USO011389960B2

a2 United States Patent (10) Patent No.: US 11,389,960 B2

Chae 45) Date of Patent: Jul. 19, 2022
(54) SYSTEMS AND METHODS FOR ROBOTIC USPC e 71°7/122
PROCESS AUTOMATION See application file for complete search history.
(71) Applicant: Argos Labs Inc., San Jose, CA (US) (56) References Cited
(72) Inventor: Moon Chang Chae, Scoul (KR) U.S. PATENT DOCUMENTS
(73) Assignee: Argos Labs Inc., San Jose, CA (US) 7,653,873 B2 1/2010 Brandt
2008/0313549 Al* 12/2008 Stoyanov GO6F 9/452
(*) Notice: Subject to any disclaimer, the term of this 715/749
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 154(b) by O days.

FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 16/898,324

EP 3206170 Al 8/2017
(22) Filed: TJun. 10. 2020 KR 10-2013-0057628 Al 6/2013
(65) Prior Publication Data OTHER PUBLICATIONS
US 2020/0387358 Al Dec. 10, 2020 Title: Generation and validation of virtual point cloud data for
Related U.S. Application Data automated driving systems, author: T Hanke et al, Published on

. L 2017, source: IEEE.*
(60) Provisional application No. 62/859,608, filed on Jun.

10, 2019. (Continued)
(51) Int. CL Primary Examiner — Chameli Das

GO6EF 9/44 (2018.01) (74) Attorney, Agent, or Firm — David R. Stevens;

B25J 9/16 (2006.01) Stevens Law Group

B25J 13/06 (2006.01)

GOG6F 8/36 (2018.01) (57) ABSTRACT

GO6F 8/40 (2018.01) Example robotic process automation systems and methods

(Continued) are described. In one implementation, a processing system

(52) U.S. CL receives a first automation scenario, where the first automa-

CPC . B25J 971658 (2013.01); B25J 9/161 tion scenario 1s for execution by the processing system. The

(2013.01); B25J 9/1671 (2013.01); B25J processing system identifies a list of plugins in the first
13/06 (2013.01); GOG6F 8/36 (2013.01); GO6F automation scenario and i1dentifies a version number asso-
8/40 (2013.01); GO6F 9/44526 (2013.01); cjated with each of the plugins in the first automation

GO6F 9/44589 (2013.01); GO6F 9/455 scenario. Additionally, the processing system verifies the list
(2013.01) of plugins and their associated version numbers. If the list of

(58) Field of Classification Search plugins and their associated version numbers are verified,
CpPC B251 9/1658; B251 9/161;, B25] 9/1671; the processing system builds a first virtual environment for
B25J 13/06; GO6F 8/36; GO6F &8/40:; the plugins 1n the first automation scenario.

GO6F 9/44526; GO6F 9/44589; GO6F
9/4355 14 Claims, 18 Drawing Sheets

1400
1402 A BOT BULDER LISES PLUGING AND QTHER OPERATIONS r'ds
T BUILD AUTOMATION SCENARIOS

;

1404 N THE AUTOMATION SCENARIOS ARE ‘SENT TO A PROCESS
AUTOMATICN MOBLULE {PAM] FOR EXECUTION

’

14086 ~ BEFORE EXECUTION, THE PAM VERIEIES THE LIST OF
PLUGING &ND THEIR VERSION NUMBERS THAT ARES
INTEGRATED [WNTO EACH AUTONATION SOENARID

!

IF VERIFIED, THE PAM BUilDs A LOCAL SOFTWARE
1408 =~ STRUCTURE CALLED A *VIRTUAL ENVIRONMENT" SPECIFIC.
N TO THE PLUGING THAT ARE [N THE AUTCMATIGN SCEMARID
BY DOWNLOADING NECESSARY COMPONENTS FROM A
PLUG N COMPONENT BERVER

!

1410 THE VIRTUAL ENVIRGNMENT 1S SAVED LOCALLY ARTER
EXECUTION OF THE AUTOMATION SCENARIC

!

IF THE NEXT AUTOMATICN SCENARIO GONTAING PLUGINS
1412 ~| {WITH THE SAME VERSION NUMBERS) THAT ARE EQUAL TO
OR LESS THAN THE PREVIOUS AUTOMATION SCENARIO,
THE PAM USES THE SAME VIRTUAL ENVIROMMENT FOR
THE NEXT AUTOMATION SCEMARIO

!

I THE NEXT AUTOMATION SCENARIO CONTAING NEW
1414 PLUGING [OR NEW VERSIONS OF THEM), THE PAM
”\ DETERMINES WHETHER T CREATE A NEW VIRTUAL
EMNVIRONMENT OR MODIEY THE FREVIOLS VIRTUAL
ENYIRCONMERNT

US 11,389,960 B2
Page 2

(51) Int. CL

GO6F 9/445
GO6F 9/455

(56)

2010/0146085
2010/0229169
2012/0233668
2013/0042188

2013/0138596
2013/0246932

2016/0350438
2017/0054793

Al*

Al*

Al*

Al*

Al
Al*

Al*
Al*

(2018.01)
(2018.01)

References Cited

U.S. PATENT DOCUM

6/2010

9/2010

9/2012

2/2013

Kim et al.
Zaverl

5/2013
9/2013

Kreiner
Urbach

12/2016
2/2017

Dobronsky

ttttttttttttt

tttttttttttttttttt

tttttttttttttttttttttttt

iiiiiiiiiiiiiiiii

ttttttttttttttttt

ttttttttttttttttttt

GO6F 3/0482

ttttttttttt

GOO6F 3/04815

2017/0269972

2018/0197123

2018/0210745

2018/0276009

2019/0235883

2020/0073692

2020/0117677

2020/0133827
HO4L 67/1059
709/220
GO6F 9/455
718/1
GO6F 9/00
726/4

715/760

AN A AN

oW % % % %

9/201
7/201
7/201
9/201

8/20]

O OO 00 00~

3/2020
4/2020
4/2020

Hosabettu GOG6F 9/4843
Parimelazhagan et al.

Raheja ... GO6F 9/5077
Willlams GOG6F 9/44526
Chaneycccoeeene. GO6F 8/71
Rao ..o, GOG6F 9/45558
Janyavula GO6F 16/2456
Tkac ..coooovviiiiiinnn, GOG6F 9/455

OTHER PUBLICATTIONS

Title: Automating application deployment in infrastructure clouds,

author: G Juve et al, published on 2011.*

Title: Test confessions: A study of testing practices for plug-in
systems, author M Greliler,, published on 2012.*
Title: Quicktime VR: An 1mage-based approach to virtual environ-

ment navigation, author: SE Chen, published on 1995.*

715/740

GO6F 40/143

HO4L 69/03

* cited by examiner

Title: Automated discovery and maintenance of enterprise topology
graphs; author: T Binz,; Published on 2013.*

U.S. Patent

FPYTHON
LIATA
SOURDE

124

COMPUTING
SYSTEM 1

USER 1

Jul. 19, 2022

ROBOTIC PR .
AUTOMATION (RPA+)

Sheet 1 of 18

f"ﬁ.j"' ﬂ‘:"'l., ™
B ERE

o DATA Ao
COMMUNICATION
METWORK
148

COMPUTING
SYSTEM 2
105

USER £

US 11,389,960 B2

100

PLLGIN
REPOSITORY 1
118

PLUGIN
REPOBITORY 2

120

-
11111

* : MLUGH
. i(‘l“l
. . 3

] MARKETPLAC
. F o h 1
) : 1 !r-n-l "-'-r r " r

1
e - .
o
L8
Il‘l.
" -+
- +
.
+*
a3
bl
'l_‘
~ A el
- -
g
L +*
-
L]

COMPUTING
SYSTEM N
108

U.S. Patent Jul. 19, 2022 Sheet 2 of 18 US 11,389,960 B2

102 =, ROBOTIC PROCESS AUTOMATION (RPA+) SYSTEM

+++

COMMUNICATION
MODULE

GRAPHICAL USER
INTERFACE {GUD
MANAGER
208

HLDING

BLOCK MANAGER § - ,
210 PYTHON

CONVERSION
MODULE

PLUGIN PACKAGE A WA
MANAGER (PPM)

214 PLUGIN
| REPOSITORY
MAMAGER
218

PLUGIN

MARKETRLACE

MANAGER
218 PY THON-TO-
(IPERATION

- TOOLS (POT)
CENARIO 220

STUDIO (ST
222

FPROCESS
AUTOMATION
VIRTLAL MODULE (PAM)
- VIRONMENT 224
MANAGER
IR

S K MaNAGE
245

--

S
¥3SN INIOMO o334 |

US 11,389,960 B2

wmé.u,qmmi_.z_m

dNdOd 8530084 W08 314 |
35070 T NM - 313130

,,,,,,,,,,,,,,,,,,,,,,,,,, — .,,,,m..m..._ﬁ_.u Em.m.wa_rwm
| IrwA INIAT dNdOd HOLVIN HOLVIN ||
| Z¥2H00 0YOTNO ONLLIWM XL 9V |

JOVINE ONIddIT0 | I Sl N e B
” SNOTLYDI4aA|

(761027150 M08 NOHALd H3dVd 3LHM] I1LIL ddV | | | T SNOLLYOIIMAA)
, INYN v | | | 003 400G UM |

39Vd §IMO NIFHOS TINO MOANIM %@! | Lanos NOLOY 3SR
NO HOMVYIS | {2% .@E,M,,I N=dD Eim_mm }ﬂmﬁ_w

Sheet 3 of 18

11

SSiuadong | &) =
TG SISV ST o3 |
AVIEA | ONSS T LS 400 L0

_\ ZQ_EE%W FNYN NOLIVH IO &)

,, m im.zn___.,h_ m._JUGm m@ﬂ% __#,“_,_QGZ__EWM
~ V] || TIods DXEL aNDOND 3¥901 L9336

Jul. 19, 2022

ngﬁuim
SNOLLYH3JO|

U.S. Patent

U.S. Patent Jul. 19, 2022 Sheet 4 of 18 US 11,389,960 B2

|||
11

| PLUGINS

TRANSLATE TEXTTO REST EXCEL
SPEECH AP ADVANGE

FILE FILE/ SSH
MONITOR FOLDER ... COMMAND

JESON

REGULAR WEB
EXPRESS... EXTRACT

11

11
111

U.S. Patent Jul. 19, 2022 Sheet 5 of 18 US 11,389,960 B2

PLUGIN PLUGIN QUALITY
REFPOSITORY MARKETPLACE CHECKS

FPAM
BOT BILDER STU EXECUTES
AUTOMATION

_ %e:.m@%mz ” L0
WIOEH40 | I ON
E mqm._% |

...

US 11,389,960 B2

0o
v—
Sl
&
&
= NIDON Id
O HJ 134
—
v
r—— | eqr—
Q AHOLISOdZY | | LOdHLM SIINAON
= [Nans | | AHOLSOd3d \ INIANI43QA |
. QL avOTdN | SlvAlad
= S 010v0 idn
E
-

Z_@Duﬁ

m&i&&&
mm

1111111111111111111111111111111111111

11

11

NOILYDIH103dS]
SONIAMTIONI |
10d HLIM

NIDMN1d GNd

111

~ m Wmmﬁzéwega | [S3wnvaooud)
1O0d HUM | | NOHIAd AS le| NOHIAdAS |g
| ONILSALOA |7 | 30001831 | |3000 NOHLAd]

LT T O T S e o N o N R N o N o N N N N o oI . . S N S N N S N S -_-. I 4 4 a4 4 a4 2 4 g g g g g ¢ 1 F 1 F | & 4 d4 4 35 g 4 g 4 g g g2 g p g Fp & F | &4 4 o 4 44

U.S. Patent

US 11,389,960 B2

Sheet 7 of 18

Jul. 19, 2022

U.S. Patent

ZQH@UE_OM&M
NIDM Id HLIAA

S LHId0M
1 NdNE
A5 Im_ZE

A5 =0

MO
| NOILOTHA0D |

,, _,__E_%Ez@u

QL A0

11

AN
P RN
< AOHLIN

~Ndni_-

JAALINVA | | T1dWYXI N0
HLIM F1dWYXa| | 3nTVA 11NvH3a

O ANTVA | | ONISN GOHLIN
1INV430 MOHS| [N ¥3d0Hd MOHS

| wmu_qu N
i

| INYN AVILSIA |
| H1IM SNOILAO |

HO HILINVHY g g A
| LINV30 MOHS |

111111111111111111111

mmm_ozomou_
X0g-08n00 |
MOHS

| IAYN AVIASIC
| H1IM SNOILAO
MO M3 INYHY
'vIANY GIONVAQY
|__3QH/MOHS

11111111111

TN
~ AHVINEEL
SN MOHS

NIDMId ¥

EREIESIESHE)

NOILYIWHOANI |

NIDNTd ONISN |,
SINYN ONY NOOI[®
SNIDMTd MOHS|

NIDN Id
el

ZG_HiO_n:Qm&w

— SINILIYAA

|||

US 11,389,960 B2

_S3A

aOSIAHAdNS

L3l] NENOLLOT 1SS

Sheet 8 of 18

L NN
| IN3AN343A
mmijm.mw

Jul. 19, 2022

AMOLISOdTN]
CUNIONd

11111111111111111111111111

U.S. Patent

/NOILLYINHO AN

5 10d NOLLVINSO AN

NIDOId j
A3L0vHLIX3 /

SNIDMId NS

11111111111111111111111

HOSIAMAANS

[ggvL
NI

r
r 1l
F
a
1

WIDIH40 WA
NOIVINEOAN
NI id TV 149

1510

1111111111

NOILVIIFAIOAdS
SNIONTd NLS

US 11,389,960 B2

| 0 XX

m T O R ey m
, S RUKE

Sheet 9 of 18

L L O O O O A O A A L O D O O A A L A AL A0 A D S N S i S N S S S I S N K S S S PR

11

11

Jul. 19, 2022

AHOLISOd3Y| | [AdOLISOdaY| u&@tm@%m,
NOMd | agidnvno |] Ni9NTd
AIVAND |] 3¥d | | I0lH0

W_Qmm}mmm Dm

U.S. Patent

US 11,389,960 B2

Sheet 10 of 18

Jul. 19, 2022

U.S. Patent

ONJ

LNV~

11

-.) 3 h—. : . I_I.Gnm DI_I\m PG& -
IS [ousitomal | e || usoisn
. B e e e — Iuiwﬂw m“: m

YV 103798 NIDN

| NOISYIA 139 | =NIRED,

111

{1LS NI

/NOLYOIHID3dS/
¥ MDY Td 4
SERYEDD

NL1S NI
NIDM Id

NIDN Id

oNisn || ,
108 aling, MOHS

11111111111111111111111111111111

10d N1S
ONISN AHOLISOd3
F1VATEd WO e
NOILVOIHI03dS
NI a TV 150

10d Nis
ONISTT ALOLISOdH

WIOIH40 WNOHd e
NOLLY A1 HdS

NI 1d H45(1 140

U.S. Patent Jul. 19, 2022 Sheet 11 of 18 US 11,389,960 B2

PRIVATE |
 PLUGIN |
REPOSITORY]

PRE |
QUALIFIED |
REPOSITORY]

OFFICIAL
PLUGIN |
REPOSITORY]

111111111

111111111

STU PLUGINS
VIRTUAL BOT RUNNING ENVIRONMENT

111

T INSNNOUIANT
L ONINNNY
LOF TWNLHIA
O3TIVISNI
 AQVINTY
| 1SOW 3SOOHD

* F T T 4 a2 ®mrFr F'F F FFTTAFF F P Fr o FF T a rrFr rr or o rr T oronor or v oror ror oo = O = T | rf T T r = r F Fr F F T X 4 4 W

US 11,389,960 B2

e NG
o _ZTININNOHIANTS I NTFWNOHIANT
= 7 ONINNAN 108 N, ONINNAH |
= ~JVNLHIA ONIHOLVIL san | 108 TYNLHIA
u ON St FH3HL, EENNELVLE
s~
7> a3 TIVLISN
,, AQYILTY
TSNIONTd ANYIA
i ,.,Eﬂ_x.%zgmu;
~
—
gl
. Ewﬁﬂwﬂ_m?_m , ._..u:..,_zgu
AT ~ NIDATD ANY -

| 40403H | w_,mmwmﬁ

rr

U.S. Patent

S L NTWNOMIANT|
ONINNNH 108

INLHIA VD07 |
A0 400700

DO NMINNM

108 dH]1 Nt

INSAINOSHIANA

» 108 TVNLHIA THL
ONISN OIYYNIOS!]

1Od INVd ONISN |
| ANSWNOHIANST |

ONINNMH LOY
TYNLEIA
153N03d

O_Eizmom 108 |

N
NOISHAA ONY

| |3WVYN SNIDNTd |

HO 15T HHL 10

U.S. Patent Jul. 19, 2022 Sheet 13 of 18 US 11,389,960 B2

Q BOT BUILDER USES PLUGING AND OTHER OPERATIONS
TO BUILD AUTOMATION S""F: NARIGSD

]
+
R
TSR] -
+ +
i -
+ 1
[
. -
++ .
-+
+
T -
+ +
" * *
“r r 1
+ - -"r- ———— I'-'-l,
i a |. 4 +
- L] r
= E +] :-- +
* L
. h# I -F'L.,.- hh". *
hl'l.l.] Il'l.il. -‘I'lp *
- L]

ﬂ\umwmmm MGDi a_.__ {P&M} FOR E?{.._CUTEQN

1406 —, | BEFORE EXECUTION, THE PAM VERIFIES THE LIST OF
PLUGING AND THEIR VERSION NUMRBERS THAT ARE
INTEGRATED INTO BEACH AUTOMATION SCENARID

++

. IFVERIFIED, THE PAM BL DS A LOCAL SOFTWARE |
1408 =, | STRUCTURE CALLED A “VIRTUAL ENVIRONMENT” SPECIFIC |
N TO THE PLUGINS THAT ARE IN THE AUTOMATION SCENARIC |
L By DOVYWHNLOADING NECESSARY COMPONENTS FROM A |
PLUGIN COMPORENT SERVER

i i

THE VIRTUAL ENVIRONMENT IS SAVED LOCALLY AFTER
EXECUTION OF THE AUTOMATION SCEMNARID

| IF THE NEXT AUTOMATION SCENARIC CONTAING PLUGINS |
1412 = {’Wi THE SAME VERSION NUMBERS) THAT ARE EGUAL T::::
T OR LESS THAN TH--—= PREVICUS AUTOMATION SCENARIO, |
THE PAM USES THE SANME VIRTUAL Ewmm MENT FOR
THE N AJT AT IOM SC - INARIO

- *]
++

P THE NEXT AUTOMATION SCENARIO CONTAINS NEW
1414 = | PLUGING {OR NEW VERBIONS OF THEM), THE PAM
N\ DETERMINES WHETHER TO CREATE A NEW VIRTUAL
ENVIRONMENT OR MODIEY THE Ph_ TOUS VIRTUAL
ENVIRONMER

FiG. 14

U.S. Patent Jul. 19, 2022 Sheet 14 of 18 US 11,389,960 B2

BOT1 WITH|

| PLUGINS

LIST OF PLUGIN WITH
VERSION FROM BOT

 BOT1 WITH]

MAKE A NEW
LIST OF PLUGIN WITH VIRTUAL ENV
VERSION FROM BOT

VIRTUAL BOT RUMNING
ENVIRONMENT- 1

 BOT2 WITH|—p
| PLUGINS |)

NOT CONFLICT

LIST OF PLUGIN WITH ADD NEW PLUGIN P3

3£

VERSION FROM BOT

ENVIRONMENT- 1

VIRTUAL BOT BUNNING

U.S. Patent Jul. 19, 2022 Sheet 15 of 18 US 11,389,960 B2

CONFLICT P1 TO SKIP

| BOTS3
L WITH
| PLUGINS

VIRTUAL BOT
RUNNING
ENVIRONMENT- 1

MAKE A NEW VIRTUAL ENV
LIST OF PLUGIN WITH AND ADD PLGIN P1, P3
VERSION FROMBOT ¢ +

||||||||||||||||||||||||||||||||

VIRTUAL BOT
RUNNING

BAM ENVIEONMENT- 2

BEST FIT FOR P1, P3,
AND ADD P4

BOT4
WITH
PLUGINS

BOT |
RIUNNING
ENVIRONMENT- 1§

VIRTUAL BOT
RUNNING

ENVIRONMENT- 2}

U.S. Patent Jul. 19, 2022 Sheet 16 of 18 US 11,389,960 B2

CONFLICT P2l=

VIRTUAL BOT
| RUNNING
ENVIRONMENT- 1)

BOTS | L Bl |]
- WITH > L - VIRTUAL BC}T
| PLUGINS | | ,_ RUNNING
ENVIRONMENT- 2

LIST OF PLUGIN WITH
VERSION FROM BOT

VIRTUAL BC}T
RUNNING
ENVIRONMENT- 3

MAKE A NEW VIRTUAL
ENV AND ADD P1, P2, P3

BEST FIT FOR P1, P3, P4

- VIRTUAL BOT
L RUNNING
| ENVIRONMENT- 1 |

BOTO
WITH

TVIRTUAL BOT
RUNNING

e ENVIRONMENT- 2

LIST -OF PLUGEN W!TH
VERSION FROM BOT | 5

\;IHTUAL BC’T
RUNMING
ENVIRONMENT- 3

U.S. Patent Jul. 19, 2022 Sheet 17 of 18 US 11,389,960 B2

,, 1800
-
* *
-
*
N - = o 3 o= - n = - [¥ ‘} r 'z g = -
: Tl : aat: P W T LY 2T A RA RS . [
3 R et P (YA AZ ! [, - sutw.
" e e 17w] | #* " u - o, #* " -'— " I-l-rI

PYTHON EDITING ENVIRONMENT, INSTALLS THE POT SDK,
AND PREPARES THEIR OWN PRIVATE REPOSITORY FOR
TESTING

-
+++

1602

THE PLUGIN BUILDER STARTS WITH AN ORIGINAL PYTHON
PROGRAM AND MODIFIES IT TO FIT THE FORMAT OF THI

1804

POT SOK TEMPLATE TG CREATE THE PLUGIN SOURCE
FILE {SOURCE}

1605

THE PLUGIN BUILDER TESTS THE SOUHME:: ISING ONE OR

rr

{11
A
p
i
pa
T
oz
o)
&
L

-
7

=
¥
T

THE PLUGIN BUILD
GENERATION UTILITY

brinsrn

-+
L3EE"
+
+ *
+
*
-
]
" T e e T T T e Y
+
4
*
ok om I
4 +
r, - ; " " .
P—— M
. . o At} P L
a N [| *
- —F 9 I
" [] +
. h
h o bmarnan . +
La LY F 1
H . *
I
+
-

1610

THE PLUGIN BUILDER PACKAGES THE SOURCE AND G
USING A PACKAGING UTILITY

L]
++
T or

+ + 4
-+
L+
+ +
b
+
d
Y
++ .
! *
-
-+ + b +
i1 . N .
‘HH ro -.
b . - -—-.‘ = :- r N r-: -, '1 g i r n -H'b'l r-!f\ Fﬂ"\- 3] I‘i -.'T- i l--- r-. .
- .
= I I_-..-..r | Y | N +
1 .]! I] ‘ 2 .\rj ' !]
bl i 2 P .F ?] ey N e "
. .
. .

PF-WATE REPOS TORY ,am T BECOMES A NEW PLUGIN

1614

N BUILDER TESTS THE NEW PLUGIN IN THEIR
STU

- *]
++

=
Tl
1,
-
=
2

1616 —, | THE PLUGIN BUILDER EITHER KEEPS THE PLUGIN IN THi

SVATE REPOSITORY OR REQUESTS IT TO BRE PUBLISHE
i A FUBLIC REPOSITORY

U.S. Patent Jul. 19, 2022 Sheet 18 of 18 US 11.389.960 B2

1700

+ + +

+ +

4
'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-'I-+++++'I-++++++++'I-+++++'I-.l
+ +* * * + + o+

r
L

+ + + + + + + + + + + + + + + + F+F+ +F A+ttt Attt ottt ottt Attt

+* + + +

o r + r + * + + F + + F F FFFFFEFFFEFFFEFFFEFFFEFFFEFFEFEFFFEFFEFEFFEFEFEFFEFFFEFEFFEFEFEFEFFFEFFFA

PROCESSO

4 + F+ + + + + + + + + F + + + d

F02

=V

1708

4 4 4 4 4 4 4 4 4 4 444 4444449444499 444944944

+ + + + + + + + + + + + + + + 1
L]
+

v+ F F o+ FFFF A FEF A FFFEFEFFFEFFEFEFFE A FFEFEFEEFFEFEFEFEFE A + +

4 4 4 4 4 4 4 4 4 4 4 4 4 44 4444444494

o+ + + + + *+ + + F + + F F + FFFFEFFFEAFFEFEFFEFEFEFEFEAFFEFEAFEFEFEAFEFEFEEEEEEEAEEEE

HARD DisK DRiv

+* r + + + + + + + + + +F F F FFFFFFFFFFFEFFFEFFEFFFFEFFEFFFEFEFFEFEFFEFEFFEFEFFFEFEFEFEFF S + +

r L]
+ + * 4 r 4

LEE S
+ + & + + + ¥ F + F F F F FFFFFFEFFEAFEFFEAFEFEFErFFAA
+ + L]
+* ¥ +* +* +

-
+ + Ll

4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4444 494+49+4

v ok ok kb ok ko ko E

L L N N L N L I R I I O L O D O D L B L

+ + + + + + + + + + F F FFF o FFFFFEFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEF A F

4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 49444 44+494+4

- +

F o+ m L
+ + -
-ii+++++1i++++++++++++++++++++1+++|

+ + + F+ + + F + F F F FFFFFEFFFEFFEFEFFEFEFFFEFEFEFEFEFEEFEET

LS
-

4 4 4 4 4 4 4 4 4 4444494494949 49494999 q4999q49q4949q49499494949q4949494949+49+

* + + o+ FFFEFFFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEEFEEFEEEEEEFEEET

T ¥ T T T T T T TT T TTTTTTTTTTTTTTTYTTTTTTTTTTYTTTTTTTYTTTTYTTTTTTTT

 + + ¥ F F F FFFFFFFFFEFFFEFEFFEFEFFEFEFFEFFEFEFEFEFEFEFEFEFEFEFEAFEFEFEFEFEFEFEFEFEFFFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEEFFFEFFFFEFEFFFFFEF A

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44

+* + F ¥ F F F FFFFFFFFEFFEFEFFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEEFEEFFF -+ + F F FFFFFFFFEFFFEFFFEFFFEFFFEFEFEFEFFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEEFFEFEEFFEEFFEFF T

4 4 4 4 4 4 4 4 4 4 4444449494944 94994449444

+ + *+ + + F+ + + F + +F F A+ FFFFEFFFEFFFEFFEEFEFFEFEFEFEFEF

NPT/ OUTP

)

L N N N N N N N N NN N NN N NN NN R N NN N NN N NN N NN N NN NN NN N NN NN NN

* + + F F FFFFFFFFEFFFEFEFFEFEFFEFEFEFEFEFEFEFFEFEEFEFEEFEFEEFEFEEFFAFEFFFFF
+* + F ¥ + F F FFFFFEFFFEFFFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEEFEFEAFFEFEFEFEFEFEFEFEFEFEFEEFFFFF

=y g

=

1710

,
+
+*

o
-

LA B B B N B R RSB BB EBEEBEEBEERBEEBEEEBEREBREEEBEBEBIEREIEBEMNIEIEIEIBEIMEIEMNEIEIEMNEIEEMBIEIEIIEZISJIEZSSS:Z-S..

i1 ¥

4 4 4 4 4 4 4 4 4 4 4 4 4 44 ddddddddd A d A d A dd A4+

+
+*
[
+
4
+
4
+
-
+*
+
* + + F F F FFFFFFFFFFFFFFFFEFEFFEFFEFEFEFEFEFFF

+* + F ¥ + F F FFFFFFFFFFFEFFFEFFEFEFEFEFEFFEFEEFEFEEFEFEEFFFEFEFEEFFEEFFEEFFEFFE R FF

F + *+ + + + o+ FFFFEFFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEEEFEEEEFE
4

* + + F F FFFFFFFFEFFFEFEFFFEFFFFEFFEFEFEFFEFEFEFEEFEFEEFEFFEFEFEEFFEFF + +
+* + F ¥ + F F FFFFFFFFEFFEFEFFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEEFFF
L N N N N N N N NN N NN NN NN N N NN N NN NN N NN NN NN NN NN * +

+* + + F + F F F FFFFFEFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEE T

+
+*

LHSPLA

+ + +

4 4 4 4 4 4 4 4 4 444444 d A A A A A
+ + +

+ + ¥+ +

+

LI 1 +

T + + % + F F N+ FFFFFFFEFFEFEFFEFEFEFEFEFEFEFEEFEFEN
L B +* + = 1
- 4 + + 1 1
1 L

* + +

ETWORK
NTEREACE

-+ 4 r + T + +
- + + + + + 1 LI
‘i' 1 + & v + & & & & &+ & + &+ + + + + + + & & & & v & +++ v + + ¥
-
< +'|- r + + +

+ + + ¥ + + ¥ F + F F FFFFFFFFFFFEFFFEFFFEFFFFAF
* 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 d 4444444 44444444

* + + F F FFFFFFFFEFFEFEFFFEFEFFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEEFFEEFEFEF

LI R R R R R R R R A R R A R I A R R R R RN R R RN AT RN AT RN AT RN R AT RN AT R N N A N O

HERAL
=ATH
~REALCE
1022

LB N B N N R B R BB EEEEEEEEBNEEENEIENEIEIEIEIIEIEZINZIEDZIEBIIII BB,

4 + + + + + F+ + + F + + F F +F F F FFFFFEFFFEFFFEFFFEFFEFEFFEFEFFEEFEFEFEEFEFFEEFEFEFEEFEFEEEFEFEEEFEFEEELFFEEFEEFEFE T

4 4 4 4 4 4 4 4 4 4 44444 d A A A

L N L D L B O L L R L D D L N B L

US 11,389,960 B2

1

SYSTEMS AND METHODS FOR ROBOTIC
PROCESS AUTOMATION

RELATED APPLICATION

This application also claims the priority benefit of U.S.
Provisional Application Ser. No. 62/859,608, entitled “Sys-
tems and Methods for Robotic Process Automation,” filed

Jun. 10, 2019, the disclosure of which 1s incorporated by
reference herein 1n its entirety.

TECHNICAL FIELD

The present disclosure relates to systems and methods
related to various types of solftware robots for business
Processes.

BACKGROUND

Soltware robots for business processes (Bots), also
referred to Robotic Process Automation (RPA), are viewed
as an essential element 1n digital transformation efforts by
enterprises worldwide, along with other technologies such
as Artificial Intelligence (Al) and Machine Learning (ML).
Bots are expected to relieve humans from tedious and
repetitive manual tasks, and boost productivity for compa-
nies.

However, the market and technology are still young and
in the developing phase. The need for extensive consultation
has generally limited the availability of RPA to Fortune 500
class enterprises. Further, today’s RPA solutions typically
require specially trained engineers to develop, deploy, and
maintain the Bots. These limitations result 1n a high cost of
RPA deployment and 1n failures when viewed from an ROI
(Return On Investment) standpoint.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present disclosure are described with reference to the fol-
lowing figures, wherein like reference numerals refer to like
parts throughout the various figures unless otherwise speci-
fied.

FIG. 1 1s a block diagram illustrating an environment
within which an example embodiment may be implemented.

FIG. 2 1s a block diagram illustrating an embodiment of
an 1mproved robotic process automation (RPA+) system.

FIG. 3 illustrates an embodiment of an RPA+ graphical
user mterface (GUI).

FI1G. 4 illustrates an embodiment of a plugin module used
with the RPA+.

FIG. 5 1llustrates an embodiment of a flow diagram for
creating and implementing a plugin module.

FIG. 6 1llustrates an embodiment of a flow diagram for
qualifying a plugin module.

FIG. 7 1illustrates an embodiment of a flow diagram for
extracting Scenario Studio (STU) specifications from origi-
nal PYTHON code.

FIG. 8 illustrates an embodiment of a process for making
plugin information available.

FIG. 9 1llustrates an embodiment of a flow diagram for
collecting plugin information and presenting the plugin
information to a user.

FI1G. 10 illustrates an embodiment of a process for obtain-
ing new or updated plugin imnformation.

FIG. 11 1illustrates an embodiment of a flow diagram for
obtaining and updating plugin information.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 1llustrates an embodiment of a process for retriev-
ing the original PYTHON code from one or more reposito-
ries.

FIG. 13 1llustrates an embodiment of a flow diagram for
obtaining original PYTHON code for execution.

FIG. 14 1s a flow diagram 1illustrating an embodiment of
a method for managing a virtual environment.

FIGS. 15A-15G 1illustrate an embodiment of a process for
executing a virtual environment management system.

FIG. 16 illustrates an embodiment of a flow diagram for
converting PYTHON code into plugins used to build Bots.

FIG. 17 1s a block diagram 1llustrating an example com-
puting device suitable for implementing the systems and
methods described herein.

DETAILED DESCRIPTION

In the following disclosure, reference 1s made to the
accompanying drawings, which form a part hereof, and 1n
which 1s shown by way of illustration specific implementa-
tions 1n which the disclosure may be practiced. It 1s under-
stood that other implementations may be utilized and struc-
tural changes may be made without departing from the scope
of the present disclosure. References in the specification to
“one embodiment,” “an embodiment,” “an example embodi-
ment,” etc., indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particu-
lar feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodi-
ment. Further, when a particular feature, structure, or char-
acteristic 1s described 1n connection with an embodiment, 1t
1s submitted that 1t 1s within the knowledge of one skilled 1n
the art to affect such feature, structure, or characteristic in
connection with other embodiments whether or not explic-
itly described.

Implementations of the systems, devices, and methods
disclosed herein may comprise or utilize a special purpose or
general-purpose computer including computer hardware,
such as, for example, one or more processors and system
memory, as discussed herein. Implementations within the
scope of the present disclosure may also include physical
and other computer-readable media for carrying or storing
computer-executable instructions and/or data structures.
Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are computer storage media
(devices). Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by
way of example, and not limitation, implementations of the
disclosure can comprise at least two distinctly different
kinds of computer-readable media: computer storage media
(devices) and transmission media.

Computer storage media (devices) imncludes RAM, ROM,
EEPROM, CD-ROM, solid state drives (*SSDs) (e.g.,
based on RAM), Flash memory, phase-change memory
(“PCM”), other types of memory, other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store desired
program code means in the form of computer-executable
instructions or data structures and which can be accessed by
a general purpose or special purpose computer.

An implementation of the devices, systems, and methods
disclosed herein may communicate over a computer net-
work. A “network™ 1s defined as one or more data links that
enable the transport of electronic data between computer

-

US 11,389,960 B2

3

systems and/or modules and/or other electronic devices.
When information 1s transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links, which can be used to carry
desired program code means in the form of computer-
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within
the scope of computer-readable media.

Computer-executable mstructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. The computer execut-
able 1nstructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even
source code. Although the subject matter 1s described 1n
language specific to structural features and/or methodologi-
cal acts, it 1s to be understood that the subject matter defined
in the appended claims 1s not necessarily limited to the
described features or acts described herein. Rather, the
described features and acts are disclosed as example forms
of implementing the claims.

Those skilled 1n the art will appreciate that the disclosure
may be practiced in network computing environments with
many types of computer system configurations, including,
an 1n-dash vehicle computer, personal computers, desktop
computers, laptop computers, message processors, hand-
held devices, multi-processor systems, miCroprocessor-
based or programmable consumer electronics, network PCs,
mimicomputers, mainirame computers, mobile telephones,
PDAs, tablets, pagers, routers, switches, various storage
devices, and the like. The disclosure may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. In a distributed system environment, program
modules may be located 1n both local and remote memory
storage devices.

Further, where appropriate, functions described herein
can be performed in one or more of: hardware, software,
firmware, digital components, or analog components. For
example, one or more application specific integrated circuits
(ASICs) can be programmed to carry out one or more of the
systems and procedures described herein. Certain terms are
used throughout the description and claims to refer to
particular system components. As one skilled 1n the art waill
appreciate, components may be referred to by different
names. This document does not intend to distinguish
between components that differ 1n name, but not function.

It should be noted that the sensor embodiments discussed
herein may comprise computer hardware, software, firm-
ware, or any combination thereof to perform at least a
portion of their functions. For example, a sensor may
include computer code configured to be executed 1n one or
more processors, and may include hardware logic/electrical
circuitry controlled by the computer code. These example
devices are provided herein for purposes of illustration, and
are not mtended to be limiting. Embodiments of the present
disclosure may be implemented 1n further types of devices,
as would be known to persons skilled in the relevant art(s).

At least some embodiments of the disclosure are directed
to computer program products comprising such logic (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

4

in the form of software) stored on any computer useable
medium. Such software, when executed 1n one or more data
processing devices, causes a device to operate as described
herein.

The systems and methods discussed herein represent a
new type of RPA platform, referred to herein as RPA+. This
new RPA+ platform 1s based on a low-to-zero coding
philosophy. This platform provides a GUI (Graphical User
Interface)-based system for building Bots. RPA+ supports
both auto-recording and building block approaches. The
tools are intuitive to the extent that anyone who can make a
PowerPoint presentation can also build Bots without much
difficulty. Furthermore, RPA+ includes a set of tools that
automatically converts PYTHON programs into building
blocks that users can use to develop their Bots.

As used herein, a Bot refers to an automation scenario that
may operate with a Process Automation Module (PAM). The
automation scenario 1s a group of operations put together by
a Scenario Studio (STU). Operations refer to the building
blocks of the automation scenario and may include basic
operations and plugin operations 1 the STU toolbox.
Plugins refer to operations that are built using the PY THON-
to-operation tools (POT) software development kit (SDK).
The POT SDK converts PYTHON programs to operations
and stores them i1n one or more repositories. Repositories
provide a storage location for plugins. Repositories may be
public repositories or private repositories. A public reposi-
tory 1s available to many users (e.g., Bot builders) and may
also have features to function as a plugin Marketplace. A
plugin Marketplace 1s a place where users can trade plugins
(1.e., building blocks for Bots).

PYTHON 1s a programming language used for a variety
of applications. PYTHON 1s a fast growing programming
language and 1s broadly used for AI/ML as well as automa-
tion projects. As described herein, a new RPA+ PYTHON
plugin architecture allows organizations throughout the
world to immediately take advantage of the enormous
amount of PYTHON resources that are already available.
With the systems and methods described herein, 1t becomes
possible to easily implement the modular approach provided
by RPA+ to create Bots. As described 1n greater detail below,
this system also provides substantial opportunities to the
entire PYTHON community worldwide. For example, a
PYTHON repository maintained by ARGOS LABS or other
entities may form a basis for a plugin marketplace that
makes 1t possible to buy and sell Bot components (e.g.,
plugins) between PYTHON coders and Bot builders.

The systems and methods described herein illustrate
example implementations of the RPA+ PYTHON plugin
architecture. These systems and methods also define RPA+
as not just an RPA platform, but as another evolution in the
history of the software programming platform. Essentially,
RPA 1s an alternative to conventional system development
methodologies. The concept of RPA emerged because 1t
promised ease of deployment and ROI substantially better
than the then existing traditional methods for system devel-
opment. However, many RPA projects have fallen short of
theirr promises. Two typical problems for failures are a
substantial requirement for consultation work even before
starting to build Bots, and a burdensome requirement for
specially trained professionals to build and maintain Bots.
As described herein, RPA+ overcomes the limitations of
traditional RPA approaches.

As mentioned above, there are two main difliculties
associated with traditional RPA methodologies. The first
1ssue, the need for massive consultations, seems to be
addressed by AIl. Thanks to technological advancement,

US 11,389,960 B2

S

many companies around the world are proposing Al-based
“process discovery automation” to circumvent this limita-
tion. The second difliculty 1s the need for trained profes-
sionals to build and maintain Bots. This 1ssue 1s critical as 1t
directly impacts a return on investment (ROI). As specialists
are more expensive than generalists, the RPA+ platform
discussed herein has been designed to enable generalist, or
even non-IT workers, to build and maintain Bots. In this
way, the RPA+ platform addresses this second limitation.

FIG. 1 1s a block diagram illustrating an environment 100
within which an example embodiment may be implemented.
As shown 1 FIG. 1, a robotic process automation (RPA+)
system 102 and multiple computing systems 104, 106, and
108 are coupled to a data communication network 110.
Additionally, a first plugin repository 118, a second plugin
repository 120, and a plugin marketplace 122 are coupled to
data communication network 110. Plugin repositories 118
and 120 may each be public plugin repositories or private
plugin repositories, as discussed herein. Although two
plugin repositories 118 and 120 are shown in FIG. 1,
alternate embodiments of environment 100 may include any
number of plugin repositories.

A plugin marketplace 122 1s another type of plugin
repository that 1s accessible by a variety of users, as dis-
cussed 1n greater detail below. Although one plugin market-
place 122 i1s shown 1n FIG. 1, alternate embodiments of
environment 100 may include any number of plugin mar-
ketplaces maintained by any number of individuals or enti-
ties. As shown 1n FIG. 1, any number of users 112, 114, and
116 may access (via computing systems 104, 106, and 108)
RPA+ system 102 as well as plugin repositories 118, 120 and
plugin marketplace 122. FIG. 1 also 1illustrates a PY THON
data source 124 and another data source 126. The other data
source 126 may include a source of any type of data, such
as JavaScript, PHP (Hypertext Preprocessor), Ruby, Perl,
Lisp, R, and Forth.

Data communication network 110 includes any type of
network topology using any communication protocol. Addi-
tionally, data communication network 110 may include a
combination of two or more communication networks. In
some embodiments, data communication network 110
includes a cellular communication network, the Internet, a
local area network, a wide area network, or any other
communication network. Computing systems 104, 106, and
108 may include any type of computing device, such as a
desktop computer, a laptop computer, a mobile device, a
microprocessor-based or programmable consumer elec-
tronic device, a network PC, a minicomputer, a mainirame
computer, a PDA, a smartphone, a tablet, and the like. As
discussed herein, users interact with a particular computing
system 104, 106, and 108, to enter and select information to
create and deploy Bots. In the example of FIG. 1, a first user
112 interacts with computing system 104, a second user 114
interacts with computing system 106, and a third user 116
interacts with computing system 108. Although three com-
puting systems 104, 106, and 108 and three users 112, 114,
and 116 are shown in FIG. 1, alternate embodiments may
include any number of computing systems and any number
of users interacting with the computing systems.

In some embodiments, RPA+ system 102 and computing
systems 104, 106, and 108 are each located in a different
geographic location. For example, RPA+ system 102 may be
located at a first geographic location associated with a
business and each computing system 104, 106, and 108 1s
located at a diflerent geographic location associated with a
user’s current location. In other embodiments, computing,
systems 104, 106, and 108 may be located in the same

10

15

20

25

30

35

40

45

50

55

60

65

6

geographic location, such as the same building, campus, and
the like. In particular implementations, RPA+ system 102
and computing systems 104, 106, and 108 are located 1n the
same geographic location or a similar geographic area.

It will be appreciated that the embodiment of FIG. 1 1s
given by way of example only. Other embodiments may
include fewer or additional components without departing
from the scope of the disclosure. Additionally, illustrated
components may be combined or included within other
components without limitation.

FIG. 2 1s a block diagram illustrating an embodiment of

an 1mproved robotic process automation (RPA+) system
102. As shown in FIG. 2, RPA+ system 102 includes a
communication module 202, a processor 204, and a memory

206. Communication module 202 allows RPA+ system 102
to communicate with other systems, such as computing
systems 104-108, plugin repositories 118 and 120, plugin

marketplace 122, PYTHON data source 124, data source

126, and the like. Processor 204 executes various instruc-
tions to perform the functionality provided by RPA+ system
102, as discussed herein. Memory 206 stores these instruc-
tions as well as other data used by processor 204 and other
modules and components contained in RPA+ system 102.

Additionally, RPA+ system 102 includes a graphical user
interface (GUI) 208 that manages, generates, and modifies
various user intertaces, as discussed herein. A Bot building
block manager 210 manages the various building blocks
used by RPA+ system 102 to generate Bots that perform a
variety of activities. A PYTHON conversion module 212
converts PYTHON code 1into plugins used by RPA+ system
102 to create Bots, as described herein.

RPA+ system 102 also includes a plugin package manager
(PPM) 214. PPM 214 1s a tool that communicates with
various plugin repositories to get user-dependent plugin lists
and specifications for appropriate plugins. A plugin reposi-
tory manager 216 handles 1dentification and access to vari-
ous plugin repositories used to obtain and build various
types of Bots. Similarly, a plugin marketplace manager 218
handles 1dentification and access to various plugins available
in a plugin marketplace.

RPA+ system 102 further includes PYTHON-to-opera-
tion tools (POT) 220, which may test and quality plugin
modules before adding the plugin to a repository. For
example, the POT 220 may check plugin modules {for
functionalities and security before allowing the plugin to be
included 1n a particular repository. After a Bot has been built
with plugins, a scenario studio (STU) 222 packages the Bot
into a file and provides it to a process automation module
(PAM) 224. The PAM 224 uses 1ts own PPM 214 to identily
the plugins being used 1n a specific Bot and asks for the
plugin package which contains the original PY THON script.

Additionally, RPA+ system includes a virtual environ-
ment manager 226, which manages various virtual environ-
ments 1 which Bots may be created and/or executed. A
soltware development kit (SDK) manager 228 handles the
distribution of the SDK and updating information contained
in the SDK.

FIG. 3 illustrates an embodiment of an RPA+ graphical
user interface (GUI) 300. For example, FIG. 3 depicts
building blocks and parameter settings associated with an
RPA+ GUI screen. When a user 1s developing a Bot with
RPA+, the user chooses these building blocks and sets the
appropriate parameters. In various embodiments, the system
may provide any number of building blocks. In some
situations, a complex Bot can be built just by combiming the
example building blocks shown 1n FIG. 3.

US 11,389,960 B2

7

In some embodiments, GUI 300 includes a toolbox
(shown on the left side of FIG. 3) that includes a variety of
operations. For example, these operations may include basic
operations as well as plugins, as discussed herein. A user
who 1s building a Bot can select any number of operations
from the toolbox and add them to a timeline, such as
dragging and dropping an 1con associated with the operation
to the timeline. The operations are entered 1n the timeline in
the desired order of execution. The user then sets various
parameters associated with the selected operations. These
parameters may include, for example, a return value pro-
duced by the operation, a result type, a variable name, and
other parameters or properties. For example, the right side of
FIG. 3 displays parameters and settings for a Locate Image
operation.

By combining multiple building blocks, a Bot builder can
create a Bot that performs a wide variety of functions.
Particular Bots can access data, generate data, interact with
human users, interact with remote systems, analyze data,
generate audio data, generate video data, create and sent
messages (e.g., text messages, email messages, and voice-
mail messages), and the like.

FI1G. 4 illustrates an embodiment of a plugin module 400
used with RPA+. To implement more complex designs, a
PYTHON plugin architecture provides additional building
blocks, as shown 1n FIG. 4. The plugin module offers more
advanced options, such as JSON and SQL commands, to a
developer. In the example of FIG. 3, RPA+ provides 31 basic
modules, while other more complex features are imple-
mented as plugins. The users can choose from a repository
(¢.g., a marketplace) maintained by ARGOS Labs or another
entity. In some embodiments, the repository includes a
library of plugins that allows a user to automate their specific
business processes.

The basic architecture of the plugin modules 1s designed
to be directly converted from, for example, PYTHON pro-
grams. PYTHON 1is a popular programming language used
to develop automation modules, and for AI/ML systems. A
large number of PYTHON modules are available from
public repositories. Thus, Bot builders have instantaneous
access to tens of thousands of functionalities. Bot builders
can also pick and add only the tools they need. These tools
can be very specific to functions and target systems. The
flexibility provided to Bot builders allows the builders with
unique requirements to create a diverse set of functional
plugins. This allows RPA+ to function with a core set of
building blocks and support additional functionality being
added using plugins Based on this architecture, the
PYTHON plugin 1s a more cilicient approach than other
solutions that must offer 400 or more tools to support all
potential functionality.

In some embodiments, RPA+ can be adapted to function
on different operating systems such as Windows, macOS,
different versions of Linux, and so on, on a single Bot
development platform. Mobile device operating systems
such as Android and 10S can also be supported. APYTHON
plugin associated with RPA+, as discussed herein, provides
additional functionality to RPA+. This system incorporates
suflicient abstraction to use different kinds of application
programming interfaces (APIs), thereby allowing the archi-
tecture to leverage an ever-growing community of software
developers from diflerent markets.

FIG. 5 1illustrates an embodiment of a flow diagram 500

for creating and implementing a plugin module. The RPA+
PYTHON plugin architecture includes a PY THON coder (or
PYTHON developer). As shown in FIG. 5, the PYTHON

coder first aligns the format of the code according to a

10

15

20

25

30

35

40

45

50

55

60

65

8

Software Development Kit (SDK) associated with RPA+
and the PYTHON plugin architecture. In some embodi-
ments, the SDK also includes templates, sample codes,

utilities, and documentation. Then, by uploading the code to
the PY THON-to-operation tools (POT), which 1s a back-

stage like private repository for pre-qualified PYTHON
modules, the plugin modules are automatically generated
after checking for functionalities and security.

The plugin module and the original PYTHON code are
stored 1n the marketplace and the repository, respectively.
Then, as a Bot builder searches the building block that
serves his/her Bot requirements for a specific project, they
can just visit the marketplace, choose the i1deal building
block, and bring it 1n as a part of the Scenario Studio (STU)
which they use to build Bots with zero-coding technology.

Finally, when the Bot has been built, the Bot builder
dispatches the Bot to a Process Automation Module (PAM).

PAM sees the Bot containing the PYTHON plugin and 1t

goes to the repository and retrieves the original PYTHON
code for PAM to execute. In some embodiments, PAM has
a built-in PYTHON interpreter.

Some examples of plugins that can be included 1n a Bot
design are:

1) Online tools such as Rossum can be integrated into a
Bot by writing simple PYTHON code to call their API. In
one instantiation, integration of this design takes approxi-
mately three hours to accomplish.

2) Publicly available tools like Google Translate, which 1s
written 1n PYTHON can be integrated into a Bot just by
processing through the SDK and POT.

3) Existing PYTHON assets inside an organization can all
be included as building blocks for Bots by the SDK and
POT. These building blocks (plugins) can be stored 1n either
private or public repositories and become available to those
who have access to the repository. For example, a Bot coder
who builds a new plugin module can decide whether to make
the plugin module only available in their own environment
(private) or available for others to use (public).

In some embodiments, the SDK and POT architecture can
be implemented using languages other than PYTHON, such
as JavaScript (that possesses a similar implementation as
PYTHON using node.js and npm), GO (usetul for both
backend logic as well as command line interface-CLI-
utilities such as docker), C #, and so on. In order to
implement plugins 1n languages other than PYTHON, the
associated PYTHON code 1s ported into the desired target
language for the SDK and POT utility. The plugin repository
1s correspondingly extended to support the plugins generated
using these programming languages. In this way, the func-
tionality of RPA+ can be extended to support a variety of
different languages.

FIG. 6 1llustrates an embodiment of a flow diagram 600
for qualifying a plugin module. PYTHON code that fits the
format requirements of the SDK will be tested by the coder
first. Then, after submission to the POT, the code will be
again tested by the systems and methods described herein.
This double testing also includes checking the code for
compliance with STU specifications.

As shown 1n FIG. 6, the PYTHON coder can choose the
plugin to be listed for either public usage or private usage.
If the coder chooses the plugin to be private, additional tests
will be omitted, and the plugin becomes immediately avail-
able to the PYTHON coder from their private repository of
plugins. If the coder chooses to make the plugin publicly
available, additional qualification processes are performed
for security violations. If the plugin satisfies the additional

US 11,389,960 B2

9

qualification process, the plugin 1s eventually listed in an
oflicial public repository that i1s accessible by other coders.

In some embodiments, the PYTHON SDK 1s available to
download free of charge to anyone from a website associated
with the company that developed the systems and methods
described herein. In some embodiments, the PYTHON SDK
includes tools that normalize the input/output of plugins
made by any PYTHON programmer, thereby allowing mul-
tiple plugins created by different programmers to be used
with each other sequentially (e.g., back-to-back). The
PYTHON SDK may contain, for example, one or more of
the following components:

Documentation

Coding templates

Sample Code

ICON building utilities

Packaging tools for submission

In some mmplementations, the packaging tools for sub-
mission will help the users double-check 1tems (such as the
items below) that are included 1n the upload package.

The operational tool attributes may include one or more of
the following:

Tool Name and display name

Description

Owner

Group

Version

Icon

Last modified DateTime

Supported Platform (Windows, Linux, Mac, 10S, and

Android)

Checksum

In some embodiments, parameter attributes may include
any one or more of the following:

Parameter name and labels

Options string in case option

Action (store, store true, store false, and append)

Choices (select only from one 1n the list)

Detfault value

Help

Input method (password, file/folder read/write, and mouse

click)

Input group

Show default or not

Type (string, integer, and float)

Constraint

min_value, max_value, greater, greater_eq, less, less_eq

equal, not_equal

regular expression match

FI1G. 7 1llustrates an embodiment of a flow diagram 700
for extracting Scenario Studio (STU) specifications from
original PYTHON code. In some embodiments, the STU
specification 1s extracted by parsing a PYTHON program.

One of the essential functions of the POT 1s to parse or
extract specific information from the PYTHON code, which
eventually shows as one of the building blocks 1n STU. FIG.
7 depicts an example of how POT parses a PYTHON
program to extract an STU specification. Primarily, the
information that becomes the parameter setting sections are
extracted from the argument portion of the PYTHON code
and processed as STU Specifications. Some 1mplementa-
tions of RPA+POT automatically convert the PYTHON
code 1nto STU building blocks by analyzing Functions and
Arguments and generating Specifications of the STU plugin.

FIG. 8 illustrates an embodiment of a process 800 for
making plugin information available using Supervisor. For
example, plugin information may be available through a

5

10

15

20

25

30

35

40

45

50

55

60

65

10

marketplace, a public repository, or a private repository. In
some embodiments, RPA+ has a cloud-based administrative
system called Supervisor. The Supervisor also has a set of
functionalities to manage the PYTHON plugins from the
user’s viewpoint.

Users of the described systems and methods can sign 1n to
their Supervisor account to view what plugins are available
for them by browsing through the marketplace and the list of
private repositories that they are entitled to access. The user
can make a purchase of a plugin, which could be a zero-
dollar purchase 1t the plugin 1s free. Or, the user can access
a private repository (or repositories) 1f they have the privi-
lege to use the plugin tools registered in such private
repositories. The Supervisor collects the plugin information
via the POT as shown in FIG. 8.

FIG. 9 illustrates an embodiment of a flow diagram 900
for collecting plugin information and presenting the plugin
information to a user. For example, the flow diagram shown
in FIG. 9 may be managed by the Supervisor. Some 1mple-
mentations ol RPA+ prepare both public and private reposi-
tories for plugins, thereby enabling PYTHON coders (e.g.,
plugin builders) to select the availability of the plugins.

FIG. 10 1llustrates an embodiment of a process 1000 for
obtaining new or updated plugin information. When acquir-
ing plugin modules by the STU, the STU may integrate a
software tool called a Plugin Package Manager (PPM) that
communicates with the Supervisor using the REST API. The
PPM also communicates with oflicial or private plugin
repositories. Each time the STU starts, the PPM will contact
the Supervisor to get a user-dependent plugin list and
repository to get the specification of the plugin, which
covers both public and private repositories.

FIG. 11 illustrates an embodiment of a flow diagram 1100
for obtaining and updating plugin information by the STU.

FIG. 12 1llustrates an embodiment of a process 1200 for
retrieving the original PYTHON code from one or more
repositories. Once the Bot has been built with plugins, the
STU packages the Bot into a file and provides 1t to the PAM.
Then, the PAM uses 1ts own Plugin Package Manager (PPM)
to 1dentily the plugins being used 1n a specific Bot and asks
for the plugin package which contains the original PYTHON
script. The plugin then gets transmitted to the PAM. The
plugin package can come from either the public repository
or the private repository. FIG. 12 illustrates this mechanism.

FIG. 13 illustrates an embodiment of a flow diagram 1300
for obtaining original PY THON code for execution. In other
words, FIG. 13 presents the flow diagram associated with
the mechanism illustrated 1n FIG. 12.

The described systems and methods provide for the
governance of Bots with plugins for version control and
security management. The PY'THON-based plugin architec-
ture discussed herein makes it possible for RPA+ users to
access tens of thousands of functionalities that are already
available in the existing PYTHON community. This 1s a
significant benefit of “openness.” On the other hand, a risk
of the “openness” 1s managing security and controlling
versions. In other words, it 1s important to ensure the
governance of Bots. RPA+ has an architecture to provide this
governance. PAM, the Process Automation Module that
executes the Bot, has a mechanism to prepare a “sandbox™
like environment specific for every single Bot. This 1s like a
virtual device for a Bot, and makes it eflicient in executing
the automation because the components that are requ1red by
the Bot have been prepared 1n advance. When running the
Bot, the PAM checks for the Bot versions and components
as well as its authenticity for the builder and the executor.
These mechanisms can provide safety measures and man-

US 11,389,960 B2

11

agement capabilities against accidentally or non-acciden-
tally executing unauthorized Bots in the field.

Furthermore, these mechanisms can solve version man-
gling problems. For example, suppose you have two Bots:
BotA and BotB, both of which have a dependency on the
same plugin, PluginC. The problem becomes apparent when
the systems and methods start requiring diflerent versions of
PluginC. Suppose BotA needs v1.0.0, while BotB requires
the newer v2.0.0, for example. Using a sandbox architecture
helps mitigate this problem.

The RPA+ 1s not just an RPA. Instead, it can be considered
as another form of evolution 1n the history of the software
development platiorm. RPA+ brings 1n one layer of abstrac-
tion from PYTHON just like the C languages evolved from
the preceding “high level” languages Connecting RPA with
the PYTHON community 1s a natural development because
PYTHON 1s very much centric to future technologles such
as AI/ML and automation. As the term RPA 1s quickly
shifting toward new terms like Intelligent Process Automa-
tion, RPA+ has already taken steps forward in the same
direction. RPA+ and 1ts PYTHON connection brings scal-
abilities 1n five dimensions.

Functionality

Deployment environment

Deployment platform

Deployment Size

Future Proof

All of these scalabilities are important 1n today’s software
development platform selection by enterprises.

FIG. 14 1s a flow diagram illustrating an embodiment of
a method 1400 for managing a virtual environment. After
plugins are built by the POT SDK, the plugins appear 1n the
STU toolbox and are available to Bot builders. Method 1400
begins as a Bot builder uses plugins and other operations (as
described herein) to build 1402 one or more automation
scenar1os. The automation scenarios are then sent 1404 to a
process automation module (PAM) for execution. Before
executing the automation scenarios, the PAM verifies 1406
the list of plugins and their version numbers that are inte-
grated 1nto each automation scenario.

If the automation scenario 1s verified at 1406, the PAM
builds 1408 a local software structure called a “virtual
environment” specific to the plugins that are 1 the automa-
tion scenario by downloading necessary components from a
plugin component server. In some embodiments, there are
two types of components that plugins use. They are referred
to as primary components and secondary components. The
primary components are stored 1n an entity’s oflicial reposi-
tory or in a private repository created by the plugin builder
(also referred to as a plugin coder). The secondary compo-
nents are stored in the PYTHON commumty’s oih

icial
storage server (e.g., called pypi.org). The secondary com-
ponents are the PYTHON programs that the primary com-
ponent calls and uses as pre-built functions. These reposi-
tories may be stored 1n any storage system, such as AWS
(Amazon Web Services) or other cloud-based systems or
services. Private repositories may reside in any location
(e.g., local storage devices or online) based on the prefer-
ence of the plugin builder.

The virtual environment 1s saved 1410 locally after execu-
tion of the automation scenario. Saving the virtual environ-
ment locally refers to storing the virtual environment on the
computer system of execution (whether physical or virtual).
I the next automation scenario contains plugins (with the
same version numbers) that are equal to or less than the
previous automation scenario, the PAM uses 1412 the same
virtual environment for the next automation scenario. How-

10

15

20

25

30

35

40

45

50

55

60

65

12

ever, 1i the next automation scenario contains new plugins
(or new versions ol any plugins), the PAM determines 1414
whether to create a new virtual environment or modify the
previous virtual environment. As discussed herein, no more
than one version of a particular plugin can exist in the same
virtual environment. The PAM decides to modily when
adding another plugin to an existing virtual environment will
satisty the requirements of the new automation scenario. The
PAM creates a new virtual environment when the version
number of the existing plugin does not match the newly
required plugin versions by the new automation scenario.
Instead of making an individual virtual environment for
all automation scenarios, the PAM attempts to minimize the
number of virtual environments stored locally by attempting
to modily previously created virtual environments. This
approach reduces the amount of time spent downloading
plugins and other components and reduces the amount of
local storage space required by the virtual environments.

When deploying a Bot (automation scenario) 1s created
using STU. Thus, the Bot 1s an output of STU. The Bot file
1s provided to the PAM for execution. In some embodiments,
STU and the PAM are located in different computing
devices. But, in some situations, both STU and the PAM are
located in the same computing device. In some 1mplemen-
tations, a Bot file contains a list of components that are
required to execute the Bot. The plugins are described by
plugin name and version number. Since plugins are updated
over time, two Bots that use the same plugin can be using
different versions of the same plugin depending on when
they were bult.

The PAM receives the Bot file and reads the list of plugin
names and version numbers. The PAM then collects com-
ponents from, for example, a cloud server and packages the
components 1nto a software program called a virtual envi-
ronment. The PAM then runs the Bot with the wvirtual
environment and the virtual environment is saved locally to
the PAM. Typically, different Bots require different sets of
components. Thus, the PAM ends up generating multiple
virtual environments, but the PAM attempts to keep the
number of virtual environments to a minimum, as discussed
above with respect to FIG. 14.

FIGS. 15A-15G 1illustrate an embodiment of a process
1500 for executing a virtual environment management sys-
tem. In some embodiments, an important rule when working
with virtual environments 1s that each virtual environment
can only contain one version of a plugin. Thus, 11 a particular
plugin has multiple available versions (e.g., an original
version and an updated version), a specific virtual environ-
ment can only contain one version of the plugin.

As shown i FIG. 15A, mitially there 1s no virtual
environment. In FIG. 15B, the PAM receives 1ts first Bot and
reads the list of components 1n the form of plugin names and
plugin version numbers. The PAM also generates a first
virtual environment with the required components, and then
saves the first virtual environment locally for future use.

In FIG. 15C, the PAM rece1ves a second Bot and reads the
list of components 1n the form of plugin names and plugin
version numbers. The PAM searches the local storage for
any existing virtual environments that can serve the second
Bot. In this example, the PAM does not find an existing
virtual environment that can serve the second Bot (i.e., the
first virtual environment). But, the PAM determines that 1t
can add new components to the first virtual environment
without disrupting operation of the first Bot. Therefore, the
PAM adds the second Bot requirements to the first virtual
environment.

US 11,389,960 B2

13

In FIG. 15D, the PAM receives a third Bot and reads the
list of components 1n the form of plugin names and plugin
version numbers. The PAM searches the local storage for
any existing virtual environments that can serve the third
Bot. In this example, the PAM does not find an existing
virtual environment that can serve the third Bot. Addition-
ally, the PAM determines that 1t cannot add new components
to the first virtual environment because it would result 1n two
different versions of a plugin 1n the first virtual environment.
Theretfore, the PAM generates a second virtual environment
for the third Bot with the required components. The PAM
then saves the second virtual environment locally for future
use.

In FIG. 15E, the PAM receives a fourth Bot and reads the
list of components 1n the form of plugin names and plugin
version numbers. The PAM searches the local storage for
any existing virtual environments that can serve the fourth
Bot. In this example, the PAM does not find an existing
virtual environment that can serve the fourth Bot. Addition-
ally, the PAM determines that it can add new components to
the first virtual environment, which will allow the first
virtual environment to support the fourth Bot.

In FIG. 15F, the PAM receives a fifth Bot and reads the list
of components in the form of plugin names and plugin
version numbers. The PAM searches the local storage for
any existing virtual environments that can serve the fifth
Bot. In this example, the PAM does not find an existing
virtual environment that can serve the fifth Bot. Addition-
ally, the PAM determines that 1t cannot add new components
to the first or second virtual environments because 1t would
result 1n two diflerent versions of a plugin in the virtual
environment. Therefore, the PAM generates a third virtual
environment for the fifth Bot with the required components.
The PAM then saves the third virtual environment locally for
future use.

In FIG. 15G, the PAM receives a sixth Bot and reads the
list of components in the form of plugin names and plugin
version numbers. The PAM searches the local storage for
any existing virtual environments that can serve the sixth
Bot. In this example, the PAM does not find an existing
virtual environment that can serve the sixth Bot. But, the
PAM determines that 1t can add new components to the first
virtual environment, which will allow the first virtual envi-
ronment to support the sixth Bot.

FIG. 16 illustrates an embodiment of a flow diagram for
converting 1600 PYTHON code 1nto plugins used to build
Bots. Initially, a plugin builder (such as a PYTHON pro-
grammer or other PYTHON wuser) prepares 1602 a
PYTHON editing environment, installs the POT SDK, and
prepares their own private repository for testing. In some
embodiments, the POT SDK includes templates, libraries,
utilities, and documentation used by the plugin builder. The
plugin bulder then starts with an original PYTHON pro-
gram and modifies 1t 1604 to fit the format of the POT SDK
template to create the plugin source file.

The plugin builder then tests 1606 the plugin source file
using one or more testing utilities. The plugin builder also
creates 1608 an icon using an icon generation utility. The
plugin builder then packages 1610 the plugin source file and
the 1con using a packaging utility. Next, the plugin builder
sends 1612 the package to their private repository and it
becomes a new plugin. The plugin builder then tests 1614
the new plugin 1n their STU.

The plugin builder either keeps 1616 the plugin 1n the
private repository or requests that the plugin be published in
a public repository, such as a public repository maintained
by a company, organization, or other entity. If the private

10

15

20

25

30

35

40

45

50

55

60

65

14

repository 1s selected, the plugin builder notifies a specific
STU and the new plugin will only be available to the
designated STU. If the public repository 1s selected, then the
new plugin will be available to all STU users.

FIG. 17 1s a block diagram 1llustrating an example com-
puting device 1700 suitable for implementing the systems
and methods described herein. The RPA+ system 102,

computing systems 104-108, plugin repositories 118 and
120, plugin marketplace 122, PYTHON data source 124,
and data source 126 may also have some or all of the
attributes of the computing device 1700. In some embodi-
ments, a cluster of computing devices interconnected by a
network may be used to implement any one or more com-
ponents of the invention.

Computing device 1700 may be used to perform various
procedures, such as those discussed herein. Computing
device 1700 can function as a server, a client, or any other
computing entity. Computing device can perform various
monitoring functions as discussed herein, and can execute
one or more application programs, such as the application
programs described herein. Computing device 1700 can be
any ol a wide variety of computing devices, such as a
desktop computer, a notebook computer, a server computer,
a handheld computer, tablet computer and the like.

Computing device 1700 includes one or more
processor(s) 1702, one or more memory device(s) 1704, one
or more interface(s) 1706, one or more mass storage
device(s) 1708, one or more Input/Output (I/0) device(s)
1710, and a display device 1730 all of which are coupled to
a bus 1712. Processor(s) 1702 include one or more proces-
sors or conftrollers that execute instructions stored in
memory device(s) 1704 and/or mass storage device(s) 1708.
Processor(s) 1702 may also include various types of com-
puter-readable media, such as cache memory.

Memory device(s) 1704 include various computer-read-
able media, such as volatile memory (e.g., random access
memory (RAM) 1714) and/or nonvolatile memory (e.g.,
read-only memory (ROM) 1716). Memory device(s) 1704
may also iclude rewritable ROM, such as Flash memory.

Mass storage device(s) 1708 include various computer
readable media, such as magnetic tapes, magnetic disks,
optical disks, solid-state memory (e.g., Flash memory), and
so forth. As shown in FIG. 17, a particular mass storage
device 1s a hard disk drive 1724. Various drives may also be
included 1n mass storage device(s) 1708 to enable reading
from and/or writing to the various computer readable media.
Mass storage device(s) 1708 include removable media 1726
and/or non-removable media.

I/0 device(s) 1710 include various devices that allow data
and/or other information to be input to or retrieved from
computing device 1700. Example /O device(s) 1710
include cursor control devices, keyboards, keypads, micro-
phones, monitors or other display devices, speakers, print-
ers, network interface cards, modems, lenses, CCDs or other
image capture devices, and the like.

Display device 1730 includes any type of device capable
of displaying information to one or more users of computing
device 1700. Examples of display device 1730 include a
monitor, display terminal, video projection device, and the
like.

Interface(s) 1706 include various interfaces that allow
computing device 1700 to interact with other systems,
devices, or computing environments. Example interface(s)
1706 include any number of different network interfaces
1720, such as interfaces to local area networks (LANs), wide
area networks (WANSs), wireless networks, and the Internet.
Other interface(s) include user interface 1718 and peripheral

US 11,389,960 B2

15

device interface 1722. The interface(s) 1706 may also
include one or more user interface elements 1718. The
interface(s) 1706 may also include one or more peripheral
interfaces such as interfaces for printers, pointing devices
(mice, track pad, etc.), keyboards, and the like.

Bus 1712 allows processor(s) 1702, memory device(s)

1704, interface(s) 1706, mass storage device(s) 1708, and
I/0 device(s) 1710 to communicate with one another, as well
as other devices or components coupled to bus 1712. Bus

1712 represents one or more of several types of bus struc-
tures, such as a system bus, PCI bus, IEEE 1394 bus, USB
bus, and so forth.

For purposes of illustration, programs and other execut-
able program components are shown herein as discrete
blocks, although it 1s understood that such programs and
components may reside at various times 1n diflerent storage
components of computing device 1700, and are executed by
processor(s) 1702. Alternatively, the systems and procedures
described herein can be mmplemented in hardware, or a
combination of hardware, software, and/or firmware. For
example, one or more application specific integrated circuits
(ASICs) can be programmed to carry out one or more of the
systems and procedures described herein.

While various embodiments of the present disclosure are
described herein, 1t should be understood that they are
presented by way of example only, and not limitation. It waill
be apparent to persons skilled in the relevant art that various
changes 1 form and detail can be made therein without
departing from the spirit and scope of the disclosure. Thus,
the breadth and scope of the present disclosure should not be
limited by any of the described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents. The description herein 1is
presented for the purposes of 1llustration and description. It
1s not itended to be exhaustive or to limit the disclosure to
the precise form disclosed. Many modifications and varia-
tions are possible 1 light of the disclosed teaching. Further,
it should be noted that any or all of the alternate implemen-
tations discussed herein may be used 1n any combination
desired to form additional hybrid implementations of the
disclosure.

The 1nvention claimed 1s:

1. A method comprising:

receiving, by a processing system, an automation sce-
nar1o, wherein the automation scenario 1s for execution
by the processing system;

identifying, by the processing system, a list of plugins in
the automation scenario, wherein each of the plugins in
the list of plugins i1s associated with at least one of a
process or an operation;

identifying, by the processing system, a version number
associated with each of the plugins 1n the automation
scenario;

veritying, by the processing system, the list of plugins and
their associated version numbers;

responsive to verifying the list of plugins and their
associated version numbers, building, by the process-
ing system, a virtual environment for executing the
plugins in the automation scenario, wherein no more
than one version of each plugin 1n the list of plugins can
exist 1n the virtual environment;

receiving, by the processing system, a second automation
scenario;

identifying, by the processing system, a list of plugins in
the second automation scenario:

10

15

20

25

30

35

40

45

50

55

60

65

16

identitying, by the processing system, a version number
associated with each of the plugins 1n the second
automation scenario; and

comparing, by the processing system, the list of plugins in
the second automation scenario with the plugins in the
virtual environment.

2. The method of claim 1, further comprising:

downloading the plugins in the list of plugins in the
automation scenario from a plugin repository; and

adding the downloaded plugins to the virtual environ-

ment.

3. The method of claim 1, further comprising saving the
virtual environment locally on the processing system.

4. The method of claim 1, further comprising executing,
the automation scenario in the virtual environment.

5. The method of claim 1, further comprising determining,
by the processing system, whether any plugins 1n the second
automation scenario have diflerent version numbers than
corresponding plugins in the virtual environment.

6. The method of claim 5, further comprising adding the
second automation scenario to the wvirtual environment
responsive to determining that no plugins in the second
automation scenario have diflerent version numbers than the
corresponding plugin 1n the virtual environment.

7. The method of claim 5, further comprising creating a
second virtual environment responsive to determining that at
least one plugin in the second automation scenario has a
different version number than the corresponding plugin 1n
the virtual environment.

8. The method of claim 1, wherein at least one of the
plugins 1n the list of plugins in the automation scenario 1s
generated by converting a PY THON program 1nto the plugin
using a PY THON-to-operation tool.

9. An apparatus comprising:

one or more processors configured to:

recelve an automation scenario, wherein the automa-
tion scenario 1s for execution by the apparatus;

identify a list of plugins 1n the automation scenario
wherein each of the plugins 1n the list of plugins 1s
associated with at least one of a process or an
operation;

identily a version number associated with each of the
plugins 1n the automation scenario;

verily the list of plugins and their associated version
numbers:

responsive to verifying the list of plugins and their
assoclated version numbers, build a virtual environ-
ment for executing the plugins 1in the automation
scenar1io, wherein no more than one version of each
plugin 1n the list of plugins can exist in the virtual
environment;

recelve a second automation scenario;

identify a list of plugins in the second automation
scenario;

identily a version number associated with each of the
plugins 1n the second automation scenario; and

compare the list of plugins in the second automation
scenar1o with the plugins 1n the virtual environment.

10. The apparatus of claim 9, wherein the processor 1s
turther configured to:

download the plugins 1n the list of plugins in the auto-

mation scenario from a plugin repository; and

add the downloaded plugins to the virtual environment.

11. The apparatus of claim 9, wherein the processor 1s
turther configured to execute the automation scenario in the
virtual environment.

US 11,389,960 B2

17

12. The apparatus of claam 9, wherein the processor 1s
turther configured to determine whether any plugins 1n
second automation scenario have different version numbers
than corresponding plugins in the virtual environment.

13. The apparatus of claim 12, wherein the processor 1s
turther configured to add the second automation scenario to
the virtual environment responsive to determining that no
plugins 1n the second automation scenario have diflerent
version numbers than the corresponding plugin 1n the virtual
environment.

14. The apparatus of claim 12, wherein the processor 1s
turther configured to create a second virtual environment
responsive to determining that at least one plugin in the
second automation scenario has a different version number
than the corresponding plugin in the virtual environment.

% x *H % o

10

15

18

	Front Page
	Drawings
	Specification
	Claims

