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gas lift for a production wellbore makes use of Bayesian
optimization. A computing device controls a gas supply to
inject gas into one or more wellbores. The computing device
receives reservolr data associated with a subterranean res-
ervoir to be penetrated by the wellbores and can simulate
production using the reservoir data and using a physics-
based or machine learning or hybrid physics-based machine
learning model for the subterranean reservoir. The produc-
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1
WELLBORE GAS LIFT OPTIMIZATION

TECHNICAL FIELD

The present disclosure relates generally to using artificial
gas lift to aid production 1n well systems. More specifically,
but not by way of limitation, this disclosure relates to
real-time optimized control of gas lift parameters during
production from a wellbore.

BACKGROUND

A well can include a wellbore drilled through a subterra-
nean formation. The subterranean formation can include a
rock matrix permeated by the o1l that 1s to be extracted. The
o1l distributed through the rock matrix can be retferred to as
a reservolr. Reservoirs are often modeled with standard
statistical techmiques in order to make projections or deter-
mine parameter values that can be used in dnlling or
production to maximize the yield. As one example, partial
differential equations referred to as the “black-011” equations
can be used to model a reservoir based on production ratios
and other production data.

One method of augmenting o1l production from a reser-
volr 1s to use artificial gas lift. Artificial gas lift involves
injecting gas into the production string, or tubing, to
decrease the density of the flmid, thereby decreasing the
hydrostatic head to allow the reservoir pressure to act more
tavorably on the o1l being lifted to the surface. This gas
injection can be accomplished by pumping or forcing gas
down the annulus between the production tubing and the
casing of the well and then into the production tubing. Gas
bubbles mix with the reservoir fluids, thus reducing the
overall density of the mixture and improving lift.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a cross-sectional side view of an example
reservoir with well cluster that includes a system for creating,
artificial gas lift in production wells according to some
aspects.

FIG. 2 1s block diagram of a computing device for
controlling gas lift parameters according to some aspects.

FIG. 3 1s a flowchart illustrating a process for controlling
a gas lift system according some aspects.

FI1G. 4 1s a graphical representation of a pressure contours
along fractures of a reservoir as modeled according to some
aspects.

FIG. 5A and FIG. 5B are, respectively, a schematic
representation of the pressure contours of FIG. 4 and a
detailed graphical representation of a portion of that sche-
matic representation.

FIG. 6 1s a graph of production efliciency as a function of

gas lift imjection rate for an example well and reservoir
according to some aspects.

DETAILED DESCRIPTION

Certain aspects and features relate to a system that
improves, and makes more eflicient, the projection of opti-
mized values for controllable artificial gas lift parameters
such as gas lift injection rate and choke size. The control-
lable parameters can be computed, taking into account
reservolr data and a physics-based or machine learning or
hybrid physics-based machine learning reservoir model. The
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2

parameters can be utilized for real-time control and auto-
mation 1 a gas lift system to maximize production eifli-
ci1ency.

The system according to some examples described herein
can provide gas lift optimization using a reservoir produc-
tion simulation to formulate an objective function based on
the amount of o1l produced and the rate of gas imjected to
provide the artificial lift. Optimized gas lift parameters can
be projected using Bayesian optimization (BO). The objec-
tive function can be based on simulated production data
generated from the physics-based or machine learning or
hybrid physics-based machine learning reservoir model. The
reservoir model can be used to generate the necessary data
required for the optimization. The examples couple the
reservoir model with gas lift parameters and input minimi-
zation using Bayesian optimization. The Bayesian optimi-
zation can provide the gas lift parameters for in-the-field
optimization with multiple wells 1n a cluster of wells draw-
ing from the same reservorir.

In some examples, a system includes a gas supply
arrangement to 1mnject gas 1nto one or more wellbores and a
computing device in communication with the gas supply
arrangement. The computing device includes a memory
device with instructions that are executable by the comput-
ing device to cause the computing device to receive reser-
voir data associated with a subterranean reservoir to be
penetrated by the wellbores and simulate production using
the reservoir data and using a physics-based or machine
learning or hybrid physics-based machine learning model
for the subterranean reservoir. The production simulation
provides production data. A Bayesian optimization of an
objective function of the production data subject to any gas
injection constraints 1s performed to produce gas lift param-
eters 1n response to convergence criteria being met. The gas
lift parameters are applied to the gas supply to control the
injection of gas into the wellbore or wellbores.

FIG. 1 1s a cross-sectional view of an example of subter-
ranean formation 100 with a reservoir 102 that 1s subject to
production through a cluster of wells including wells defined
by clustered wellbores 103 and 104. System 105 includes
computing device 140 disposed at the surface 106 of sub-
terranean formation 100, as well as gas source 108, which in
this example 1s connected to metering and flow control
devices 110. The gas source may include a compressor (not
shown). The gas source 108 and a metering and flow control
device 110 work together supply gas to a well and can be
referred to herein as a “gas supply system.” “gas supply
arrangement,” or a “gas supply.” The metering and flow
control devices 110 may be connected to or be part of a
manifold system (not shown) with multiple gas outlets.
Production tubing string 112 1s disposed in wellbore 103.
Production tubing string 114 1s disposed in wellbore 104. It
should be noted that while wellbores 103 and 104 are shown
as vertical wellbores, either or both wellbores can addition-
ally or alternatively have a substantially horizontal section.

During operation of system 105 of FIG. 1, gas flows
downhole from the gas supply and enters production tubing
112 through 1njection port 150. Gas also enters production
tubing 114 through injection port 152. Gas returns to the
surface 106 and can be captured in gas storage device 160
to be held for other uses or recycled. Gas storage device 160
can include a storage tank.

Still referring to FIG. 1, computing device 140 1s con-
nected to gas source 108 and metering and tflow control
devices 110 to control the gas supply for wellbores 103 and
104. The computing device can also recerve and store
reservoir data to be used 1n production simulations. Reser-
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voir data can be recerved through the production strings with
sensors (not shown) that feed signals to computing device
140, from stored files generated from past reservoir moni-
toring, or even through user mput. Data can include char-
acteristics of the reservoir 102 such as viscosity, velocity,
and fluid pressure as these quantities spatially vary. The data
associated with the subterranean reservoir 1s used for reser-
voir modeling and production simulation 1 computing
device 140 according to aspects described herein.

FI1G. 2 depicts an example of a computing device 140. The
computing device 140 includes a processing device 202, a
bus 204, a communication interface 206, a memory device
208, a user mput device 224, and a display device 226. In
some examples, some or all of the components shown 1n
FIG. 2 can be integrated into a single structure, such as a
single housing. In other examples, some or all of the
components shown i FIG. 2 can be distributed (e.g., 1n
separate housings) and 1n communication with each other.
The processing device 202 can execute one or more opera-

tions for optimizing gas lift. The processing device 202 can
execute 1nstructions stored in the memory device 208 to
perform the operations. The processing device 202 can
include one processing device or multiple processing
devices. Non-limiting examples of the processing device
202 include a field-programmable gate array (“FPGA™), an
application-specific integrated circuit (“ASIC”), a micropro-
cessing device, efc.

The processing device 202 shown 1n FIG. 2 1s commu-
nicatively coupled to the memory device 208 via the bus
204. The non-transitory memory device 208 may include
any type of memory device that retains stored information
when powered off. Non-limiting examples of the memory
device 208 include electrically erasable and programmable
read-only memory (“EEPROM”), flash memory, or any
other type of non-volatile memory. In some examples, at
least some of the memory device 208 can include a non-
transitory computer-readable medium from which the pro-
cessing device 202 can read instructions. A computer-read-
able medium can include electronic, optical, magnetic, or
other storage devices capable of providing the processing
device 202 with computer-readable instructions or other
program code. Non-limiting examples of a computer-read-
able medium include (but are not limited to) magnetic
disk(s), memory chip(s), read-only memory (ROM), ran-
dom-access memory (“RAM”), an ASIC, a configured pro-
cessing device, optical storage, or any other medium from
which a computer processing device can read instructions.
The mstructions can 1include processing device-specific
instructions generated by a compiler or an interpreter from
code written 1 any suitable computer-programming lan-
guage, including, for example, C, C++, C#, efc.

Still referring to the example of FIG. 2, the memory
device 208 includes stored values for constraints 220 to be
used 1n optimizing controllable gas lift parameters. The
maximum gas lift capacity of the system 1s one example of
a constraint. The memory device 208 includes computer
program code instructions 209 for controlling the gas supply
for the wells of a well cluster. The 1nstructions for control-
ling the gas supply may include a proportional-integral-
derivative (PID) controller. Memory device 208 1n this
example includes a physics-based or machine learning or
hybrid physics-based machine learning model 212 of the
reservoir 102. Reservoir data 219 i1s also stored in memory
device 208 and can be used with the physics-based or
machine learning or hybrid physics-based machine learnming,
model 212 to run a production simulation. Production simu-
lation program code instructions 218 are stored 1n memory
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4

device 208. The production simulation produces production
data 214, which 1s also stored 1n memory device 208. The
memory device 208 1n this example 1includes an optimizer
210. The optimizer can be, for example, computer program
code mstructions to implement Bayesian optimization of an
objective function of the production data to produce opti-
mum values for controllable gas lift parameters. Results
from the optimizer can be stored as controllable output
values 222 in the memory device 208. Optimizer 210 can
optimize the objective function subject to convergence cri-
teria 216 to produce output values 222.

In some examples, the computing device 140 includes a
communication imterface 206. The communication interface
206 can represent one or more components that facilitate a
network connection or otherwise facilitate communication
between electronic devices. Examples include, but are not
limited to, wired interfaces such as Fthernet, USB, IFEFE

1394, and/or wireless interfaces such as IEEE 802.11. Blu-
ctooth, near-field communication (NFC) interfaces. RFID
interfaces, or radio interfaces for accessing cellular tele-

phone networks (e.g., transceiver/antenna for accessing a
CDMA, GSM, UMTS, or other mobile communications
network).

In some examples, the computing device 140 includes a
user mput device 224. The user mput device 224 can
represent one or more components used to mnput data.
Examples of the user mput device 224 can include a key-
board, mouse, touchpad, button, or touch-screen display, etc.
In some examples, the computing device 140 includes a
display device 226. Examples of the display device 226 can
include a liquid-crystal display (LLCD), a television, a com-
puter monitor, a touch-screen display, etc. In some
examples, the user mput device 224 and the display device
226 can be a single device, such as a touch-screen display.

FIG. 3 1s a flowchart illustrating a process 300 for
controlling a gas lift system according some aspects. At
block 302, reservoir data 219 1s received by computing
device 140. At block 304, processing device 202 simulates
production using the reservoir data 219 and the physics-
based or machine learning or hybrid physics-based machine
learning model 212 with the reservoir data to provide
production data 214. At block 306, processing device 202
runs a Bayesian optimization of an objective function of the
production data 214 subject to gas injection constraints 220
and convergence criteria 216. The processing device in this
example runs the Bayesian optimization using optimizer
210. As examples, the convergence criteria can include a
maximum number of iterations of the optimizer, conver-
gence within a specified tolerance of maximum production
rate, convergence within a specified range of a minimum
triction value for the production tubing, or a combination of
any or all of these. If the convergence criteria are met at
block 308, the processing device outputs and stores gas lift
parameters at block 310 as output values 222. If conver-
gence criteria are not met at block 308, Bayesian optimiza-
tion 1terations continue at block 306. The gas liit parameters
are applied to the gas source at block 312 to control the
injection of gas mto the wellbore. In some examples, the gas
lift parameters include gas injection rate, choke size, or both.

Process 300 of FIG. 3 uses Bayesian optimization to
model production with optimal parameters for artificial gas
litt. Production 1s a function gas injection rate, which can be
constant or function of time. Optimum gas injection rate 1s
herein considered to be the rate needed to maximize pro-
duction and minimize the friction 1n the production tubing.
The optimal choke size for purposes of the examples
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described herein 1s the size needed to avoid back pressure at
a gas storage point, for example, gas storage device 160 1n
FIG. 1.

The example process shown in FIG. 3 can be used to
project the gas lift parameters that maximize efliciency in the
sense that the projected parameters are the values that should
maximize production while minimizing mput. Since oil
produced determines revenue and gas input 1s a variable
cost, these values can to at least some extent be treated as the
values that will maximize profit. As an example, profit can
be computed by:

O*price™(fraction of revenue retained)—(gas rate)™*
(gas price)

The fraction of revenue retained from a particular well
cluster would be the fraction of revenue left after paying
leases and operating costs. () 1s the o1l production rate,
which 1s a function of the fracture length, fracture width, and
conductivity of the reservoir as modeled. These relation-
ships provide the objective function that 1s used for Bayesian
optimization as described herein. An objective function 1s
sometimes also referred to as a “cost function.”

The example process described herein was used for a well
with a reservoir model including 12 layers with permeability
ol 0.002 mD, porosity of 25%, 1nitial water saturation o1 0.2,
iitial pressure of 3500 psia, 23 hydraulic fractures with
hali-length of 500 1t, an aperture of 0.1 1n, conductivity at a
perl of 3 mD, and porosity of 30%. FIG. 4 1s a graphical
representation 400 of the pressure contours along the 23
fractures as produced with Nexus® reservoir simulation
software. FIG. 5A 1s a schematic representation 500 of the
fractures and FIG. 3B 1s a close-up view of a portion of FIG.
5A so that an unstructured, superimposed grid 1s visible. The
projected optimal gas injection rate 1n this case using the
example process described herein was 517.55 Msci/day. The
Bayesian optimization projected the optimal parameters
with nine observations. The Bayesian optimization projected
a maximum efliciency that would result in profit of $337.44
million at the optimal gas injection rate of 517.55 Msci/day.

FIG. 6 shows a graph 600 the actual production rate as a
function of gas injection rate for the reservoir modeled as
described above. Elliciency 1s plotted on the y-axis and gas
111t 1njection rate 1s plotted on the x-axis. Line 602 1llustrates
the actual gas-lift augmented production and point 604 1s
where maximum efliciency occurs. The projection made
using the Bayesian optimization 1s very close to the actual
best gas 1njection rate.

Unless specifically stated otherwise, 1t 1s appreciated that
throughout this specification that terms such as “process-
ing,” “calculating,” “determining,” “operations,” or the like
refer to actions or processes ol a computing device, such as
the controller or processing device described herein, that can
manipulate or transform data represented as physical elec-
tronic or magnetic quantities within memories, registers, or
other information storage devices, transmission devices, or
display devices. The order of the process blocks presented 1n
the examples above can be varied, for example, blocks can
be re-ordered, combined, or broken into sub-blocks. Certain
blocks or processes can be performed in parallel. The use of
“configured to” herein 1s meant as open and inclusive
language that does not foreclose devices configured to
perform additional tasks or steps. Additionally, the use of
“based on” 1s meant to be open and inclusive, in that a
process, step, calculation, or other action “based on™ one or
more recited conditions or values may, 1n practice, be based
on additional conditions or values beyond those recited.
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Elements that are described as “connected,” “connectable,”
or with similar terms can be connected directly or through
intervening elements.

As used below, any reference to a series of examples 1s to
be understood as a reference to each of those examples
disjunctively (e.g., “Examples 1-4” 1s to be understood as

“Examples 1, 2, 3, or 47).

Example 1

A system includes a gas supply arrangement to 1nject gas
into at least one wellbore 1n proximity to production tubing
for the at least one wellbore and a computing device 1n
communication with the gas supply arrangement. The com-
puting device includes a non-transitory memory device
including instructions that are executable by the computing
device to cause the computing device to perform operations.
The operations include receiving reservoir data associated
with a subterranean reservoir to be penetrated by the at least
one wellbore, simulating production using the reservoir data
associated with the subterrancan reservoir and using a
physics-based model, a machine learning model, or a hybnid
physics-based machine learning model for the subterranean
reservoir to provide production data, performing a Bayesian
optimization ol an objective function of the production data
subject to gas 1njection constraints and convergence criteria
to produce gas lift parameters, and applying the gas lift
parameters to the gas supply arrangement in response to the

convergence criteria being met to control an mjection of gas
into the at least one wellbore.

Example 2
The system of example 1 wherein the at least one wellbore
includes multiple clustered wellbores. The system further
includes a production tubing string disposed 1n at least one
of the plurality of clustered wellbores, an 1njection port
connected to the production tubing string to inject gas into
the production tubing string downhole, and a gas storage
device connected to the production tubing string.

Example 3

The system of example(s) 1-2 wherein the gas lift param-
cters include gas injection rate and choke size.

Example 4

The system of example(s) 1-3 wherein the gas injection
rate 1s constant.

Example 5

The system of example(s) 1-4 wherein the gas injection
rate 1s a function of time.

Example 6

The system of example(s) 1-5 wherein the convergence
criteria include a maximum number of 1iterations.

Example 7

The system of example(s) 1-6 wherein the convergence
criteria include convergence within a specified tolerance to
a maximum production rate and a minimum friction value
for the production tubing.
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Example 8

A method includes receiving, by a processing device,
reservoir data associated with a subterranean reservoir to be
penetrated by at least one wellbore, simulating, by the
processing device, production using the reservoir data asso-
ciated with the subterranean reservoir and using a physics-
based model, a machine learning model, or a hybrid physics-
based machine learning model for the subterranean reservoir
to provide production data, performing, by the processing
device, a Bayesian optimization of an objective function of
the production data subject to gas injection constraints and
convergence criteria to produce gas lift parameters, and
applying, by the processing device, the gas lift parameters to

a gas supply arrangement in response to the convergence
criteria being met to control an injection of gas into the at
least one wellbore.

Example 9

The method of example 8 wherein the at least one
wellbore includes multiple clustered wellbores. At least one
of the wellbores 1ncludes a production tubing string. The
method further includes injecting gas into the production
tubing string downhole, and capturing gas at a gas storage
device connected to the production tubing string.

Example 10

The method of example(s) 8-9 wherein the gas lift param-
cters 1mclude gas injection rate and choke size.

Example 11

The method of example(s) 8-10 wherein the gas injection
rate 1s constant.

Example 12

The method of example(s) 8-11 wherein the gas injection
rate 1s a function of time.

Example 13

The method of example(s) 8-12 wherein the convergence
criteria include a maximum number of iterations.

Example 14

The method of example(s) 8-13 wherein the convergence
criteria include convergence within a specified tolerance to
a maximum production rate and a minimum {iriction value
for production tubing.

Example 15

A non-transitory computer-readable medium 1ncludes
instructions that are executable by a processing device for
causing the processing device to perform a method. The
method includes receiving reservoir data associated with a
subterrancan reservoir to be penetrated by a cluster of
wellbores, simulating production using the reservoir data
associated with the subterrancan reservoir and using a
physics-based model, a machine learning model, or a hybrid
physics-based machine learming model for the subterranean
reservoir to provide production data, performing a Bayesian
optimization of an objective function of the production data
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subject to gas mjection constraints and convergence criteria
to produce gas lift parameters, and applying the gas lift
parameters to a gas supply arrangement 1n response to the
convergence criteria being met to control an ijection of gas
into at least one wellbore of the cluster of wellbores.

Example 16

The non-transitory computer-readable medium of
example 15 wherein the gas lift parameters include gas
injection rate and choke size.

Example 17

The non-transitory computer-readable medium of
example(s) 15-16 wherein the gas injection rate 1s constant

Example 18

The non-transitory computer-readable medium of
example(s) 15-17 wherein the gas 1njection rate 1s a function
of time.

Example 19

The non-transitory computer-readable medium of
example(s) 135-18 further includes instructions that are
executable by a processing device for causing the processing
device to mject gas into a production tubing string downhole
and capture gas at a gas storage device connected to the
production tubing string.

Example 20

The non-transitory computer-readable medium of
example(s) 15-19 wherein the convergence criteria includes
at least one of a maximum number of iterations, or conver-
gence within a specified tolerance to a maximum production
rate and a minimum friction value for the production tubing.

The foregoing description of certain examples, including
illustrated examples, has been presented only for the pur-
pose of i1llustration and description and 1s not intended to be
exhaustive or to limit the disclosure to the precise forms
disclosed. Numerous modifications, adaptations, and uses
thereol will be apparent to those skilled 1n the art without
departing from the scope of the disclosure.

What 1s claimed 1s:
1. A system comprising:
a gas supply arrangement to inject gas into at least one
wellbore 1n proximity to production tubing for the at
least one wellbore; and
a computing device 1n communication with the gas supply
arrangement, the computing device including a non-
transitory memory device comprising instructions that
are executable by the computing device to cause the
computing device to perform operations comprising;:
receiving reservoir data associated with a subterranecan
reservolr to be penetrated by the at least one well-
bore;

simulating production using the reservoir data associ-
ated with the subterrancan reservoir and using a
physics-based model, a machine learning model, or
a hybrid physics-based machine learning model for
the subterrancan reservoir to provide production
data;

performing a Bayesian optimization of an objective
function of the production data subject to gas njec-
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tion constraints and convergence criteria to produce
gas lift parameters, the convergence criteria corre-
sponding to a maximum number of 1terations ol an
optimizer, to a convergence within a specified toler-
ance of maximum production rate, or to a conver-
gence within a specified range of a minimum friction
value; and

applying the gas lift parameters to the gas supply
arrangement 1n response to the convergence criteria
being met to control an injection of gas into the at
least one wellbore.

2. The system of claim 1 wherein the at least one wellbore
comprises a plurality of clustered wellbores, the system
turther comprising:

a production tubing string disposed 1n at least one of the

plurality of clustered wellbores;

an 1jection port connected to the production tubing string

to 1ject gas mto the production tubing string down-
hole; and

a gas storage device connected to the production tubing

string.

3. The system of claim 1 wherein the gas lift parameters
comprise gas mjection rate and choke size.

4. The system of claim 3 wherein the gas injection rate 1s
constant.

5. The system of claim 3 wherein the gas injection rate 1s
a function of time.

6. The system of claim 1 wherein the convergence criteria
comprise a maximum number of iterations.

7. The system of claim 1 wherein the convergence criteria
comprise convergence within a specified tolerance to a
maximum production rate and a minimum friction value for
the production tubing.

8. A method comprising:

receiving, by a processing device, reservoir data associ-

ated with a subterranean reservoir to be penetrated by
at least one wellbore;

simulating, by the processing device, production using the

reservolr data associated with the subterranean reser-
volr and using a physics-based model, a machine
learning model, or a hybrid physics-based machine
learning model for the subterranean reservoir to pro-
vide production data;

performing, by the processing device, a Bayesian optimi-

zation of an objective function of the production data
subject to gas injection constraints and convergence
criteria to produce gas lift parameters, the convergence
criteria corresponding to a maximum number of itera-
tions of an optimizer, to a convergence within a speci-
fied tolerance of maximum production rate, or to a
convergence within a specified range of a minimum
friction value; and

applying, by the processing device, the gas lift parameters

to a gas supply arrangement 1n response to the conver-
gence criteria being met to control an injection of gas
into the at least one wellbore.

9. The method of claim 8 wherein the at least one wellbore
comprises a plurality of clustered wellbores, at least one of
the plurality of clustered wellbores including a production
tubing string, the method further comprising;:
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injecting gas ito the production tubing string downhole;

and

capturing gas at a gas storage device connected to the

production tubing string.
10. The method of claim 8 wherein the gas lift parameters
comprise gas injection rate and choke size.
11. The method of claim 10 wherein the gas 1njection rate
1s constant.
12. The method of claim 10 wherein the gas 1njection rate
1s a function of time.
13. The method of claim 8 wherein the convergence
criteria comprise a maximum number of iterations.
14. The method of claim 8 wherein the convergence
criteria comprise convergence within a specified tolerance to
a maximum production rate and a minimum {iriction value
for production tubing.
15. A non-transitory computer-readable medium that
includes instructions that are executable by a processing
device for causing the processing device to perform a
method comprising:
recerving reservoir data associated with a subterranean
reservolr to be penetrated by a cluster of wellbores;

simulating production using the reservoir data associated
with the subterranean reservoir and using a physics-
based model, a machine learming model, or a hybnd
physics-based machine learning model for the subter-
ranean reservolr to provide production data;

performing a Bayesian optimization of an objective func-
tion of the production data subject to gas imjection
constraints and convergence criteria to produce gas lift
parameters, the convergence criteria corresponding to a
maximum number of iterations of an optimizer, to a
convergence within a specified tolerance of maximum
production rate, or to a convergence within a specified
range of a mimmum {riction value; and

applying the gas lift parameters to a gas supply arrange-

ment 1n response to the convergence criteria being met
to control an mjection of gas into at least one wellbore
of the cluster of wellbores.

16. The non-transitory computer-readable medium of
claim 15 wherein the gas lift parameters comprise gas
injection rate and choke size.

17. The non-transitory computer-readable medium of
claim 16 wherein the gas injection rate 1s constant.

18. The non-transitory computer-readable medium of
claim 16 wherein the gas injection rate 1s a function of time.

19. The non-transitory computer-readable medium of
claim 135 further comprising 1nstructions that are executable
by a processing device for causing the processing device to:

inject gas mnto a production tubing string downhole; and

capture gas at a gas storage device connected to the
production tubing string.

20. The non-transitory computer-readable medium of
claim 19 wherein the convergence criteria comprise at least
one of a maximum number of iterations, or convergence
within a specified tolerance to a maximum production rate
and a minimum {iriction value for the production tubing.
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