€S 7615 | 2015
o PUBLUILION
2 _ ” -505
m -088 Gl -GLG 0LY -01G

US 11,392,297 B2

Sheet 6 of 21

Jul. 19, 2022

U.S. Patent

ass ol {___emwsuel]

9 Old

(1] WesllS
7~(18G
(__PUBWO)

406G
vd |

¢-ULS

Q) weans
~{

DUBLIWION
-G 0%

G

vd |
A -0LS

1PPPY

Al Weass

¢-0eS
DUBWIWOY
¢-G04
vd |
c-0LG

L-0CS
DUBLIWON
L-G0%
vd |
Ay L-01G

U.S. Patent Jul. 19, 2022 Sheet 7 of 21 US 11,392,297 B2

705
Chunk
Size
o 515-1
LBA ALU Chunk ID
LBA) ALY —){Chunk D
FIG. 7
305

Current Previous
Chunk ID |Stream ID| access Time | Access Time |Access Count
5151 230-1 810-1 815-1 820-1
Current Previous
Chunk ID Stream ID| Access Tis me Access Time |Access Count
515-2 230-2 810-2 815-2 820-2
Current Previous
Chunk ID |Stream ID| access Time | Access Time |Access Count
515-3 530-3 810-3 815-3 820-3

Current Previous
Chunk ID |Stream ID| access Time | Access Time |Access Count
5154 5304 8104|8154 820-4

FIG. 8

U.S. Patent Jul. 19, 2022 Sheet 8 of 21 US 11,392,297 B2

435

910, Background Logic 915

325

Flash Translation Recency ﬁé:ces?
Logic ou

Adjuster
Sequentiality

LOgiC

Stream ID

Adjuster

FIG. 9

1005 1010

Comparator

1015

1020-10 1020-3 1020-5" 1020-7 \ ~ o
\

P N
Window Size 1040 N\

FIG. 10

U.S. Patent Jul. 19, 2022 Sheet 9 of 21 US 11,392,297 B2

910

Recency Logic

Curreﬂt Prevmus
ACCESsS T = Access Time
815-1
1110
Decay
Perlod

Access Count Adjuster

Access Count|+ 1
820-1
Access Countl .
Recency
Weight

915

920
Stream ID Adjuster

1205
_ Adjusted
T L (e

FIG. 13

U.S. Patent Jul. 19, 2022 Sheet 10 of 21 US 11,392,297 B2

1405-1 1405-2
4

515-1 530-1

Expiration 1405-3

Time

820-1 1410

1505 Background Logic 1510

Second
Queuer

Fromotion
L.ogic

Demotion
Logic

U.S. Patent Jul. 19, 2022 Sheet 11 of 21 US 11,392,297 B2

1520-1 1520-2 1520-3
335 l l l
o
1605 1625-1 1625-2 1625-3
[Tele ,_
| 1620 |
ot . ,
-] | [
| |
1O
1615 - 1630
Coldest Hottest
Fi1G. 16
1505

1705 Promotion Logic 1710

Stream ID
Adjuster

Incrementer

Expiration
Logic

FIG. 17

U.S. Patent Jul. 19, 2022 Sheet 12 of 21 US 11,392,297 B2

1710
Stream 1D Adjuster
1205
Adjusted
St D | =
s |=toof

Lifetime

Comparator Decrementer

i

FIG. 20

U.S. Patent Jul. 19, 2022 Sheet 13 of 21 US 11,392,297 B2

2105 2120

. . Determine a stream
Recelve a write

|ID for the write

command
command

2110, 2125

Determine an LBA Assign the stream
In the write 1D to the write
command command (as a tag)

2115 2130

Process the write
|dentify a chunk command using the

based on the LBA assignhed stream ID
on the SSD

FIG. 21A

U.S. Patent Jul. 19, 2022 Sheet 14 of 21 US 11,392,297 B2

2135

Add the chunk to a

submission queue

2140

when the chunk reaches
the head of the
submission queue,
remove the chunk from
the submission gueue

2145

Perform a ackgmund
update of the stream
I associated with the

chunk

End

FIG. 218

U.S. Patent Jul. 19, 2022 Sheet 15 of 21 US 11,392,297 B2

2115
4
Start
2205 2210

Use an address
mask on the LBA to

Divide the LBA by a

chunk size to
identify the chunk

identify the chunk

End

FIG. 22

U.S. Patent Jul. 19, 2022 Sheet 16 of 21 US 11,392,297 B2

2120

4
2305 2315

ldentifying
sequential
writes”?

ldentify a window of

Yes | |
previous write

commands

No
2310 2320
ATAN . L BA
Access astream ID | |No Seq“i”;‘;:? §
. : SEC0ON if1 o
associated with the Srevious write
chunk command in the

winadow?

FIG. 23A

U.S. Patent Jul. 19, 2022 Sheet 17 of 21 US 11,392,297 B2

2325 2330

'i:ermie the previous
stream D assigned to
the previous write

ldentify an oldest

write command In
the window

command

2125 2335
NN Y

| Assign the previous

Replace the oldest
' stream ID to the

write command In
the window the new
write command

FIG. 238

U.S. Patent Jul. 19, 2022 Sheet 18 of 21 US 11,392,297 B2

2145
4

2405 2415

Update the access
Increase an access

count for the chunk

count responsive to
the recency weight

2410 2420
Determine the
Calculate a recency stream ID based on
weight for the chunk the updated access

count

FIG. 24

U.S. Patent Jul. 19, 2022 Sheet 19 of 21 US 11,392,297 B2

2145

A2}
Start
2505 2515
Determine the
Increment an access
stream ID from the
count for the chunk
access count
2510 2520

Place the chunk ID

Determine an

L INn a queue
expiration time for .
corresponding to the
the chunk
stream ID

FIG. 25A

U.S. Patent Jul. 19, 2022 Sheet 20 of 21 US 11,392,297 B2

2525 2540

count greater
than an access

count for a hottest
chunk?

Has the chunk
expiration time
passed?

Yes Yes
2530 2545

ldentify the chunk as Remove the chunk

the hottest chunk ID from the queue

2535 2550

Determine the device
lifetime as the difference Decrement the

pbetween two access stream 1D
times for the chunk

FIG. 25B

U.S. Patent

Jul. 19, 2022 Sheet 21 of 21

2555

another queue

corresponding to the
stream ID

2560

wWas the
chunk the hottest
chunk?

NoO

Yes

2565

Select another

chunk as the hottest
chunk

End

FIG. 25C

US 11,392,297 B2

US 11,392,297 B2

1

AUTOMATIC STREAM DETECTION AND
ASSIGNMENT ALGORITHM

RELATED APPLICATION DATA

This application 1s a continuation of U.S. patent applica-

tion Ser. No. 15/499,877, filed Apr. 27, 20177, now allowed,
which claims the benefit of U.S. Provisional Patent Appli-
cation Ser. No. 62/458,566, filed Feb. 13, 2017, and U.S.
Provisional Patent Application Ser. No. 62/471,350, filed
Mar. 14, 2017, all of which are incorporated by reference
herein for all purposes.

U.S. patent application Ser. No. 15/499,877, filed Apr. 27,
2017 1s also a continuation-in-part of U.S. patent application
Ser. No. 15/344,422, filed Nov. 4, 2016, now U.S. Pat. No.
10,282,324, 1ssued May 7, 2019, which claims the benefit of
U.S. Provisional Patent Application Ser. No. 62/383,302 and
which 1s a continuation-in-part of U.S. patent application
Ser. No. 15/144,588, filed May 2, 2016, which claims the
benefit of U.S. Provisional Patent Application Ser. No.
62/245,100, filed Oct. 22, 2015 and U.S. Provisional Patent
Application Ser. No. 62/192,045, filed Jul. 13, 2015, all of
which are incorporated by reference herein for all purposes.

U.S. patent application Ser. No. 15/499,877, filed Apr. 27,
2017 1s also a continuation-in-part of U.S. patent application
Ser. No. 15/090,799, filed Apr. 5, 2016, now U.S. Pat. No.
10,509,770, 1ssued Dec. 17, 2019, which claims the benefit
of U.S. Provisional Patent Application Ser. No. 62/245,100,
filed Oct. 22, 2015 and U.S. Provisional Patent Application

Ser. No. 62/192,043, filed Jul. 13, 2015, all of which are
incorporated by reference herein for all purposes.

FIELD

The inventive concepts relate generally to Solid State
Drives (SSDs), and more particularly to managing streams
in multi-stream SSDs.

BACKGROUND

Multi-streaming Solid State Drives (SSDs) allow smart
placement of incoming data to minimize the eflect of inter-
nal garbage collection (GC) and to reduce write amplifica-
tion. Multi-streaming may be achieved by adding a simple
tag (a stream ID) to each of the write commands sent from
the host to the SSD. Based on this tag, the SSD may group
data into common blocks.

But to take advantage of multi-stream devices, the appli-
cations must be aware that the SSD supports multi-stream-
ing, so that the software sources may assign common
streams to data with similar properties, such as data lifetime.
Making software multi-stream-aware requires modifying the
software. But modifying any software carries the risk of
making unintended changes to the operation of the software.
And given the sheer number of diflerent software products
on the market, expecting even a small number of these
soltware products to be modified to support multi-streaming
seems an unlikely proposition at best.

A need remains for a way to support multi-streaming
without the software requiring modification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a machine with a Solid State Drive (SSD),
according to an embodiment of the inventive concept.
FIG. 2 shows additional details of the machine of FIG. 1.

FIG. 3 shows details of the SSD of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 shows details of the flash translation layer of FIG.
3

FIG. 5 shows the logical block addresses (LBAs) of
various commands being mapped to chunks 1dentifiers (IDs)
and then to stream IDs for use with the SSD of FIG. 1.

FIG. 6 shows the various commands of FIG. 5§ being
modified to include the stream IDs of FIG. 5 and transmitted
to the SSD of FIG. 1.

FIG. 7 shows an arithmetic logic unit (ALU) mapping the
LBAs of FIG. 5 to the chunk IDs of FIG. 5.

FIG. 8 shows a Sequential, Frequency, Recency (SFR)
table that may be used to map chunk IDs to stream IDs,
according to a first embodiment of the inventive concept.

FIG. 9 shows additional details of the tlash translation
layer of FIG. 3 and the background logic of FIG. 4,
according to a first embodiment of the imventive concept.

FIG. 10 shows details of the sequentiality logic of FIG. 9.

FIG. 11 shows calculating a recency weight using the
recency logic of FIG. 9.

FIG. 12 shows adjusting an access count using the
recency weight of FIG. 11 1n the access count adjuster of
FIG. 9.

FIG. 13 shows calculating a stream ID from the adjusted
access count of FIG. 12 using the stream 1D adjuster of FIG.
9.

FIG. 14 shows a node that may be used to map chunk IDs
to stream IDs, according to a second embodiment of the
inventive concept.

FIG. 15 shows details of the background logic of FIG. 4,
according to a second embodiment of the inventive concept.

FIG. 16 shows promotion and demotion of chunk IDs 1n
the queues of FIG. 15.

FIG. 17 shows details of the promotion logic of FIG. 15.

FIG. 18 shows calculating a stream ID from the adjusted
access count, according to a second embodiment of the
inventive concept.

FIG. 19 shows details of the chunk expiration logic of
FIG. 17.

FIG. 20 shows details of the demotion logic of FIG. 15.

FIGS. 21A-21B show a flowchart of an example proce-
dure for determining a stream ID for a write command of
FIG. 5, according to an embodiment of the inventive con-
cept.

FIG. 22 shows a flowchart of an example procedure for
the LBA mapper of FIG. 4 to map the LBAs of FIG. 5 to the
chunk IDs of FIG. 5, according to an embodiment of the
inventive concept.

FIGS. 23A-23B show a flowchart of an example proce-
dure for updating a stream ID for a chunk using sequentiality
logic, according to a first embodiment of the nventive
concept.

FIG. 24 shows a flowchart of an example procedure for
performing a background update of the SFR table of FIG. 8,
according to a first embodiment of the imnventive concept.

FIGS. 25A-25C show a flowchart of an example proce-
dure for performing a background update of the node of FIG.
14, according to a second embodiment of the mmventive
concept.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of
the inventive concept, examples of which are illustrated in
the accompanying drawings. In the following detailed
description, numerous specific details are set forth to enable
a thorough understanding of the inventive concept. It should
be understood, however, that persons having ordinary skaill

US 11,392,297 B2

3

in the art may practice the inventive concept without these
specific details. In other instances, well-known methods,
procedures, components, circuits, and networks have not
been described 1n detail so as not to unnecessarily obscure
aspects of the embodiments.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
clements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first module could be termed a second module,
and, similarly, a second module could be termed a first
module, without departing from the scope of the mventive
concept.

The terminology used 1n the description of the inventive
concept herem 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting of the
iventive concept. As used 1n the description of the inventive
concept and the appended claims, the singular forms “a,”
“an,” and “the” are itended to include the plural forms as
well, unless the context clearly indicates otherwise. It waill
also be understood that the term *“and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items. It will be
turther understood that the terms “comprises™ and/or “com-
prising,” when used in this specification, specily the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The components and features of the drawings are not
necessarily drawn to scale.

An apparatus and method for performing automatic
stream detection and assignment independent of application
layer 1s proposed. The stream assignment may be based on
runtime workload detection and may be independent of the
application(s). The stream assignment may be applied to
multi-stream enabled Solid State Drive (S5Ds).

Implementation of the stream assignment protocol has
several advantages. First, applications do not have to be
modified at all. But applications that assign their own stream
priority may be factored into the approach. For example, the
stream assignment protocol may defer outright to the appli-
cation-assigned stream priority. Or, the stream assignment
protocol may perform a weighted sum combining the appli-
cation-assigned stream priority and the calculated stream
assignment, using any desired weight values.

Second, any application that otherwise uses multi-stream
enabled devices could take advantages of auto stream detec-
tion and assignment. Third, applications do not need to be
aware of stream-related information from hardware. Fourth,
the stream assignment protocol may manage each multi-
stream-enabled SSD separately, enabling applications to use
multiple SSDs, and even to mix multi-stream-enabled and
non-multi-stream-enabled SSDs. Fifth, the stream assign-
ment may be performed at any desired layer of the system,
such as 1n the file system, 1n a block layer, 1n a device dniver,
inside the SSD (for example, within the flash translation
layer), and so on, provided the starting address of the write
command (or a file offset, 1f the stream assignment protocol
1s 1mplemented 1n the file system layer) may be i1dentified.

The entire address space of the SSD may be divided 1nto
a number of fixed size chunks. This chunk size may be any
desired size: for example, a multiple of a 512-byte sector.
The starting logical block address (LBA) of a request may
be converted to a chunk identifier (ID) by dividing the LBA
by the number of sectors per chunk, or more generally, by

the chunk size.

10

15

20

25

30

35

40

45

50

55

60

65

4

In a first embodiment of the inventive concept, a Sequen-
tial, Frequency, and Recency (SFR) approach may be used
to determine stream assignment:

Sequentiality: If the starting LBA of a new request 1s
adjacent to a previous request’s ending LBA (1.e., the
write commands mnvolve sequential writes), the second
write command may be assigned the same stream ID as
the earlier write command. This approach assumes that
a group of sequential requests have similar life time 1f
they are i1ssued within a short period of time. Since
write commands may be i1ssued by diflerent sources
(applications, file systems, virtual machines, etc.) and
may be mtermixed, from the point of view of the SSD
the write commands might not follow a strict sequential
pattern. To account for this possibility, sequentiality
may be determined relative to a number of previous
commands within a window (whose size may vary).
For example, a window size of four will check whether
the mcoming request 1s sequential to any of the previ-
ous four requests.

Frequency: Frequency refers to the number of times a
starting LBA has been accessed. Frequency may be
measured as access counts. Whenever a chunk 1s
accessed (written), the access count for that chunk 1s
incremented by 1. Higher access counts indicate a
shorter life time for that chunk. Frequency thus reflects
the temperature of a data chunk.

Recency: Recency indicates the temporal locality of data
chunks. For example, one chunk may be accessed more

frequently 1n a certain period of time and accumulate a

high access count, but be mactive afterward. In this
situation, 1t 1s not desirable to keep the chunk 1n the hot
stream for a long time. A chunk 1s considered hot only
if 1t 1s accessed frequently within the most recent period
of time. In one embodiment of the inventive concept, a
decay period may be predefined for all chunks. If a
chunk 1s not accessed within the last N decay periods,
the access count will be divided by 2".

The stream ID for a chunk may be determined by both
frequency and recency (and sequentiality, it applicable).
Frequency promotes a chunk to a hotter stream 1f 1t 1s
accessed frequently, while recency demotes that chunk to a
colder stream 11 1t 1s 1nactive during the last decay period. In
one embodiment of the inventive concept, a log scale may
be used to convert the access count to a stream ID, which
may reflect the fact that the number of device streams 1s far
smaller than the range of values for access counts. Thus, for
example:

Recency weight=

2((.:‘:1.”"?*'&?:: time—last access time) decay period)

Stream ID=log(access count/recency weight)

Update of the stream ID for a chunk may run as back-
ground tasks, minimizing the impact on input/output (I/0)
performance.

In a second embodiment of the imventive concept, a
multi-queue approach may be used. For each device stream,
a queue may be defined: since there are multiple device
streams, there will be multiple queues. The multi-queue
algorithm may be divided into two diflerent functional
modules. One module take care of promoting each chunk
from a lower queue to a higher queue; the other module
handles demotion of less active or inactive chunks from a
higher queue to a lower queue. The higher the chunk’s
access count, the hotter the chunk 1s considered to be, and
therefore the chunk 1s placed mn a higher queue. Both

US 11,392,297 B2

S

promotion and demotion may run as background tasks,
mimmizing the impact on I/O performance.

When a chunk 1s first accessed, 1t 1s assigned to stream O
(the lowest stream) and placed 1n the corresponding queue.
Otherwise, the chunk 1s removed from the current queue, 1ts
access count 1s updated, and the chunk 1s placed a (poten-
tially) new queue. Any approach may be used to determine
the appropriate queue based on the access count: for
example, the log of the access count may be calculated as the
new stream ID (which identifies the corresponding queue).
The promotion module may also check to see if the chunk
1s the currently hottest chunk (based on access count). If so,
then the device lifetime may be set based on the interval
between accesses of this chunk. Finally, the promotion logic
may determine the expiration time of the chunk, based on
the device lifetime and the last access time of the chunk.

To demote a chunk, the demotion module examines
chunks as they reach the head of their queue. If that chunk
has not yet passed 1ts expiration time the chunk may be left
alone. Otherwise, the chunk may be removed from its
current queue, assigned a new expiration time, and demoted
to a lower queue (1.e., assigned a lower stream 1D).

In addition, 11 the chunk being demoted was the hottest
chunk, then the chunk has not been accessed 1n a while (as
determined by the expiration time). Therefore, the chunk 1s
no longer hot, and another chunk from that queue may be
selected as the hottest chunk (with appropriate ramifications
for the device lifetime). This newly selected hottest chunk
may be the next chunk 1n that queue, or 1t may be the last
chunk to enter that queue.

FIG. 1 shows a machine with a Solid State Drive (SSD),
according to an embodiment of the mventive concept. In
FIG. 1, machine 105 1s shown. Machine 105 may be any
desired machine, including without limitation a desktop or
laptop computer, a server (either a standalone server or a
rack server), or any other device that may benefit from
embodiments of the mventive concept. Machine 105 may
also include specialized portable computing devices, tablet
computers, smartphones, and other computing devices.
Machine 105 may run any desired applications: database
applications are a good example, but embodiments of the
inventive concept may extend to any desired application.

Machine 103, regardless of 1ts specific form, may include
processor 110, memory 115, and Solid State Drive (SSD)
120. Processor 110 may be any variety of processor: for
example, an Intel Xeon, Celeron, Itanium, or Atom proces-
sor, an AMD Opteron processor, an ARM processor, etc.
While FIG. 1 shows a single processor, machine 105 may
include any number of processors. Memory 115 may be any
variety of memory, such as flash memory, Static Random
Access Memory (SRAM), Persistent Random Access
Memory, Ferroelectric Random Access Memory (FRAM),
or Non-Volatile Random Access Memory (NVRAM), such
as Magnetoresistive Random Access Memory (MRAM)
etc., but 1s typically DRAM. Memory 115 may also be any
desired combination of different memory types. Memory
115 may be controlled by memory controller 125, also part
of machine 103.

SSD 120 may be any variety of SSD, and may even be
extended to include other types of storage that perform
garbage collection (even when not using tlash memory).
SSD 120 may be controlled by device driver 130, which may
reside within memory 115.

FI1G. 2 shows additional details of machine 105 of FIG. 1.
Referring to FIG. 2, typically, machine 105 includes one or
more processors 110, which may include memory controller
125 and clock 205, which may be used to coordinate the

10

15

20

25

30

35

40

45

50

55

60

65

6

operations of the components of machine 105. Processors
110 may also be coupled to memory 115, which may include
random access memory (RAM), read-only memory (ROM),
or other state preserving media, as examples. Processors 110
may also be coupled to storage devices 120, and to network
connector 210, which may be, for example, an Ethernet
connector or a wireless connector. Processors 110 may also
be connected to a bus 215, to which may be attached user
interface 220 and Input/Output 1nterface ports that may be
managed using Input/Output engine 2235, among other com-
ponents.

FI1G. 3 shows details of SSD 120 of FIG. 1. In FIG. 3, SSD
120 may include host mterface logic 305, SSD controller
310, and various flash memory chips 315-1 through 315-8,
which may be organized into various channels 320-1
through 320-4. Host interface logic 305 may manage com-
munications between SSD 120 and machine 105 of FIG. 1.
SSD controller 310 may manage the read and write opera-
tions, along with garbage collection operations, on flash
memory chips 315-1 through 315-8. SSD controller 310
may include flash translation layer 3235 to perform some of
this management. In embodiments of the inventive concept
that have SSD 120 responsible for assigning write com-
mands to streams, SSD controller 310 may include storage
330 to support stream assignment. Storage 330 may include
submission queue 335, and chunk-to-stream mapper 340.
Submission queue 335 may be used to store mformation
about chunks affected by various write commands. As write
commands are received, the chunks (or rather, identifiers
(IDs) of these chunks) associated with those write com-
mands may be placed 1n submission queue 335. Then, as part
of a background process (to minimize the impact on fore-
ground operations), chunks may be removed from submis-
s1ion queue 335 and the stream assignments for these chunks
may be updated. Chunk-to-stream mapper 340 may store
information about what streams are currently assigned to
various chunks: this information may be updated as a result
of chunk IDs 1n submission queue 335 (or the lack of chunk
IDs 1n submission queue 335—chunks that are not being
used may be assigned to lower priority streams as a result of
non-use). The concept of chunks 1s discussed further with
reference to FIGS. 5 and 7 below.

While FIG. 3 shows SSD 120 as including eight flash
memory chips 315-1 through 315-8 organized into four
channels 320-1 through 320-4, embodiments of the mmven-
tive concept may support any number of flash memory chips
organized into any number of channels.

FIG. 4 shows details of flash translation layer 3235 of FIG.
3. In FIG. 4, flash translation layer 3235 1s shown as including
receiver 4035, logical block address (LBA) mapper 410,
stream selection logic 415, stream 1D adder 420, transmitter
425, queuer 430, and background logic 435. Receiver 405
may receive write commands from various soltware sources,
such as operating systems, applications, file systems, remote
machines, and other such sources. For a given write com-
mand, LBA mapper 410 may map an LBA used 1n the write
command to a particular chunk on SSD 120 of FIG. 1.
Stream selection logic 415 may then select a stream appro-
priate to the chunk. Stream selection logic 415 may use
chunk-to-stream mapper 340 of FIG. 3 to accomplish this
stream selection, and may include logic to search chunk-to-
stream mapper 340 of FIG. 3 to find an entry corresponding
to the selected chunk. Alternatively, stream selection logic
415 may use other approaches: for example, by calculating
the stream ID from an access count for the chunk (similar to
what 1s described with reference to FIG. 13 below), or by
assigning streams in a round robin approach (to distribute

US 11,392,297 B2

7

write commands evenly over all device streams). Stream 1D
adder 420 may then add the selected stream ID to the write
command, using logic to write data into the write command.
Once the stream ID has been attached to the write command,
transmitter 425 may transmit the write command (with the
attached stream ID) toward SSD 120 of FIG. 1 for execution.

Queuer 430 may take the identified chunk ID for the write
command, and may add that chunk ID to submission queue
335 of FIG. 3. Queuer 430 may use logic to add the chunk

ID to submission queue 333 of FIG. 3. For example, queuer
430 may include a pointer to the tail of submission queue

335 of FIG. 3 and may write the chunk ID into the tail of

submission queue 333 of FIG. 3 after which the pointer to
the tail of submission queue 335 of FIG. 3 may be updated
to point to the next slot in submission queue 335 of FIG. 3.
Eventually, the chunk ID will be de-queued from submission
queue 333 of FIG. 3, after which background logic 435 may
operate on the de-queued chunk ID. Background logic 435
1s discussed further with reference to FIGS. 9 and 15 below.
Background logic 435 may be implemented 1n any desired
manner. For example, background logic 435 might operate
as simply as incrementing a chunk whenever that chunk 1s
accessed (which would involve little more than logic to
perform a lookup 1n a data structure storing chunk IDs and
stream IDs and an incrementer to increment the stream 1D
located in that manner). But such a simple implementation
would mean that eventually every chunk would use the
highest numbered stream, with the lower numbered streams
not being used. More 1nvolved implementations may con-
sider whether a chunk 1s not being used much and may
reduce the chunk’s stream priority to match. Two embodi-
ments of the inventive concept that implement background
logic 435 1n different manners to achieve this result are
described below with reference to FIGS. 8-13 and 14-20.
While background logic 435 1s described as operating in
the “background” (hence the name), performing stream
assignment updates in the background 1s a convenience to
mimmize the impact on reads and writes to SSD 120 of FIG.
1. Provided that stream assignments could be updated with-
out impacting the performance of SSD 120 of FIG. 1, there

1s no reason background logic 435 could not operate 1n the

“foreground”. For example, 11 SSD 120 of FIG. 1 includes
a processor (that 1s, SSD 120 of FIG. 1 offers In-Storage
Computing (ISC)), this processor i SSD 120 of FIG. 1
could potentially be dedicated to updating stream assign-
ments 1 real time without impacting the read and write
performance of SSD 120 of FIG. 1. In such a situation,
background logic 435 could operate immediately to perform
the stream assignment update without needing to place the
chunk ID 1n submission queue 335 of FIG. 3 or to wait for
a time when background logic 435 may operate without
aflecting foreground operations.

In FIG. 4, flash translation layer 325 1s shown as respon-
sible for performing the stream assignment and stream IID
update. But 1n other embodiments of the inventive concept,
one or more of the components shown 1 FIG. 4 may be
implemented in software and be included as part of, for
example, memory controller 125 of FIG. 1, device driver
130 of FIG. 1, or implemented as library routines that may
intercept write requests and combine streams before 1ssuing
write commands, or implemented as separate special pur-
pose hardware, either within SSD 120 of FIG. 1 or elsewhere
within machine 105. For purposes of this discussion, any
reference to the stream assignment performed by the com-
ponents of FIG. 4 1s intended to encompass implementation

10

15

20

25

30

35

40

45

50

55

60

65

8

at any specific location, even though the description accom-
panying FIGS. 4-20 focuses on implementation within flash
translation layer 325.

While FIG. 4 shows LBA mapper 410 and stream selec-
tion logic 415 as separate components, logically the struc-
ture of these components may be combined into a single
component. More generally, embodiments of the imnventive
concept may combine any components shown and described
in FIGS. 4-6, 9-13, and 15-20 as separate into unitary
components.

FIG. 5 shows the logical block addresses (LBAs) of
various commands being mapped to chunks 1dentifiers (IDs)
and then to stream IDs for use with the SSD of FIG. 1. In
FIG. 5, write commands 505-1, 505-2, and 505-3 are shown,
although embodiments of the inventive concept may support
any number of write commands. In addition, while FIG. 5
only shows write commands, embodiments of the inventive
concept may also apply to read commands as well. Write
commands 3505-1 through 505-3 may include LBAs 510-1
through 510-3, specifying the starting LBA for write com-
mands 505-1 through 3505-3.

LBA mapper 410 may access LBAs 510-1 through 510-3
from write commands 5035-1 through 505-3. Once LBAs
510-1 through 510-3 have been read from write commands
505-1 through 3505-3, LBA mapper 410 may determine
corresponding chunk IDs 515-1 through 515-3. Chunks may
be thought of as logical subdivisions of SSD 120 (but
without requiring chunks to align with other logical subdi-
visions of SSD 120, such as blocks and pages). The number
of chunks may be determined in any desired manner: for
example, by picking a desired size for a chunk and dividing
the size of SSD 120 by that chunk size, or by selecting a
number that has proven to provide adequate utility without
requiring too much processing to be performed by back-
ground logic 435 of FIG. 4 (and dividing SSD 120 into that
many chunks). Chunks do not have to have the same size,
although uniformity of size may simplily the operations of
LBA mapper 410. Thus, for example, one chunk might
include 128 KB of data in SSD 120, whereas another chunk
might include 512 KB of data in SSD 120. Chunk sizes that
are powers of two are particularly advantageous, since
determining a chunk from an LBA may be performed using
shift operations, but embodiments of the inventive concept
may support chunks of any desired size.

LBA mapper 410 may determine chunk IDs 515-1
through 515-3 in any number of ways. For example, LBA
mapper 410 may include arnthmetic logic unit (ALU) 520 to
compute chunk IDs 3515-1 through 515-3 mathematically
from LBAs 510-1 through 510-3. Or, LBA mapper 410 may
include address mask 525, which may mask out various bits
from LBAs 510-1 through 510-3, leaving chunk IDs 515-1
through 515-3.

Once chunk IDs 515-1 through 515-3 have been deter-
mined, stream selection logic 415 may determine the stream
to be used for that chunk. Stream selection logic may use
chunk IDs 3515-1 through 515-3 to determine corresponding
stream IDs 530-1 through 530-3 from chunk-to-stream map-
per 340.

FIG. 6 shows commands 505-1 and 5035-2 of FIG. 5 being
modified to mclude stream IDs 530-1 and 530-2 of FIG. 5
and transmitted to SSD 120 of FIG. 1. (For space reasons,
FIG. 6 shows only two of the three write commands and
associated data from FIG. 5. But FIG. 6 generalizes 1n the
same manner as FIG. 5.) In FIG. 6, stream ID adder 420 may
write stream ID 530-1 and 530-2 into write commands 505-1
and 3505-2. In that manner, SSD 120 of FIG. 1 may know

which device stream to use 1n processing write commands

US 11,392,297 B2

9

505-1 and 505-2. Transmitter 425 may transmit modified
write commands 505-1 and 505-2 to SSD 120 of FIG. 1.

Not shown 1n FIGS. 5-6 1s the operation of queuer 430 of
FIG. 4. Once chunk IDs 515-1 through 513-3 of FIG. S have
been determined, queuer 430 of FIG. 4 may queue chunk
IDs 515-1 through 515-3 of FIG. 5 1in submission queue 3335
of FIG. 3 for later processing with background logic 435 of
FIG. 4. Queuer 430 of FIG. 4 may queue chunk IDs 515-1
through 515-3 of FIG. 5 at any time after chunk IDs 515-1
through 515-3 of FIG. 5 have been determined. For example,
queuer 430 of FIG. 4 may queue chunk IDs 515-1 through
515-3 of FIG. 5 after chunk IDs 515-1 through 515-3 of FIG.
5 have been determined by LBA mapper 410 of FIG. 4, after
modified write commands 505-1 through 505-3 have been
sent to SSD 120 of FIG. 1 by transmitter 425, or at any time
in between.

FIG. 7 shows arithmetic logic unit (ALU) 520 of FIG. 5
mapping LBA 510-1 of FIG. 5 to chunk ID 515-1 of FIG. §.
In FIG. 7, ALU may recerve LBA 510-1 and chunk size 705.
By dividing LBA 510-1 by chunk size 705 (and discarding
any Iractional part of the calculation), chunk ID 3515-1 may
be calculated.

As described above with reference to FIG. 4, background
logic 435 of FIG. 4 may be implemented 1n varying man-
ners. FIGS. 8-13 describe one embodiment of the inventive
concept, and FIGS. 14-20 describe another embodiment of
the inventive concept. These embodiments of the inventive
concept are not intended to be mutually exclusive: combi-
nations of the two embodiments of the inventive concept are
possible. In addition, other embodiments of the inventive
concept are also possible, whether or not explicitly
described herein.

In the first embodiment of the inventive concept for
background logic 435 of FIG. 4, chunk-to-stream mapper
340 of FIG. 3 may include a Sequential, Frequency, Recency
(SFR) table. “Sequential, Frequency, Recency” refers to the
manner i which the stream ID to be assigned to a chunk
may be determined and updated. “Sequential” refers to the
situation where one write command 1s sequential to another
write command—that 1s, the second write command writes
data to the next LBA after the earlier write command. Where
two write commands are sequential, 1t makes sense that both
commands should be assigned to the same stream 1D.

As 1s described below with reference to FIG. 10, “sequen-
t1al” 1n this context should not be read entirely literally, as
write commands may 1ssue from any number of diflerent
soltware sources. If two “sequential” write commands from
a single software source (for example, a database applica-
tion) happen to be separated by a write command from some
other software source (lfor example, the file system), the
intervening write command should not obviate the sequen-
tiality of the two write commands from the database appli-
cation. In fact, mechanisms are provided herein to avoid
preventing intervening write commands from interrupting,
sequentiality.

“Frequency” refers to how often the chunk has been
accessed. The more often a chunk 1s accessed, the “hotter”
the chunk 1s considered to be (with temperature acting as an
analogy for priority: the higher the “temperature” of a
chunk, the higher 1ts priority should be). Thus, as a chunk 1s
accessed more and more, 1t should be assigned a higher
stream priority.

“Recency” refers to how long it has been since the chunk
was last accessed. “Recency” acts as a balance to “Fre-
quency’”: the longer the span since the chunk was last
accessed, the “colder” the chunk i1s considered to be, and
therefore the chunk should be assigned a lower priority.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Thus, while “frequency” increases the chunk’s associated
stream, “recency’’ decreases the chunk’s associated stream.
“Sequentiality”, “Frequency” and “Recency” are discussed
further with reterence to FIGS. 10-13 below.

Turning now to the embodiment of the inventive concept
shown 1n FIG. 8, FIG. 8 shows an example SFR table that
may be used to map chunk IDs 515-1 through 515-3 of FIG.
5 to stream IDs 330-1 through 3530-3 of FIG. 5, according to
this embodiment of the inventive concept. In FIG. 8, SFR
table 805 may store various data. For example, SFR table
803 may store various chunk IDs 515-1 through 515-4, and
for each chunk ID 515-1 through 515-4, SFR corresponding
stream IDs 530-1 through 530-4.

In addition to stream IDs 530-1 through 530-4, SFR table
8035 may store additional data. For example, for each chunk
ID 515-1 through 515-4, SFR table 805 may store current
(1.e., most recent) access time 810-1 through 810-4 for that
chunk. Current access time 810-1 through 810-4 may be the
last access of the chunk of any type (e.g., either reads or
writes), or just the time of the most recent write command.
SFR table 805 may also store previous access time 815-1
through 815-4, which may represent the time at which the
chunk was previously accessed. Finally, SFR table 805 may
store access counts 820-1 through 820-4, which may repre-
sent the number of accesses of the chunk. As described
above, access counts 820-1 through 820-4 may represent the
total number of accesses (both reads and writes) of the
chunks, or just the write accesses of the chunk.

While FIG. 8 shows one possible embodiment of the
inventive concept, other embodiments of the mnventive con-
cept may store more or less data than shown in FIG. 8. In
addition, data structures other than tables may be used to
store the information. Embodiments of the inventive concept
are mtended to cover all such varations.

FIG. 9 shows additional details of flash translation layer
325 of FIG. 3 and background logic 435 of F1G. 4, according
to a first embodiment of the mventive concept. In FIG. 9,
flash translation layer 325 may also include sequentiality
logic 905. Sequentiality logic 905 may determine whether
write command 505-1 of FIG. 3 1s sequential to some earlier
write command for purposes of using the same stream
assignment as the earlier write command. Sequentiality
logic 905 1s discussed further with reference to FIG. 10
below.

Background logic 435 may include recency logic 910,
access count adjuster 915, and stream ID adjuster 920.
Recency logic 910 may calculate a recency weight for the
chunk. Access count adjuster 915 may adjust the access
count for the stream based on the recency weight. And
stream ID adjuster 920 may calculate a new stream ID to use
for the chunk based on the adjusted access count. Recency
logic 910, access counter adjuster logic 915, and stream 1D
adjuster 920 may all be implemented using one (or more)
separate or shared ALUs, since they perform arithmetic
calculations. Alternatively, recency logic 910, access coun-
ter adjuster logic 9135, and stream 1D adjuster 920 may be
implemented using special purpose hardware designed to
calculate just the specific functions described and nothing
more.

FIG. 10 shows details of sequentiality logic 905 of FIG.
9. In FIG. 10, sequentiality logic 905 1s shown as including
storage 1005 and comparator 1010. For practical purposes,
storage 1005 may be part of storage 330 of FIG. 3, rather
than being a separate storage within sequentiality logic 905.
Storage 1005 may store window 1015, which 1s information
about a set of recent write commands, each of which may
have a stream ID that was assigned to 1t. For example, FIG.

US 11,392,297 B2

11

10 shows entries 1020-1 through 1020-8, of which entries
1020-1 through 1020-4 are within window 10135. Entries
1020-1 through 1020-8 may be managed in queue 1025.
Queue 1025 may take any desired form: for example, an
array with a pointer to the head of queue 10235, or a linked
list, to name two example implementations. Each entry
1020-1 through 1020-8 may include ending LBA 1030 and
stream 1D 1035 for an earlier write command. Window 1015
may include window size 1040, which may specily how
many recent entries are included in window 1015: 1n FIG.
10, window size 1040 1s shown as including four entries, but
embodiments of the inventive concept may support any
number of entries i window 10135. Window size 1040 may
depend on a number of factors, including, for example, the
number of cores 1n processor 110 of FIG. 1, or the number
ol software sources (operating system, file system, applica-
tions, and the like) running on processor 110 of FIG. 1 that
might 1ssue write commands. Embodiments of the inventive
concept may support window sizes determined based on
other factors as well. In addition, window size 1040 may be
cither statically set, or may be dynamically changed as
conditions within machine 105 of FIG. 1 vary.

When a new write command 505-1 of FIG. 5 1s received,
comparator 1010 may compare LBA 3510-1 of FIG. 5 with
ending LBAs 1030 of entries 1020-1 through 1020-4 1n
window 1015. LBA 3510-1 of FIG. 5 may be considered
sequential to ending LBA 1030 of an earlier write command
if LBA 510-1 of FIG. 5 1s the next address after ending LBA
1030 of the earlier write command. Alternatively, LBA
510-1 of FIG. 5 may be considered sequential to ending
L.BA 1030 of an earlier write command if there 1s no vahd
LBA that may be used between ending LBA 1030 of the
carlier write command and LBA 510-1 of FIG. 5. (Note that
ending LBA 1030 does not need to literally be the last
address written to by the earlier write command, provided
that there are no possible intervening addresses to which
data could have been written.) If LBA 510-1 of FIG. 5 1s
sequential to ending LBA 1030 of any entry 1020-1 through
1020-4 1n window 10135, then stream ID 10335 in the entry
1020-1 through 1020-4 1s used for write command 505-1 of
FIG. §.

While 1identifying sequential LBAs 1s one way to deter-
mine when sequentiality has occurred, embodiments of the
inventive concept may support other implementations to
detect sequentiality. For example, sequentiality logic 9035
may use a pattern matcher to detect when LBAs are accessed
for a particular software source in a repeating pattern.

Regardless of whether or not LBA 510-1 of FIG. 5 1s
sequential to ending LBA 1030 of any entry 1020-1 through
1020-4 1n window 1015, the oldest entry 1n window 1015
may be “ejected” and write command 5035-1 of FIG. 5 may
be added to window 1015. For example, assume that entry
1020-1 1s the entry for the most recent write command 1n
window 1015, and entry 1020-4 1s the oldest entry in
window 1015. Entry 1020-4 may be removed from window
1015 and LBA 3510-1 and stream ID 330-1 both of FIG. 5
may be added to window 1015 as a new entry. Window 1015
may be implemented 1n any desired manner. For example,
window 1015 might include a circular list (such as an array)
with a pointer to the oldest entry. When a new entry 1s to be
added to window 1015, the oldest entry, pointed to by the
pointer, may be overwritten by the new entry, and the pointer
may be adjusted to point to the next oldest entry 1n window
1015. Embodiments of the inventive concept may support
any desired structure to store information about window
1015: a circular list 1s merely one such possible data
structure.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 11 shows calculating a recency weight using recency
logic 910 of FIG. 9. In FIG. 11, recency logic 910 1s shown
as calculating recency weight 1105. The formula shown 1n
FIG. 11 calculates recency weight 1105 as two raised to the
power of the difference between current (1.e., most recent)
access time 810-1 and previous access time 815-1 for the
chunk, divided by decay period 1110. Decay period 1110
represents a tunable variable that may control how quickly
chunks are demoted to lower priority streams. Decay period
1110 may be assigned an initial value when machine 105 of
FIG. 1 starts, and may be adjusted (either manually by a
system administrator or automatically based on system
workloads) as desired. It 1s desirable to prevent chunks from
being promoted too quickly (which would result in most
chunks using the same high priority stream) or too slowly
(which would result 1n most chunks using the same low
priority stream). Put another way, it 1s desirable to have the
chunks assigned to streams 1n a fairly uniform manner: no
individual stream should be too heavily or too lightly
utilized. Decay period 1110 represents a way to manage
stream promotion and demotion to achieve this objective.

Note that recency weight 1105 may vary for each chunk.
Decay period 1110, on the other hand, should be uniform
across all calculations for recency weight 1103 (but this does
not mean that decay period 1110 may not change over time).

FIG. 12 shows adjusting an access count using recency
weight 1105 of FIG. 11 1n access count adjuster 9135 of FIG.
9. In FIG. 12, access count adjuster 915 1s shown calculating
adjusted access count 1205. Adjusted access count 1205
may be calculated as one more than access count 820-1,
divided by recency weight 1105. Adjusted access count 1205
may then be stored back in place of access count 820-1: for
example, 1n SFR table 805 of FIG. 8.

FIG. 13 shows calculating a stream ID from adjusted
access count 1205 of FIG. 12 using stream ID adjuster 920
of FIG. 9. In FIG. 13, stream ID adjuster 920 i1s shown
calculating stream ID 530-1. Stream ID 330-1 may be
calculated as the log of the adjusted access count 1205, and
may be stored back in place of stream ID 330-1: for
example, in SFR table 805 of FIG. 8. While the mathemati-
cal term “log”, when used 1n reference to computers, typi-
cally means either log, or log,,, a log function using any
desired base may be selected. The chosen base for the log
function provides another mechanism by which embodi-
ments of the mventive concept may avoid chunks being
promoted too quickly or too slowly (and therefore overuse
ol one or more device streams and underuse of other device
streams). Stream ID adjuster 920 may also use more than
one log function, depending on how large adjusted access
count 1203 gets. For example, 1f adjusted access count 1205
1s below some threshold, stream ID adjuster 920 may use
log, to calculate stream ID 330-1, and if adjusted access
count 1205 1s greater than the threshold, stream ID adjuster
920 may use log,, to calculate stream ID 3530-1.

A couple of comments about FIGS. 11-13 are worth
making. First, FIGS. 11-13 show specific calculations for
computing recency weight 1105 of FIG. 11, adjusted access
count 1205 of FIG. 12, and stream ID 530-1. But embodi-
ments of the inventive concept may support calculating
these (or other values) 1 any desired manner. Since the
ultimate goal 1s to be able to adjust stream 1D 530-1 of FIG.
8 (e1ther up or down) as appropriate for chunk 515-1 of FIG.
8, any desired approach that achieves such a result may be
used. FIGS. 11-13 show merely one such approach.

Second, 1n FIGS. 11-13, access times (such as current
access time 810-1 and previous access time 815-1 of FIG.
11) may be determined based on the number of requests

US 11,392,297 B2

13

1ssued, rather than based on a specific clock. For example,
assume that write commands 505-1 through 505-3 of FIG. 5
were 1ssued consecutively. Write command 505-1 of FIG. 5
might be the fourth write command, write command 505-2
of FIG. 5 might be the fifth write command, and write
command 505-3 of FIG. 5 might be the sixth write com-
mand. In this example, the “access times” for the various
write commands would be “47, “3”, and “6”, respectively.

This choice of determining access times has the conse-
quence that if all software sources were to cease sending
write commands for some 1nterval of time (such as 1 second,
or 1 minute, or 1 hour), the “temperature” of the chunks
would not change, even though the chunks have technically
not been accessed for a significant amount of time. Thus,
even though a chunk might not have been accessed for a
significant amount of time, 1f no other chunk were accessed
cither during that time, the chunk’s “temperature” would not
change. From a practical point of view, 1t 1s unlikely that all
soltware sources would stop sending write commands at the
same time. But 1if 1t were to happen, embodiments of the
inventive concept would be able to handle the situation. In
addition, embodiments of the inventive concept may support
using clock time rather than command numbers, which may
result 1n chunks cooling off even though no software sources
are 1ssuing write commands.

In contrast to FIGS. 8-13, FIGS. 14-20 show another
embodiment of the mventive concept. As with the embodi-
ment of the mventive concept shown 1n FIGS. 8-13, FIGS.
14-20 may include a data structure to map chunk IDs 515-1
through 515-3 of FIG. 5 to stream IDs 530-1 through 530-3
of FIG. § and an implementation of background logic 435 of
FIG. 4.

FIG. 14 shows a node that may be used to map chunk IDs
515-1 through 515-3 of FIG. 3 to stream 1Ds 530-1 through
530-3 of FIG. 5, according to a second embodiment of the
inventive concept. In FIG. 14, nodes 1405-1 through 1405-3
are shown, with node 1405-1 shown 1n detail. Nodes 1405-1
through 1405-3 may be stored 1n any desired manner, such
as an array, a linked list, and other data structures. There may
be one node for each chunk 1mn SSD 120 of FIG. 1.

Node 1405-1 may include a variety of data, including
chunk ID 515-1, stream ID 530-1, access count 820-1, and
expiration time 1410. Chunk ID 3515-1, stream 1D 3530-1, and
access count 820-1 store data similar to those elements in the
first embodiment of the mventive concept. Expiration time
1410 represents the “time” at which the chunk will be
considered expired for lack of access by write commands.
As with the first embodiment of the inventive concept,
“time” may be measured i terms of a particular write
command’s number 1n the sequence of all write commands
rather than being a measure of a clock.

FIG. 15 shows details of background logic 435 of FIG. 4,
according to a second embodiment of the inventive concept.
In FIG. 15, background logic 435 may include promotion
logic 1505, second queuer 1510, storage 1515 for queues
1520-1 through 1520-3, and demotion logic 1525. Promo-
tion logic 1505 may promote a chunk to a higher priority
stream when approprate. Second queuer 1510 (so named to
distinguish 1t from queuer 430 of FIG. 4, although its
operation 1s similar) may place chunk IDs 3515-1 through
515-3 of FIG. 5 1n queues 1520-1 through 1520-3. Second
queuer may have a structure similar to queuer 430 of FIG.
4. Storage 1515, like storage 1005 of FIG. 10, may ellec-
tively be part of storage 330 of FIG. 3, rather than being a
separate storage within background logic 435. Embodiments
of the mnventive concept may support any number of queues:

the three queues 1520-1 through 1520-3 are merely an

10

15

20

25

30

35

40

45

50

55

60

65

14

example. In addition, there may be one queue for each
stream 1D 530-1 through 530-3 of FIG. 3: that the number

of queues 1520-1 through 1520-3 1s the same as the number
of chunk IDs 515-1 through 515-3 of FIG. 3 1s coincidental.
When chunk IDs 515-1 through 515-3 of FIG. 5 reach the
heads of queues 1520-1 through 1520-3, demotion logic
1525 may determine whether to demote chunk IDs 515-1
through 515-3 of FIG. §.

FIG. 16 shows promotion and demotion of chunk IDs 1n
queues 1520-1 through 1520-3 of FIG. 15. In FIG. 16, chunk
IDs 515-1 through 5135-3 of FIG. 3 are represented using
letters a through g. Unlabeled entries in queues 1520-1
through 1520-3 are not used 1n the example shown 1n FIG.
16, and may store any chunk ID not otherwise used 1n the
example.

First, in FIG. 16, submission queue 335 1s shown with
chunk ID a at head 1605 of submission queue 335. Chunk
ID a may identily a chunk that has not previously been
accessed belfore. Accordingly, chunk ID a may be added to
the tail of queue 1520-1, the queue for the “coldest” stream,
as shown by dashed arrow 1610, after which chunk ID a may
be removed from submission queue 335.

Second, in FIG. 16, submission queue 335 may include
chunk ID b (which may move into head 1605 of submission
queue 333 after chunk ID a 1s processed). As a result of
increasing access count 820-1 of FIG. 14 for chunk ID b,
chunk ID b may be promoted to a “hotter” stream. As shown
by dashed arrow 1615, chunk ID b may be moved {from entry
1620 of queue 1520-1 to the tail of queue 1520-2, after
which chunk ID b may be removed from submission queue
335.

Third, demotion logic 1525 of FIG. 5 may check heads
1625-1 through 1625-3 of queues 1520-1 through 1520-3 1n

turn. For example, demotion logic 1525 of FIG. 15 might
check chunk ID ¢ at head 1625-3 of queue 1520-3. If chunk

ID ¢ 1s due for demotion, chunk ID ¢ may be moved from
head 16235-3 of queue 1520-3 to the tail of queue 1520-2 (the
queue for the next “hottest” stream). As a result of chunk ID
¢ being demoted, chunk ID d 1n queue 1520-3 may become
the hottest chunk, as described below with reference to FIG.
17.

FIG. 17 shows details of promotion logic 1505 of FIG. 15.
In FIG. 17, promotion logic may include incrementer 1705,
stream ID adjuster 1710, chunk expiration logic 17135, and
hottest chunk logic 1720. Incrementer 1705 may increment
access count 820-1 of FI1G. 14, producing an adjusted access
count. Stream ID adjuster 1710 may calculate stream ID
530-1 of FIG. 5 from the adjusted access count, as shown 1n
FIG. 18. Stream 1D adjuster 1710 may be structurally similar
to stream ID adjuster 920 of FIG. 9.

Returning to FIG. 17, chunk expiration logic 1715 may
determine the expiration time for the chunk. The expiration
time for a chunk may be determined as the current access
time for the chunk ID, plus the device lifetime. The device
lifetime 1s an 1nterval of time that depends on what chunk 1s
the hottest chunk, which 1s discussed next. FIG. 19 shows
this as an equation: expiration time 1410 1s the sum of access

count 820-1 (which, as discussed above, may be the current
access time for chunk ID 515-1 of FIG. 5) plus device

lifetime 1905.

Finally, returning again to FIG. 17, hottest chunk logic
1720 may determine whether chunk ID 515-1 of FIG. 5 now
represents the hottest chunk. The hottest chunk may be
defined as a chunk ID with the highest stream prionty. If
there are multiple chunk IDs with the highest stream priority,
any selection algorithm may be used to select a particular
chunk ID with the highest stream priority as the hottest

US 11,392,297 B2

15

chunk. For example, the chunk ID at the head of the queue
representing the highest stream priority may be selected as
the hottest chunk. Or, the chunk ID with the most recent

access (1.e., the highest current access time) may be selected
as the hottest chunk. Or, the chunk ID at the tail of the queue

representing the highest stream priority may be selected as
the hottest chunk. If chunk ID 515-1 of FIG. 5 1s now the

hottest chunk, then device lifetime 1905 of FIG. 19 may be
calculated as the diflerence between the current access time
for chunk ID 515-1 of FIG. 5 and the previous access time
of chunk ID 515-1 of FIG. 5. Device lifetime 19035 of FIG.
19 may represent the maximum interval expected between
two write commands on a particular chunk, and may be
defined based on the interval between the most recent two
write commands for the hottest chunk. Device lifetime 1905
of FIG. 19 may then be used to determine expiration time
1410 of FIG. 14, which may affect when chunk ID 515-1 of
FIG. 14 1s demoted.

FI1G. 20 shows details of demotion logic 1525 of FIG. 15.
In FIG. 20, demotion logic 1525 1s shown as including
comparator 2005 and decrementer 2010. Comparator may
compare the current time (which, again, may be the number
of the most recent write request, rather than a clock time)
with expiration time 1410 of FIG. 14. I1 the current time 1s
past expiration time 1410 of FIG. 14, then the chunk may be
considered cooler than before, as 1t has gone for an interval
of time—which may be measured as device lifetime 1905 of
FIG. 19—without any write commands. Put another way, 1
device lifetime 1905 of FIG. 19 represents an expected
number of write commands between writes to any given
chunk, then expiration time 1410 of FIG. 14—which may be
calculated as the most recent access time of chunk ID 515-1
of FIG. 14 plus device lifetime 1905 of FIG. 19—may
represent the latest time at which chunk ID 515-1 of FIG. 14
may be written to and not be considered to have cooled off.
If expiration time 1410 of FI1G. 14 has passed, then chunk 1D
515-1 of FI1G. 14 has cooled somewhat and may be demoted.
In that case, decrementer 2010 may decrement stream 1D
530-1 of FIG. 5 to reduce the priority of chunk ID 515-1 of
FIG. § to correspond with the reduced “temperature” of
chunk ID 515-1 of FIG. S.

If expiration time 1410 of FIG. 14 has not passed, then
chunk 1D 515-1 of FIG. 14 has not yet cooled oil, and chunk
ID 515-1 of FIG. 14 may be left at the head of its queue.
Note that this does not mean that other chunk IDs in that
queue will not be demoted. Because chunk IDs are placed 1n
queues 1n the order in which the chunks are accessed, chunk
ID 515-1 of FIG. 14 1s the chunk ID (of those chunk IDs 1n
that queue) that was accessed the longest time ago, and
therefore would be the first chunk ID to expire. If chunk ID
515-1 of FIG. 14 1s accessed again (and therefore remains
hot™), chunk ID 515-1 of FIG. 14 would be moved to the tail
of the queue, leaving another chunk ID at the head of the
queue and therefore potentially subject to demotion.

FIGS. 21A-21B show a flowchart of an example proce-
dure for determining stream ID 530-1 of FIG. § for write
command 3505-1 of FIG. §, according to an embodiment of
the inventive concept. In FIG. 21A, at block 21035, receiver
405 of FIG. 4 may receive write command 505-1 from a
software source. At block 2110, LBA 510-1 of FIG. 5 may
be read from write command 505-1 of FIG. 5. At block 2115,
LBA mapper 410 of FIG. 4 may map LBA 510-1 of FIG. 5
to chunk ID 515-1 of FIG. 5. As described above, LBA
mapper 410 of FIG. 5 may determine chunk ID 3515-1 of
FIG. 5 1n any desired manner: for example, by masking out
certain bits from LBA 510-1 of FIG. 5, or by dividing LBA
510-1 of FIG. 5 by chunk si1ze 705 of FIG. 7. At block 2120,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

stream selection logic 415 of FIG. 5 may select stream 1D
530-1 of FIG. 5 to be used for chunk 1D 515-1 of FIG. 5. As

described above, stream selection logic 415 of FIG. 5 may

operate 1n any desired manner: for example, by looking up
stream ID 530-1 of FIG. 5 from chunk-to-stream mapper
340 of FIG. 3, by calculating stream ID 530-1 of FIG. 5 from

access count 820-1 of FIG. 8, by assigning device streams 1n
a round robin fashion, or any other desired approach. At

block 2125, stream 1D adder 420 of FIG. 4 may add stream
ID 530-1 of FIG. 5 to write command 505-1 of FIG. 5.
Finally, at block 2130, write command 505-1 of FIG. 5 may

be processed by SSD 120 of FIG. 1 to perform the indicated

write operation, which may include transmitter 425 of FIG.
4 transmitting write command 3505-1 of FIG. 5 to SSD 120
of FIG. 1.

At this point, write command 3505-1 of FIG. § has been
completely processed. But other processing may still be
performed, such as to update stream ID 530-1 of FIG. 5
assigned to chunk ID 515-1 of FIG. 5. At block 2135 (FIG.
21A), queuer 430 of FIG. 4 may add chunk ID 515-1 of FIG.
5 to submission queue 335 of FIG. 3 for further processing.
At block 2140, when chunk ID 515-1 of FIG. 5 reaches the
head of submission queue 335 of FIG. 3, chunk ID 515-1 of
FIG. § may be removed from submission queue 3335 of FIG.
3. Finally, at block 2145, background logic 435 of FIG. 4
may update stream 1D 530-1 of FIG. § for chunk ID 515-1
of FIG. 5. Various approaches for background logic 435 of
FIG. 4 to update stream ID 530-1 of FIG. § for chunk ID
515-1 of FIG. 5 are described with reference to FIGS. 24 and
25A-25C below.

FIG. 22 shows a flowchart of an example procedure for
LBA mapper 410 of FIG. 4 to map LBA 510-1 of FIG. 5 to
chunk ID 515-1 of FIG. §, according to an embodiment of
the mventive concept. In FIG. 22, at block 2205, LBA
mapper 410 of FIG. 4 may use address mask 525 of FIG. 5
to mask out bits from LBA 510-1 of FIG. 1, leaving chunk
ID 3515-1 of FIG. 5. Alternatively, at block 2210, LBA
mapper 410 of FIG. 4 may divide LBA 510-1 of FIG. 5 by
chunk size 705 of FIG. 7 to determine chunk ID 515-1 of
FIG. 5.

FIGS. 23A-23B show a flowchart of an example proce-
dure for determining stream 1D 530-1 of FIG. 5 for chunk ID
515-1 of FIG. 5 using sequentiality logic, according to a first
embodiment of the mnventive concept. In FIG. 23 A, at block
2305, stream selection logic 415 of FIG. 4 may decide
whether 1t 1s testing for sequential LBAs 1n write commands
505-1 through 505-3. For example, in embodiments of the
inventive concept using the multi-queue approach, stream
selection logic 4135 of FIG. 4 might not consider whether
write command 505-1 of FIG. 5 1s sequential to earlier write
commands. If stream selection logic 415 of FIG. 4 15 not
testing for sequential write commands, then at block 2310,
stream selection logic 415 of FIG. 4 may determine stream
1D 530-1 of FIG. 5 currently associated with chunk ID 515-1
of FIG. 5: for example, by accessing stream ID 530-1 of
FIG. § from chunk-to-stream mapper 340 of FIG. 3. The
specifics of how stream selection logic 415 of FIG. 4
determines stream ID 530-1 of FIG. 5 may depend on how
chunk-to-stream mapper 340 of FIG. 3 1s implemented: 1f
chunk-to-stream mapper 340 includes SFR table 805 of FIG.
8, then stream selection logic 415 of FIG. 4 may perform a
table lookup; 11 chunk-to-stream mapper 340 includes nodes

1405-1 through 1405-3 of FIG. 14, stream selection logic
415 of FIG. 4 will have to search the nodes to find chunk ID
515-1 of FIG. 5 before determining stream 1D 530-1 of FIG.
5.

US 11,392,297 B2

17

On the other hand, 1f stream selection logic 415 of FIG.

4 1s testing for sequential write commands, then at block
2315, stream selection logic 415 of FIG. 4 may 1dentily
window 1015 of FIG. 10 of entries 1020-1 through 1020-8
of FIG. 10. At block 2320, stream selection logic 415 of FIG. 5
4 may determine if LBA 510-1 of FIG. 5 1s sequential to
ending LBA 1030 of FIG. 10 for any entry 1020-1 through
1020-8 of FIG. 10 1n window 1015 of FIG. 10. ITLBA 515-1
of FIG. 5 1s not sequential to ending LBA 1030 of FIG. 10
for any entry 1020-1 through 1020-8 of FIG. 10 in window
1015 of FIG. 10, then at block 2310 stream selection logic
415 of FIG. 4 may determine stream ID 530-1 of FIG. 3
currently associated with chunk ID 515-1 of FIG. 5, as
described above.

If stream selection logic 415 of FIG. 4 1s testing for
sequential write commands and LBA 510-1 of FIG. 5 1s
sequential to any entry 1020-1 through 1020-8 of FIG. 10 1n
window 1015 of FIG. 10, then at block 2325 (FIG. 23B)
stream selection logic 415 of FIG. 4 may determine stream
ID 530-1 of FIG. 5 assigned to the previous write command.
At block 2125 (part of FIGS. 21 A-21B, and therefore shown
in dashed lines 1 FI1G. 23B for illustrative purposes), stream
ID 530-1 of FIG. 5 assigned to the previous write command
may be assigned to write command 5035-1 of FIG. 5. At
block 2330, stream selection logic 415 of FIG. 4 may
identily entry 1020-1 through 1020-8 of FIG. 10 that 1s the
oldest entry in window 1015 of FIG. 10. Finally, at block
2335, stream selection logic 415 of FIG. 4 may remove the
oldest entry 1n window 1015 of FIG. 5 and add a new entry
corresponding to write command 505-1 of FIG. 5. The
mechanics of how stream selection logic 415 of FIG. 4
performs this deletion and addition depends on the structure
used for window 1015 of FIG. 10. If window 1015 of FIG.
10 stores an array or linked list of entries 1020-1 through
1020-8 of FIG. 10, then deletion and addition may mmvolve
little more than overwriting the oldest entry with new values
and updating a pointer to the head of the array or linked list.
On the other hand, using a different structure for window
1015 of FIG. 10, deletion and addition may involve deleting
and deallocating a memory object for the oldest entry and
allocating a new memory object for write command 505-1 of
FIG. §.

FIG. 24 shows a flowchart of an example procedure for
performing a background update of SFR table 803 of FIG.
8, according to a first embodiment of the inventive concept. 45
In FIG. 24, at block 2405, access count adjustment logic 9035
of FIG. 9 may increment (for example, using an incrementer
or an ALU) access count 820-1 of FIG. 8. At block 2410,
recency logic 910 of FIG. 9 may calculate (for example,
using an ALU) recency weight 1105 of FIG. 11. At block 50
2415, access count adjustment logic 905 of FIG. 9 may
divide (for example, using an ALU) access count 820-1 of
FIG. 8 (as imncremented 1 block 2405) by recency weight
1105 of FIG. 11. Finally, at block 2420, stream ID adjuster
920 of FIG. 9 may determine the new stream ID to associate
with chunk ID 515-1 of FIG. 5. For example, stream 1D
adjuster 920 of FIG. 9 may use an ALU to calculate the log
ol adjusted access count 1205 of FIG. 12.

FIGS. 25A-25C show a flowchart of an example proce-
dure for performing a background update of node 1405-1 of 60
FIG. 14, according to a second embodiment of the inventive
concept. In FIG. 25A, at block 2505, incrementer 1705 of
FIG. 17 may increment access count 820-1 of FIG. 14. At
block 2510, chunk expiration logic 1715 of FIG. 17 may
determine expiration time 1410 of FIG. 14 for chunk ID 65
515-1 of FIG. 14. At block 2515, stream ID logic 1710 of
FIG. 17 may determine stream ID 330-1 of FIG. 14 for

10

15

20

25

30

35

40

55

18

chunk ID 515-1 of FIG. 14. Stream ID logic 1710 of FIG.
17 may determine stream ID 3530-1 of FIG. 14 by, for
example, accessing stream 1D 530-1 of FIG. 14 from node
1405-1 of FIG. 14. At block 2520, second queuer 1510 of
FIG. 15 may place chunk ID 515-1 of FIG. 14 1n one of
queues 1520-1 through 1520-3 of FIG. 15 corresponding to
stream 1D 530-1 of FIG. 14.

At block 2525 (FIG. 25B), hottest chunk logic 1720 of
FIG. 17 may compare access count 820-1 of FIG. 14 for
chunk ID 3515-1 of FIG. 14 with an access count for the
hottest chunk. If access count 820-1 of FIG. 14 for chunk ID
515-1 of FIG. 14 1s greater than the access count for the
hottest chunk, then chunk ID 515-1 of FIG. 14 1s now the
hottest chunk. So, at block 2530, hottest chunk logic 1720 of
FIG. 17 may identily chunk ID 515-1 of FIG. 14 as the new
hottest chunk, and at block 2535, hottest chunk logic 1720
of FIG. 17 may determine device lifetime 1905 of FIG. 19
as the difference 1 time between the two most recent
accesses of chunk ID 515-1 of FIG. 14.

Regardless of whether or not chunk ID 515-1 of FIG. 14
1s the hottest chunk, at block 2540, comparator 2005 of FIG.
20 may determine, when chunk ID 515-1 of FIG. 14 1s at the
head of one of queues 1520-1 through 1520-3 of FIG. 15,
whether expiration time 1410 of FIG. 14 has passed. If not,
then background logic 435 of FIG. 4 may wait (doing other
things in the meantime) and check again at block 2540 until
expiration time 1410 of FIG. 14 for chunk ID 515-1 of FIG.
14 has passed. At that point, at block 2545, demotion logic
1525 of FIG. 15 may remove chunk ID 515-1 of FIG. 14
from queues 1520-1 through 1520-3 of FIG. 15. Then, at
block 2550, decrementer 2010 of FIG. 20 may decrement
stream 1D 530-1 of FIG. 14.

At block 25355 (FI1G. 25C), second queuer 1510 of FIG. 15
may place chunk ID 515-1 of FIG. 14 1n another of queues
1520-1 through 1520-3 of FIG. 15 corresponding to the new
string ID. At block 2560, demotion logic 1525 of FIG. 15
may determine whether chunk ID 515-1 of FIG. 14 was the
hottest chunk. If so, then at block 25635 demotion logic 15235
of FIG. 15 may select another chunk ID as the new hottest
chunk. For example, another chunk assigned to stream 1D
530-1 of FIG. 14 (before decrementing in block 2560) may
be selected, such as the chunk ID at the head or tail of the
queue. Demotion logic 1525 of FIG. 15 may also calculate
device lifetime 1905 of FIG. 19 based on the selected new
hottest chunk, as before.

In FIGS. 21A-25C, some embodiments of the inventive
concept are shown. But a person skilled in the art will
recognize that other embodiments of the inventive concept
are also possible, by changing the order of the blocks, by
omitting blocks, or by including links not shown 1in the
drawings. All such variations of the flowcharts are consid-
ered to be embodiments of the inventive concept, whether
expressly described or not.

The following discussion 1s intended to provide a brief,
general description of a suitable machine or machines 1n
which certain aspects of the inventive concept may be
implemented. The machine or machines may be controlled,
at least 1n part, by mput from conventional input devices,
such as keyboards, mice, etc., as well as by directives
received from another machine, interaction with a virtual
reality (VR) environment, biometric feedback, or other input
signal. As used herein, the term “machine” 1s mtended to
broadly encompass a single machine, a virtual machine, or
a system ol communicatively coupled machines, virtual
machines, or devices operating together. Exemplary
machines include computing devices such as personal com-
puters, workstations, servers, portable computers, handheld

US 11,392,297 B2

19

devices, telephones, tablets, etc., as well as transportation
devices, such as private or public transportation, e.g., auto-
mobiles, trains, cabs, etc.

The machine or machines may include embedded con-
trollers, such as programmable or non-programmable logic
devices or arrays, Application Specific Integrated Circuits
(ASICs), embedded computers, smart cards, and the like.
The machine or machines may utilize one or more connec-
tions to one or more remote machines, such as through a
network interface, modem, or other communicative cou-
pling. Machines may be interconnected by way of a physical
and/or logical network, such as an intranet, the Internet,
local area networks, wide area networks, etc. One skilled in
the art will appreciate that network communication may
utilize various wired and/or wireless short range or long

range carriers and protocols, including radio frequency (RF),
satellite, microwave, Institute of Electrical and Electronics
Engineers (IEEE) 802.11, Bluetooth®, optical, inirared,
cable, laser, etc.

Embodiments of the present inventive concept may be
described by reference to or in conjunction with associated
data including functions, procedures, data structures, appli-
cation programs, etc. which when accessed by a machine
results 1n the machine performing tasks or defining abstract
data types or low-level hardware contexts. Associated data
may be stored i, for example, the volatile and/or non-
volatile memory, e.g., RAM, ROM, etc., or in other storage
devices and their associated storage media, including hard-
drives, floppy-disks, optical storage, tapes, flash memory,
memory sticks, digital video disks, biological storage, eftc.
Associated data may be delivered over transmission envi-
ronments, including the physical and/or logical network, in
the form of packets, serial data, parallel data, propagated
signals, etc., and may be used 1n a compressed or encrypted
format. Associated data may be used 1n a distributed envi-
ronment, and stored locally and/or remotely for machine
access.

Embodiments of the iventive concept may include a
tangible, non-transitory machine-readable medium compris-
ing instructions executable by one or more processors, the
instructions comprising mstructions to perform the elements
of the mventive concepts as described herein.

Having described and illustrated the principles of the
inventive concept with reference to 1llustrated embodiments,
it will be recognized that the illustrated embodiments may
be modified in arrangement and detail without departing
from such principles, and may be combined 1n any desired
manner. And, although the foregoing discussion has focused
on particular embodiments, other configurations are con-
templated. In particular, even though expressions such as
“according to an embodiment of the inventive concept” or
the like are used herein, these phrases are meant to generally
reference embodiment possibilities, and are not intended to
limit the mventive concept to particular embodiment con-
figurations. As used herein, these terms may reference the
same or different embodiments that are combinable into
other embodiments.

The foregoing illustrative embodiments are not to be
construed as limiting the inventive concept thereof.
Although a few embodiments have been described, those
skilled 1n the art will readily appreciate that many modifi-
cations are possible to those embodiments without mater-
ally departing from the novel teachings and advantages of
the present disclosure. Accordingly, all such modifications
are intended to be included within the scope of this inventive
concept as defined 1n the claims.

10

15

20

25

30

35

40

45

50

55

60

65

20

Embodiments of the mmventive concept may extend to the
following statements, without limitation:

Statement 1. An embodiment of the mventive concept
includes a Solid State Drive (SSD), comprising:

flash memory to store data;

support for a plurality of device streams 1n the SSD;

a SSD controller to manage writing data to the flash
memory responsive to a plurality of write commands, the
SSD controller including storage for a submission queue and
a chunk-to-stream mapper; and

a flash translation layer, including;

a receiver to recerve a write command 1ncluding a logical

block address (LBA);

an LBA mapper to map the LBA to a chunk identifier

(ID);

stream selection logic to select a stream ID based on the

chunk ID using the chunk-to-stream mapper;

a stream ID adder to add the stream ID to the write

command;

a queuer to place the chunk ID 1n the submission queue;

and

background logic to remove the chunk ID from the

submission queue and update the chunk-to-stream
mapper.

Statement 2. An embodiment of the mventive concept
includes a SSD according to statement 1, further comprising

a transmitter to transmit the write command with the stream
ID to the SSD.

Statement 3. An embodiment of the mventive concept
includes a SSD according to statement 1, wherein the LBA
mapper includes an address mask to mask a portion of the

[LBA to determine the chunk ID.

Statement 4. An embodiment of the mventive concept
includes a SSD according to statement 1, wherein the LBA
mapper includes an arithmetic logic unit (ALU) to divide the
LBA by a chunk size to 1dentity the chunk ID.

Statement 5. An embodiment of the mventive concept
includes a SSD according to statement 1, wherein the

chunk-to-stream mapper includes a Sequential, Frequency,
Recency (SFR) table, the SFR table including the chunk ID

and the stream ID for the chunk ID.

Statement 6. An embodiment of the inventive concept
includes a SSD according to statement 5, wherein the
background logic includes sequentiality logic to select a
previous stream 11 the LBA 1s sequential to a second LBA of
a previous write command.

Statement 7. An embodiment of the mventive concept
includes a SSD according to statement 6, wherein the
previous write command 1s 1n a window preceding the write
command, the window including a window size.

Statement 8. An embodiment of the mventive concept
includes a SSD according to statement 7, wherein the
window size 1s determined responsive to at least one of a
number of cores 1n a processor 1n a host computer system
and a number of software sources running on the processor
in the host computer system.

Statement 9. An embodiment of the mventive concept
includes a SSD according to statement 7, wherein the SSD
controller further includes storage for a queue of previous
write commands including the previous write command, the
queue including, for each of the previous write commands,
an ending LBA and a corresponding stream ID.

Statement 10. An embodiment of the mventive concept
includes a SSD according to statement 5, wherein the
background logic includes:

US 11,392,297 B2

21

recency logic to calculate a recency weight based on a
current access time for the chunk ID, a previous access time

for the chunk ID, and a decay period;

an access count adjuster to adjust an access count for the
chunk ID based on the recency weight producing an adjusted
access count; and

a stream ID adjuster to adjust the stream ID based on the
adjusted access count for the chunk ID.

Statement 11. An embodiment of the mventive concept
includes a SSD according to statement 10, wherein the SFR
table further includes the current access time for the chunk
ID, the previous access time for the chunk ID, and the access
count for the chunk ID.

Statement 12. An embodiment of the inventive concept
includes a SSD according to statement 10, wherein the
recency logic calculates the recency weight as two to the
power of (a difference between the current access time for
the chunk ID and the previous access time for the chunk ID,
divided by the decay period).

Statement 13. An embodiment of the mventive concept
includes a SSD according to statement 10, wherein the
access count adjuster calculates the adjusted access count for
the chunk ID as (the access count for the chunk ID plus one)
divided by the recency weight.

Statement 14. An embodiment of the inventive concept
includes a SSD according to statement 10, wherein the
stream ID adjuster calculates the stream ID as a log of the
adjusted access count for the chunk ID.

Statement 15. An embodiment of the inventive concept
includes a SSD according to statement 1, wherein the
chunk-to-stream mapper includes a node entry, the node
entry including the chunk ID and the stream ID for the chunk
ID.

Statement 16. An embodiment of the mventive concept
includes a SSD according to statement 15, wherein the
background logic includes:

promotion logic to determine when to promote the stream

ID based on the chunk ID;

a second queuer to place the chunk ID 1n a first of a
plurality of queues corresponding to a plurality of stream

IDs, responsive to the stream ID for the chunk ID; and
demotion logic to determine when to demote the stream
ID based on the chunk ID.
Statement 17. An embodiment of the inventive concept
includes a SSD according to statement 16, wherein the

promotion logic includes:

an incrementer to increment an access count for the chunk
ID; and

a stream ID adjuster to determine the stream ID respon-
s1ve to access count for the chunk ID.

Statement 18. An embodiment of the inventive concept
includes a SSD according to statement 17, wherein the
stream ID adjuster 1s operative to determine the stream ID as
a log of the access count for the chunk ID.

Statement 19. An embodiment of the mventive concept
includes a SSD according to statement 17, wherein the
promotion logic further includes chunk expiration logic to
compute an expiration time for the chunk ID.

Statement 20. An embodiment of the inventive concept
includes a SSD according to statement 19, wherein the
chunk expiration logic 1s operative to compute the expiration
time for the chunk ID as a sum of the access count for the
chunk ID and a device hifetime.

Statement 21. An embodiment of the inventive concept
includes a SSD according to statement 20, wherein the

5

10

15

20

25

30

35

40

45

50

55

60

65

22

device lifetime 1s a difference between a last access time for
a hottest chunk and a previous access time for the hottest
chunk.

Statement 22. An embodiment of the inventive concept
includes a SSD according to statement 21, wherein the
promotion logic further includes hottest chunk logic to
identify the chunk ID as the hottest chunk if the access time

for the chunk ID 1s greater than the last access time for the
hottest chunk.

Statement 23. An embodiment of the mventive concept
includes a SSD according to statement 21, wherein the node
entry further includes the access count for the chunk ID and
the expiration time for the chunk ID.

Statement 24. An embodiment of the inventive concept
includes a SSD according to statement 16, wherein:

the demotion logic includes:

a comparator to determine 1f an expiration time for the

chunk ID has passed; and

iI the expiration time for the chunk ID has passed, a

decrementor to decrement the stream ID; and

the second queuer 1s operative to place the chunk ID 1n a
second of the plurality of queues corresponding to the
plurality of stream IDs, responsive to the decremented
stream ID for the chunk ID.

Statement 25. An embodiment of the mventive concept
includes a SSD according to statement 24, wherein the
demotion logic 1s operative to determine when to demote the
stream ID based on the chunk ID when the chunk ID 1s at
head of the first of the plurality of queues.

Statement 26. An embodiment of the mventive concept
includes a SSD according to statement 24, wherein the
demotion logic 1s operative to determine when to demote the
stream 1D based on the chunk ID if the chunk ID 1s at a head
of the first of the plurality of queues.

Statement 27. An embodiment of the mventive concept
includes a driver for use 1n a computer system, comprising:

a recerver to receitve a write command for a Solid State
Drive (SSD), the write command including a logical block
address (LBA);

an LBA mapper to map the LBA to a chunk identifier
(ID);

stream selection logic to select a stream 1D based on the
chunk ID wusing a chunk-to-stream mapper stored 1n a
memory 1n a host computer system;

a stream ID adder to add the stream ID to the write
command;

a queuer to place the chunk ID 1n a submission queue
stored 1n the memory; and

background logic to remove the chunk ID from the
submission queue and update the chunk-to-stream mapper.

Statement 28. An embodiment of the mventive concept
includes a driver according to statement 27, further com-
prising a transmitter to transmit the write command with the
stream ID to the SSD.

Statement 29. An embodiment of the inventive concept
includes a driver according to statement 27, wherein the
LBA mapper includes an address mask to mask a portion of
the LBA to identity the chunk.

Statement 30. An embodiment of the mventive concept
includes a driver according to statement 27, wherein the
LBA mapper includes an arithmetic logic unit (ALU) to
divide the LBA by a chunk size to identily the chunk.

Statement 31. An embodiment of the mventive concept
includes a driver according to statement 27, wherein the

chunk-to-stream mapper includes a Sequential, Frequency,
Recency (SFR) table, the SFR table including the chunk ID

and the stream ID for the chunk ID.

US 11,392,297 B2

23

Statement 32. An embodiment of the mventive concept
includes a drniver according to statement 31, wherein the
background logic includes sequentiality logic to select a
previous stream 1f the LBA 1s sequential to a second LBA of
a previous write command.

Statement 33. An embodiment of the inventive concept
includes a drniver according to statement 32, wherein the
previous write command 1s 1n a window preceding the write
command, the window including a window size.

Statement 34. An embodiment of the inventive concept
includes a drniver according to statement 33, wherein the
window size 1s determined responsive to at least one of a
number of cores 1n a processor 1n the host computer system
and a number of software sources running on the processor
in the host computer system.

Statement 35. An embodiment of the inventive concept
includes a drniver according to statement 31, wherein the
background logic includes:

recency logic to calculate a recency weight based on a
current access time for the chunk ID, a previous access time
for the chunk ID, and a decay period;

an access count adjuster to adjust an access count for the
chunk ID based on the recency weight producing an adjusted
access count; and

a stream ID adjuster to adjust the stream ID based on the
adjusted access count for the chunk ID.

Statement 36. An embodiment of the mventive concept

includes a driver according to statement 35, wherein the SFR
table further includes the current access time for the chunk
ID, the previous access time for the chunk ID, and the access
count for the chunk ID.

Statement 37. An embodiment of the inventive concept
includes a drniver according to statement 35, wherein the
recency logic calculates the recency weight as two to the
power of (a difference between the current access time for
the chunk ID and the previous access time for the chunk 1D,
divided by the decay period).

Statement 38. An embodiment of the inventive concept
includes a driver according to statement 35, wherein the
access count adjuster calculates the adjusted access count for
the chunk ID as (the access count for the chunk ID plus one)
divided by the recency weight.

Statement 39. An embodiment of the mventive concept
includes a drniver according to statement 35, wherein the
stream ID adjuster calculates the stream ID as a log of the
adjusted access count for the chunk ID.

Statement 40. An embodiment of the inventive concept
includes a drniver according to statement 27, wherein the
chunk-to-stream mapper includes a node entry, the node
entry including the chunk ID and the stream ID for the chunk
ID.

Statement 41. An embodiment of the inventive concept
includes a driver according to statement 40, wherein the
background logic includes:

promotion logic to determine when to promote the stream
ID based on the chunk ID:;

a second queuer to place the chunk ID 1n a first of a
plurality of queues corresponding to a plurality of stream
IDs responsive to the stream ID for the chunk ID; and

demotion logic to determine when to demote the stream
ID based on the chunk ID.

Statement 42. An embodiment of the inventive concept
includes a drniver according to statement 41, wherein the
promotion logic includes:

an mncrementer to increment an access count for the chunk

ID; and

5

10

15

20

25

30

35

40

45

50

55

60

65

24

stream 1D adjuster to determine the stream ID responsive
to access count for the chunk ID.

Statement 43. An embodiment of the mventive concept
includes a driver according to statement 42, wherein the
stream ID adjuster 1s operative to determine the stream 1D as
a log of the access count for the chunk ID.

Statement 44. An embodiment of the mventive concept
includes a driver according to statement 42, wherein the
promotion logic further includes chunk expiration logic to
compute an expiration time for the chunk ID.

Statement 45. An embodiment of the mventive concept
includes a driver according to statement 44, wherein the
chunk expiration logic 1s operative to compute the expiration
time for the chunk ID as a sum of the access count for the
chunk ID and a device lifetime.

Statement 46. An embodiment of the inventive concept
includes a driver according to statement 45, wherein the
device lifetime 1s a difference between a last access time for

a hottest chunk and a previous access time for the hottest
chunk.

Statement 47. An embodiment of the mventive concept
includes a driver according to statement 46, wherein the
promotion logic further includes hottest chunk logic to
identify the chunk ID as the hottest chunk if the access time
for the chunk ID 1s greater than the last access time for the
hottest chunk.

Statement 48. An embodiment of the inventive concept
includes a driver according to statement 46, wherein the
node entry further includes the access count for the chunk ID
and the expiration time for the chunk ID.

Statement 49. An embodiment of the mventive concept
includes a driver according to statement 41, wherein:

the demotion logic includes:

a comparator to determine 1f an expiration time for the

chunk ID has passed; and

iI the expiration time for the chunk ID has passed, a

decrementor to decrement the stream I1D; and

the second queuer 1s operative to place the chunk ID 1n a
second of the plurality of queues corresponding to the
plurality of stream IDs responsive to the decremented stream
ID for the chunk ID.

Statement 50. An embodiment of the inventive concept
includes a driver according to statement 49, wherein the
demotion logic 1s operative to determine when to demote the
stream ID based on the chunk ID when the chunk ID 1s at a
head of the first of the plurality of queues.

Statement 51. An embodiment of the mventive concept
includes a driver according to statement 49, wherein the
demotion logic 1s operative to determine when to demote the
stream 1D based on the chunk ID if the chunk ID i1s at a head
of the first of the plurality of queues.

Statement 52. An embodiment of the mventive concept
includes a method, comprising: receiving a write command
from a software source;

determiming a logical block address (LBA) in the write

command;

identifying a chunk identifier (ID) for a chunk on a Solid
State Drive (SSD) including the LBA;

accessing a stream ID associated with the chunk ID;

assigning the stream ID to the write command;

processing the write command using the assigned stream
ID on the SSD; and

performing a background update of the stream ID asso-
ciated with the chunk ID.

Statement 53. An embodiment of the mventive concept
includes a method according to statement 52, wherein the

US 11,392,297 B2

25

method 1s implemented i one of a file system layer, a block
layer, or a device drniver layer on a host computer system.

Statement 54. An embodiment of the inventive concept
includes a method according to statement 52, wherein the
method 1s 1implemented 1n a flash translation layer of the
SSD.

Statement 55. An embodiment of the inventive concept
includes a method according to statement 52, wherein 1den-
tifying a chunk identifier (ID) for a chunk on a Solid State
Drive (SSD) including the LBA includes using an address
mask on the LBA to identily the chunk ID.

Statement 56. An embodiment of the inventive concept

includes a method according to statement 52, wherein 1den-
tifying a chunk identifier (ID) for a chunk on a Solid State

Drive (SSD) including the LBA includes dividing the LBA
by a number of sectors in the chunk.

Statement 57. An embodiment of the inventive concept
includes a method according to statement 52, wherein
assigning the stream ID to the write command includes
adding the stream ID to the write command as a tag.

Statement 58. An embodiment of the inventive concept
includes a method according to statement 52, further com-
prising:

determining whether the logical block address 1s sequen-
tial to a second LBA 1n a second write command; and

if the logical block address 1s sequential to the second
LBA 1n the second write command:

determining the second stream ID assigned to the second

write command; and

assigning the second stream ID to the write command.

Statement 59. An embodiment of the inventive concept
includes a method according to statement 58, wherein the
second write command 15 1n a window preceding the write
command.

Statement 60. An embodiment of the inventive concept
includes a method according to statement 59, further com-
prising identilying the window.

Statement 61. An embodiment of the inventive concept
includes a method according to statement 60, wherein 1den-
tifying the window 1ncludes identifying a window size for
the window responsive to at least one of a number of cores
1n a processor 1n a host computer system including the SSD
and a number of software sources running on the processor
in the host computer system including the SSD.

Statement 62. An embodiment of the inventive concept
includes a method according to statement 58, further com-
prising:

identifying an oldest write command 1n the window; and

replacing the oldest write command 1n the window with
the write command.

Statement 63. An embodiment of the inventive concept
includes a method according to statement 52, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

adding the chunk ID to a submission queue; and

removing the chunk ID from the submission queue when
the chunk ID 1s at a head of the submission queue.

Statement 64. An embodiment of the mventive concept
includes a method according to statement 52, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

increasing an access count for the chunk I1D;

calculating a recency weight for the chunk ID responsive
to a current access time and a previous access time for the
chunk ID:;

updating the access count for the chunk ID responsive to
the recency weight; and

10

15

20

25

30

35

40

45

50

55

60

65

26

determiming the stream ID for the chunk ID responsive to
the updated access count.

Statement 65. An embodiment of the mventive concept
includes a method according to statement 64, wherein cal-
culating a recency weight for the chunk ID responsive to a
current access time and a previous access time for the chunk
ID 1includes calculating the recency weight as two to the
power of (a difference between the current access time and
the previous access time for the chunk ID, divided by a
decay period).

Statement 66. An embodiment of the mventive concept
includes a method according to statement 65, wherein updat-
ing the access count for the chunk ID responsive to the
recency weight includes dividing the access count by the
recency weight.

Statement 67. An embodiment of the inventive concept
includes a method according to statement 64, wherein deter-
mining the stream ID for the chunk ID responsive to the
updated access count includes calculating the stream 1D for
the chunk ID as a log of the updated access count.

Statement 68. An embodiment of the mventive concept
includes a method according to statement 52, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

placing the chunk ID m a queue corresponding to the
stream 1D, where the queue corresponding to the stream 1D
1s one a plurality of queues; and

determiming whether to demote the chunk ID when the
chunk ID reaches the head of the queue.

Statement 69. An embodiment of the mventive concept
includes a method according to statement 68, wherein plac-
ing the chunk ID 1n a queue corresponding to the stream 1D
includes:

incrementing an access count for the chunk ID; and

determining the stream ID for the chunk ID responsive to
the access count for the chunk ID.

Statement 70. An embodiment of the mventive concept
includes a method according to statement 69, wherein deter-
mining the stream ID for the chunk ID responsive to the
access count for the chunk ID includes calculating the
stream ID for the chunk ID as a log of the access count for
the chunk ID.

Statement 71. An embodiment of the inventive concept
includes a method according to statement 69, wherein plac-
ing the chunk ID 1n a queue corresponding to the stream 1D
further 1includes, 1f the access count for the chunk ID exceeds
a second access count for a hottest chunk, identifying the
chunk ID as a new hottest chunk.

Statement 72. An embodiment of the mventive concept
includes a method according to statement 71, wherein 1den-
tifying the chunk ID as a new hottest chunk includes
determining the device lifetime as a diflerence between a
current access time for the chunk ID and a previous access
time for the chunk ID.

Statement 73. An embodiment of the inventive concept
includes a method according to statement 68, wherein:

performing a background update of the stream ID asso-
ciated with the chunk ID further includes determining an
expiration time for the chunk ID responsive to the access
count and a device lifetime; and

determining whether to demote the chunk ID when the
chunk ID reaches the head of the queue includes, if the
expiration time for the chunk ID has passed:

removing the chunk ID from the queue corresponding to

the stream ID;
decrementing the stream ID; and

US 11,392,297 B2

27

placing the chunk ID in a second queue corresponding to
the decremented stream ID.

Statement 74. An embodiment of the inventive concept
includes a method according to statement 73, wherein deter-
miming an expiration time for the chunk ID responsive to the
access count and a device lifetime includes determiming the
device lifetime as a difference between a last access time for
a hottest chunk and a previous access time for the hottest

chunk.

Statement 75. An embodiment of the inventive concept
includes a method according to statement 73, wherein deter-
mimng whether to demote the chunk ID when the chunk ID
reaches the head of the queue further includes, i1t the
expiration time for the chunk ID has passed and 11 the chunk
ID 1s a hottest chunk selecting a second chunk ID in the

queue corresponding to the stream ID as a new hottest
chunk.

Statement 76. An embodiment of the inventive concept
includes an article comprising a non-transitory storage
medium, the non-transitory storage medium having stored
thereon 1instructions that, when executed by a machine,
result 1n:

receiving a write command from a soitware source;

determining a logical block address (LBA) 1n the write
command;

identifying a chunk i1dentifier (ID) for a chunk on a Solid
State Drive (SSD) including the LBA;

accessing a stream ID associated with the chunk ID;

assigning the stream ID to the write command;

processing the write command using the assigned stream
ID on the SSD; and

performing a background update of the stream ID asso-
ciated with the chunk ID.

Statement 77. An embodiment of the inventive concept
includes an article according to statement 76, wherein the
method 1s implemented 1n one of a file system layer, a block
layer, or a device driver layer on a host computer system.

Statement /8. An embodiment of the inventive concept
includes an article according to statement 76, wherein the
method 1s implemented 1n a flash translation layer of the
SSD.

Statement 79. An embodiment of the mventive concept
includes an article according to statement 76, wherein 1den-
tifying a chunk identifier (ID) for a chunk on a Solid State
Drive (SSD) including the LBA includes using an address
mask on the LBA to identily the chunk ID.

Statement 80. An embodiment of the inventive concept
includes an article according to statement 76, wherein 1den-

tifying a chunk identifier (ID) for a chunk on a Solid State
Drive (SSD) including the LBA includes dividing the LBA
by a number of sectors in the chunk.

Statement 81. An embodiment of the inventive concept
includes an article according to statement 76, wherein
assigning the stream ID to the write command includes
adding the stream ID to the write command as a tag.

Statement 82. An embodiment of the mventive concept
includes an article according to statement 76, the non-
transitory storage medium having stored thereon further
instructions that, when executed by the machine, result 1n:

determining whether the logical block address 1s sequen-
tial to a second LBA 1n a second write command; and

if the logical block address 1s sequential to the second
LBA 1n the second write command:

determining the second stream ID assigned to the second

write command; and

assigning the second stream ID to the write command.

10

15

20

25

30

35

40

45

50

55

60

65

28

Statement 83. An embodiment of the inventive concept
includes an article according to statement 82, wherein the
second write command 1s 1n a window preceding the write
command.

Statement 84. An embodiment of the mventive concept
includes an article according to statement 83, the non-
transitory storage medium having stored thereon further
instructions that, when executed by the machine, result 1n
identifying the window.

Statement 85. An embodiment of the mventive concept
includes an article according to statement 84, wherein 1den-
tifying the window includes identifying a window size for
the window responsive to at least one of a number of cores
1n a processor 1n a host computer system including the SSD
and a number of software sources running on the processor
in the host computer system including the SSD.

Statement 86. An embodiment of the mventive concept
includes an article according to statement 82, the non-
transitory storage medium having stored thereon further
instructions that, when executed by the machine, result 1n:

identilfying an oldest write command 1n the window; and

replacing the oldest write command 1n the window with
the write command.

Statement 87. An embodiment of the mventive concept
includes an article according to statement 76, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

adding the chunk ID to a submission queue; and

removing the chunk ID from the submission queue when
the chunk ID 1s at a head of the submission queue.

Statement 88. An embodiment of the mventive concept
includes an article according to statement 76, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

increasing an access count for the chunk ID;

calculating a recency weight for the chunk ID responsive
to a current access time and a previous access time for the
chunk ID:;

updating the access count for the chunk ID responsive to
the recency weight; and

determiming the stream ID for the chunk ID responsive to
the updated access count.

Statement 89. An embodiment of the inventive concept
includes an article according to statement 88, wherein cal-
culating a recency weight for the chunk ID responsive to a
current access time and a previous access time for the chunk
ID 1includes calculating the recency weight as two to the
power of (a difference between the current access time and
the previous access time for the chunk ID, divided by a
decay period).

Statement 90. An embodiment of the mventive concept
includes an article according to statement 89, wherein updat-
ing the access count for the chunk ID responsive to the
recency weight includes dividing the access count by the
recency weight.

Statement 91. An embodiment of the inventive concept
includes an article according to statement 88, wherein deter-
mining the stream ID for the chunk ID responsive to the
updated access count includes calculating the stream ID for
the chunk ID as a log of the updated access count.

Statement 92. An embodiment of the mventive concept
includes an article according to statement 76, wherein per-
forming a background update of the stream ID associated
with the chunk ID includes:

placing the chunk ID in a queue corresponding to the
stream 1D, where the queue corresponding to the stream 1D
1s one a plurality of queues; and

US 11,392,297 B2

29

determining whether to demote the chunk ID when the
chunk ID reaches the head of the queue.
Statement 93. An embodiment of the inventive concept
includes an article according to statement 92, wherein plac-
ing the chunk ID 1n a queue corresponding to the stream ID
includes:
incrementing an access count for the chunk ID; and
determining the stream ID for the chunk ID responsive to
the access count for the chunk ID.
Statement 94. An embodiment of the inventive concept
includes an article according to statement 93, wherein deter-
mimng the stream ID for the chunk ID responsive to the
access count for the chunk ID includes calculating the
stream ID for the chunk ID as a log of the access count for
the chunk ID.
Statement 95. An embodiment of the inventive concept
includes an article according to statement 93, wherein plac-
ing the chunk ID 1n a queue corresponding to the stream ID
further includes, 1f the access count for the chunk ID exceeds
a second access count for a hottest chunk, identifying the
chunk ID as a new hottest chunk.
Statement 96. An embodiment of the inventive concept
includes an article according to statement 95, wherein 1den-
tifying the chunk ID as a new hottest chunk includes
determining the device lifetime as a diflerence between a
current access time for the chunk ID and a previous access
time for the chunk ID.
Statement 97. An embodiment of the inventive concept
includes an article according to statement 92, wherein:
performing a background update of the stream ID asso-
ciated with the chunk ID further includes determining an
expiration time for the chunk ID responsive to the access
count and a device lifetime; and
determining whether to demote the chunk ID when the
chunk ID reaches the head of the queue includes, if the
expiration time for the chunk ID has passed:
removing the chunk ID from the queue corresponding to
the stream ID;

decrementing the stream ID; and

placing the chunk ID 1n a second queue corresponding to
the decremented stream ID.

Statement 98. An embodiment of the inventive concept
includes an article according to statement 97, wherein deter-
mimng an expiration time for the chunk ID responsive to the
access count and a device lifetime includes determining the
device lifetime as a difference between a last access time for
a hottest chunk and a previous access time for the hottest
chunk.

Statement 99. An embodiment of the mventive concept
includes an article according to statement 97, wherein deter-
mimng whether to demote the chunk ID when the chunk 1D
reaches the head of the queue further includes, i1t the
expiration time for the chunk ID has passed and 11 the chunk
ID 1s a hottest chunk selecting a second chunk ID 1n the
queue corresponding to the stream ID as a new hottest
chunk.

Consequently, 1n view of the wide variety of permutations
to the embodiments described herein, this detailed descrip-
tion and accompanying material 1s intended to be illustrative
only, and should not be taken as limiting the scope of the

inventive concept. What 1s claimed as the mnventive concept,
therefore, 1s all such modifications as may come within the
scope and spirit of the following claims and equivalents
thereto.

10

15

20

25

30

35

40

45

50

55

60

65

30

What 1s claimed 1s:
1. A storage device, comprising;:
memory to store data;
a translation table to map a logical address to a physical
address 1n the memory;
a controller to manage writing data to the memory respon-
stve to a write command, the controller including
storage for a queue and a mapper; and
logic circuitry configured to:
receive a command including the logical address;
map the logical address to a first identifier associated
with a chunk;

select a second 1dentifier associated with a stream based
on the first identifier using the mapper;

add the second 1dentifier to the command;

place the first identifier 1n the queue; and

remove the first 1dentifier from the queue.

2. A storage device according to claim 1, wherein the
mapper includes a Sequential, Frequency, Recency (SFR)
table, the SFR table including the first identifier and the
second 1dentifier for the first identifier.

3. A storage device according to claim 2, wherein the logic
circuitry 1s further configured to select a previous stream 1f
the logical address 1s sequential to a second logical address
of a previous command.

4. A storage device according to claim 2, wherein the logic
circuitry 1s further configured to:

calculate a recency weight based on a current access time
for the first identifier, a previous access time for the first
identifier, and a decay period;

adjust an access count for the first identifier based on the
recency weight producing an adjusted access count;
and

adjust the second identifier based on the adjusted access
count for the first identifier.

5. A storage device according to claim 1, wherein the
mapper includes a node entry, the node entry including the
first 1dentifier and the second identifier.

6. A storage device according to claim 3, wherein the logic
circuitry 1s further configured to:

determine that the second identifier 1s due for promotion
based on the first 1dentifier;

promote the second i1dentifier; and

place the first identifier 1n a first of the queue and a second
queue corresponding to one or more third i1dentifiers,
responsive to the promoted second identifier for the
first 1dentifier.

7. A storage device according to claim 6, wherein the logic

circuitry 1s further configured to:

determine that an expiration time for the promoted first
identifier has passed;

demote the promoted second identifier; and

place the first identifier 1n a second of the queue and a
second queue corresponding to the one or more third
identifiers, responsive to the second identifier for the
first 1dentifier.

8. An article comprising a non-transitory storage medium,
the non-transitory storage medium having stored thereon
istructions that, when executed by a host machine,
includes:

a receiver to recerve a command directed toward a storage

device, the command including a logical address;

a mapper to map the logical address to a first identifier
associated with a chunk;

stream selection logic to select a second 1dentifier asso-
ciated with a stream based on the first identifier using
the mapper;

US 11,392,297 B2

31

an adder to add the second i1dentifier to the command;

a queuer to place the first identifier 1n a submission queue

for delivery to the storage device; and

background logic to remove the first 1identifier from the

submission queue.
9. An article according to claim 8, wherein the mapper
includes a Sequential, Frequency, Recency (SFR) table, the
SFR table including the first identifier and the second
identifier.
10. An article according to claim 9, wherein the back-
ground logic includes sequentiality logic to select a previous
stream 1f the logical address 1s sequential to a second logical
address of a previous command.
11. An article according to claim 9, wherein the back-
ground logic includes:
recency logic to calculate a recency weight based on a
current access time for the first identifier, a previous
access time for the first identifier, and a decay period;

an access count adjuster to adjust an access count for the
first 1dentifier based on the recency weight producing
an adjusted access count; and

an adjuster to adjust the second identifier based on the

adjusted access count for the first identifier.

12. An article according to claim 8, wherein the mapper
includes a node entry, the node entry including the first
identifier and the second 1dentifier.

13. An article according to claim 12, wherein the back-
ground logic includes:

promotion logic to promote the second 1dentifier based on

the first 1dentifier; and

a second queuer to place the promoted first identifier in a

first of the queue and a second queue corresponding to
one or more third 1dentifiers responsive to the second
identifier.

14. An article according to claim 13, wherein the back-
ground logic further comprises:

a comparator to determine that an expiration time for the

first 1dentifier has passed;

demotion to decrement the promoted second identifier;

and

the second queuer 1s operative to place the first 1dentifier

in a second of the queue and the second queue corre-
sponding to the one or more third identifiers responsive
to the second identifier.

15. A method, comprising:

receiving a command from a software source;

determining a logical address 1n the command;

identifying a first identifier for a chunk on a storage device
including the logical address;

accessing a second identifier associated with the first

identifier:;

assigning the first identifier to the command;

10

15

20

25

30

35

40

45

50

32

processing the command using the assigned first identifier
on the storage device; and

performing a background update of the second 1dentifier
associated with the first identifier.

16. A method according to claim 15, further comprising:

determining whether the logical block address 1s sequen-
tial to a second logical address 1n a second command;

determiming the second identifier assigned to the second
command; and

assigning the second identifier to the write command.

17. A method according to claim 15, wherein performing
a background update of the second identifier associated with
the first identifier includes:

adding the first identifier to a queue; and

removing the first identifier from the queue when the first
identifier 1s at a head of the queue.

18. A method according to claim 15, wherein performing
a background update of the second identifier associated with
the first identifier includes:

increasing an access count for the first identifier;

calculating a recency weight for the first identifier respon-

s1ve to a current access time and a previous access time
for the first 1dentifier:;

updating the access count for the first identifier responsive
to the recency weight; and

determiming the second identifier for the first 1dentifier
responsive to the updated access count.

19. A method according to claim 15, wherein performing
a background update of the second identifier associated with
the first identifier includes placing the first identifier 1n a
queue corresponding to the second identifier, where the
queue corresponding to the second identifier 1s one a {first
queue and a second queue.

20. A method according to claim 19, wherein performing,
a background update of the second identifier associated with
the first identifier includes:

determining that an expiration time for the first identifier
has passed:

removing the first identifier from the queue correspond-
ing to the second;

decrementing the second i1dentifier; and

placing the first identifier 1n a second queue of the first
queue and the second queue corresponding to the
decremented second i1dentifier.

21. A method according to claim 15, wherein processing
the command using the assigned first i1dentifier on the
storage device includes mapping the logical address to a
physical address on the storage device.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

