

US011389275B2

(12) United States Patent

Robb et al.

(54) TEMPORARY ABUTMENT WITH COMBINATION OF SCANNING FEATURES AND PROVISIONALIZATION FEATURES

(71) Applicant: **BIOMET 3I, LLC**, Palm Beach

Gardens, FL (US)

(72) Inventors: **T. Tait Robb**, Stewart, FL (US);

Stephen M. Herrington, Naples, FL (US); Miguel G. Montero, Boynton Beach, FL (US); Ralph E Goodman, West Palm Beach, FL (US); Dan P Rogers, Palm Beach Gardens, FL (US); John J. Bellanca, West Palm Beach, FL (US); Zachary B. Suttin, West

Palm Beach, FL (US)

(73) Assignee: BIOMET 3I, LLC, Palm Beach

Gardens, FL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/445,978

(22) Filed: Jun. 19, 2019

(65) Prior Publication Data

US 2019/0298497 A1 Oct. 3, 2019

Related U.S. Application Data

- (63) Continuation of application No. 14/575,717, filed on Dec. 18, 2014, now Pat. No. 10,368,964, which is a (Continued)
- (51) Int. Cl.

 A61C 8/00 (2006.01)

 A61C 13/00 (2006.01)

 (Continued)

(Continued)

(10) Patent No.: US 11,389,275 B2

(45) **Date of Patent:** Jul. 19, 2022

(58) Field of Classification Search

CPC A61C 8/008; A61C 8/005; A61C 8/0068; A61C 8/006; A61C 8/006; A61C 8/0077;

(Continued)

(56) References Cited

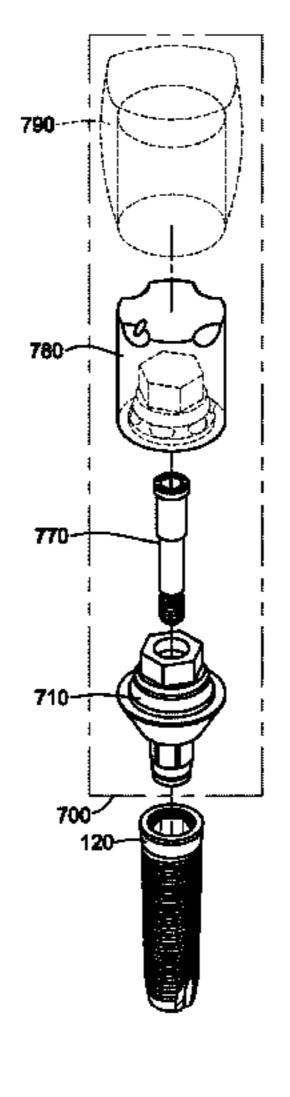
U.S. PATENT DOCUMENTS

3,732,621 A 5/1973 Bostrom 3,906,634 A 9/1975 Aspel (Continued)

FOREIGN PATENT DOCUMENTS

DE 2114323 A1 10/1971 DE 3531389 A1 3/1987 (Continued)

OTHER PUBLICATIONS


"U.S. Appl. No. 13/798,894, Advisory Action dated May 18, 2015", 3 pgs.

(Continued)

Primary Examiner — Jacqueline T Johanas Assistant Examiner — Shannel Nicole Belk

(57) ABSTRACT

A lower region of a temporary abutment includes an antirotational feature for non-rotationally mating with a dental
implant. An upper region of the temporary abutment
includes a first anti-rotational structure and at least one
retention groove. A top surface of the temporary abutment
includes one or more informational markers that provide
information concerning the dental implant. A temporary
abutment cap is configured to be coupled to the upper region
of the temporary abutment. The temporary abutment cap has
at least one projection configured to mate with the at least
one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure
that is configured to slidably engage the first anti-rotational
structure of the temporary abutment. The temporary abut(Continued)

ment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.

16 Claims, 31 Drawing Sheets

Related U.S. Application Data

continuation of application No. 13/473,202, filed on May 16, 2012, now Pat. No. 8,944,816.

- (60) Provisional application No. 61/486,630, filed on May 16, 2011.
- (51) Int. Cl.

 A61C 9/00 (2006.01)

 A61C 13/107 (2006.01)

 A61C 13/265 (2006.01)
- (52) **U.S. Cl.**

(58) Field of Classification Search

CPC A61C 8/0001; A61C 13/0001; A61C 13/2656; A61C 2008/0084

See application file for complete search history.

(56) References Cited

3,919,772 A

U.S. PATENT DOCUMENTS

11/1975 Lenczycki

5/1976 Muller 3,958,471 A 3/1977 Rybicki et al. 4,011,602 A 11/1977 Waltke 4,056,585 A 5/1978 Kawahara et al. 4,086,701 A 4,177,562 A 12/1979 Miller et al. 10/1981 Altschuler et al. 4,294,544 A 4,306,862 A 12/1981 Knox 4,325,373 A 4/1982 Slivenko et al. 7/1982 Scholer 4,341,312 A 12/1982 Sher 4,364,381 A 3/1984 Small 4,439,152 A 4,543,953 A 10/1985 Slocum et al. 10/1985 Driskell 4,547,157 A 2/1986 Kulick 4,571,180 A 4,611,288 A 9/1986 Duret et al. 10/1986 Moermann et al. 4,615,678 A 4,624,673 A 11/1986 Meyer 5/1987 Duret et al. 4,663,720 A 12/1987 Linkow et al. 4,713,004 A 7/1988 Lundgren et al. 4,756,689 A 7/1988 Niznick 4,758,161 A 4,767,331 A 8/1988 Hoe 4,772,204 A 9/1988 Soderberg 12/1988 Kirsch 4,793,808 A 4,821,200 A 4/1989 Oberg 6/1989 Linkow et al. 4,842,518 A 4,850,870 A * 7/1989 Lazzara A61C 8/0048 433/174 4,850,873 A 7/1989 Lazzara et al. 4,854,872 A 8/1989 Detsch 4,856,994 A 8/1989 Lazzara et al. 10/1989 Branjnovic 4,872,839 A 3/1990 Soderberg 4,906,191 A 3/1990 Brajnovic et al. 4,906,420 A 6/1990 Sillard 4,931,016 A

4,935,635 A 6/1990 O'harra 4,955,811 A 9/1990 Lazzara et al. 4,961,674 A 10/1990 Wang et al. 10/1990 Steinbichler et al. 4,964,770 A 1/1991 Sellers 4,986,753 A 4,988,297 A 1/1991 Lazzara et al. 1/1991 Lazzara 4,988,298 A 4,998,881 A 3/1991 Lauks 5,000,685 A 3/1991 Brajnovic 5,006,069 A 4/1991 Lazzara et al. 5/1991 Fenick 5,015,183 A 5,015,186 A 5/1991 Detsch 5,030,096 A 7/1991 Hurson et al. 7/1991 Daftary 5,035,619 A 5,040,982 A 8/1991 Stefan-Dogar 5,040,983 A 8/1991 Binon 5,064,375 A 11/1991 Jorneus 12/1991 Green, Jr. et al. 5,071,351 A 12/1991 Daftary 5,073,111 A 2/1992 Branjovic et al. 5,087,200 A 3/1992 Friedman et al. 5,100,323 A 4/1992 Piche 5,104,318 A 4/1992 Voitik 5,106,300 A 5,122,059 A 6/1992 Durr et al. 6/1992 Ingber et al. 5,125,839 A 5,125,841 A 6/1992 Carlsson et al. 7/1992 Fenick 5,133,660 A 8/1992 Marlin 5,135,395 A 9/1992 Jorneus 5,145,371 A 9/1992 Daftary et al. 5,145,372 A 5,176,516 A 1/1993 Koizumi 5,188,800 A 2/1993 Green et al. 3/1993 Gersberg 5,195,892 A 4/1993 Kamiya et al. 5,205,745 A 5/1993 Friedman et al. 5,209,659 A 5/1993 Balfour et al. 5,209,666 A 5/1993 Daftary 5,213,502 A 6/1993 Kruger et al. 5,221,204 A 5,237,998 A 8/1993 Duret et al. 5,246,370 A 9/1993 Coatoam 5,257,184 A 10/1993 Mushabac 1/1994 Niznick 5,281,140 A 2/1994 Clostermann 5,286,195 A 5,286,196 A 2/1994 Brajnovic et al. 5,292,252 A 3/1994 Nickerson et al. 5,297,963 A 3/1994 Daftary 4/1994 Kownacki et al. 5,302,125 A 5,312,254 A 5/1994 Rosenlicht 5/1994 McLauglin et al. 5,312,409 A 5,316,476 A 5/1994 Krauser 6/1994 Pompa 5,320,529 A 6/1994 Horng et al. 5,322,436 A 5,328,371 A 7/1994 Hund et al. 8/1994 Niznick 5,334,024 A 5,336,090 A 8/1994 Wilson et al. 8/1994 Beaty et al. 5,338,196 A 5,338,198 A 8/1994 Wu et al. 5,343,391 A 8/1994 Mushabac 5,344,457 A 9/1994 Pilliar et al. 5,350,297 A 9/1994 Cohen 10/1994 Schroeder et al. 5,359,511 A 11/1994 Salazar et al. 5,362,234 A 11/1994 Daftary 5,362,235 A 11/1994 Sutter 5,368,483 A 5,370,692 A 12/1994 Fink et al. 5,372,502 A 12/1994 Massen et al. 5,386,292 A 1/1995 Massen et al. 5,401,170 A 3/1995 Nonomura 5,413,481 A 5/1995 Goppel et al. 5,417,569 A 5/1995 Perisse 5,417,570 A 5/1995 Zuest et al. 5,419,702 A 5/1995 Beaty et al. 5,431,567 A 7/1995 Daftary 5,437,551 A 8/1995 Chalifoux 8/1995 Wenz 5,440,393 A 9/1995 Dehoff et al. 5,452,219 A 5,458,488 A 10/1995 Chalifoux

5,476,382 A

5,476,383 A

12/1995 Daftary

12/1995 Beaty et al.

US 11,389,275 B2 Page 3

(56)		Referen	ces Cited		6,099,311			Wagner et al.	
-	us i	PATENT	DOCUMENTS		6,099,313 6,099,314			Dorken et al. Kopelman et al.	
'	0.5.		DOCOMENTS		6,120,293			Lazzara et al.	
5,492,471	A	2/1996	Singer		6,129,548	\mathbf{A}	10/2000	Lazzara et al.	
5,497,336			Andersson et al.		6,135,773		10/2000		
5,516,288			Sichler et al.		6,142,782		11/2000		
5,527,182	A *	6/1996	Willoughby		6,159,010 6,174,168			Rogers et al. Dehoff et al.	
5 522 909	A	7/1006	Mana	433/172	6,175,413			Lucas	
5,533,898 5,538,426		7/1996 7/1996	Harding et al.		6,190,169			Bluemli et al.	
5,547,377			Daftary		6,197,410			Vallittu et al.	
5,556,278		9/1996	_		6,200,125			Akutagawa	
5,564,921		10/1996			6,206,693 6,210,162			Hultgren Chishti et al.	
5,564,924		10/1996			6,217,331			Rogers et al.	
5,569,578 5,575,656		10/1996	Mushabac Hajiar		6,217,334			Hultgren	
5,580,244		12/1996	00		6,227,859		5/2001		
5,580,246			Fried et al.		6,244,867			Aravena et al.	
5,595,703			Swaelens et al.		6,257,890 6,273,720			Khoury et al. Spalten	
5,613,832		3/1997			6,283,753			Willoughby	
5,613,852 5,616,899		3/1997 4/1997	Recigno		6,287,119			Van Nifterick et al.	
5,630,717			Zuest et al.		6,296,483		10/2001	Champleboux	
5,636,986			Pezeshkian		6,305,939			Dawood	
5,651,675		7/1997	$\boldsymbol{\varepsilon}$		6,312,260 6,319,000		11/2001	Kumar Branemark	
5,652,709			Andersson et al.		6,322,728			Brodkin et al.	
5,658,147 5,662,476			Phimmasone Ingber et al.		/ /			Kopelman	
5,674,069		10/1997	-		6,358,052			Lustig et al.	
5,674,071			Beaty et al.		6,382,975		5/2002		
5,674,073			Ingber et al.		6,402,707 6,406,295	_	6/2002	Ernst Mahler	461C 8/00
5,681,167		10/1997			0,400,293	DI	0/2002	wranter	433/173
5,685,715 5,688,283		11/1997	Beaty et al.		6,431,866	B2	8/2002	Hurson et al.	133/173
5,704,936		1/1998			, ,			Gittelson et al.	
5,718,579			Kennedy		6,488,503			Lichkus et al.	
5,725,376	A	3/1998	Poirier		6,497,574		12/2002		
5,733,123			Blacklock et al.		6,514,258 6,540,784			Brown et al. Barlow et al.	
5,733,124 5,741,215		3/1998 4/1998			6,558,162			Porter et al.	
, ,			Greenberg et al.		6,568,936			Macdougald et al.	
· ·			Hinds	A61C 8/005	6,575,751			Lehmann et al.	
				433/172	6,594,539 6,610,079		7/2003 8/2003	•	
5,762,125			Mastrorio		, ,			Beaty et al.	
5,762,500 5,768,134		6/1998 6/1998	Swaelens et al.		6,629,840			Chishti et al.	
5,769,636			Di Sario		6,634,883		10/2003		
5,791,902	A	8/1998			6,644,970			Lin et al. Rubbert et al.	
5,800,168			Cascione et al.		•			Gateno et al.	
5,810,592 5,813,858		9/1998 9/1998	2		6,672,870		1/2004		
5,823,778			Schmitt et al.		6,688,887	B2	2/2004	Morgan	
5,842,859		12/1998			6,691,764			Embert et al.	
5,846,079		12/1998			6,726,480 6,743,491		4/2004 6/2004	Sutter Cirincione et al.	
5,851,115			Carlsson et al.		6,755,652		6/2004		
5,857,853 5,871,358			Van Nifterick et al. Ingber et al.		6,772,026			Bradbury et al.	
5,873,722			Lazzara et al.		6,776,614			Wiechmann et al.	
5,876,204			Day et al.		6,783,359		8/2004	-	
5,885,078			Cagna et al.		6,790,040 6,793,491			Amber et al. Klein et al.	
5,888,034			Greenberg Bearing III et al		/ /			Schulman et al.	
5,902,109 5,904,483		5/1999	Reams, III et al. Wade		6,814,575				
5,915,962			Rosenlicht		6,821,462			Schulman et al.	
5,927,982		7/1999			· ·			Kipke et al. Phleps et al.	
5,938,443			Lazzara et al.		6,882,894			Durbin et al.	
5,954,769 5,964,591			Rosenlicht Beaty et al.		6,885,464			Pfeiffer et al.	
5,967,777			Klein et al.		6,902,401			Jornéus et al.	
5,984,681	A	11/1999	Huang		6,913,463			Blacklock	
5,989,025			-		6,926,442		8/2005 8/2005		
5,989,029 5,989,258		11/1999 11/1999	Osorio et al. Hattori		6,926,525 6,939,489			Rønvig et al. Moszner et al.	
5,989,238		12/1999			6,942,699			Stone et al.	
6,000,939			Ray et al.		6,953,383			Rothenberger	
6,008,905	A	12/1999	Breton et al.		·	B2	10/2005	Kopelman et al.	
6,068,479		5/2000			,			Malin et al.	
6,093,023	А	7/2000	Sala Meseguer		0,970,760	B 2	11/2005	Wolf et al.	

US 11,389,275 B2 Page 4

(56)	Referen	ces Cited	7,628,537			Schulze-Ganzlin	
IIS	PATENT	DOCUMENTS	, ,			De Clerck Cinader, Jr.	
0.5	. 17111/11	DOCOMENTS	7,654,823		2/2010	ŕ	
6,971,877 B2	12/2005	Harter	, ,			Brodkin et al.	
•		Brodkin et al.	7,658,610		2/2010		
7,010,150 B1			7,661,956 7,665,989			Powell et al. Brajnovic et al.	
7,010,153 B2 7,012,988 B2		Zimmermann	7,679,723			Schwotzer	
7,012,988 B2 7,018,207 B2		Adler et al. Prestipino	7,687,754			Eiff et al.	
7,021,934 B2		Aravena	7,689,308			Holzner et al.	
7,029,275 B2			,			Basler et al.	
7,044,735 B2	5/2006		7,698,014 7,758,346			Dunne et al. Letcher	
7,056,115 B2 7,056,472 B1		Phan et al. Behringer	7,774,084			Cinader, Jr.	
7,059,856 B2		Marotta	7,780,907			Schmidt et al.	
7,066,736 B2		Kumar et al.	7,785,007			Stoeckl Kärner et el	
7,084,868 B2		Farag et al.	7,787,132 7,796,811			Körner et al. Orth et al.	
7,086,860 B2 7,097,451 B2		Schuman et al. Tang	7,798,708			Erhardt et al.	
7,104,795 B2		<u> </u>	7,801,632			Orth et al.	
7,110,844 B2		Kopelman et al.	7,815,371			Schulze-ganzlin	
7,112,065 B2		Kopelman et al.	7,824,181 D629 908		11/2010	Jerger et al.	
7,118,375 B2 D532,991 S		Durbin et al. Gozzi et al	7,855,354			•	
7,153,132 B2		Tedesco	7,865,261		1/2011		
7,153,135 B1	12/2006	Thomas	7,876,877		1/2011		
7,163,443 B2		Basler et al.	7,901,209 7,922,488			Saliger et al. Falk A610	13/0001
7,175,434 B2 7,175,435 B2		Brajnovic Andersson et al.	7,522,100	172	1/ 2011	1 dik 71010	433/173
7,178,731 B2		Basler	7,982,731	B2	7/2011	Orth et al.	
7,214,062 B2		Morgan	7,985,119			Basler et al.	
7,220,124 B2		Taub et al.	7,986,415			Thiel et al. Amber et al.	
7,228,191 B2 7,236,842 B2		Hofmeister et al. Kopelman et al.	7,988,449 8,002,547			Porter et al.	
7,230,842 B2 7,281,927 B2		Marotta	8,011,925			Powell et al.	
7,286,954 B2		Kopelman et al.	8,011,927			Berckmans, III	
7,303,420 B2			8,026,943			Weber et al.	
7,319,529 B2 7,322,746 B2		Babayoff Beckhaus et al.	,			Towse et al. Swaelens et al.	
7,322,740 B2 7,322,824 B2		Schmitt	8,047,895				
7,324,680 B2		Zimmermann	, ,			Basler et al.	
7,329,122 B1	2/2008		8,062,034 8,075,313			Hanisch et al. Ranck et al.	
7,333,874 B2 7,335,876 B2		Taub et al. Eiff et al.	8,073,513			Karkar et al.	
D565,184 S		Royzen	8,105,081		1/2012		
7,367,801 B2		Saliger	8,185,224			Powell et al.	
7,379,584 B2		Rubbert et al.	8,226,654 8,257,083			Ranck et al. Berckmans, III et al.	
D571,471 S 7,381,191 B2			8,353,703			Amber et al.	
7,383,094 B2		Kopelman et al.	8,944,816	B2 *	2/2015	Robb A61	C 8/0048
D575,747 S		Abramovich et al.	0.044.010	D2	2/2015	D 11 4 1	433/172
7,421,608 B2 7,425,131 B2		Schron Amber et al.	8,944,818 9,629,696			Robb et al. Ouellette	
7,429,175 B2			2001/0008751			Chishti et al.	
7,435,088 B2		Brajnovic	2001/0003401			Macdougald et al.	
7,476,100 B2			2002/0010568			Rubbert et al.	
7,481,647 B2 7,488,174 B2		Sambu et al. Kopelman et al.	2002/0028418 2002/0039717			Farag et al. Amber et al.	
7,497,619 B2		-	2002/0160337			Klein et al.	
7,497,983 B2	3/2009	Khan et al.	2002/0001671			Moszner et al.	
7,520,747 B2		Stonisch	2003/0082498 2003/0130605		5/2003 7/2003	Halldin et al.	
7,522,764 B2 7,534,266 B2		Schwotzer Kluger	2003/0130003		10/2003	_	
7,536,234 B2		Kopelman et al.	2003/0222366			Stangel et al.	
7,545,372 B2	6/2009	Kopelman et al.	2004/0029074			Brajnovic	
7,551,760 B2		Scharlack et al.	2004/0048227 2004/0180308			Brajnovic Ebi et al.	
7,555,403 B2 7,556,496 B2		Kopelman et al. Cinader, Jr. et al.	2004/0180308		11/2004		
7,559,692 B2		Beckhaus et al.	2004/0219479		11/2004		
7,563,397 B2		Schulman et al.	2004/0219490			Gartner et al.	
D597,769 S 7,572,058 B2			2004/0220691 2004/0241611			Hofmeister et al. Amber et al.	
7,572,038 B2 7,572,125 B2		Pruss et al. Brajnovic	2004/0241011			Bradbury et al.	
7,572,123 B2 7,574,025 B2		Feldman	2004/0259051			Brajnovic	
7,578,673 B2	8/2009	Wen et al.	2005/0002371	A 1	2/2005	Brodkin et al.	
7,580,502 B2		Dalpiaz et al.	2005/0056350			Dolabdjian et al.	
7,581,951 B2		Lehmann et al.	2005/0070782 2005/0084144			Brodkin Feldman	
7,582,855 B2	<i>3/2</i> 009	1 Telliel	200 <i>3/</i> 000 4 144	<i>[</i>]	7/2003	1 Citilian	

US 11,389,275 B2 Page 5

(56)	Referer	nces Cited	2009/02637			Berckmans, III et al.
IIS	PATENT	DOCUMENTS	2009/02873 2009/02980			Adusumilli et al. Brajnovic
0.0.	. 17111/141	DOCOMENTS	2009/02980			Boerjes et al.
2005/0100861 A1	5/2005	Choi et al.	2009/03177			Brajnovic
2005/0170311 A1		Tardieu et al.	2009/03251			Brajnovic et al.
2005/0271996 A1		Sporbert et al.	2010/00093 2010/00288			Tardieu et al. Andersson et al.
2005/0277089 A1 2005/0277090 A1		Brajnovic Anderson et al.	2010/00288			Brodkin et al.
2005/0277090 A1 2005/0277091 A1		Andersson et al.	2010/00752			Brajnovic
2005/0282106 A1		_	2010/00929			Esposti et al.
2005/0283065 A1		Babayoff	2010/01050			Powell et al.
2006/0006561 A1		Brajnovic	2010/01514 2010/01514			Ranck Ranck et al.
2006/0008763 A1 2006/0008770 A1		Brajnovic Brajnovic et al.	2010/01732			Sogo et al.
2006/0093988 A1		Swaelens et al.	2010/02098	77 A1	8/2010	Hogan et al.
2006/0094951 A1		Dean et al.	2010/02160			Garcia et al.
2006/0127848 A1		Sogo et al.	2010/02669 2010/02807			Yau et al. Pattijn et al.
2006/0204928 A1 2006/0210949 A1		Hurson	2010/02854		11/2010	3
2006/0210949 A1 2006/0263741 A1		Stoop Imgrund et al.	2011/00087			Pettersson
2006/0263747 A1		Hurson	2011/00605			Pettersson et al.
2006/0281041 A1		Rubbert et al.	2011/00863			Lerner et al.
2007/0015111 A1		Kopelman et al.	2011/01297 2011/01832	_		Berckmans, III et al. Powell G06F 30/00
2007/0031790 A1 2007/0065777 A1		Raby et al. Becker	2011/01032	67 AI	7/2011	433/173
2007/0003777 A1 2007/0077532 A1		Harter	2011/01832	90 A1	7/2011	Galgut et al.
2007/0092854 A1		Powell et al.	2011/01910	81 A1		Malfliet et al.
2007/0141525 A1		Cinader, Jr.	2011/02444			Amber et al.
2007/0211081 A1		Quadling et al.	2011/02691 2011/02750			Berckmans, III et al. Tardieu et al.
2007/0218426 A1 2007/0269769 A1		Quadling et al. Marchesi	2011/02/30		12/2011	
2007/0209709 A1 2007/0281277 A1		Brajnovic				Suttin et al.
2007/0298377 A1		Kenealy et al.	2011/03060	14 A1*	12/2011	Conte A61C 8/005
2008/0038692 A1		Andersson et al.	2012/00105	40 44	1/2012	433/173
2008/0044794 A1		Brajnovic	2012/00107			Swaelens et al.
2008/0057467 A1 2008/0070181 A1		Gittelson Abolfathi et al.	2012/00771 2012/01353			Ospelt et al. Ranck et al.
2008/0070101 A1		Brajnovic	2012/01645			Bavar
2008/0085489 A1		Schmitt	2012/01648	93 A1	6/2012	Mitsuzuka et al.
2008/0114371 A1		Kluger	2012/02141			Krivoruk
2008/0118895 A1		Brajnovic	2012/02141		-	Takahashi et al.
2008/0124676 A1 2008/0153060 A1		Marotta De Moyer	2012/02640			Philibin Robb A61C 8/006
2008/0153060 A1		Marcello	2012/02932	23 A1	11/2012	433/173
2008/0153065 A1		Brajnovic et al.	2012/02952	26 A1	11/2012	Robb et al.
2008/0153067 A1		Berckmans et al.				Ranck et al.
2008/0153069 A1 2008/0176189 A1		Holzner et al. Stonisch	2013/01715	84 A1	7/2013	Brun
2008/01/0185 A1 2008/0206714 A1		Schmitt	2013/01896	_		Hochman et al.
2008/0233537 A1*		Amber A61C 9/004	2013/01962	90 A1*	8/2013	Herrington A61C 8/0001
	0 (5 0 0 0	433/173	2013/02968	13 A2	11/2013	433/173 Park
2008/0233539 A1		Rossler	2013/02906			Bolleter
2008/0241798 A1 2008/0261165 A1		Holzner et al. Steingart et al.	2014/02348			Herrington et al.
2008/0261176 A1		Hurson	2014/03437	06 A1		Hart et al.
2008/0286722 A1	11/2008	Berckmans, III et al.	2015/01047	56 A1	4/2015	Robb et al.
2008/0300716 A1		Kopelman et al.	_		()	
2009/0017418 A1 2009/0026643 A1		Gittelson Wiest et al.	ŀ	FOREIC	N PATE	NT DOCUMENTS
2009/0020043 A1 2009/0042167 A1		Van Der Zel	DE	4029	8855 A1	3/1992
2009/0081616 A1		Pfeiffer	DE		9256 A1	11/2000
2009/0009851 A1		Zhang	EP		2855 A1	8/1991
2009/0087817 A1		Jansen et al.	$\stackrel{\mathbf{EP}}{=}$		3829 A1	
2009/0092948 A1 2009/0098511 A1		Gantes Zhang	EP		7146 A1	6/1995
2009/0060415 A1		Galgut et al.	EP EP		7193 A1 7017 A2	8/1996 12/1996
2009/0123045 A1	5/2009	Quadling et al.	EP		0514 A1	12/1990
2009/0123887 A1		Brajnovic	EP	235	1536 A1	* 8/2011 A61C 8/0001
2009/0130629 A1 2009/0130630 A1		Towse et al. Suttin et al.	FR		9896 A3	8/1998
2009/0130030 A1 2009/0186319 A1	7/2009		GB JP		1470 A 2063 A	10/1972 8/1993
2009/0187393 A1		Van Lierde et al.	JP		4252 A	8/1993 6/1994
2009/0220134 A1		Cahill et al.	JP		8916 A	8/1997
2009/0220916 A1		Fisker et al.	JP		2882 A	10/2000
2009/0220917 A1 2009/0239197 A1	9/2009		JP ID		0187 A	7/2003
2009/0239197 A1 2009/0239200 A1		Brajnovic Brajnovic et al.	JP JP		4481 A 2172 A	8/2003 4/2006
2009/0253200 A1			JP		2533 A	3/2009
	- 	.		_ _	- 	

(56) References Cited

FOREIGN PATENT DOCUMENTS

KR	20100090564 A	8/2010
KR	10110828081	1/2012
WO	WO-8502337 A1	6/1985
WO	WO-9426200A 1	11/1994
WO	WO-1994026200 A1	11/1994
WO	WO-1999032045 A1	7/1999
WO	WO-2000008415 A1	2/2000
WO	WO-0134057 A1	5/2001
WO	WO-2001058379 A1	8/2001
WO	WO-2002053055 A1	7/2002
WO	WO-2003024352 A1	3/2003
WO	WO-2004030565 A1	4/2004
WO	WO-2004075771 A1	9/2004
WO	WO-2004087000 A1	10/2004
WO	WO-2004098435 A2	11/2004
WO	WO-2006014130 A1	2/2006
WO	WO-2006062459 A1	6/2006
WO	WO-2006082198 A1	8/2006
WO	WO-2007005490 A2	1/2007
WO	WO-2007033157 A2	3/2007
WO	WO-2007104842 A1	9/2007
WO	WO-2007129955 A1	11/2007
WO	WO-2008057955 A2	5/2008
WO	WO-2008083857 A1	7/2008
WO	WO-2009060415 A2	5/2009
WO	WO-2009146164 A1	12/2009
WO	WO-2010088754 A1	8/2010
WO	WO-2012126475 A1	9/2012

OTHER PUBLICATIONS

- "U.S. Appl. No. 13/798,894, Advisory Action dated Nov. 9, 2018", 3 pgs.
- "U.S. Appl. No. 13/798,894, Appeal Brief filed Jul. 13, 2015", 23 pgs.
- "U.S. Appl. No. 13/798,894, Appeal Decision dated Jul. 24, 2017", 16 pgs.
- "U.S. Appl. No. 13/798,894, Examiner's Answer dated Oct. 6, 2015", 11 pgs.
- "U.S. Appl. No. 13/798,894, Final Office Action dated Jan. 13, 2015", 12 pgs.
- "U.S. Appl. No. 13/798,894, Final Office Action dated Aug. 28, 2018", 12 pgs.
- "U.S. Appl. No. 13/798,894, Non Final Office Action dated Jan. 10, 2019", 10 pgs.
- "U.S. Appl. No. 13/798,894, Non Final Office Action dated Jan. 12, 2018", 14 pgs.
- "U.S. Appl. No. 13/798,894, Non Final Office Action dated Aug. 26, 2014", 15 pgs.
- "U.S. Appl. No. 13/798,894, Notice of Non-Compliant Amendment dated Oct. 2, 2017", 2 pgs.
- "U.S. Appl. No. 13/798,894, Reply Brief filed Nov. 3, 2015", 6 pgs. "U.S. Appl. No. 13/798,894, Response filed Apr. 12, 2018 to Non Final Office Action dated Jan. 12, 2018", 14 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Apr. 13, 2015 to Final Office Action dated Jan. 13, 2015", 19 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Jun. 25, 2014 to Restriction Requirement dated Jun. 4, 2014", 9 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Sep. 26, 2017 to Appeal Decision dated Jul. 24, 2017", 11 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Oct. 29, 2018 to Final Office Action dated Aug. 28, 2018", 13 pgs.
- Office Action dated Aug. 28, 2018", 13 pgs. "U.S. Appl. No. 13/798,894, Response filed Nov. 28, 2018 to
- Advisory Action dated Nov. 11, 2018", 14 pgs. "European Application Serial No. 19196489.9, Extended European
- "European Application Serial No. 19196489.9, Extended European Search Report dated Oct. 30, 2020", 10 pgs.
- "European Application Serial No. 19197877.4, Extended European Search Report dated Jan. 12, 2021", 8 pages.
- "European Application Serial No. 19196489.9, Response filed Nov. 23, 2021", 33 pgs.

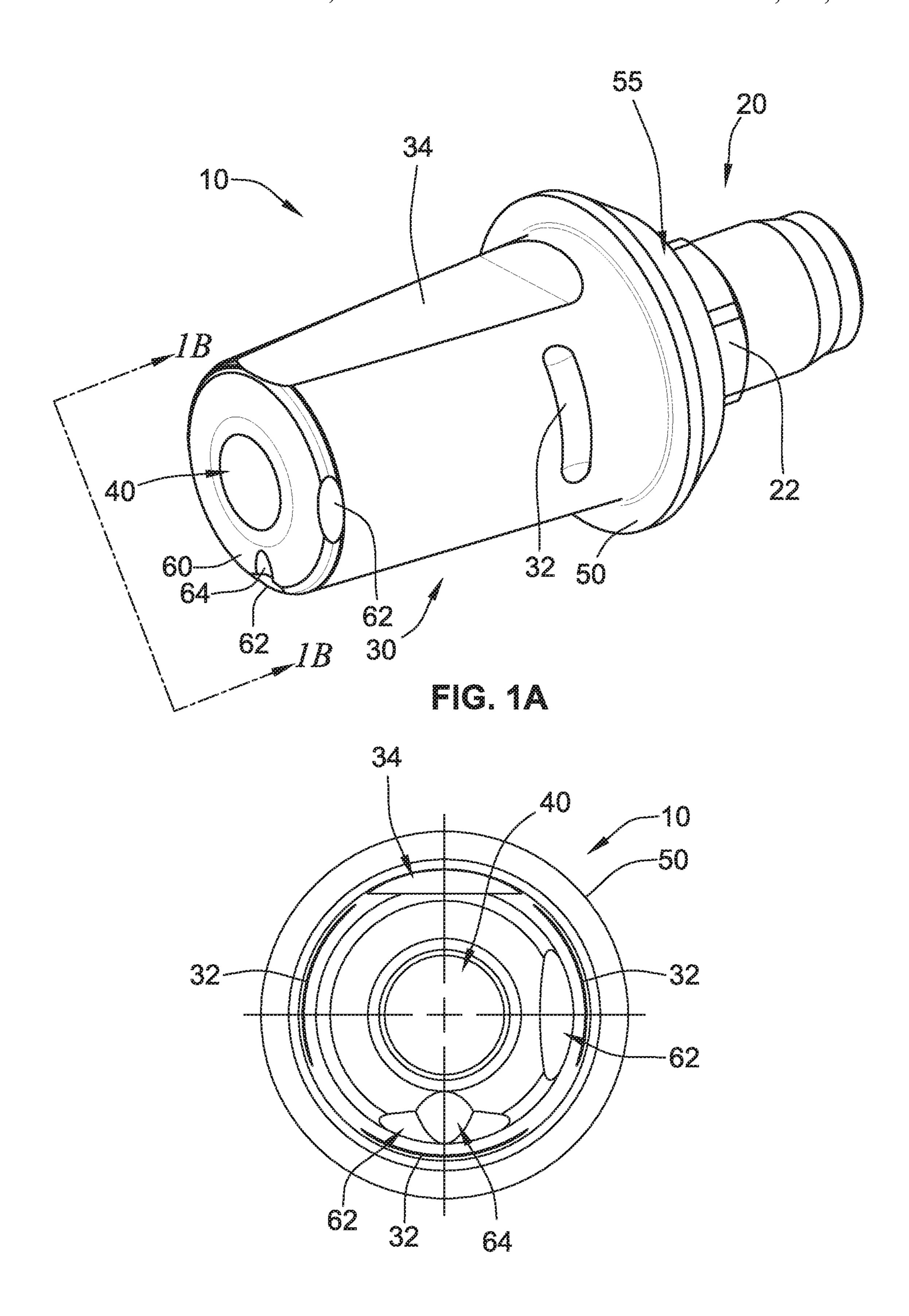
- "European Application Serial No. 19197877.4, Response to Extended European Search Report dated Jan. 12, 2021", 18 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Dec. 4, 2014 to Non Final Office Action dated Aug. 26, 2014", 4 pgs.
- "U.S. Appl. No. 13/798,894, Response filed Feb. 4, 2017 to Notice of Non-Compliant Amendment dated Oct. 2, 2017" 8 pgs.
- "U.S. Appl. No. 13/798,894, Restriction Requirement dated Jun. 4, 2014", 7 pgs.
- "U.S. Appl. No. 14/575,717, Final Office Action dated Apr. 6, 2018", 18 pgs.
- "U.S. Appl. No. 14/575,717, Non Final Office Action dated Feb. 23, 2017", 18 pgs.
- "U.S. Appl. No. 1.4/575,717, Non Final Office Action dated Aug. 14, 2018", 19 pgs.
- "U.S. Appl. No. 14/575,717, Notice of Allowance dated Mar. 14, 2019", 12 pgs.
- "U.S. Appl. No. 14/575,717, Preliminary Amendment filed Dec. 18, 2014", 8 pgs.
- "U.S. Appl. No. 14/575,717, Response filed May 23, 2017 to Non Final Office Action dated Feb. 23, 2017", 6 pgs.
- "U.S. Appl. No. 14/575,717, Response filed Jul. 6, 2018 to Final Office Action, dated Apr. 6, 2018", 18 pgs.
- "U.S. Appl. No. 14/575,717, Response filed Nov. 14, 2018 to Non Final Office Action dated Aug. 14, 2018", 6 pgs.
- "U.S. Appl. No. 14/575,717, Response filed Dec. 7, 2016 to Restriction Requirement dated Oct. 7, 2016", pgs.
- "U.S. Appl. No. 14/575,717, Restriction Requirement dated Oct. 7, 2016", 6 pgs.
- "U.S. Appl. No. 14/575,717, Second Preliminary Amendment filed Dec. 19, 2014", 6 pgs.
- "U.S. Appl. No. 14/575,717, Third Preliminary Amendment filed
- Mar. 17, 2015", 6 pgs.

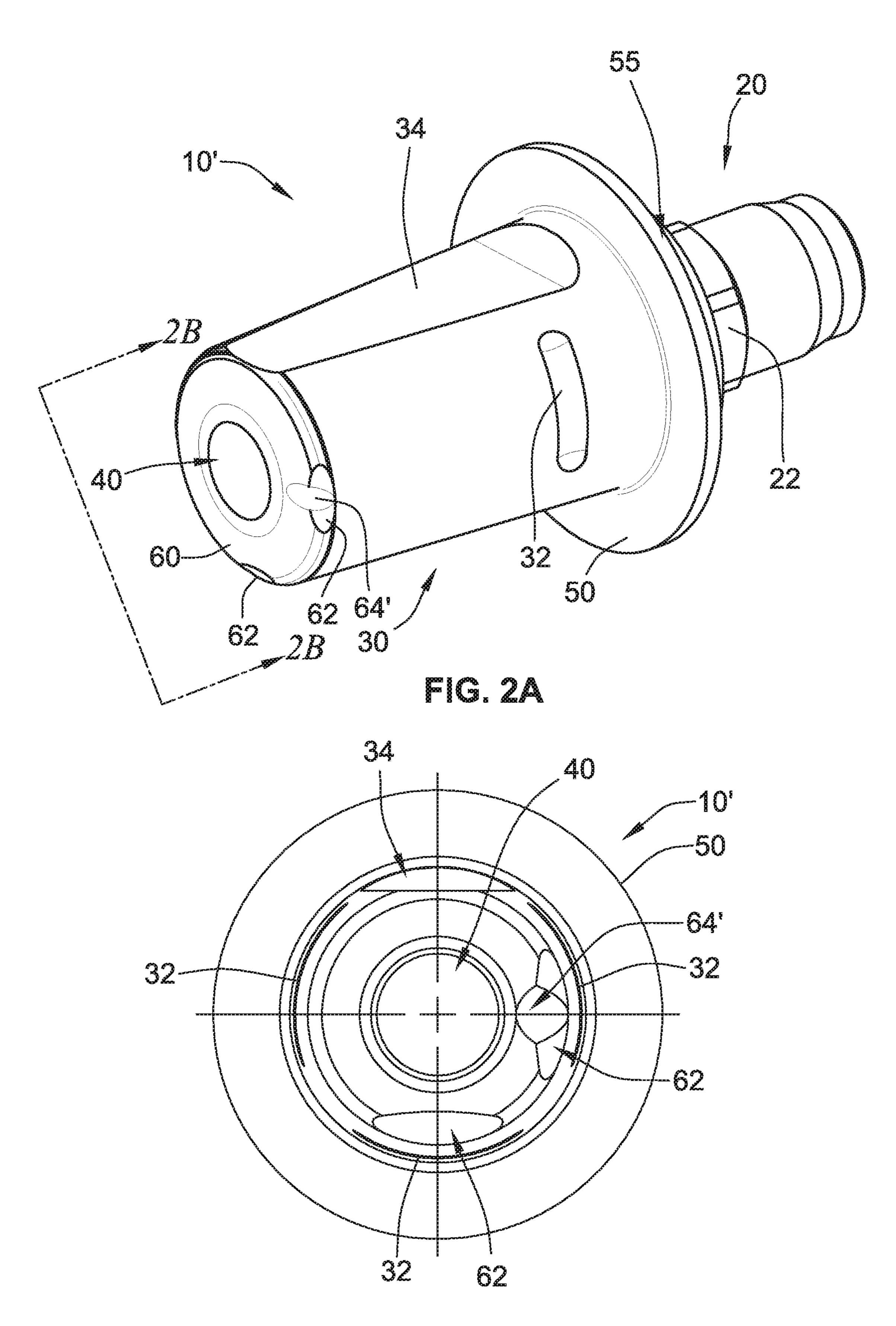
 "Australian Application Serial No. 2015201244, First Examiner Report dated Mar. 14, 2016", 3 pgs.
- "Australian Application Serial No. 2015201244, Response filed Jan.
- 5, 2017 to First Examiner Report dated Mar. 14, 2016", 63 pgs. "Canadian Application Serial No. 2,833,215, Office Action dated Mar. 10, 2017", 3 pgs.
- "Canadian .Application Serial No. 2.833,215, Office Action, dated May 3, 2016", 3 pgs.
- "Canadian Application Serial No. 2,833,215, Response filed Mar. 28, 2017 to Office Action dated Mar. 10, 2017", 6 gs.
- "Canadian Application Serial No. 2,833,215, Response filed Nov. 3, 2016 to Office Action dated May 3, 2016", 33 pgs.
- "European Application Serial No. 12786777.8, Communication Pursuant to Article 94(3) EPC dated Dec. 4, 2017", 7 pgs.
- "European Application Serial No. 12786777.8, Extended European Search Report dated Oct. 28, 2014", 7 pgs.
- "European Application Serial No. 12786777.8, Response filed May 26, 2015 to Extended European Search teportmailed May 26, 2015", 11 pgs.
- "European Applicaton Serial No. 12786777.8, Response filed Jun. 25, 2018 to Commurcaton Pursuant to Article 94(3) EPC dated Dec. 14, 2017", 14 pgs.
- "European Application Serial No. 1476455.9, Communication Pursuant to Article 94(3) EPC dated Jul. 2, 2018", 9 pgs.
- "European Application Serial No. 14776455.9, Extended European Search Report dated Oct. 17, 2016", 9 pgs.
- "European Application Serial No. 1476455.9, Response Filed Dec. 19, 2018 to Communication Pursuant to Article 94(3) EPC dated Jul. 2, 2018", 16 pgs.
- "International Application Serial No. PCT/US2009/034463, International Search Report dated Apr. 30, 2009", 2 pgs.
- "International Application Serial No. PCT/US2009/034463, Written Opinion dated Apr. 20, 2009". 6 pgs.
- "International Application Serial No. PCT/US2012/038097, International Search Report dated Sep. 7, 2012", 2 pgs.
- "International Application Serial No. PCT/US2012/038097, Written Opinion dated Sep. 7, 2012", 9 pgs.
- "International Application Serial No. PCT/US2014/017929, International Search Report dated May 16, 2014", 2 pgs.
- "International Application Serial No. PCT/US2014/017929, Written Opinion dated May 16, 2014", 6 pgs.

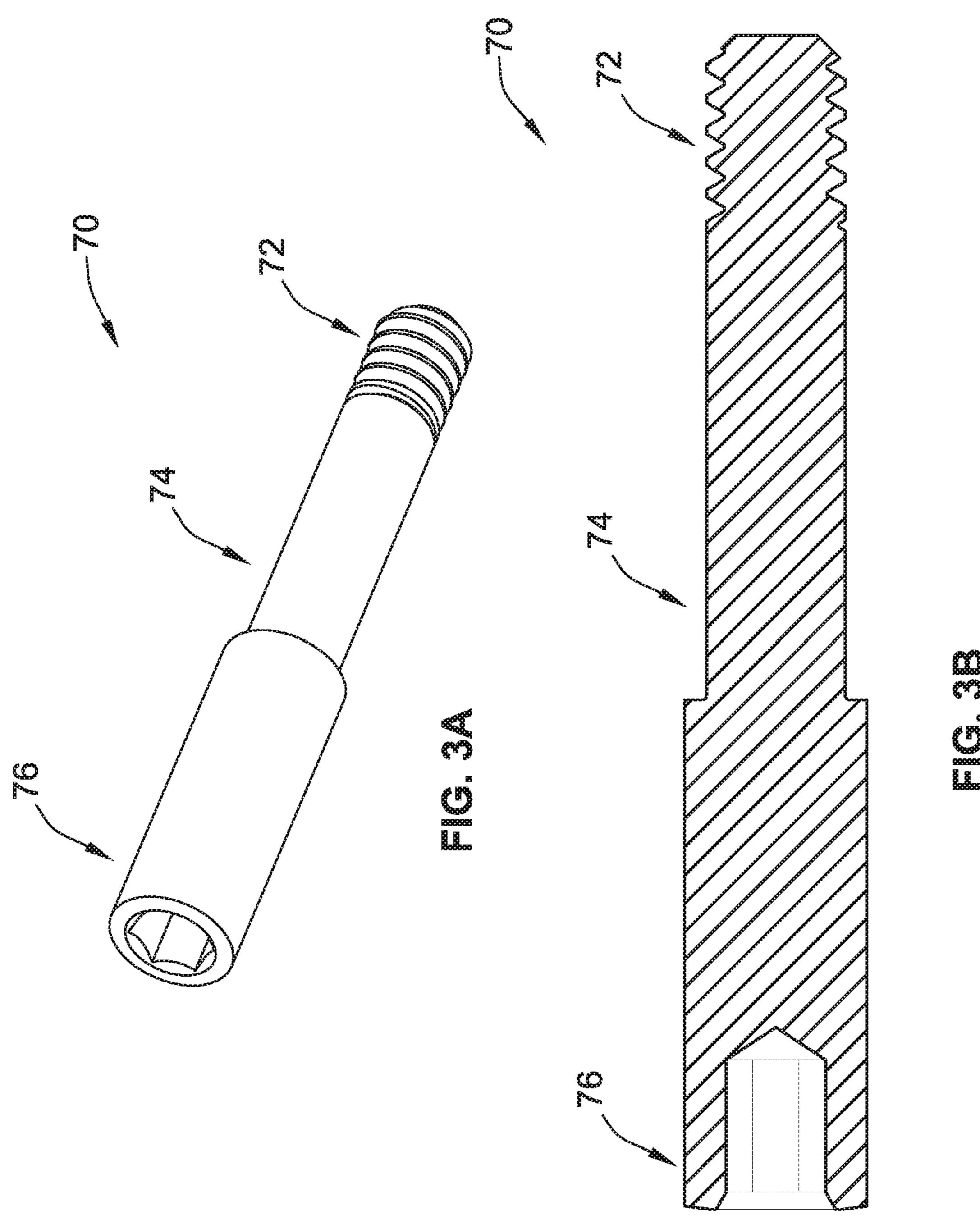
(56) References Cited

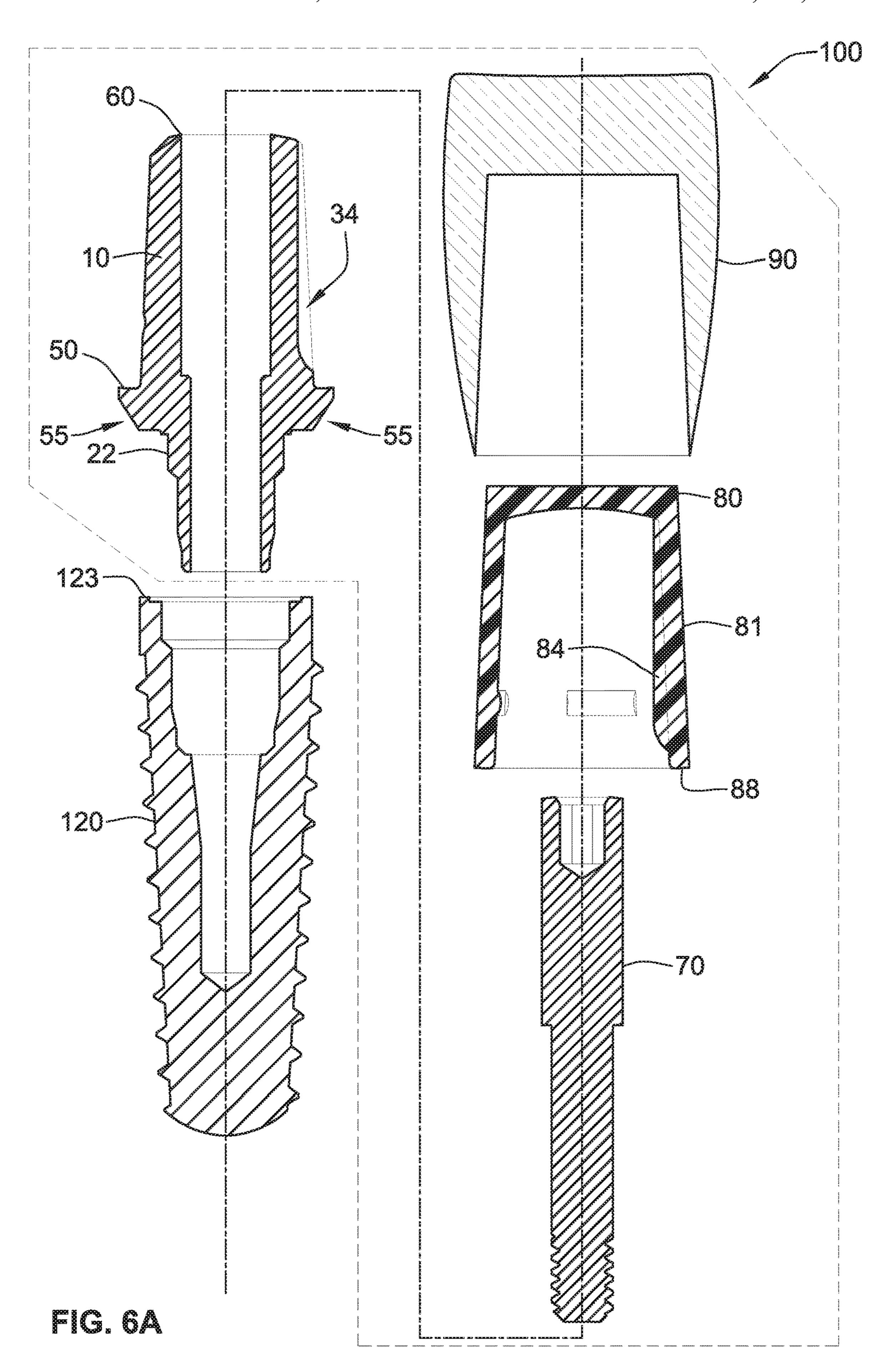
OTHER PUBLICATIONS

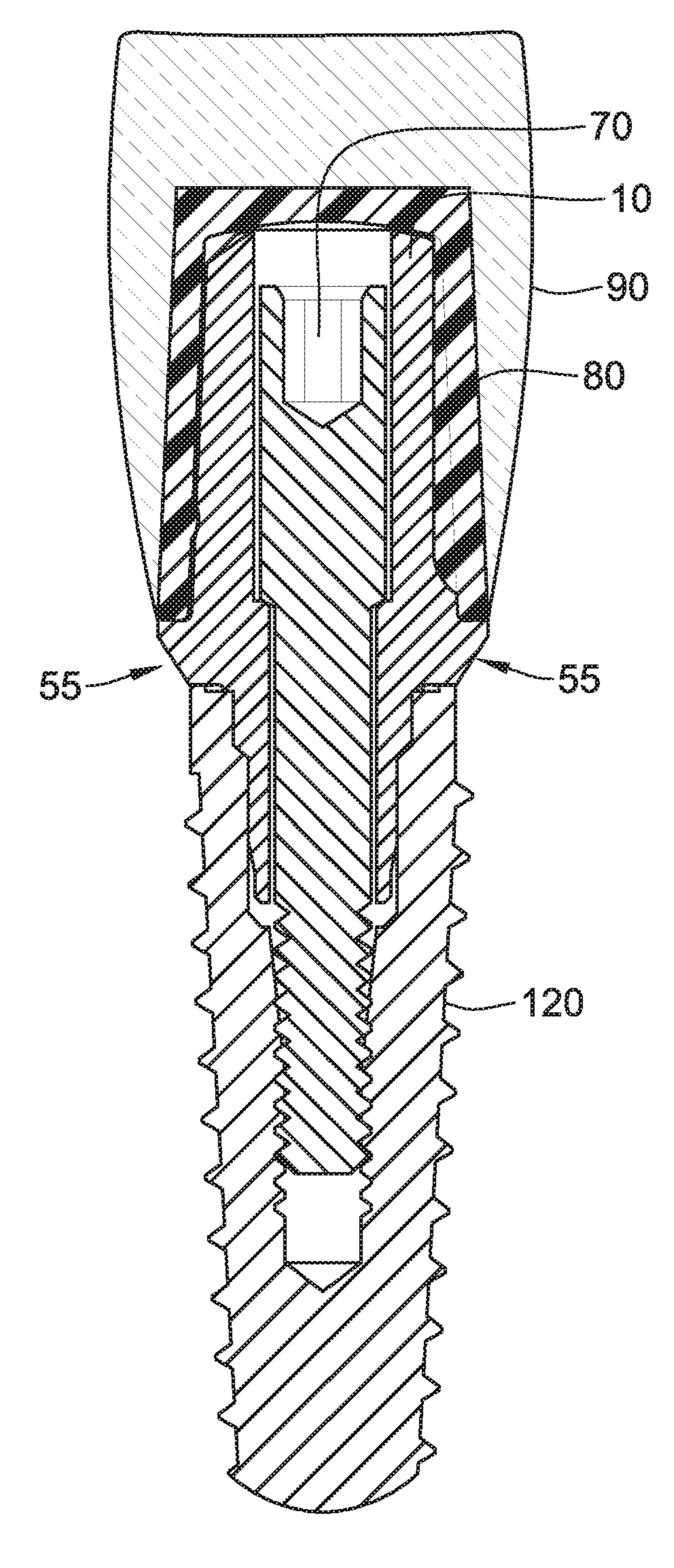
"Japanese Application Serial No. 2014-511483, Office Action dated Jul. 14, 2015", W/ English Translation, 5 pgs.

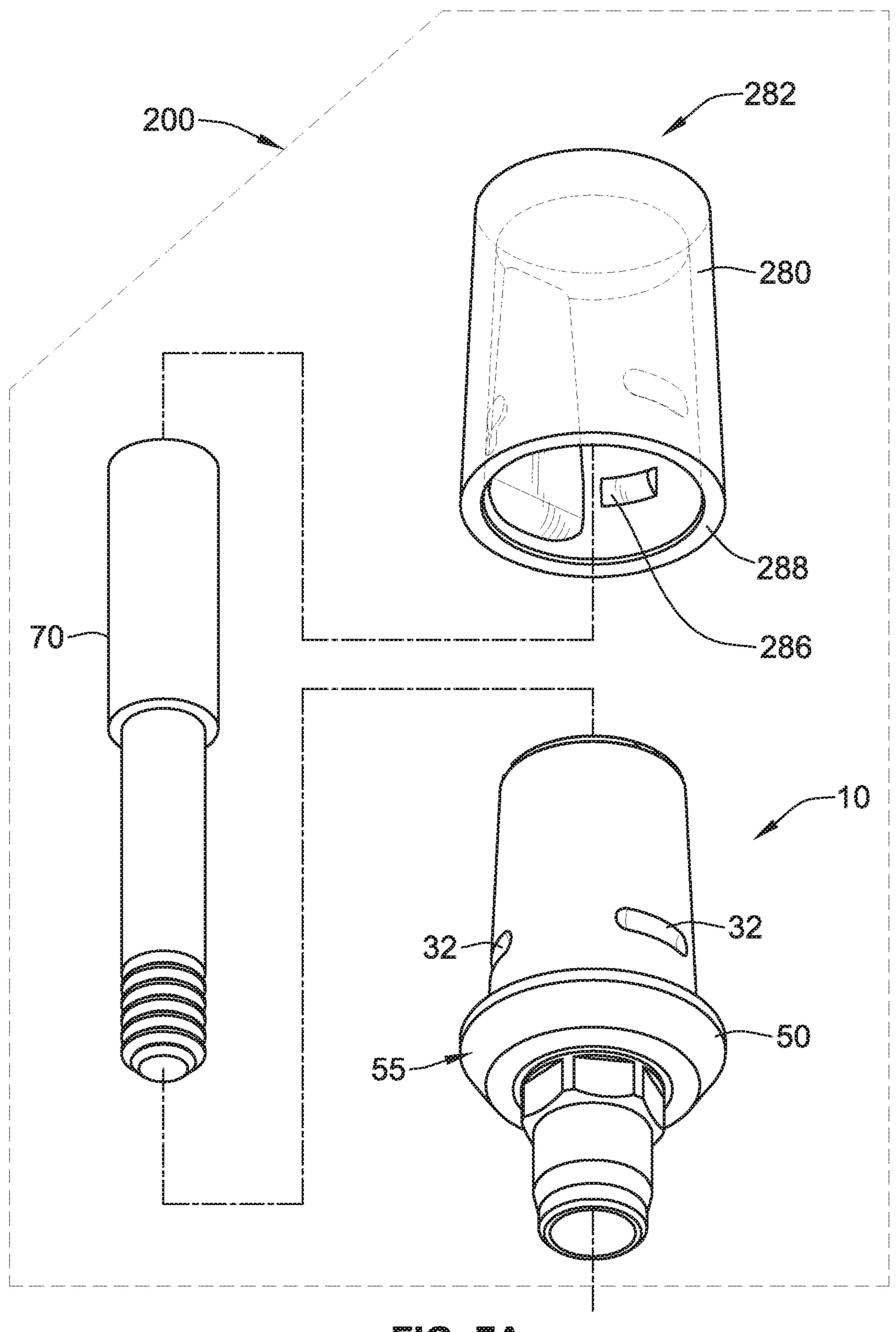

"NavigatorTM System For CT Guided Surgery Manual", BIOMET31, (2007), 34 pgs.

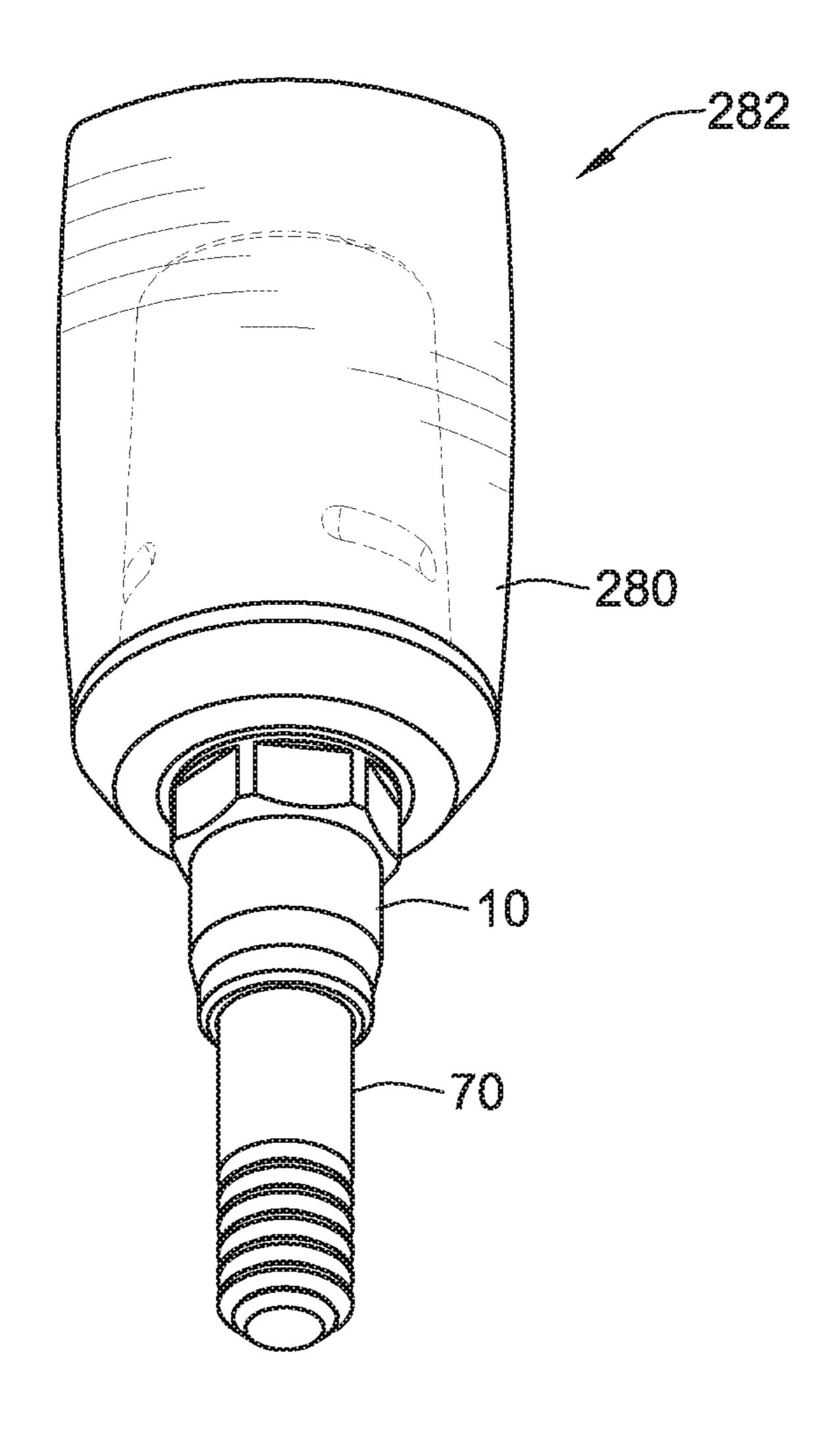

"Robots are ready for medical manufacturing". Retrieved from MachineDesign.com, URL: htt2://machinedesign.com/article/rohots-are-ready-for-medicalmanufacturing-07122.(Jul. 12, 2007), 7 pgs. "Surgical Glue May Help to Eliminate Suturing for Implants", MedNEWS, Retrieved from MediNEWS. Direct, (Dec. 21, 2007) 1 pg.

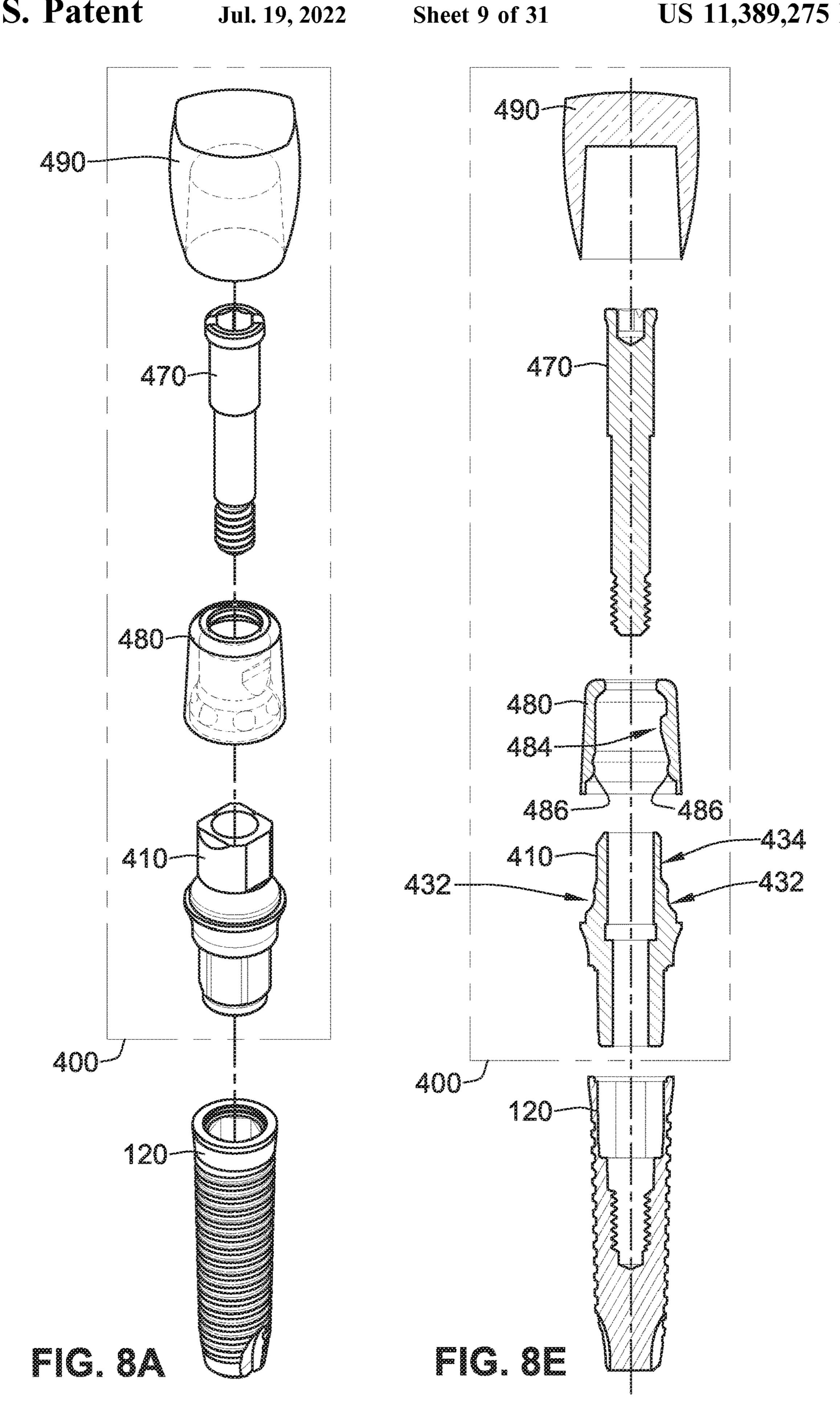

Brief, Jakob, et al., "Accuracy of image-guided implantology", Retrieved from Google: <URL sitemaker.umnich.edu/sarmentlab/fles/robodentsdenxcor05.odf>, (Aug. 20, 2004), 7 pgs.

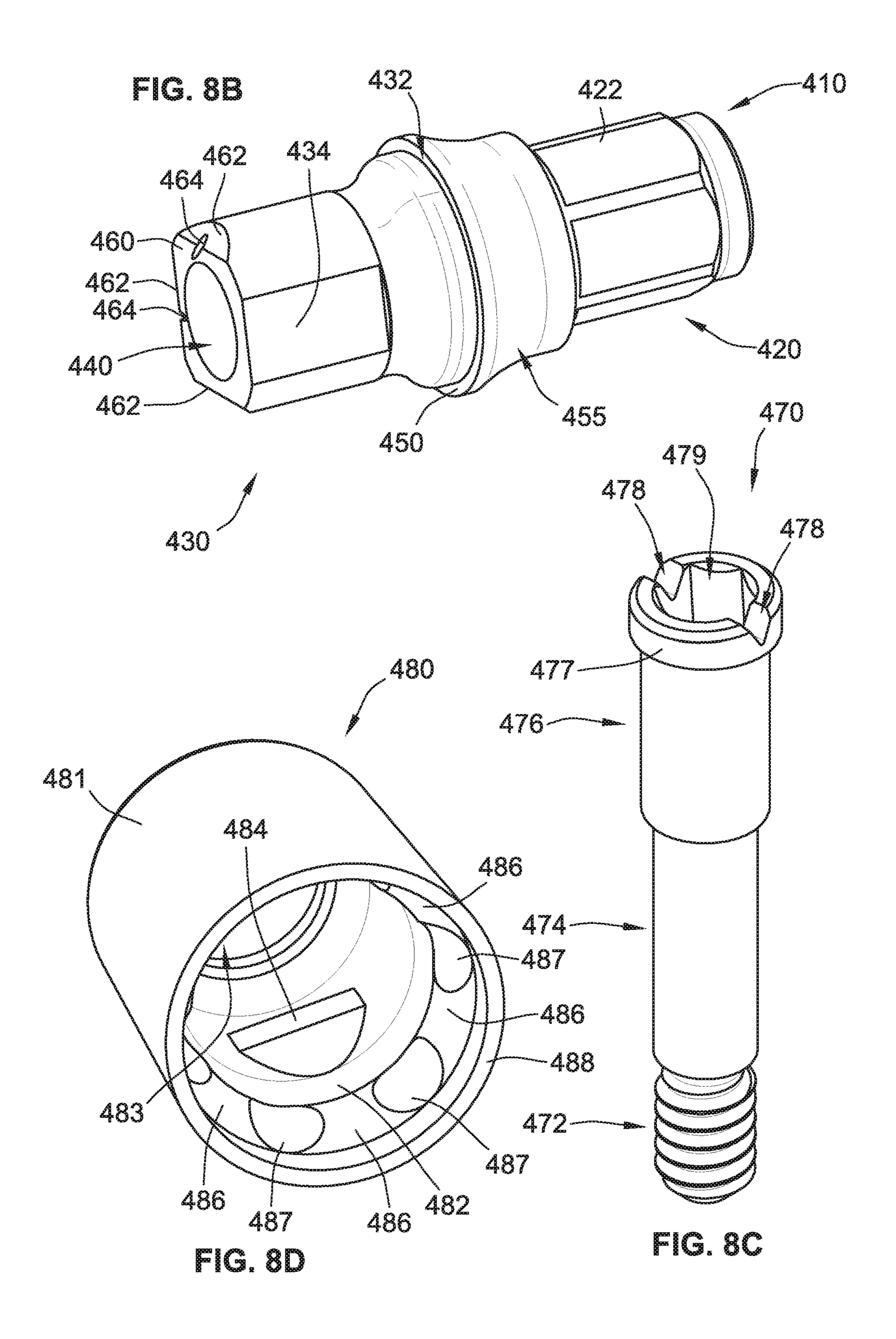

Goulette, Francois, "A New Method and a Clinical case for Computer Assisted Dental Implantology". Retrieved from Summer European university in surgical Robotics,, [Online] retrieved from the internet: <URL: www.linnm.frimanifs/UEE/docs/students/goulette. pdf>, (Sep. 6, 2003), 7 pgs.

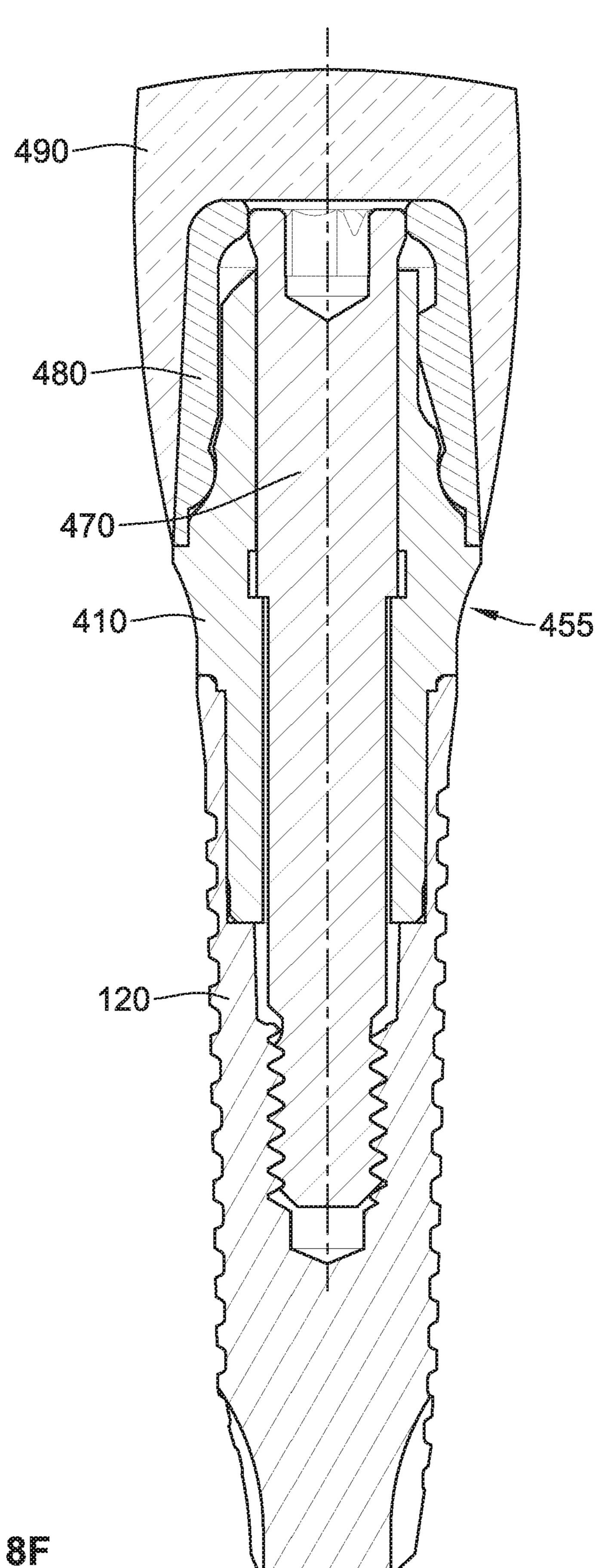

* cited by examiner



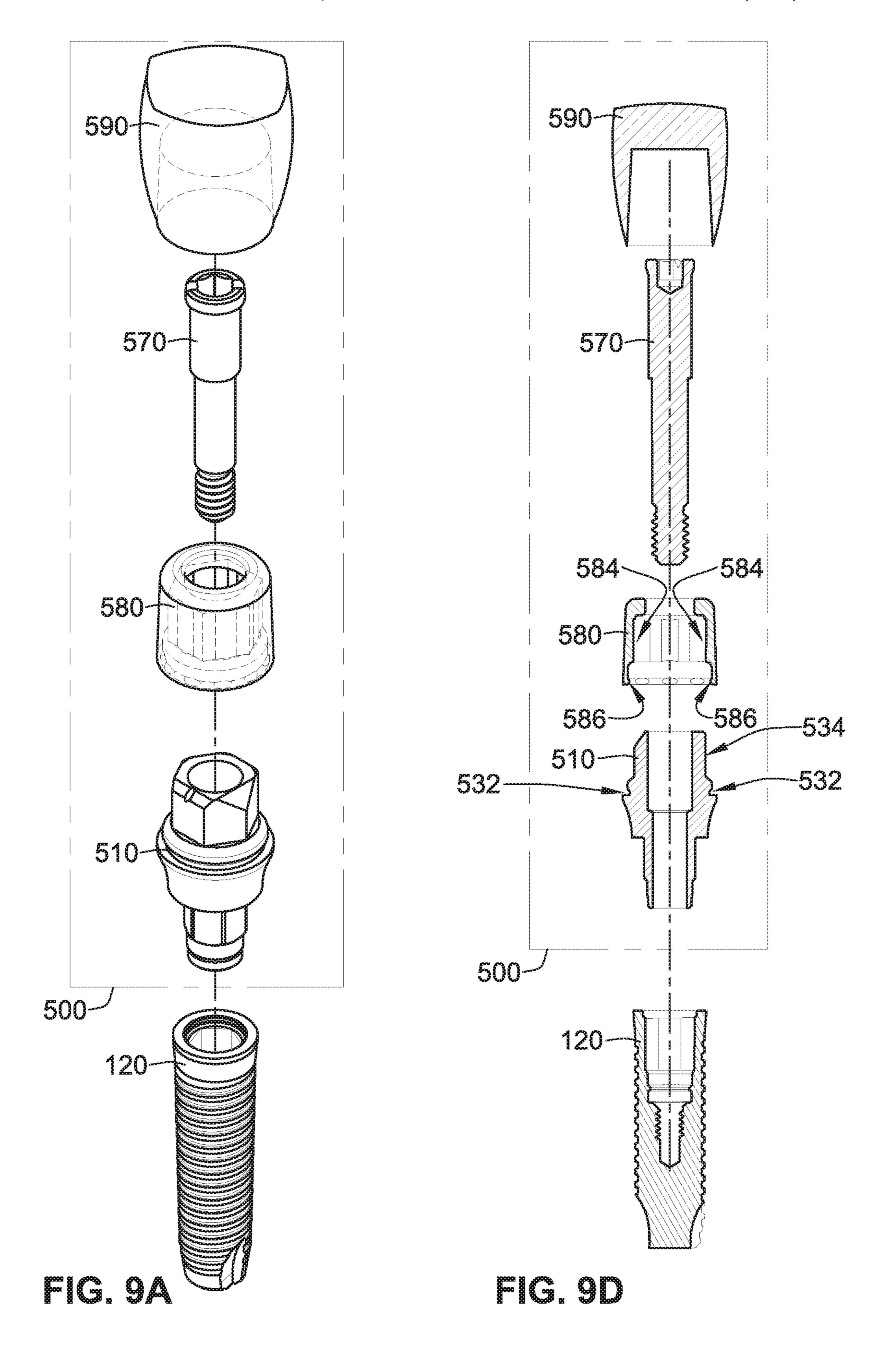


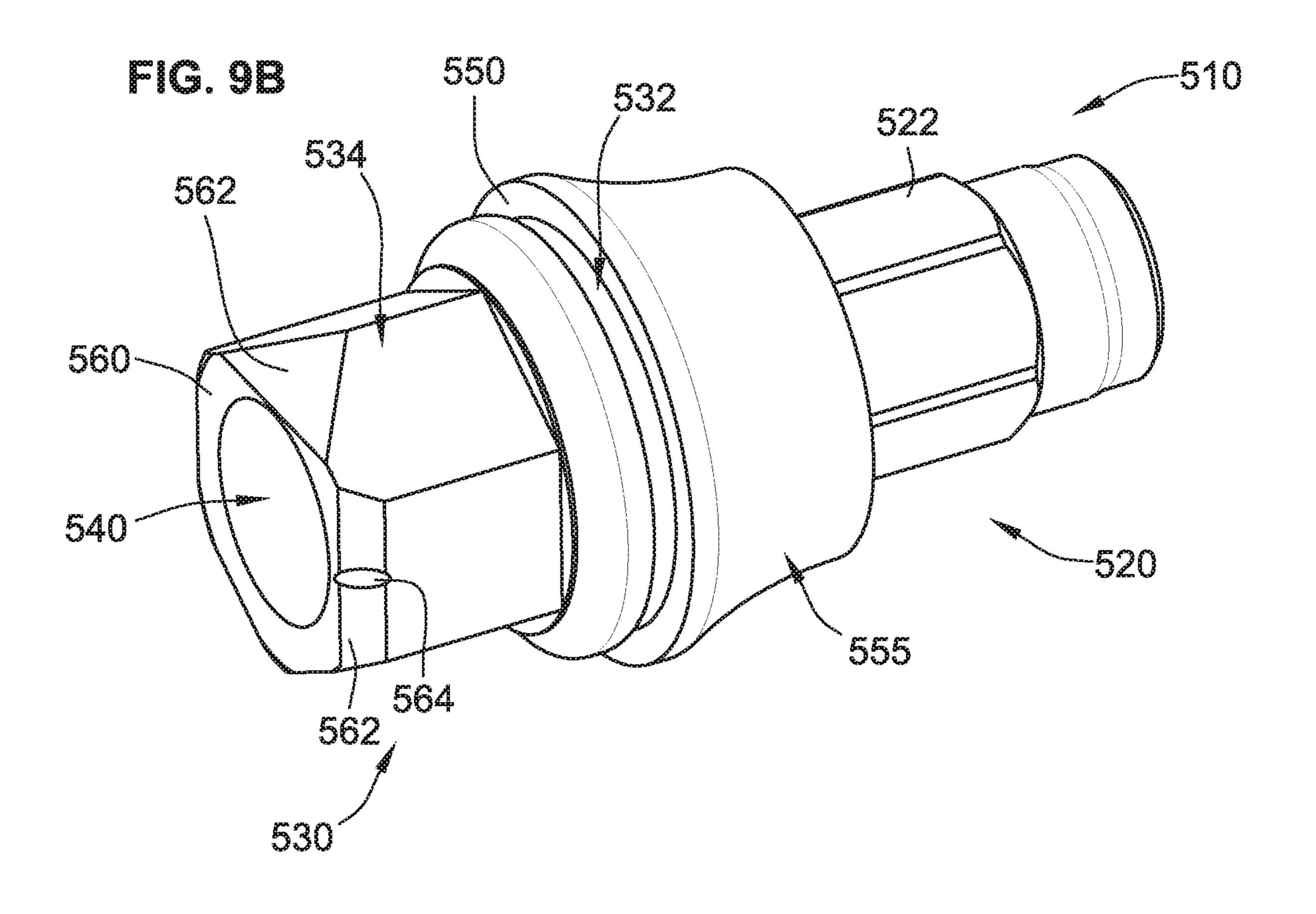


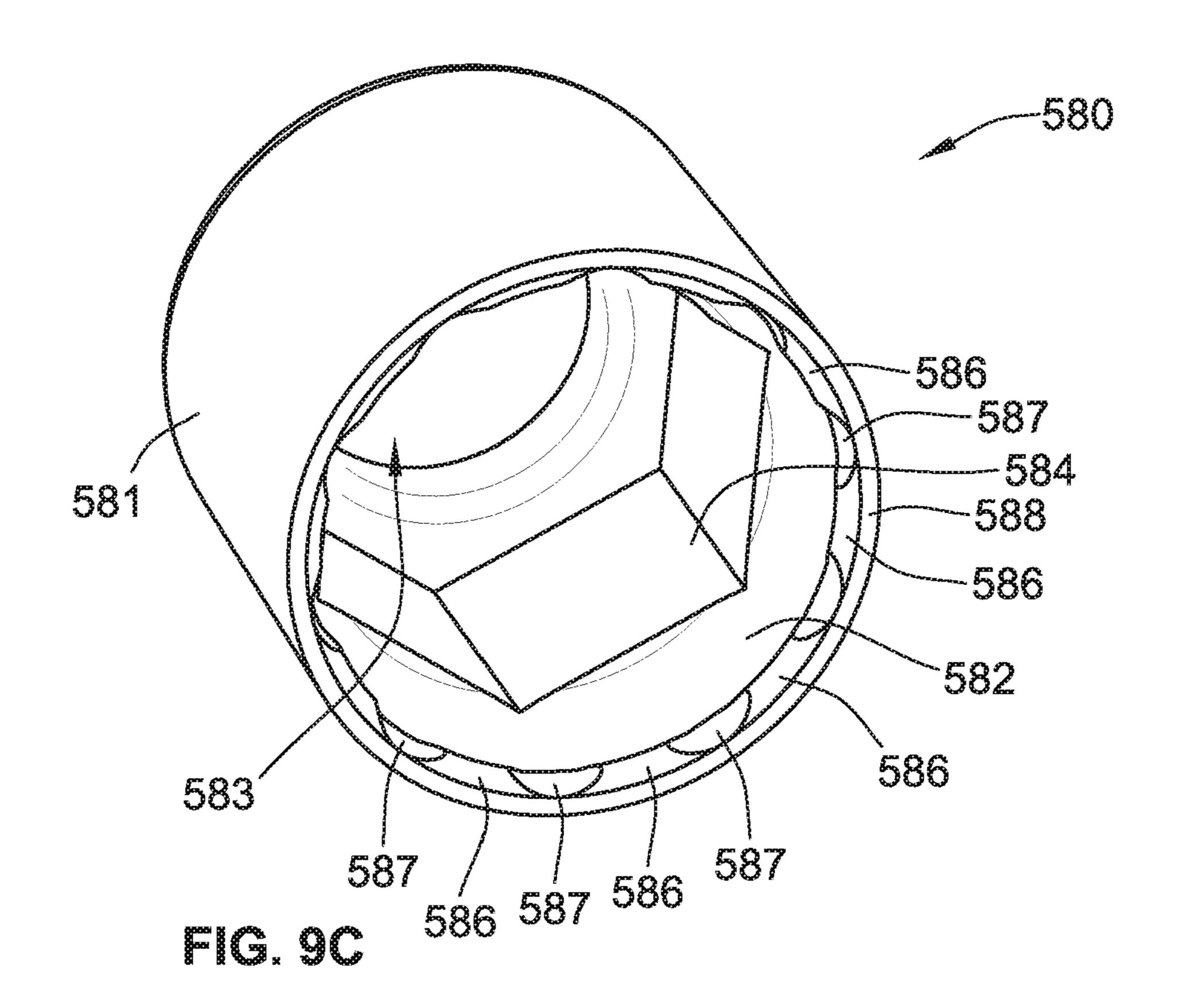

EG.68

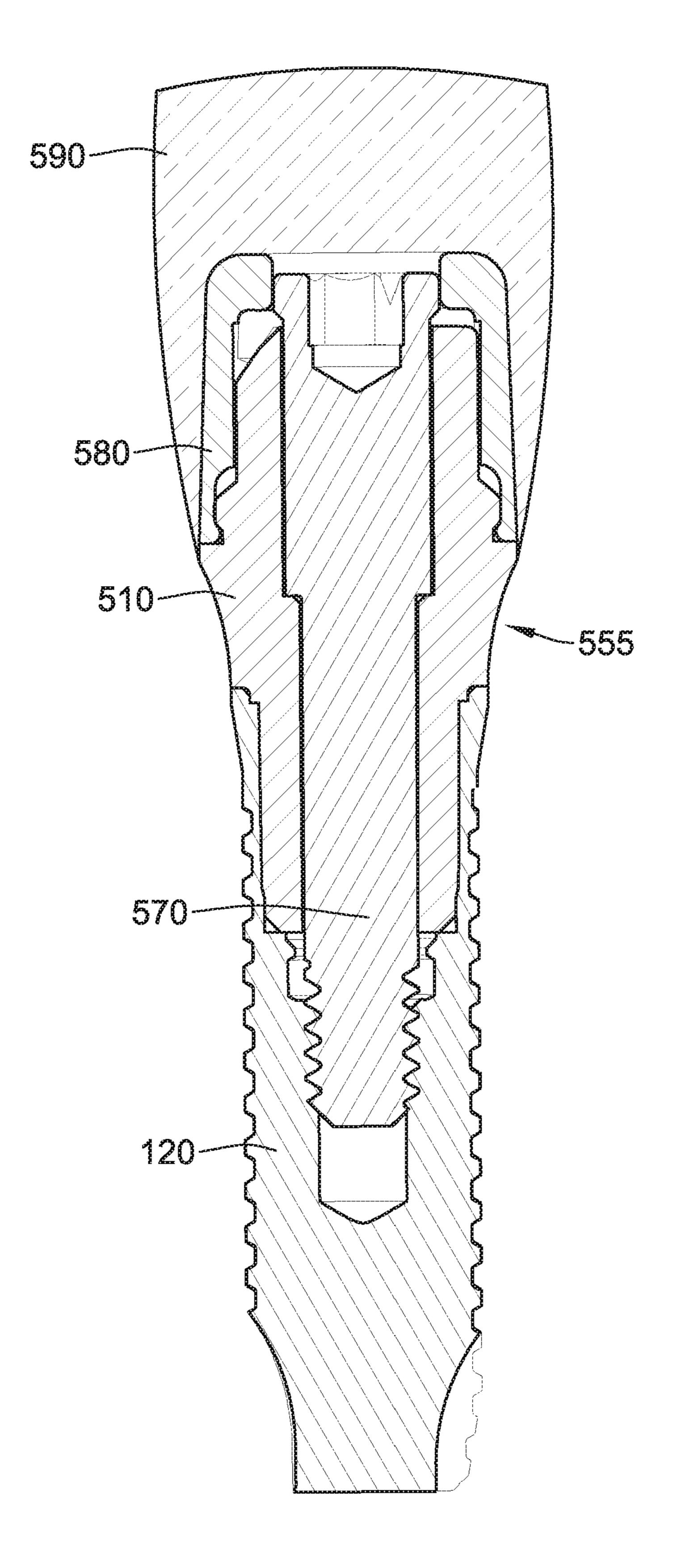


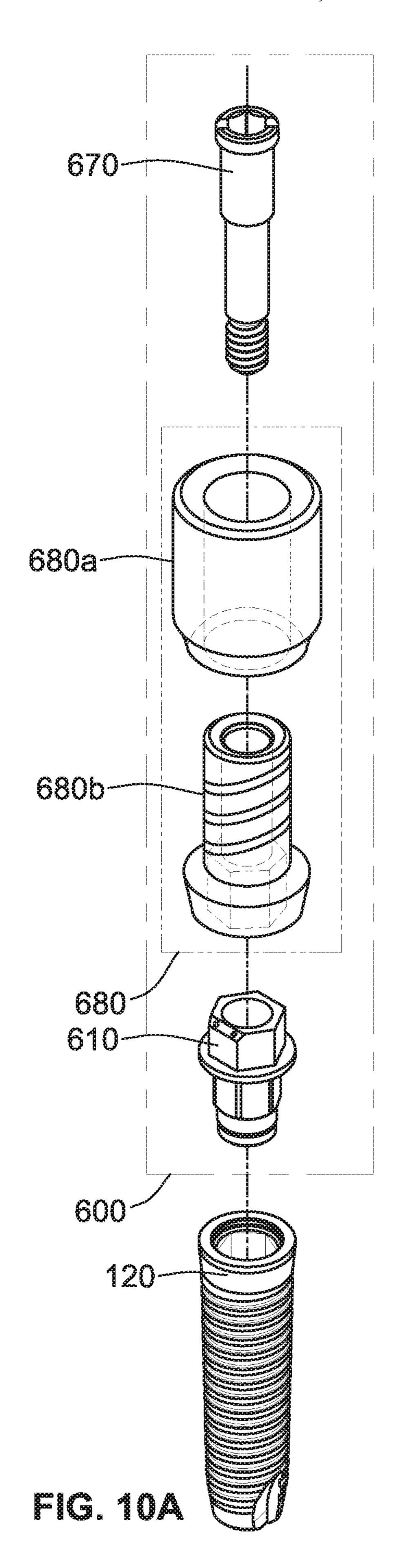
FIC. 7A

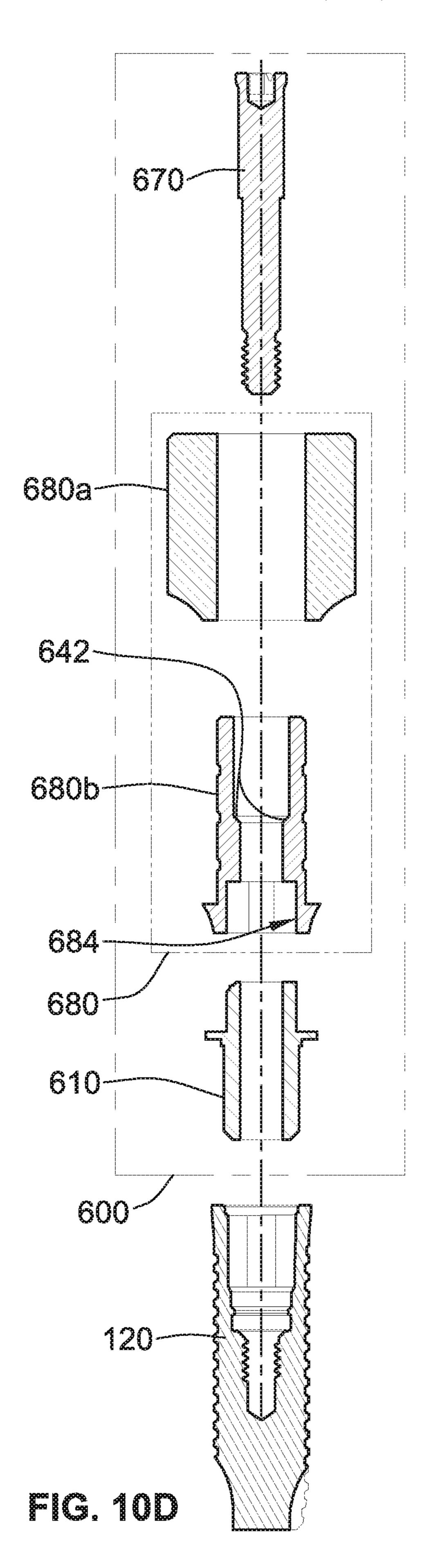


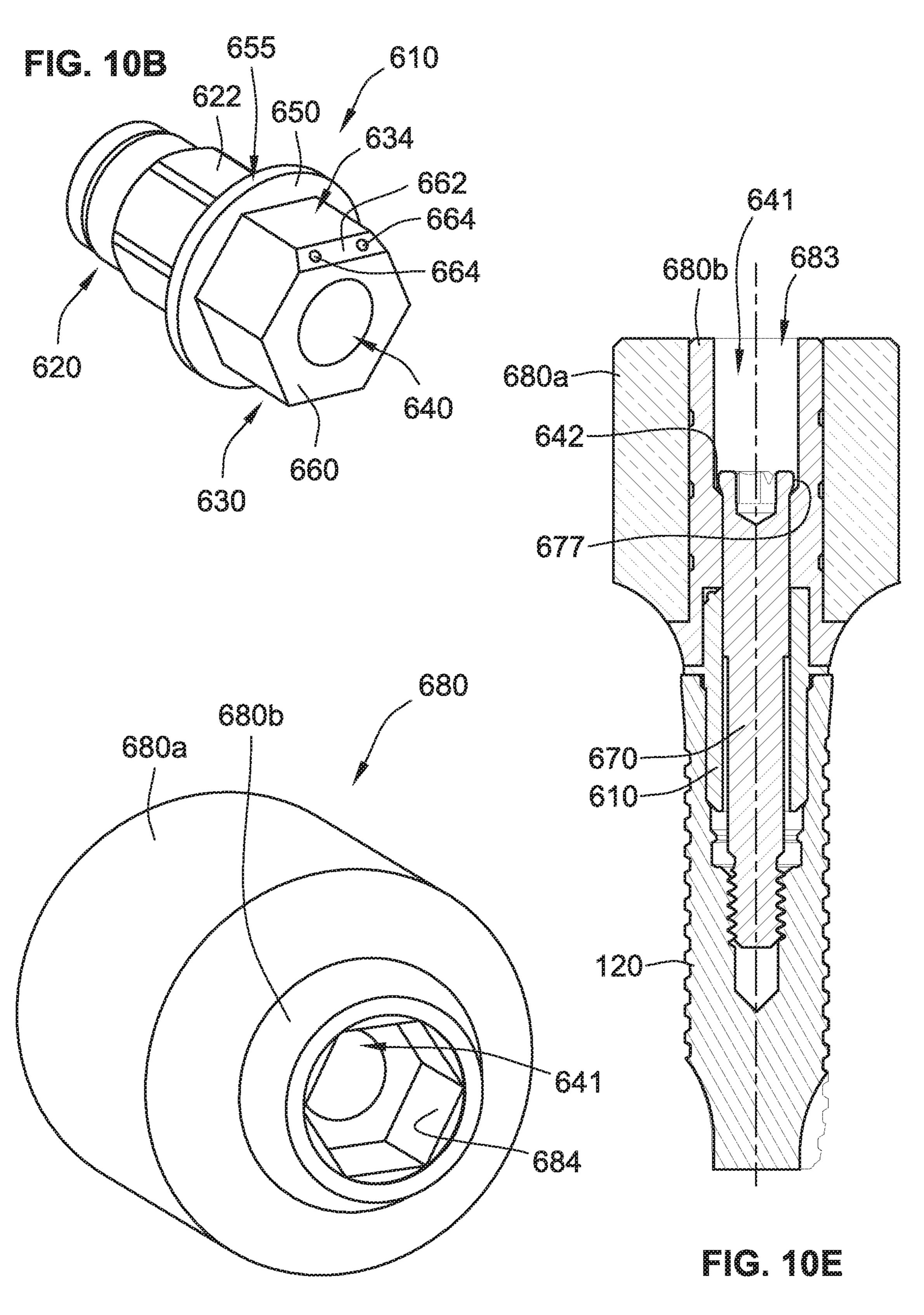


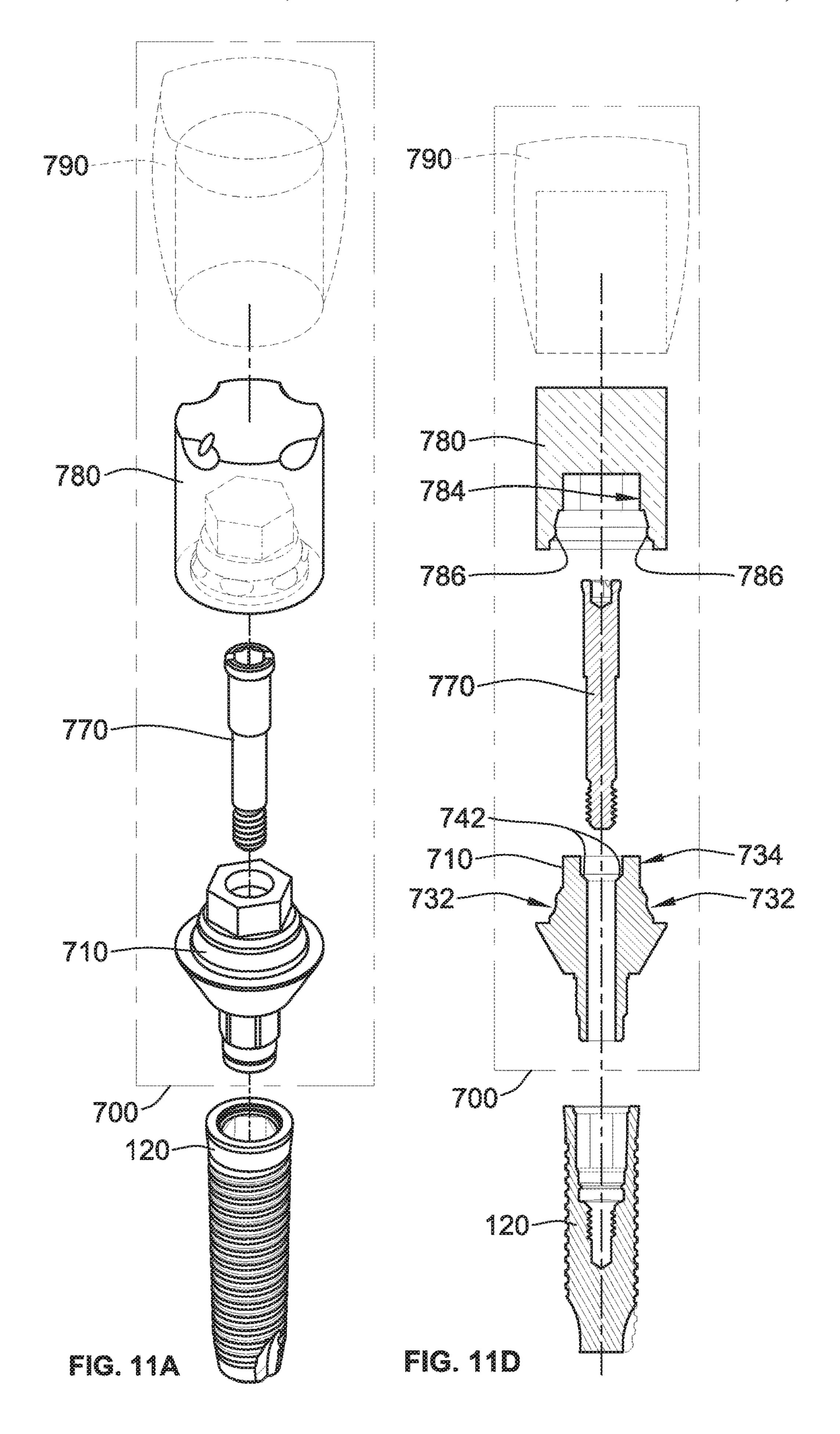


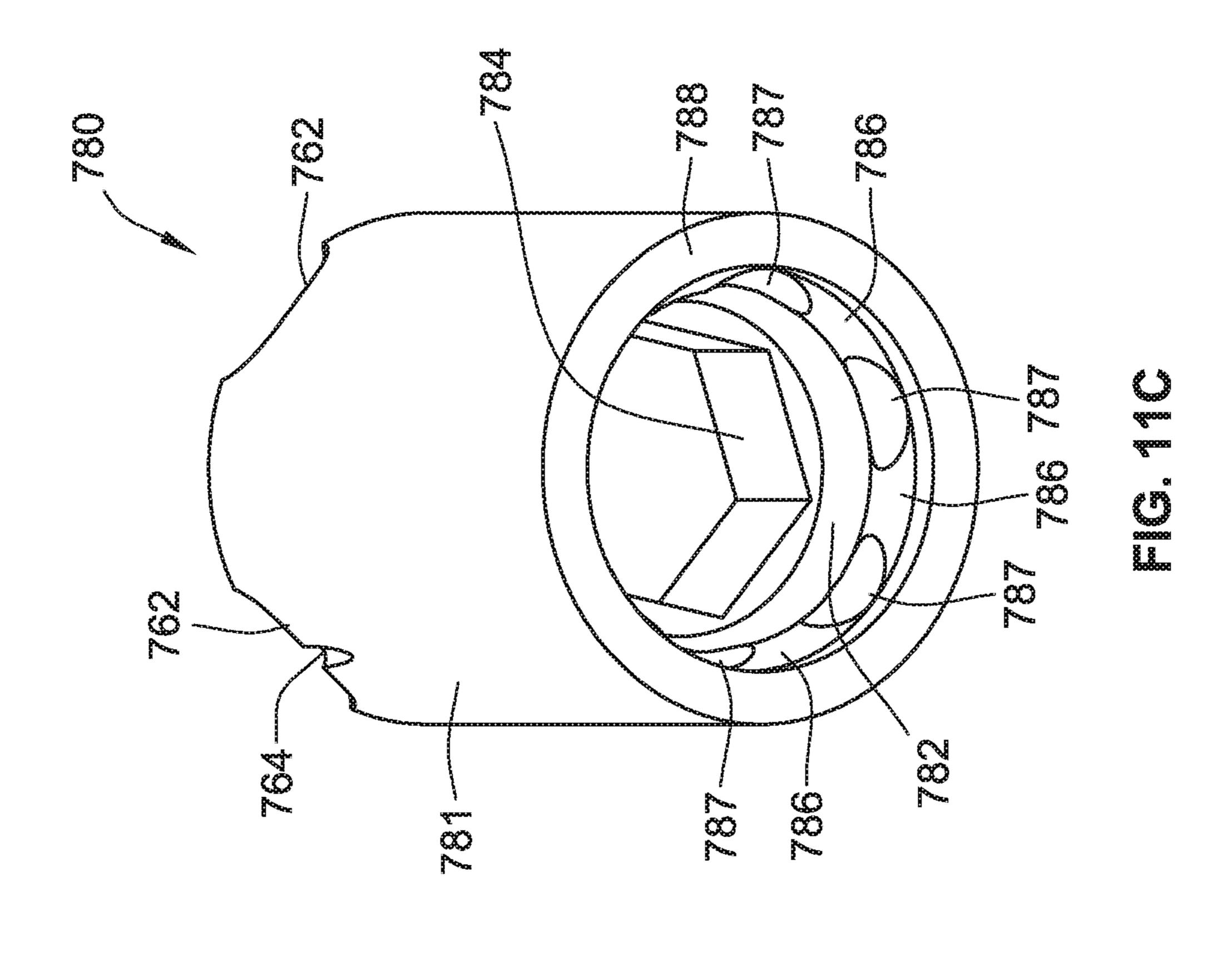


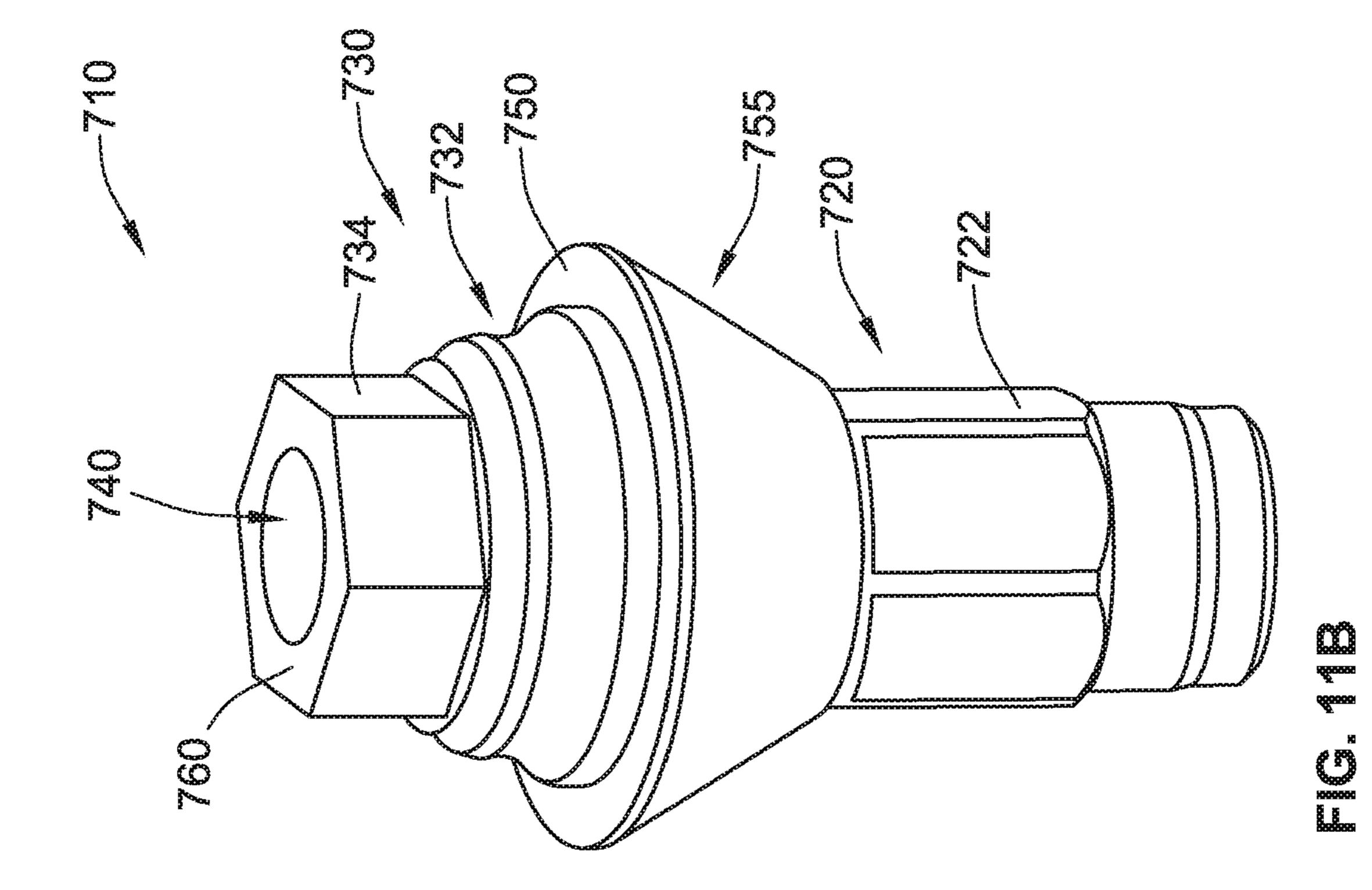

~ C. C.

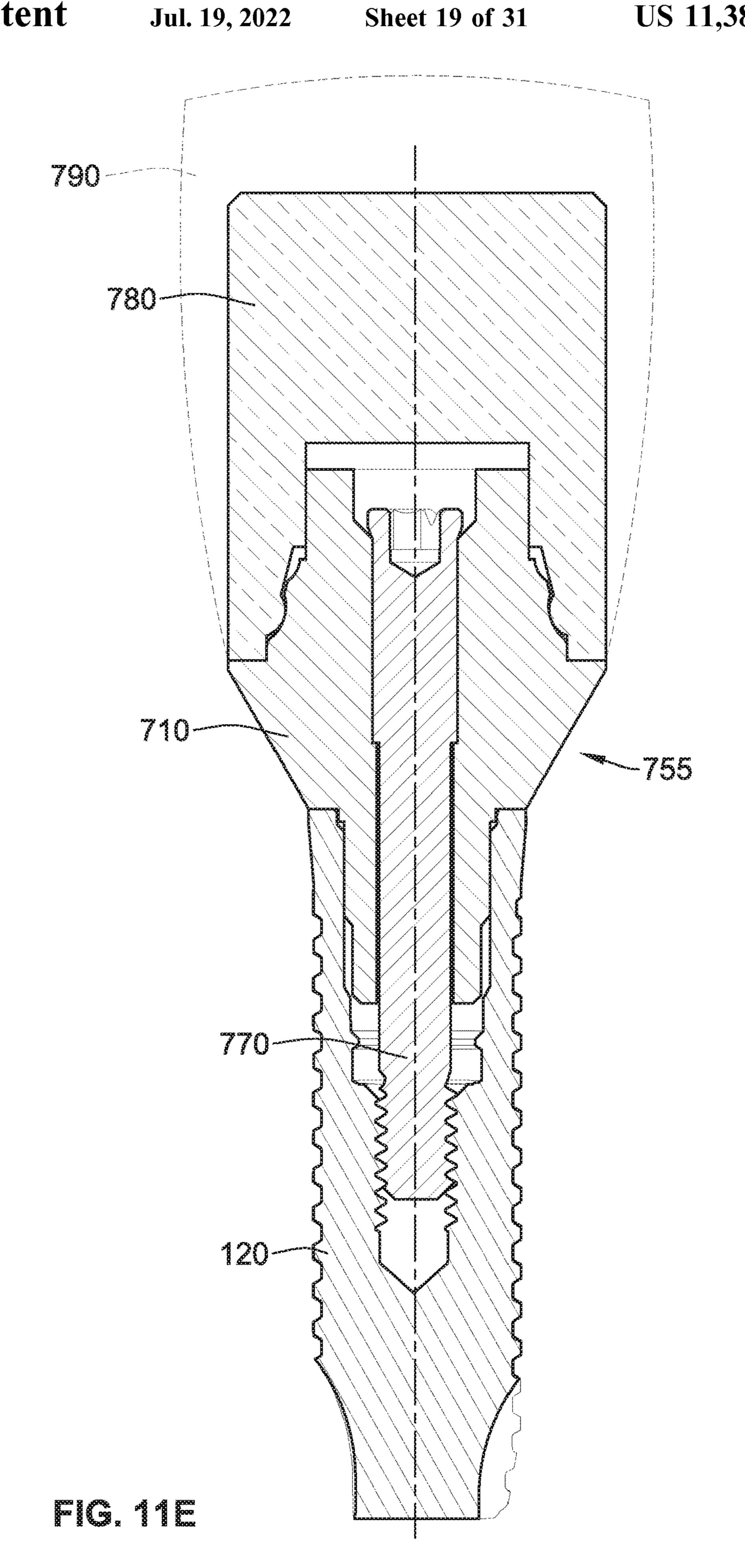


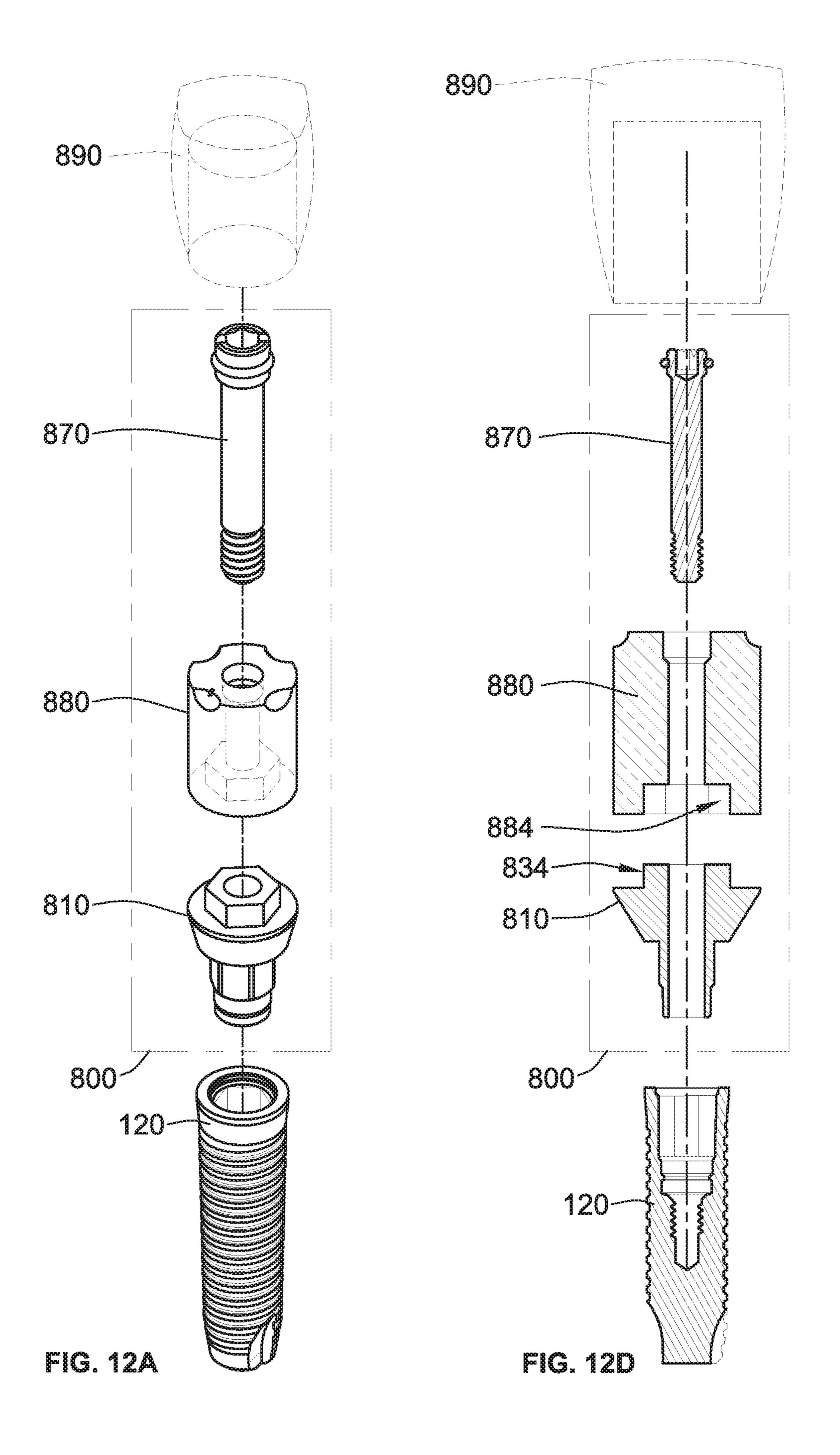


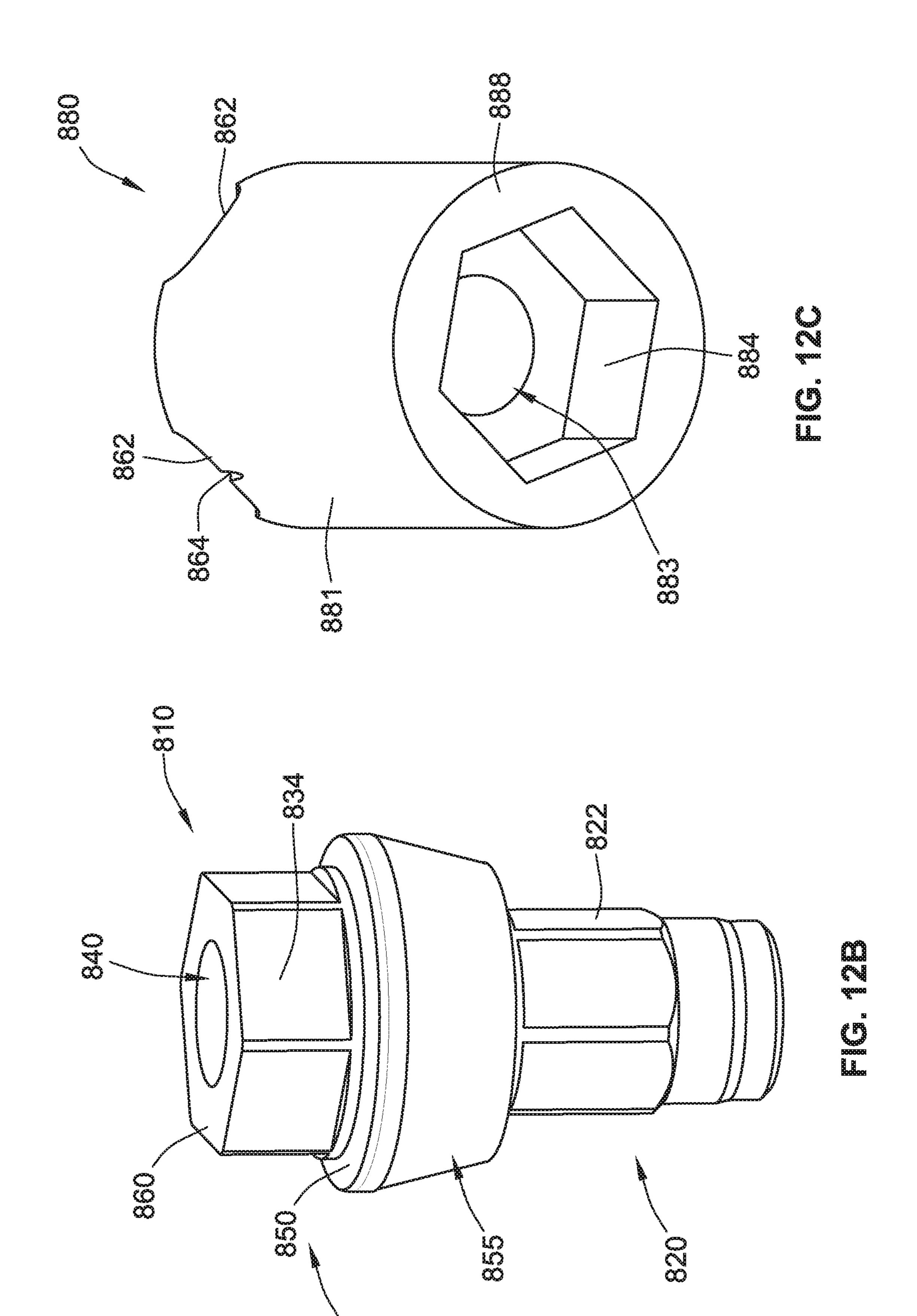


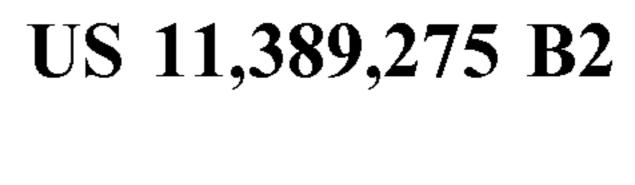


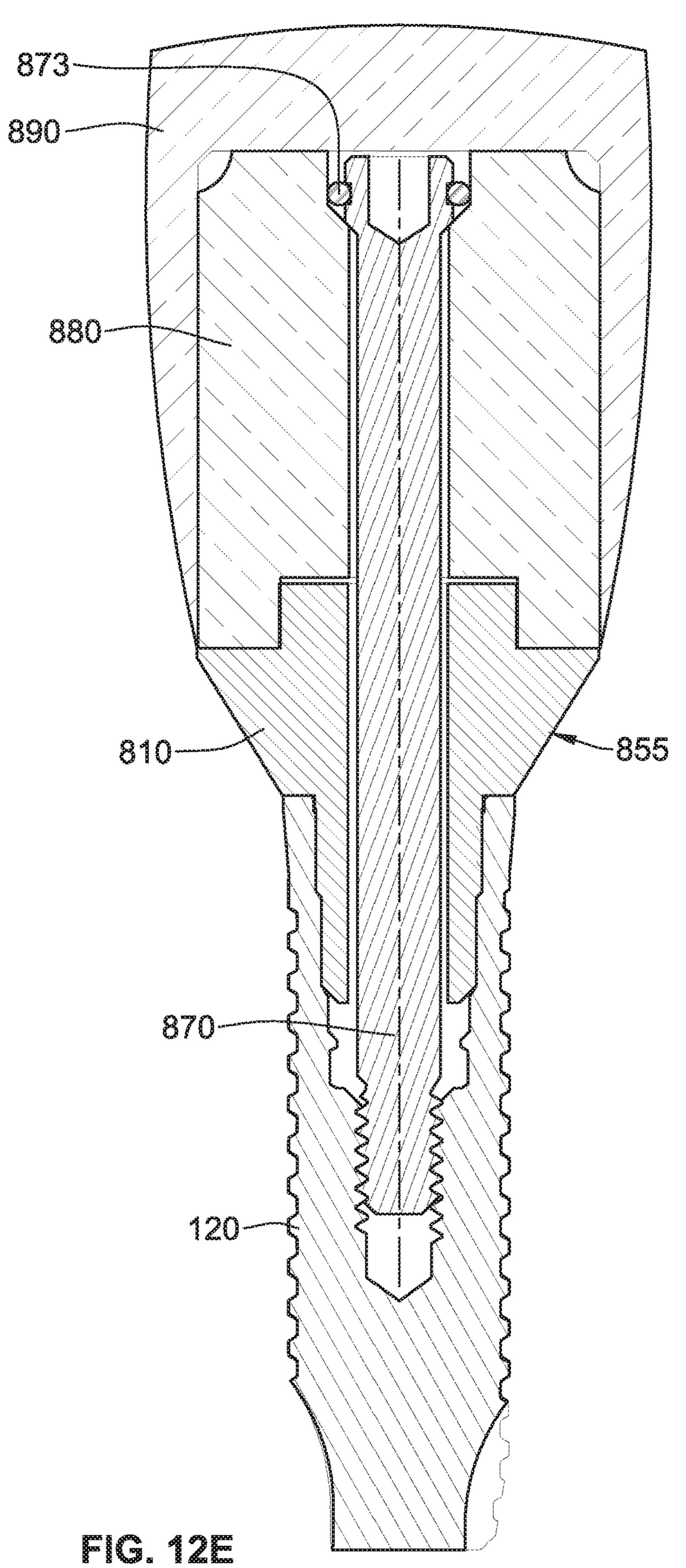





F.C. 10C







Jul. 19, 2022

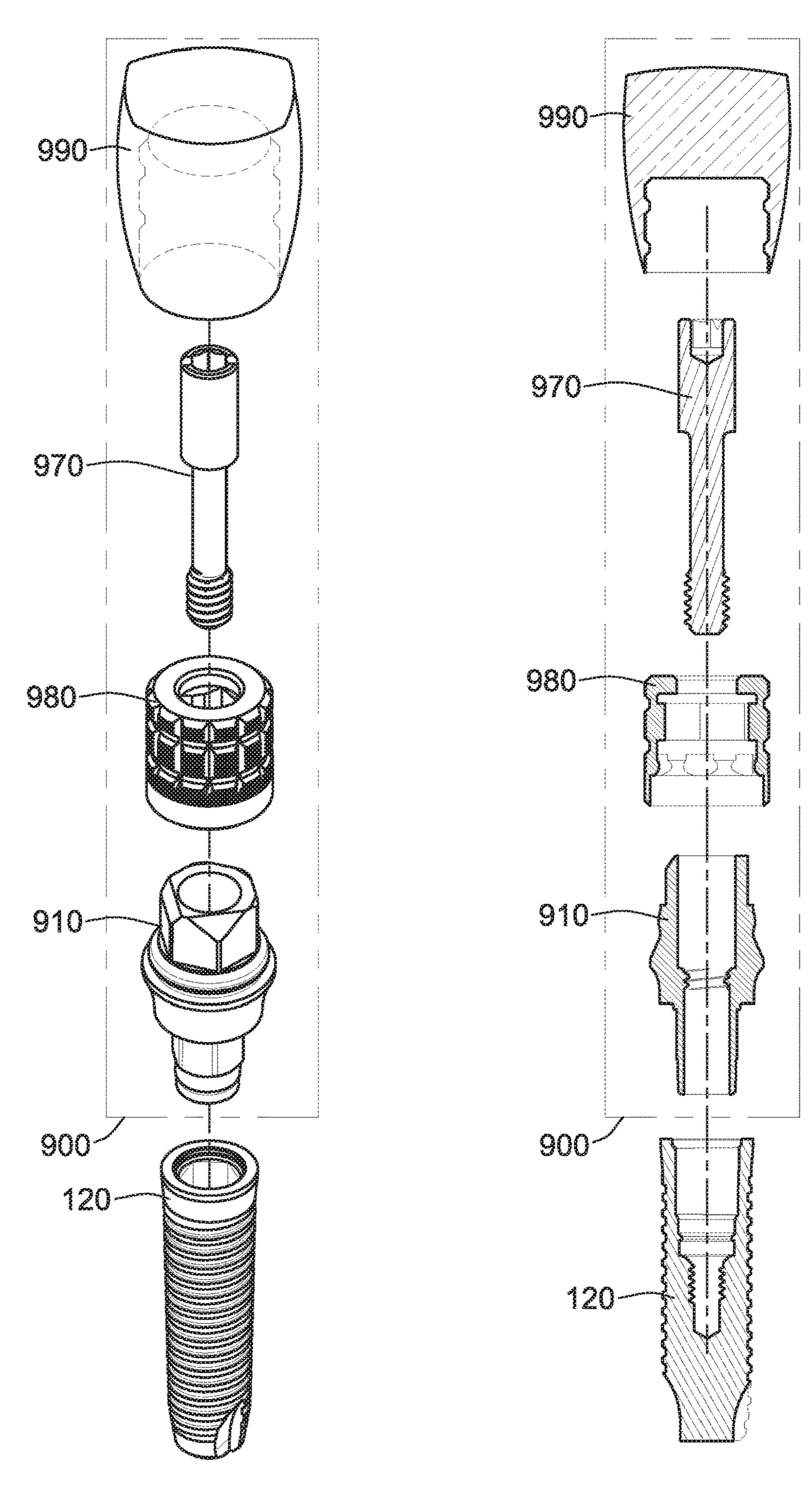
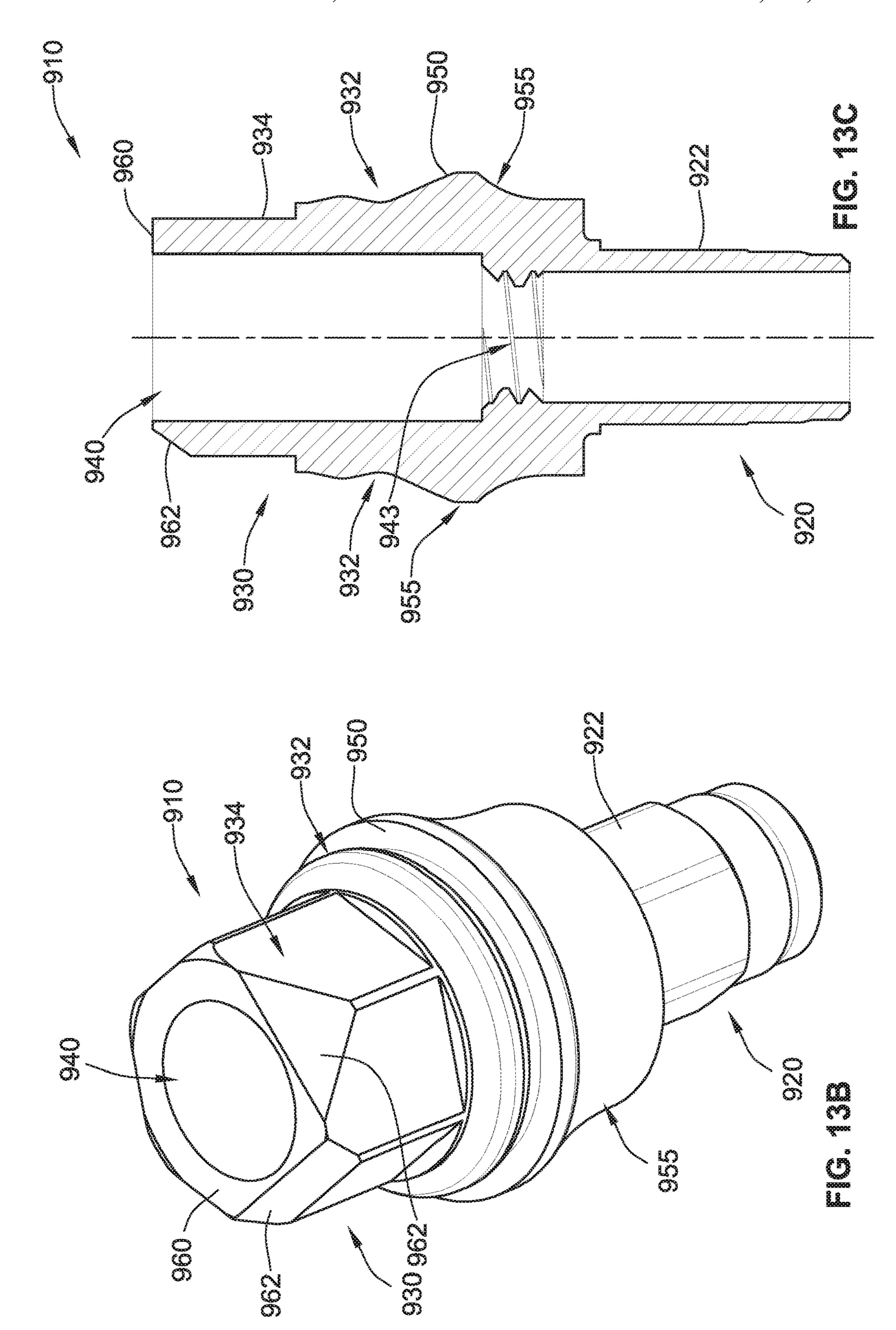
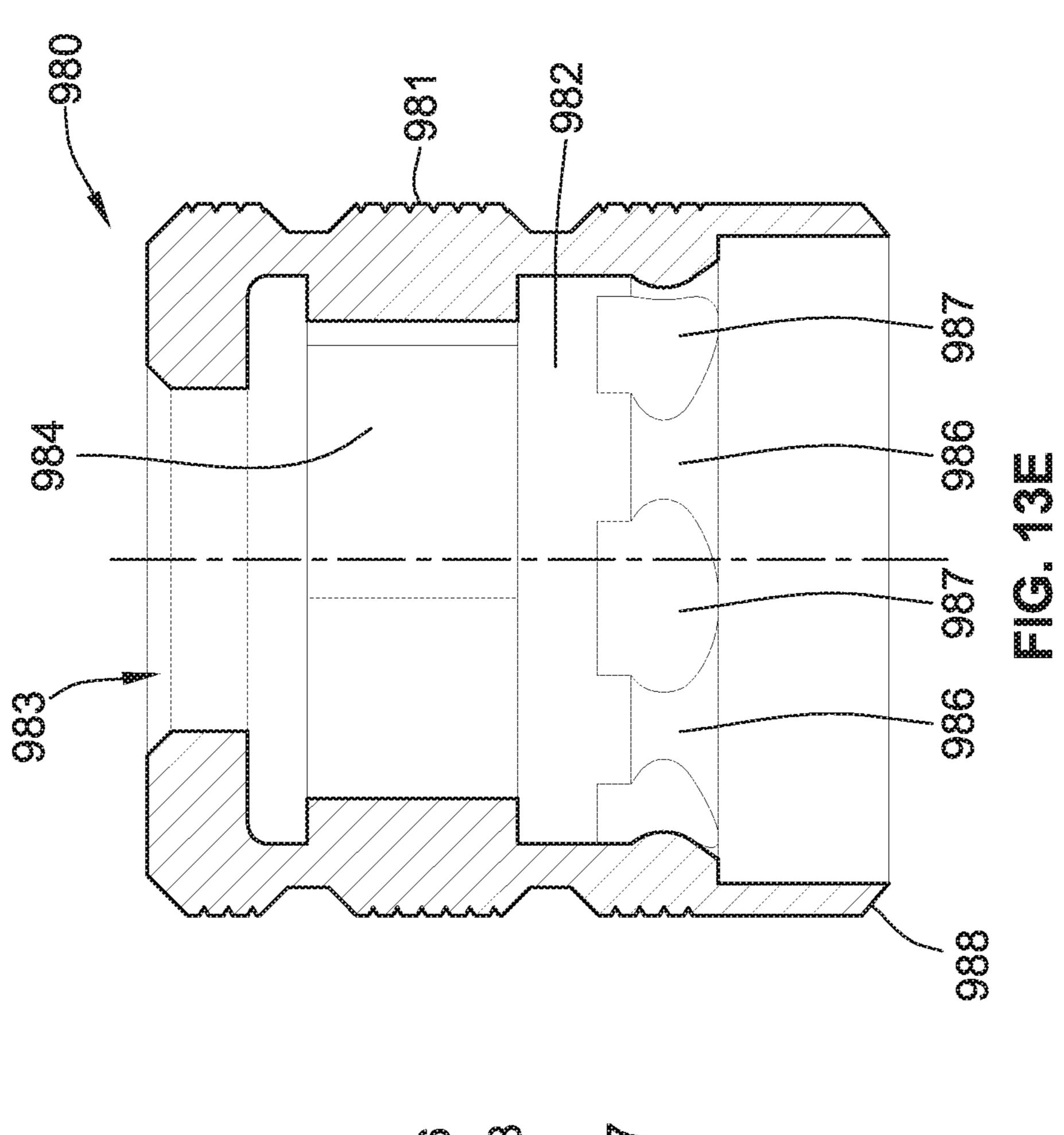
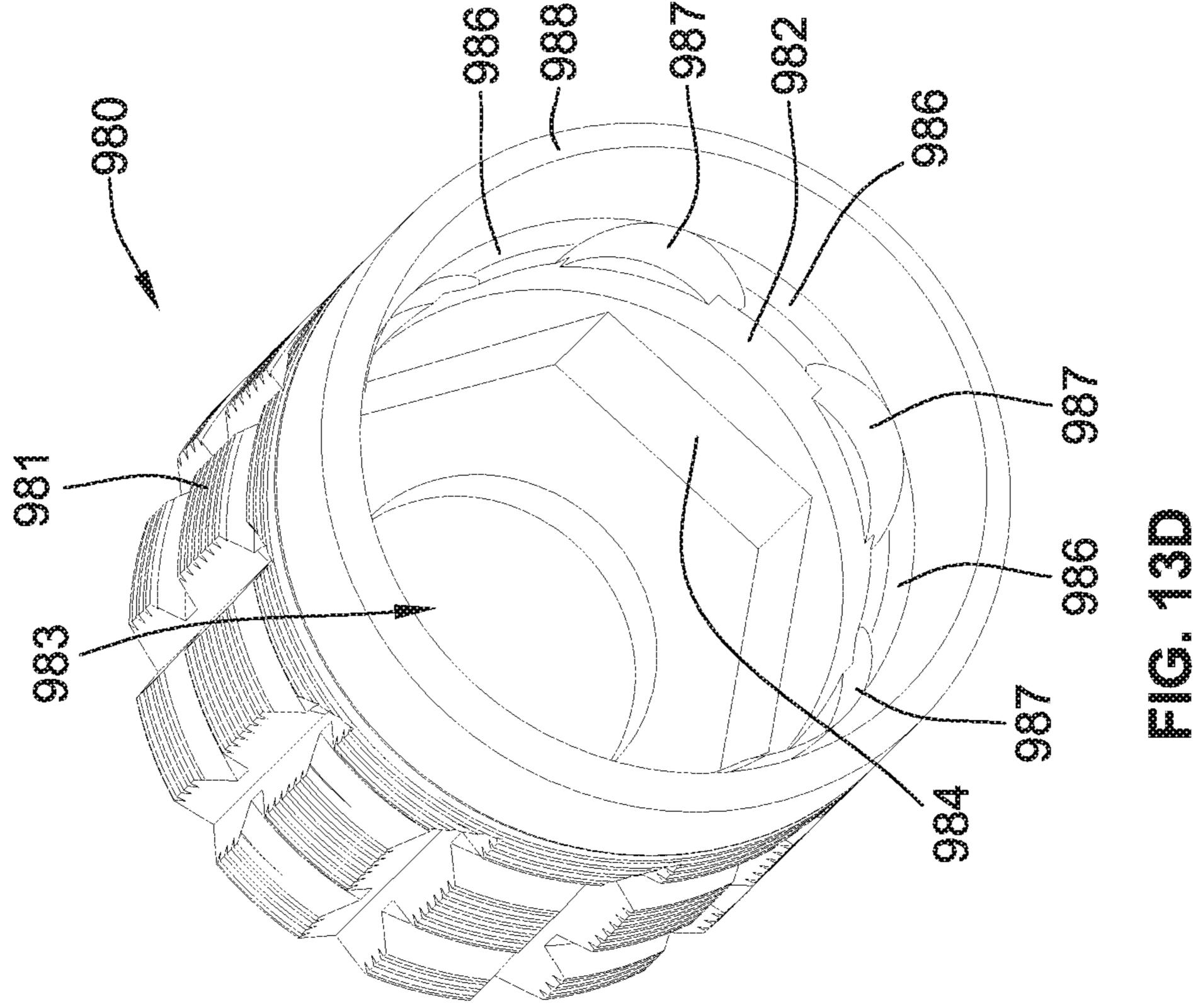





FIG. 13A

EC. 13F

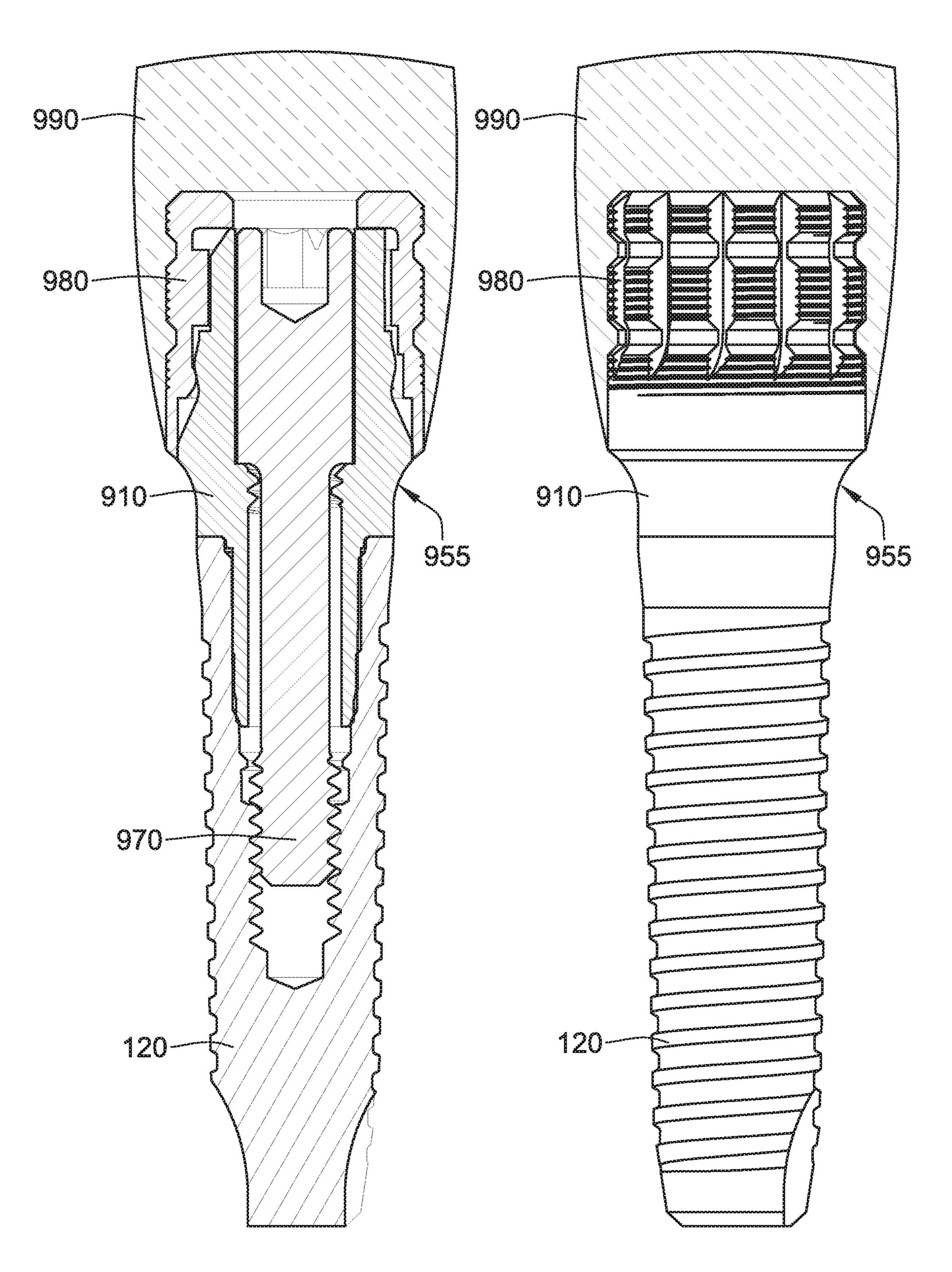
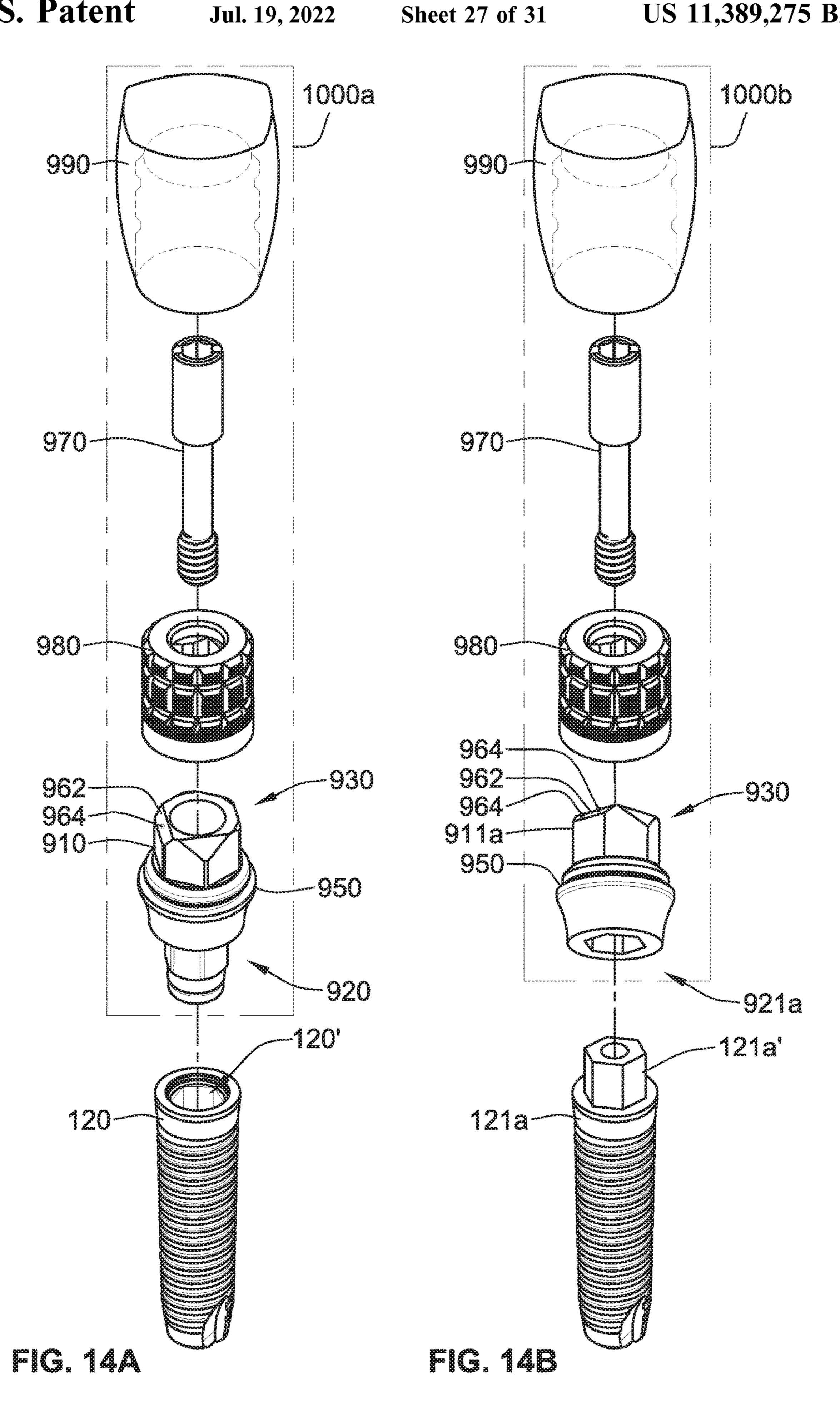
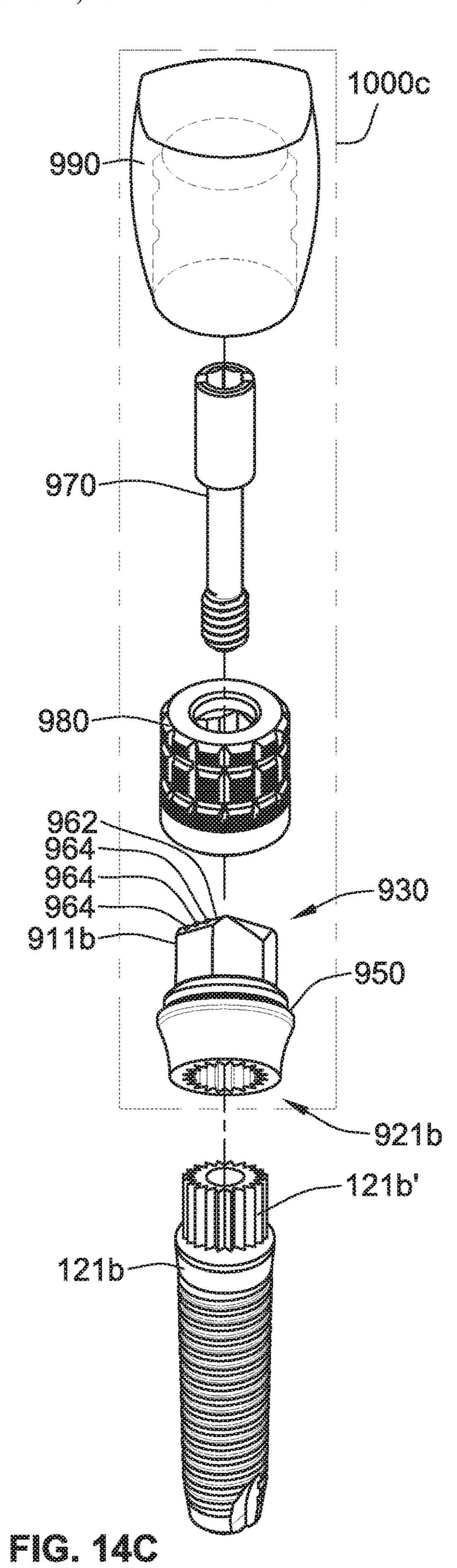
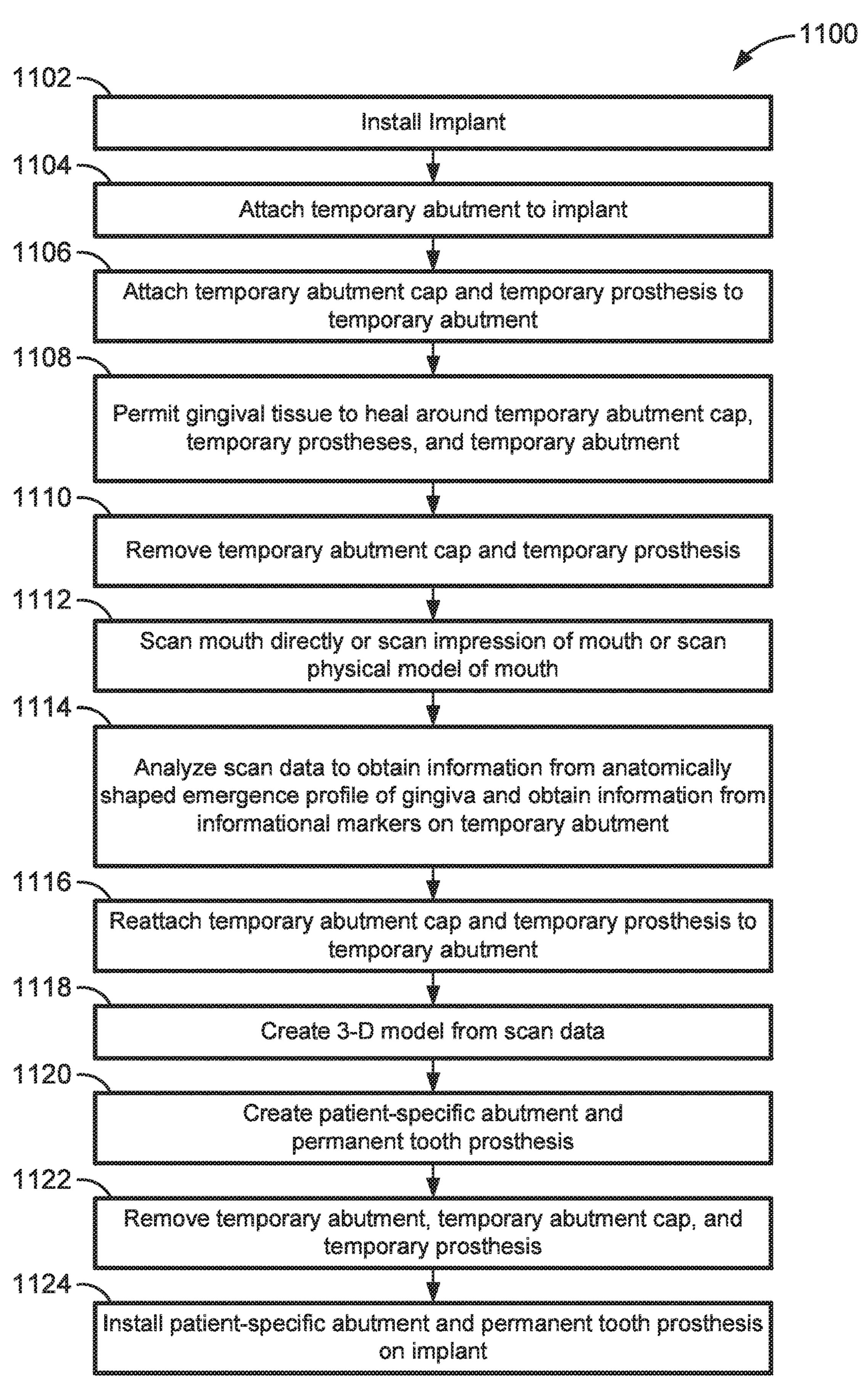





FIG. 13G

TC. 15

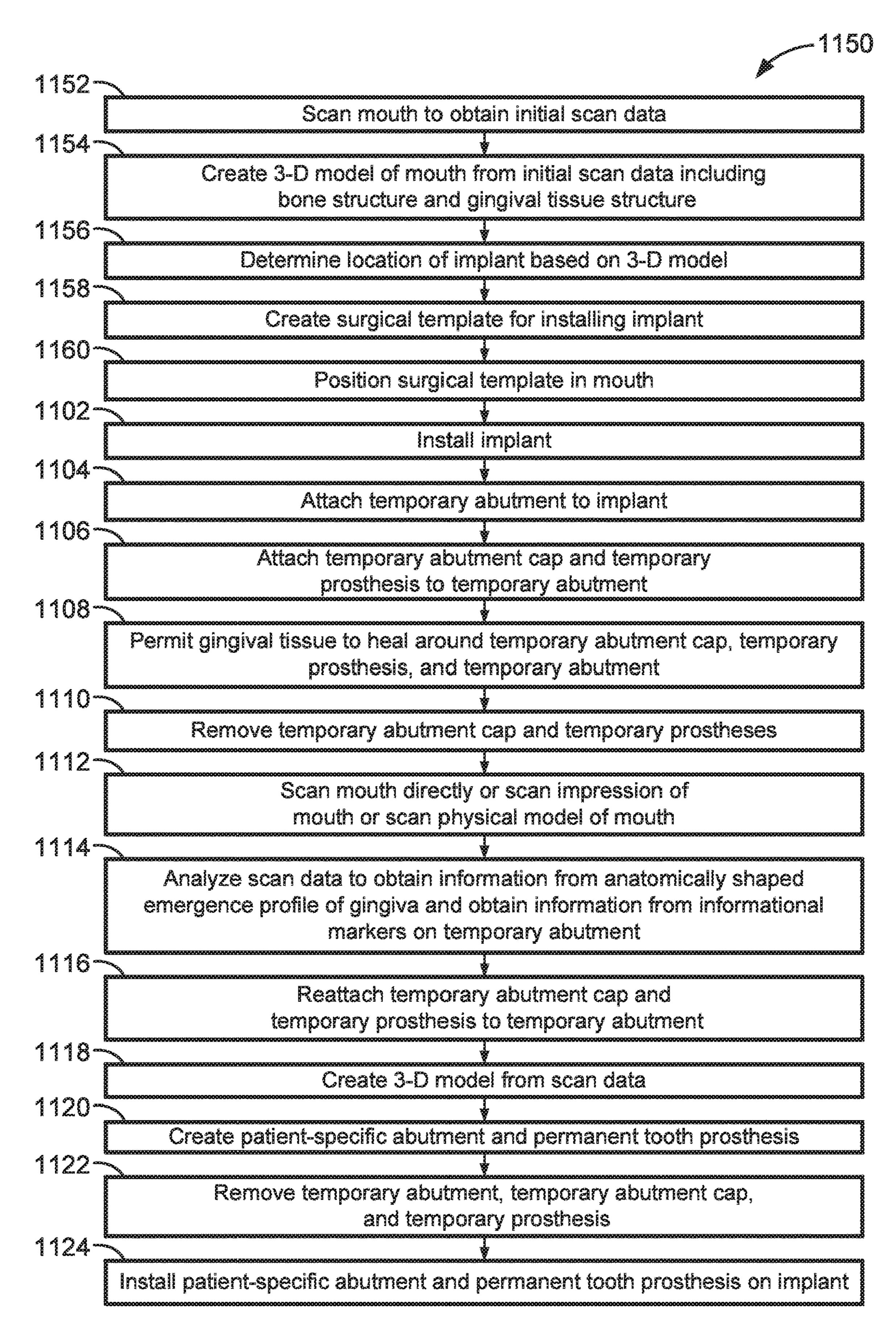
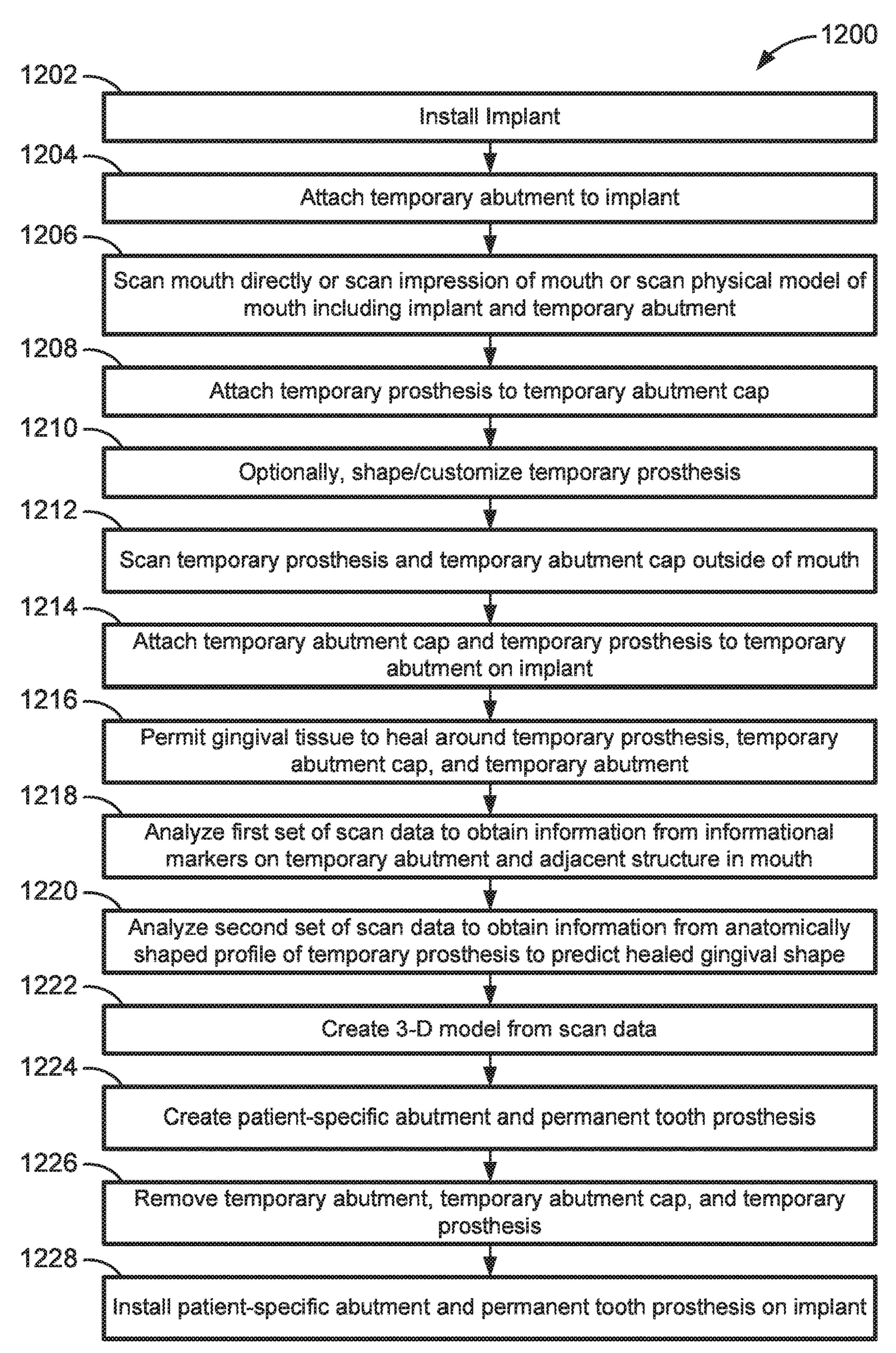



FIG. 16

TEMPORARY ABUTMENT WITH COMBINATION OF SCANNING FEATURES AND PROVISIONALIZATION FEATURES

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of prior application Ser. No. 14/575,717, filed Dec. 18, 2014 (now U.S. Pat. No. 10,368,964), which is a continuation of prior application Ser. No. 13/473,202, filed May 16, 2012, (now U.S. Pat. No. 8,944,816), which claims the benefit of U.S. Provisional Application Ser. No. 61/486,630, filed May 16, 2011 (now expired), each of which is hereby incorporated by reference herein in its entirety. This application is related to copending U.S. Ser. No. 13/473,219, filed on May 16, 2012, entitled "Temporary Abutment with Combination of Scanning Features and Provisionalization Features," (now U.S. Pat. No. 8,944,818).

FIELD OF THE INVENTION

The present invention relates generally to a temporary abutment in a dental implant system. More particularly, the present invention relates to a temporary abutment having 25 scanning features and provisionalization features.

BACKGROUND OF THE INVENTION

The dental restoration of a partially or wholly edentulous 30 patient with artificial dentition is typically done in two stages. In the first stage, an incision is made through the gingiva to expose the underlying bone. An artificial tooth root, in the form of a dental implant, is placed in the jawbone for osseointegration. The dental implant generally includes 35 a threaded bore to receive a retaining screw for holding mating components thereon. During the first stage, the gum tissue overlying the implant is sutured and heals as the osseointegration process continues.

Once the osseointegration process is complete, the second stage is initiated. Here, the gingival tissue is re-opened to expose an end of the dental implant. A healing component or healing abutment is fastened to the exposed end of the dental implant to allow the gingival tissue to heal therearound. It should be noted that the healing abutment can be placed on 45 the dental implant immediately after the implant has been installed and before osseointegration. In recent years, for some situations, the osseointegration step and gingival healing steps have been combined into a one-step process.

Prior healing abutments were generally round in profile, 50 but the artificial teeth or prostheses that eventually replaced the healing abutments were not. Thus, the gingival tissue would heal around the healing abutments creating an emergence profile that approximated the size and contour of the healing abutment and not the size and contour of the 55 prosthesis that was eventually attached to the implant. The resulting discrepancies between the emergence profile of the patient's gingiva and the installed prosthesis could sometimes require additional visits with the dentist or clinician to finalize the installation process and/or compromise the aes- 60 thetic outcome of the installed prosthesis. The present disclosure is directed to solving this and other problems with the prior healing abutments. There is also a need to resolve problems related to temporization of a prosthesis, as often times, prior to placing a permanent prosthesis, it is desirable 65 to place a temporary prosthesis at the same location on the implant.

2

In more recent years, scanning technologies have been used to aid in the development of permanent prostheses. The present disclosure is also directed at solving problems with tying in the scanning technologies with the temporization of prostheses.

SUMMARY OF THE INVENTION

An abutment assembly for attachment to a dental implant includes a temporary abutment and a temporary abutment cap. The temporary abutment has a lower region and an upper region. The lower region includes an anti-rotational feature for non-rotationally mating with the dental implant. The upper region includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. The temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary 20 abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second antirotational structure that is configured to slidably engage the first anti-rotational structure of the temporary abutment. An outer surface of the temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment lifting access to the informational markers.

A temporary prosthesis assembly for attachment to a dental implant includes a temporary abutment, a temporary abutment cap, and a temporary prosthesis. The temporary abutment includes an anti-rotational feature for non-rotationally mating with the dental implant. The temporary abutment includes one or more informational markers. The temporary abutment cap is configured to be removably coupled to the temporary abutment so as to cover the informational markers. The temporary prosthesis is configured to be coupled the temporary abutment cap. The combination of the temporary prosthesis and the temporary abutment cap is removably coupled to the temporary abutment.

An abutment for attachment to a dental implant includes a lower region, an upper region, and an internal bore. The lower region includes an anti-rotational feature for non-rotationally mating with the dental implant. The upper region includes an anti-rotational structure and at least one axial retention structure. The anti-rotational structure and the at least one axial retention structure is for engagement with a tooth-shaped prosthetic component. The upper region includes one or more informational markers for providing information concerning the dental implant that are revealed after the tooth-shaped prosthetic component has been removed from the abutment. The internal bore is configured to receive a fastening device for coupling the abutment to the dental implant.

A temporary abutment system for attachment to different types of dental implants includes a plurality of temporary abutments and a temporary abutment cap. Each of the temporary abutments includes a lower region and an upper region. The lower region includes an anti-rotational feature for non-rotationally mating with one of the dental implants. The upper region includes a first anti-rotational structure and a first axial retention structure. The upper region further includes informational markers for providing information concerning (i) the type of dental implant to which the temporary abutment is to be attached and (ii) positional or

dimensional information related to the attached dental implant. The temporary abutment cap has a second antirotational structure for mating with the first anti-rotational structure and a second axial retention structure for mating with the first axial retention structure. The temporary abutment cap is configured to be mated with any of the temporary abutments such that the temporary abutment cap covers the informational markers.

A method of creating a patient-specific abutment to be coupled to an implant installed in a mouth of a patient 10 includes non-rotationally attaching a temporary abutment to the implant. The temporary abutment includes at least one informational marker indicative of one or more characteristics of the implant. A temporary prosthetic assembly is non-rotationally attached to the temporary abutment such 15 that the temporary prosthetic assembly is removable therefrom. After a sufficient period of time during which gingival tissue surrounding the temporary prosthetic assembly has healed, the temporary prosthetic assembly is removed from the temporary abutment. After the removing, at least a 20 portion of the mouth is scanned including the temporary abutment to generate scan data. From the scan data, emergence profile information for the gingival tissue adjacent to the temporary abutment is obtained and informational marker information from the temporary abutment is 25 obtained. Based on the emergence profile information for the gingival tissue and the informational marker information, a three-dimensional model of at least a portion of the mouth is created. A patient-specific abutment is designed from the three-dimensional model.

A method of creating a patient-specific abutment to be coupled to an implant installed in a mouth of a patient includes attaching a non-round temporary prosthesis to the implant. The temporary prosthesis includes a temporary abutment that has at least one informational marker indicative of one or more characteristics of the implant. After gingival tissue surrounding the temporary prosthesis has healed in a non-round fashion, the temporary prosthesis is disassembled to expose the at least one informational marker on the temporary abutment without removing the temporary abutment from the implant. A scanning process is used to scan the at least one informational marker to obtain data including data associated with information about the implant. A patient-specific abutment is created from the data obtained via the scanning process.

A method of creating a patient-specific abutment to be coupled to an implant installed in a mouth of a patient includes non-rotationally attaching a temporary abutment to the dental implant. The temporary abutment includes at least one informational marker indicative of one or more charac- 50 teristics of the implant. At least a portion of the mouth including the temporary abutment is scanned to generate a first set of scan data. After a shape for a temporary prosthesis has been selected, a temporary prosthesis is scanned outside of the mouth to generate a second set of scan data. The 55 temporary prosthesis is attached to the temporary abutment such that the temporary prosthesis is removable therefrom. The first and the second sets of scan data is analyzed to obtain informational marker information and to obtain predicted anatomically shaped emergence gingiva profile infor- 60 fied; mation. A three-dimensional model of at least a portion of the mouth from the first and the second sets of scan data is created. A patient-specific abutment is designed from the three-dimensional model.

A method of creating a patient-specific abutment to be 65 coupled to an implant installed in a mouth of a patient includes non-rotationally attaching a temporary abutment to

4

the implant. The temporary abutment includes at least one informational marker indicative of one or more characteristics of the implant. A temporary abutment cap is snap-fitted on the temporary abutment such that the temporary abutment cap is removable therefrom and at least partially obscures the at least one informational marker of the temporary abutment. A temporary prosthesis is attached to the temporary abutment cap. After a sufficient period of time during which gingival tissue surrounding the temporary prosthesis, the temporary abutment cap, and the temporary abutment has healed, the temporary prosthesis and the temporary abutment cap are removed from the temporary abutment. After the removing, at least a portion of the mouth is scanned including the temporary abutment to generate scan data. From the scan data, emergence profile information for the gingival tissue adjacent to the temporary abutment is obtained and informational marker information from the temporary abutment is obtained. Based on the emergence profile information for the gingival tissue and the informational marker information, a three-dimensional model of at least a portion of the mouth is created. A patient-specific abutment is designed from the three-dimensional model.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.

FIG. 1A is a perspective view of a temporary abutment; FIG. 1B is a top view of the temporary abutment shown in FIG. 1A;

FIG. 2A is a perspective view of a second temporary abutment;

FIG. 2B is a top view of the second temporary abutment shown in FIG. 2A;

FIG. 3A is a perspective view of a fastening device used for holding the temporary abutments of the present disclosure on a dental implant;

FIG. 3B is a side cross-sectional view of the fastening device shown in FIG. 3A;

FIG. 4A is a perspective view of a temporary abutment cap;

FIG. 4B is a side view of the temporary abutment cap shown in FIG. 4A;

FIG. **5**A is a perspective view of an abutment assembly; FIG. **5**B is a top cross-sectional view of the abutment assembly as shown in FIG. **5**A;

FIG. **6**A is an exploded cross-sectional view of a prosthesis assembly and a dental implant;

FIG. **6**B is an assembled cross-sectional view of the prosthesis assembly coupled to the dental implant shown in FIG. **6**A;

FIG. 7A is an exploded perspective view of an unmodified temporary abutment assembly including a temporary abutment, an unmodified temporary abutment cap, and a fastening device;

FIG. 7B is an assembled perspective view of the assembly shown in FIG. 7A with the temporary abutment cap modified:

FIG. **8**A is an exploded perspective view of a prosthesis assembly and an implant according to an alternative embodiment of the invention;

FIG. 8B is a perspective view of a temporary abutment of the prosthesis assembly of FIG. 8A;

FIG. **8**C is a perspective view of a screw of the prosthesis assembly of FIG. **8**A;

- FIG. 8D is a perspective view of a temporary abutment cap of the prosthesis assembly of FIG. 8A;
- FIG. **8**E is an exploded cross-sectional view of the prosthesis assembly and the implant of FIG. **8**A;
- FIG. 8F is an assembled cross-sectional view of the 5 prosthesis assembly and the implant of FIG. 8A;
- FIG. 9A is an exploded perspective view of a prosthesis assembly and an implant according to another alternative embodiment of the invention;
- FIG. **9**B is a perspective view of a temporary abutment of 10 the prosthesis assembly of FIG. **9**A;
- FIG. 9C is a perspective view of a temporary abutment cap of the prosthesis assembly of FIG. 9A;
- FIG. 9D is an exploded cross-sectional view of the prosthesis assembly and the implant of FIG. 9A;
- FIG. 9E is an assembled cross-sectional view of the prosthesis assembly and the implant of FIG. 9A;
- FIG. 10A is an exploded perspective view of a prosthesis assembly and an implant according to yet a further alternative embodiment of the invention;
- FIG. 10B is a perspective view of a temporary abutment of the prosthesis assembly of FIG. 10A;
- FIG. 10C is a perspective view of a temporary abutment cap of the prosthesis assembly of FIG. 10A;
- FIG. 10D is an exploded cross-sectional of the prosthesis 25 assembly and the implant of FIG. 10A;
- FIG. 10E is an assembled cross-sectional view of the prosthesis assembly and the implant of FIG. 10A;
- FIG. 11A is an exploded perspective view of a prosthesis assembly and an implant according to yet another alternative 30 embodiment of the invention;
- FIG. 11B is a perspective view of a temporary abutment of the prosthesis assembly of FIG. 11A;
- FIG. 11C is a perspective view of a temporary abutment cap of the prosthesis assembly of FIG. 11A;
- FIG. 11D is an exploded cross-sectional view of the prosthesis assembly and the implant of FIG. 11A;
- FIG. 11E is an assembled cross-sectional view of the prosthesis assembly and the implant of FIG. 11A;
- FIG. 12A is an exploded perspective view of a prosthesis 40 assembly and an implant according to yet another alternative embodiment of the invention;
- FIG. 12B is a perspective view of a temporary abutment of the prosthesis assembly of FIG. 12A;
- FIG. 12C is a perspective view of a temporary abutment 45 cap of the prosthesis assembly of FIG. 12A;
- FIG. 12D is an exploded cross-sectional view of the prosthesis assembly and the implant of FIG. 12A;
- FIG. 12E is an assembled cross-sectional view of the prosthesis assembly and the implant of FIG. 12A;
- FIG. 13A is an exploded perspective view of a prosthesis assembly and an implant according to yet another alternative embodiment of the invention;
- FIG. 13B is a perspective view of a temporary abutment of the prosthesis assembly of FIG. 13A;
- FIG. 13C is a cross-sectional view of the temporary abutment of FIG. 13B;
- FIG. 13D is a perspective view of a temporary abutment cap of the prosthesis assembly of FIG. 13A;
- FIG. 13E is a cross-sectional view of the temporary 60 abutment cap of FIG. 13D;
- FIG. 13F is an exploded cross-sectional view of the prosthesis assembly and the implant of FIG. 13A;
- FIG. 13G is an assembled cross-sectional view of the prosthesis assembly and the implant of FIG. 13A;
- FIG. 13H is an assembled partial cross-sectional view of the prosthesis assembly and the implant of FIG. 13A;

6

- FIG. 14A is an exploded perspective view of a prosthesis assembly and a dental implant according to yet another alternative embodiment of the invention;
- FIG. 14B is an exploded perspective view of a prosthesis assembly and a dental implant according to yet another alternative embodiment of the invention;
- FIG. 14C is an exploded perspective view of a prosthesis assembly and a dental implant according to yet another alternative embodiment of the invention;
- FIG. 15 is a flow chart of a method for making a permanent patient-specific abutment and permanent tooth prosthesis using the prosthesis assembly components of the present invention;
- FIG. **16** is a flow chart of a method for making a permanent patient-specific abutment and permanent tooth prosthesis including a method for preparing to install an implant; and
- FIG. 17 is a flow chart of a method for making a permanent patient-specific abutment and permanent tooth prosthesis using the prosthesis assembly components of the present invention.

While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Retelling to FIGS. 1A and 1B, a temporary abutment 10 of the present disclosure (like other temporary abutments of the present disclosure) may be used for at least four purposes, which will be explained in more detail below. First, the temporary abutment 110 may serve as a gingival healing abutment as its exterior surface is contoured to aid in the healing of a patient's gingival tissue. Second, the temporary abutment 10 may serve as a temporary prosthesis (i.e., it provides a convenient mount for removably attaching an acrylic portion having an anatomical tooth shape). Third, the temporary abutment 10 serves as a scanning member to permit a clinician to use one or more scanning techniques to obtain necessary information about the underlying implant's location and orientation for use in developing permanent prosthetic components. And fourth, the temporary abutment 50 **10** may serve as a permanent abutment providing a convenient mount for a permanent prosthesis having an anatomical tooth shape.

The temporary abutment 10 has a subgingival region 20 and a supragingival region 30, which are separated by a flange 50. An outer surface 55 (best shown in FIG. 5A) of the flange 50 is positioned to engage and aid in forming a patient's gingival tissue during the healing process. The subgingival region 20 includes an anti-rotational feature 22 (e.g., a hexagonal section) for mating with a corresponding anti-rotational feature of an implant (e.g., implant 120 in FIG. 6A). The anti-rotational feature 22 of the temporary abutment 10 can be any type of boss (e.g., polygonal boss, star boss, clover boss, etc.) or socket (e.g., polygonal socket, star socket, clover socket, etc.) such that it corresponds with an anti-rotational feature of the underlying implant to prevent relative rotation of the temporary abutment 10 with respect to the implant 120. It is contemplated that the

temporary abutment 10 (and the other temporary abutments of the present disclosure) can be fashioned from gold, titanium, plastic, ceramic, or other similar metals or composites.

The supragingival region 30 includes one or more reten- 5 tion grooves or structures 32 and an anti-rotational structure **34** (e.g., a flat wall or surface). The retention grooves **32** are configured to mate in a snap-type axial holding engagement with corresponding male circumferential features or structures 86 (shown in FIGS. 4A and 4B) of a temporary 10 abutment cap 80 (shown in FIGS. 4A and 4B). The one or more retention grooves 32 are configured to mate with the male circumferential features 86 with a retention force between about one and about ten pounds of force. That is, it takes between about one and about ten pounds of force to 15 remove the temporary abutment cap 80 from its snap-fit type engagement with the temporary abutment 10. Alternatively, the supragingival region 30 of the temporary abutment 10 can include male circumferential features that are configured to mate in a snap-type axial holding engagement with 20 corresponding retention grooves on an inside surface of the temporary abutment cap 80 (not shown).

The anti-rotational structure **34** is configured to mate in a slidable engagement with a corresponding anti-rotational structure **84** (shown in FIGS. **4A** and **4B**) to prevent relative 25 rotation of the temporary abutment cap 80 and the temporary abutment 10. In the illustrated implementation, the antirotational structure 34 generally extends from a top surface 60 of the temporary abutment 10 to the flange 50. While the anti-rotational structure **34** is shown as a flat wall on the 30 supragingival region 30, the anti-rotational structure 34 can be one of a variety of known anti-rotational structures, such as, for example, one or more grooves, slots, projections, or any combination thereof. Examples of anti-rotational structures for dental posts are shown in U.S. Pat. Nos. 6,120,293, 6,159,010, and 8,002,547, each of which is commonly owned by the assignee of the present application and is hereby incorporated by reference herein in its entirety. Regardless of the type of anti-rotational structure 34 chosen for the supragingival region 30 of the temporary abutment 40 10, the temporary abutment cap 80 has a correspondingly shaped structural surface (e.g., anti-rotational structure 84) for engaging the anti-rotational structure **34** so as to prevent relative rotation between the two components.

The temporary abutment 10 is generally cylindrical in 45 shape with an internal bore 40 for receiving a screw 70 (shown in FIGS. 3A and 3B) to removably couple the temporary abutment 10 to the implant 120. The top surface 60, which is best shown in FIG. 1B, includes two informational marker locations 62. The informational marker locations 62 are positioned circumferentially around the top surface 60 of the temporary abutment 10. While the temporary abutment 10 is shown with informational marker locations 62 only at locations of 3 o'clock, and 6 o'clock with respect to the anti-rotational structure 34 being at 12 55 o'clock, it is contemplated that additional informational marker locations (not shown) can be placed at 9 o'clock, 12 o'clock, and/or at any positions therebetween.

Each of the informational marker locations **62** is configured to include one or more informational markers **64**. The 60 informational marker **64** is shown as one notch; however, the present disclosure contemplates that the informational markers **64**—for all of the embodiments disclosed herein—can be positive informational markers, negative informational markers, raised projections/pimples, recesses or dimples, 65 notches, lines, etching, alphanumeric characters, etc. It is further contemplated that the cross-section of the informa-

8

tional markers **64** can be rectangular, triangular, or various other shapes. Further, the informational marker locations **62** themselves can act as informational markers and provide and/or indicate information.

The informational markers **64** are indicative of one or more characteristics of the temporary abutment 10 itself and/or of the underlying implant 120 (shown in FIG. 6A) to which the temporary abutment 10 is attached. For example, one or more of the informational markers 64 can be geometrically aligned with a flat of the non-rotational feature 22 of the temporary abutment 10 and/or a flat on the underlying implant to indicate the rotational orientation of the nonrotational features of the temporary abutment 10 and/or of the underlying implant. It is also contemplated that one or more of the informational markers 64 may correspond to the height of the temporary abutment 10 and, hence, a height or vertical position (i.e., z-axis location) of a table or seating surface of the underlying implant. For another example, the informational markers 64 can be indicative of the x-y location of the table or seating surface of the underlying implant. For another example, the informational markers **64** can be indicative of the angle that the underlying implant rests with respect to vertical within the patient's jawbone (e.g., pitch and yaw). For another example, the informational markers 64 can be indicative of the size and/or shape of the temporary abutment 10 and/or the underlying implant. For another example, the informational markers **64** can be indicative of the manufacturer of the underlying implant.

The informational markers **64** can be part of a binary marking system that identifies unique characteristics of the temporary abutment 10 and/or the underlying implant 120. As is well known, a binary-coded system exists as an array of digits, where the digits are either "1" or "0" that represent two states, respectively, ON and OFF. For each informational marking location 62, the presence of an informational marker **64** ("ON") is a 1 and the absence of an informational marker 64 ("OFF") is a 0. By grouping sets of 1's and 0's together starting from a known starting location (e.g., 3) o'clock or the first location in the clockwise direction from the anti-rotational structure 34), information about each temporary abutment 10 is known. For the temporary abutment 10, the two informational marker locations 62 can provide four different combinations. Additional details on informational markers and the characteristics of the underlying implant and/or the abutment that are identified by the informational markers (e.g., informational markers **64**) can be found in U.S. Pat. No. 7,988,449, which is hereby incorporated by reference herein in its entirety.

Referring to FIGS. 2A and 2B, a temporary abutment 10' is shown. The temporary abutment 10' includes all of the same features as the temporary abutment 10, where like reference numbers are used for like components; however, the temporary abutment 10' is a different size of temporary abutment. The difference is noticeable by reference to the orientation or positioning of the informational marker **64**' and the informational marker locations **62**' on the top surface 60 of the temporary abutment 10'. A quick comparison of the top surface 60 of the temporary abutment 10 with the top surface 60 of the temporary abutment 10' reveals that the informational marker **64**' is in a different orientation, which indicates that the temporary abutment 10' has at least one characteristic that is different from the temporary abutment 10. For example, the temporary abutment 10' has a larger or wider subgingival region 20 and flange 50 than the subgingival region 20 and flange 50 of the temporary abutment 10. For another example, the outer surface 55 of the flange 50

of the temporary abutment 10' can have a different curve and/or profile than the outer surface 55 of the flange 50 of the temporary abutment 10.

Referring to FIGS. 3A and 3B, a fastening device such as the screw or attaching bolt 70 includes a threaded portion 72, 5 a shaft portion 74, and a head portion 76 including a socket. The head portion 76 on the exposed surface of a head of the screw 70 is shaped to accept a wrench (not shown) for threadably engaging the screw 70 into a threaded bore of an implant 120 (shown in FIG. 6A). It is contemplated that each 10 of the temporary abutments described herein and shown in the figures can be secured to an implant by means of the screw 70, or by means of a similar screw, as is known in the art. It is further contemplated that one or more washers (e.g., locking washer) and/or O-rings (e.g., sealing O-ring) can be 15 placed on the screw 70 (e.g., below the head portion 76 on the shaft portion 74 and/or about or on the head portion 76) prior to installation of the same. While not shown in FIGS. 3A and 3B, the head portion 76 of the screw 70 can include one or more informational marker locations and/or informa- 20 tional markers that are the same as, or similar to, the informational marker locations 62 and the informational markers **64** described above in reference to the temporary abutment 10 (see e.g., notches 478 of screw 470 in FIG. 8C). Such informational markers on the screw 70 can provide 25 and/or be indicative of information such as, for example, a connection type of the underlying implant (e.g., implant 120 of FIG. 6A), a manufacturer of the underlying implant, a height, a width, a pitch, a yaw, or a combination thereof, of the screw 70 itself, of the temporary abutment 10, and/or of 30 the underlying implant.

Now referring to FIGS. 4A and 4B, the temporary abutment cap 80 has a generally cylindrical outer surface 81 (or it could have a slight taper) and is configured to fit over the the screw 70 is installed. Alternatively, it is contemplated that the temporary abutment cap 80 includes an aperture (see e.g., aperture 483 in temporary abutment cap 480 in FIG. **8**D) in a top portion thereof to provide access for the screw 70 to be installed after the temporary abutment cap 80 is 40 installed on the temporary abutment 10.

The temporary abutment cap 80 includes an anti-rotational structure **84** that projects inward from an inner surface 82 of the temporary abutment cap 80. The anti-rotational structure 84 is configured to engage with and/or abut the 45 anti-rotational structure 34 of the temporary abutment 10 in a slidable manner as the temporary abutment cap 80 is slid over the temporary abutment 10. The outer dimensions (e.g., diameter) of the supragingival region 30 of the temporary abutment 10 and the inner dimensions of the inner surface 82 50 of the temporary abutment cap 80 are configured such that the temporary abutment cap 80 can be slid over the supragingival region 30 in only one rotational orientation. Such a design prevents the temporary abutment cap 80 from rotating with respect to the supragingival region 30 of the 55 temporary abutment 10 once installed. It is contemplated that the temporary abutment cap 80 can include more than one anti-rotational structure 84 configured to mate with a corresponding number of anti-rotational structures 34 of the temporary abutment 10.

The temporary abutment cap 80 includes one or more male circumferential features 86 that are configured to mate with the temporary abutment 10 in a snap-fit type engagement. The one or more male circumferential features 86 are circumferential projections that mate with corresponding 65 ones of the retention grooves 32 on the supragingival region 30 of the temporary abutment 10. Such a mating of the male

circumferential features 86 with the retention grooves 32 removably couples the temporary abutment cap 80 to the temporary abutment 10. It is contemplated that such a removable snap-fit type engagement provides a clinician installing the temporary abutment cap 80 with mechanical and/or audible feedback that a bottom end 88 (FIG. 4A) of the temporary abutment cap 80 is properly seated on the flange 50 (FIG. 1A) of the temporary abutment 10.

Now referring to FIGS. 5A and 5B, an abutment assembly 85 includes the temporary abutment 10 engaged with the temporary abutment cap 80 in a snap-fit type engagement. As shown in FIG. 5A, the temporary abutment cap 80 is installed on the temporary abutment 10 such that the bottom end 88 (FIG. 4A) of the temporary abutment cap 80 abuts and/or contacts the flange 50 (FIGS. 1A and 1B) of the temporary abutment 10 and the male circumferential projections 86 (FIGS. 4A and 4B) of the temporary abutment cap 80 engage the retention grooves 32 (FIGS. 1A and 1B) of the temporary abutment 10. As shown in FIG. 5B, the anti-rotational structure **34** of the temporary abutment **10** is positioned adjacent to the anti-rotational structure 84.

Referring to FIGS. 6A and 6B, an exploded view (FIG. **6**A) and an assembled view (FIG. **6**B) of a temporary prosthesis assembly or a prosthesis assembly 100 and dental implant 120 is shown. The prosthesis assembly 100 includes the temporary abutment 10 and the temporary abutment cap 80 coupled to a temporary prosthesis 90 (e.g., a temporary tooth). The implant 120 is installed in the jawbone (not shown) of a patient, and then the temporary abutment 10 is non-rotationally attached to the implant 120 via the nonrotational feature 22 and the screw 70. The temporary abutment 10 is attached to the implant 120 such that a bottom portion of the flange 50 of the temporary abutment 10 abuts and/or rests upon a table or seating surface 123 of supragingival region 30 of the temporary abutment 10 after 35 the dental implant 120. The temporary abutment cap 80 is snap-fitted onto the temporary abutment 10 and then the temporary prosthesis 90 is coupled to the temporary abutment cap 80.

The outer surface 81 of the temporary abutment cap 80 is configured to mate with and/or to be bonded with the temporary prosthesis 90. It is contemplated that the temporary prosthesis 90 is coupled to the temporary abutment cap 80 using cement (e.g., dental cement), glue, bonding agent, a press-fit engagement, a snap or click-type engagement, a screw or bolt, or a combination thereof. It is further contemplated that the temporary prosthesis 90 is removably or permanently coupled to the temporary abutment cap 80 such that the temporary prosthesis 90 and the temporary abutment cap 80 can be removed separately or in unison from the temporary abutment 10. Removal of the temporary prosthesis 90 and the temporary abutment cap 80 exposes the top surface of the temporary abutment 10 including the informational markers 64, which can be scanned directly or indirectly (e.g., from an impression and/or stone/plaster model) to generate scan data that is at least used to determine the location and orientation of the implant 120, which, as explained herein, is used when developing a permanent patient-specific abutment and/or prosthesis.

The outer surface of the temporary prosthesis 90 and/or the outer surface 55 of the flange 50 are configured to be suitable for replicating the gingival emergence profile formed by a natural tooth (e.g., in a non-round shape). As such, after the temporary prosthesis 90 is installed, the patient's gingiva is permitted to heal around the temporary prosthesis 90 and/or the temporary abutment 10. Such a prosthesis assembly 100 results in a gingival emergence profile approximating that of what would be around a natural

tooth and/or that of what a clinician determined to be most appropriate for the given implant installation site (e.g., an ovular shape). In other words, the prosthesis assembly 100 also acts as a gingival healing abutment. This is advantageous because, after the patient's mouth has an opportunity 5 to heal and is ready to be processed (e.g., intra-oral direct scanning, impression scanning, or scanning of a model formed from the impression) for creating a permanent patient-specific abutment and prosthesis, the temporary prosthesis 90 and the temporary abutment cap 80 are 10 removed to reveal the temporary abutment 10 and the resulting emergence profile of the adjacent gingiva. Because the resulting emergence profile approximates that of a natural tooth, the permanent patient-specific abutment and prosthesis can be accurately created from the scan data and/or 15 from known data associated with the temporary abutment 10 (e.g., the known contours of the outer surface 55 of the flange 50 of the temporary abutment 10). For example, the permanent patient-specific abutment and prosthesis can be created and attached to the underlying implant 120 such that 20 the permanent patient-specific abutment and prosthesis (not shown) are highly aesthetic and fit closely within the gingiva emergence profile adjacent to the implant 120 that was formed by the prosthesis assembly 100.

To create a permanent patient-specific abutment and pros- 25 thesis (not shown), after the temporary abutment cap 80 and attached temporary prosthesis 90 are removed, the dental region of the patient's mouth including the temporary abutment 10 is scanned from a stone model (i.e., a replica of the patient's dental conditions), from impression material of an 30 impression of the patient's dental conditions including the temporary abutment 10, or directly in the mouth of the patient. Scanning can be accomplished using a laser scanning technique, a photographic scanning technique, or a mechanical sensing technique. These methods of scanning 35 directly in a patient's mouth, an impression of the same, and a model of the same, using any of the aforementioned techniques, are described in further detail in U.S. Pat. No. 7,988,449, which was previously incorporated by reference herein in its entirety.

The scanned data or information obtained from the scanning process is then transferred to a graphical imaging program for analysis. The graphical imaging software program, due to the information markers **64** on the top surface 60 of the temporary abutment 10, can aid in performing a 45 wide variety of functions. For example, the graphical imaging program can scan an opposing cast in order to develop an opposing occlusal scheme and relate this information back to the primary model. This feature is extremely important because many clinical patients have implants in both 50 maxillary and mandibular locations. Each of the features of the temporary abutment 10 and underlying implant 120 is analyzed and determined based on the presence/absence of the information markers **64** and the orientation/location of the informational markers **64** on the top surface **60** of the 55 temporary abutment 10. And, as mentioned above, the emergence contour or profile of the gingival tissue that was created by the prosthesis assembly 100 is also received in the scan.

Final dimensional information determined by the graphical imaging computer program is transferred from the computer to a milling machine (e.g., a 5 axis milling machine) to fabricate the permanent patient-specific abutment and/or permanent prosthesis. It is contemplated that the permanent patient-specific abutment and/or permanent prosthesis can 65 be fashioned from gold, titanium, plastic, ceramic, or other similar metals or composites.

12

Alternatively and/or additionally, one or more rapid prototype models of the patient's mouth, including a replica of the gingival contours, can be fabricated based on the dimensional information and/or the original scanned information/data. The rapid prototype model(s) can be used by a clinician to develop, for example, the permanent prosthesis. Additional details on rapid prototype models and rapid prototyping in general can be found in U.S. Pat. No. 8,185,224, which is hereby incorporated by reference herein in its entirety.

FIGS. 7A-7B illustrate an alternative abutment assembly 200. FIG. 7A shows an exploded view of the abutment assembly 200 including the temporary abutment 10 and a temporary abutment cap 280. The temporary abutment cap 280 is configured to be installed on the temporary abutment 10 such that (1) a bottom end 288 of the temporary abutment cap 280 abuts and/or contacts a top portion of the flange 50 of the temporary abutment 10 and (2) male circumferential projections 286 of the temporary abutment cap 280 engage the retention grooves 32 of the temporary abutment 10 in a snap-fit type engagement.

The temporary abutment cap **280** is similar to the temporary abutment cap 80, described herein and shown in FIGS. 4A and 4B, except that the temporary abutment cap 280 includes additional material 282 configured to be cut or shaved or otherwise modified by a clinician to approximate the size, shape, position, and general likeness of an anatomically shaped tooth when attached to the temporary abutment 10. For example, as shown in FIG. 7B, the additional material 282 of the temporary abutment cap 280 is modified to look like an anatomically shaped tooth when attached to the temporary abutment 10 installed on the dental implant 120 (not shown in FIG. 7B) in the mouth of a patient. The embodiment of FIGS. 7A and 7B is different from FIGS. 4A and 4B in which material (e.g., the temporary prosthesis 90) is added to the temporary abutment cap 80 to form the emergence profile of the gingival tissue.

Alternatively, the additional material **282** can be modified such that the modified portion of the temporary abutment cap **280** is configured to be coupled with a temporary prosthesis or crown (not shown) in a manner similar to how the temporary prosthesis **90** is coupled to the temporary abutment cap **80**, described above and shown in FIGS. **6A** and **6B**.

According to some additional alternative implementations of the present aspects, in lieu of a clinician modifying the additional material 282 of the temporary abutment cap 280, a temporary abutment cap can be supplied with a shape and size such that the temporary abutment cap includes an outer surface that approximates the size and shape of an anatomically shaped tooth when attached to the temporary abutment 10 installed on the dental implant 120 in the mouth of a patient. That is, it is contemplated that a temporary abutment cap can be formed with an outer surface that includes a preformed anatomically shaped tooth (e.g., a tooth prosthesis) that is configured to be attached to the temporary abutment 10 in a similar manner as the temporary abutment cap 80 is attached to the temporary abutment 10 described herein.

It is further contemplated that a kit or package of temporary abutment caps, where each temporary abutment cap includes an outer surface with an anatomically shaped tooth (not shown), can be supplied and/or packaged together for use by, for example, clinicians. In such alternatives, the clinician is supplied with a variety of temporary abutment caps including different anatomically shaped teeth that can be attached to the temporary abutment 10 as described

herein and used directly as temporary prostheses without further modification or attachment of additional components. In each of these alternatives, the temporary abutment 10 is still useful for scanning.

In some implementations of the disclosed concepts, the 5 retention grooves 32 and the male circumferential features **86** can be formed to provide a fixed rotational orientation between the temporary abutment 10, 10' and the temporary abutment cap 80. For example, one or more of the retention grooves 32 can have a unique length and/or size (as com- 10 pared with the other ones of the retention grooves 32) that is designed to mate with a corresponding one of the male circumferential features 86 having a corresponding unique length and/or size (as compared with the other ones of the male circumferential features 86) such that the temporary 15 abutment cap 80 can only be attached (e.g., via snap-fit connection) to the temporary abutment 10, 10' in one rotational orientation.

Referring to FIGS. 8A to 8F, various views of components of an alternative prosthesis assembly 400 and the dental 20 implant 120 are shown. As shown in FIG. 8A, the prosthesis assembly 400 includes a temporary abutment 410, a temporary abutment cap 480, a screw 470, and a temporary prosthesis 490, each of which is similar to, or the same as, corresponding components of the previously described pros- 25 thesis assemblies. In FIGS. 8A to 8F, each of the components and features is identified by a 400-series reference numeral, and those 400-series reference numerals correspond to like features of the various components and features of the previously described prosthesis assemblies. For example, 30 reference numeral **434** is used to describe the non-rotational structure **434** (FIG. **8**B), which is the same as, or similar to, the non-rotational structure **34** (FIG. **1A**). Additionally, reference numerals 440, 460, 472, 474, and 481 are used in similar to, previously described features with reference numbers 40, 60, 72, 74, and 81, respectively.

Referring to FIG. 8B, the temporary abutment 410 generally includes all of the same features as the temporary abutment 10, which is most similar to the temporary abut- 40 ment 410; however, the temporary abutment 410 has a different overall shape and/or size. Specifically, the temporary abutment 410 includes a continuous retention groove **432** that circumscribes the entire supragingival region **430** of the temporary abutment **410** instead of including the reten- 45 tion grooves 32 (FIG. 1A) of the temporary abutment 10. Additionally, the continuous retention groove **432** (FIG. **8**B) is positioned completely below the non-rotational structure 434 of the temporary abutment 410 as compared to the positioning of the retention grooves 32 of the temporary 50 abutment 10 which are positioned adjacent to a central region of the non-rotational structure **34** of the temporary abutment 10 (e.g., the retention grooves 32 are relatively higher on the temporary abutment 10). Irrespective of the placement of the continuous retention groove **432** on the 55 supragingival region 430 of the temporary abutment 410, the continuous retention groove **432** (FIG. **8**B) functions in the same, or similar, manner as the retention grooves 32 (FIG. 1A) in that the continuous retention groove 432 is configured to mate with one or more projections 486 of the 60 temporary abutment cap 480 (FIG. 8D) in a snap-fit type engagement (shown in FIG. 8F).

An outer surface 455 of a flange 450 of the temporary abutment 410 (e.g., portion of 410 that separates a subgingival region 420 and a supragingival region 430) also differs 65 from the outer surface 55 of the flange 50 of the temporary abutment 10, which is best seen by comparing FIG. 6B with

14

FIG. 8F. Specifically, the outer surface 455 of the flange 450 of the temporary abutment 410 has a differently shaped contour for engaging and aiding in forming a patient's gingival tissue during the healing process. Various other contours of the outer surface 455 of the flange 450 can be used depending on the particular conditions present in the patient's mouth.

A further difference between the temporary abutment 410 (FIG. 8B) and the temporary abutment 10 (FIG. 1A) is that the temporary abutment 410 includes three informational marker locations 462 and two informational markers 464 as compared to the two informational marker locations 62 and the one informational marker **64** of the temporary abutment 10. The additional informational marker location 462 can aid in providing additional information about the temporary abutment 410 and/or the underlying dental implant 120 by providing, for example, additional potential binary combinations (e.g., three binary informational markers provide the ability to identify eight different configurations).

Referring to FIG. 8C, the screw 470 generally includes all of the same features as the screw 70; however, an upper part of a head portion 476 of the screw 470 is modified. Specifically, in addition to the head portion 476 including a socket 479 to accept a wrench (not shown) for threadably engaging the screw 470 into the threaded bore of the implant 120 (see FIGS. 8A, 8E, and 8F), the head portion 476 includes a lip 477 and one or more notches 478.

The lip 477 has a larger outer diameter than the outer diameter of the rest of the head portion 476 such that the lip 477 engages with the temporary abutment cap 480 when the temporary abutment cap 480 is engaged with (e.g., snapped onto) the temporary abutment **410** as best shown in FIG. **8**F. Such an engagement between the lip 477 and the temporary abutment cap 480 provides additional rigidity to the prosthe figures to illustrate features that are the same as, or 35 thesis assembly 400 in its assembled configuration (FIG. **8**F). Alternatively, the screw **470** can be sized and shaped such that the head portion 476 does not engage the temporary abutment cap **480** (see e.g., FIG. **6**B).

> The one or more notches 478 in the head portion 476 can act as informational marker locations and/or informational markers in the same, or similar, manner as the informational marker locations 62, 462 and the informational markers 64, 464 described herein. Specifically, the notches 478 can indicate information regarding one or more aspects of the prosthesis assembly 400 and/or the dental implant 120, such as, for example, a connection type of the underlying implant, the type of prosthesis assembly, a manufacturer of the underlying implant, a height, a width, a pitch, a yaw, or a combination thereof of the temporary abutment 410 and/or of the underlying implant 120, etc.

> Referring to FIG. 8D, the temporary abutment cap 480 generally includes all of the same features as the temporary abutment cap 80, which is most similar to the temporary abutment cap 480; however, the temporary abutment cap **480** has a different overall shape and/or size to correspond with the temporary abutment 410. Specifically, while the temporary abutment cap 480 includes one or more projections 486 (similar to the projections 86 of the temporary abutment cap 80 in FIG. 4A), the projections 486 (FIG. 8D) are formed by a continuous projection that circumscribes an inner surface 482 of the temporary abutment cap 480 that is separated into the projections 486 by a plurality of notches **487**. The notches **487** allow for the temporary abutment cap **480** to be removed from the temporary abutment **410**, when engaged in the snap-fit type engagement shown in FIG. 8F, with relatively less force then if the projections 486 were continuous (e.g., not separated by the notches 487). Alter-

natively, the projections **486** (FIG. **8D**) of the temporary abutment cap **480** can be formed in the same, or similar manner as the projections **86** (FIG. **4A**) of the temporary abutment cap **80** (e.g., without the notches **487**).

Additionally, the projections **486** (FIG. **8**D) are positioned 5 completely below the non-rotational structure 484 of the temporary abutment cap 480 as compared to the positioning of the projections **86** (FIG. **4A**) of the temporary abutment cap 80 which are positioned adjacent to a central region of the non-rotational structure **84** of the temporary abutment 10 cap 80 (e.g., the projections 86 of the temporary abutment cap 80 are relatively higher). The positioning of the projections **486** (FIG. **8**D) can aid in providing a seal between a lower or apical end (e.g., a bottom end 488) of the temporary abutment cap 486 and the temporary abutment 410 (e.g., by 15 forcing the lower end downwardly). Irrespective of the placement of the projections 486 on the inner surface 482 of the temporary abutment cap 480, the projections 486 (FIG. 8D) function in the same, or similar, manner as the projections 86 (FIG. 4A) in that the projections 486 (FIG. 8D) are 20 configured to mate with the continuous retention groove **432** of the temporary abutment **410** (FIG. **8**B) in a snap-fit type engagement (best shown in FIG. 8F).

A further difference between the temporary abutment cap
480 (FIG. 8D) and the temporary abutment cap 80 (FIG. 4A)
25 532
is that the temporary abutment cap 480 includes an aperture
483 in a top portion thereof to provide access for the screw
470 to be installed after the temporary abutment cap 480 is
installed on (e.g., snapped onto) the temporary abutment
410. As described above in reference to the screw 470 of 30
FIG. 8C, the wall of the aperture 483 can engage with the lip
477 of the screw 470 for additional rigidity of the prosthesis
assembly 400.

flat s

Referring to FIGS. 8E and 8F, a cross-sectional exploded **8**F) of the prosthesis assembly **400** and the dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 400 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) and then the temporary 40 abutment 410 is non-rotationally attached to the implant 120 via a non-rotational feature 422 (FIG. 8B) and the screw **470**. The temporary abutment cap **480** is snap-fitted onto the temporary abutment 410 in a non-rotational manner such that the non-rotational structure 434 (FIG. 8B) of the tem- 45 porary abutment 410 engages the non-rotational structure **484** (FIG. **8**D) of the temporary abutment cap **480**. The temporary prosthesis 490 is coupled to the temporary abutment cap 480 in the same, or similar, manner as described herein in reference to the temporary prosthesis 90 being 50 coupled to the temporary abutment 80 (FIGS. 6A and 6B). Alternatively, as the temporary abutment cap 480 includes the aperture 483 (FIG. 8D), the temporary abutment cap 480 can be snap-fitted onto the temporary abutment 410 prior to the screw 470 being installed. Then, the screw 470 can be 55 turer. installed through the aperture **483**, which is followed by the temporary prosthesis 490 being coupled to the temporary abutment cap 480.

Referring to FIGS. 9A to 9E, various views of components of an alternative prosthesis assembly 500 and the 60 dental implant 120 are shown. As shown in FIG. 9A, the prosthesis assembly 500 includes a temporary abutment 510, a temporary abutment cap 580, a screw 570, and a temporary prosthesis 590, each of which is similar to, or the same as, corresponding components of the previously described prosthesis assemblies. In FIGS. 9A to 9E, each of the components and features is identified by a 500-series reference

16

numeral, and those 500-series reference numerals correspond to like features of the various components and features of the previously described prosthesis assemblies. For example, reference numeral 534 is used to describe the non-rotational structure 534 (FIG. 9B), which is the same as, or similar to, the non-rotational structure 34 (FIG. 1A) and the non-rotational structure 434 (FIG. 8B). Additionally, reference numerals 520, 540, 555, 560, 581, and 587 are used in the figures to illustrate features that are the same as, or similar to, previously described features with reference numbers 20, 40, 55, 60, 81, and 487 respectively.

Referring to FIG. 9B, the temporary abutment 510 generally includes all of the same features as the temporary abutments 10 and 410; however, several differences exist between the temporary abutment 510 and the temporary abutment 410, which is most similar to the temporary abutment 510. Specifically, the temporary abutment 510 includes a continuous retention groove **532** (FIG. **9**B) that is positioned directly above a flange 550 as compared to the positioning of the continuous retention groove 432 of the temporary abutment 410 (best shown by comparing FIG. 8E) with 9D). Irrespective of the placement of the continuous retention groove 532 on a supragingival region 530 of the temporary abutment 510, the continuous retention groove **532** (FIG. **9**B) functions in the same, or similar, manner as the continuous retention groove **432** (FIG. **8**B) in that the continuous retention groove **532** is configured to mate with one or more projections **586** of the temporary abutment cap **580** (FIG. 9C) in a snap-fit type engagement (shown in FIG.

FIG. 8C, the wall of the aperture 483 can engage with the lip 477 of the screw 470 for additional rigidity of the prosthesis assembly 400.

Referring to FIGS. 8E and 8F, a cross-sectional exploded view (FIG. 8E) and a cross-sectional assembled view (FIG. 8F) of the prosthesis assembly 400 and the dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 400 are assembled and attached

A non-rotational structure 534 of the temporary abutment 510 is a six-sided hexagonal boss as compared to the single flat surface of the non-rotational structures 34, 434 (see e.g., FIGS. 1A and 8B). Various other non-rotational structures can be used to prevent relative rotation between the temporary abutment 510 and the temporary abutment 520 are shown for illustrating how the various components of the prosthesis assembly 400 are assembled and attached

A further difference between the temporary abutment 510 (FIG. 9B) and the temporary abutment 410 (FIG. 8B) is that the temporary abutment 510 includes two informational marker locations **562** and one informational marker **564** as compared to the three informational marker locations 462 and the two informational marker 464 of the temporary abutment 410. Moreover, the informational marker locations 562 of the temporary abutment 510 are in the shape of a rectangular surface and a triangular surface. The differently shaped informational marker locations 562 themselves can aid in providing information about the temporary abutment 510 and/or the underlying dental implant 120. For example, a sole triangular informational marker location 562 can indicate a particular manufacturer and, for another example, both a rectangular and a triangular informational marker 562 on a temporary abutment can indicate a different manufac-

Referring to FIG. 9C, the temporary abutment cap 580 generally includes all of the same features as the temporary abutment caps 80 and 480 except for a few differences. One or more projections 586 of the temporary abutment cap 580 are positioned relatively lower as compared to the positioning of the projections 486 of the temporary abutment cap 480 (best shown by comparing FIG. 8F with FIG. 9E). Irrespective of the placement of the projections 586 on an inner surface 582 of the temporary abutment cap 580, the projections 586 (FIG. 9C) function in the same, or similar, manner as the projections 86 (FIG. 4A) in that the projections 586 (FIG. 9C) are configured to mate with the con-

tinuous retention groove **532** of the temporary abutment **510** in a snap-fit type engagement (best shown in FIG. **9**E).

A further difference between the temporary abutment cap 580 (FIG. 9C) and the temporary abutment cap 480 (FIG. 8D) is that the temporary abutment cap 580 includes a 5 non-rotational structure 584 that is a six-sided hexagonal socket (FIG. 9C) as compared to the single flat surface of the non-rotational structure 484 of the temporary abutment cap 480 (FIG. 8D). The non-rotational structure 584 can be any of a variety of structures that corresponds with the non-rotational structure 534 to prevent relative rotation between the temporary abutment 510 and the temporary abutment cap 580.

Referring to FIGS. 9D and 9E, a cross-sectional exploded view (FIG. 9D) and a cross-sectional assembled view (FIG. 15 **9**E) of the prosthesis assembly **500** and the dental implant **120** are shown for illustrating how the various components of the prosthesis assembly 500 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) and then the temporary 20 abutment 510 is non-rotationally attached to the implant 120 via the non-rotational feature **522** (FIG. **9**B) and the screw **570**. The temporary abutment cap **580** is snap-fitted onto the temporary abutment 510 in a non-rotational manner such that the non-rotational structure **534** (FIG. **9**B) of the tem- 25 porary abutment 510 engages the non-rotational structure **584** (FIG. 9C) of the temporary abutment cap **580**. The temporary prosthesis 590 is coupled to the temporary abutment cap 580 in the same, or similar, manner as described herein in reference to the temporary prosthesis 90 being 30 coupled to the temporary abutment 80 (FIGS. 6A and 6B). Alternatively, as the temporary abutment cap **580** includes an aperture **583** (FIG. **9**C), the temporary abutment cap **580** can be snap-fitted onto the temporary abutment 510 prior to the screw 570 being installed. Then, the screw 570 can be 35 installed through the aperture **583**, which is followed by the temporary prosthesis **590** being coupled to the temporary abutment cap **580**.

Referring to FIGS. 10A to 10E, various views of components of an alternative prosthesis assembly 600 and the 40 dental implant 120 are shown. As shown in FIG. 10A, the prosthesis assembly 600 includes a temporary abutment 610, a temporary abutment cap 680, and a screw 670, each of which is similar to, or the same as, corresponding components of the previously described prosthesis assemblies. In 45 FIGS. 10A to 10E, each of the components and features is identified by a 600-series reference numeral, and those 600-series reference numerals correspond to like features of the various components and features of the previously described prosthesis assemblies. For example, reference numeral 634 is used to describe the non-rotational structure 634 (FIG. 10B), which is the same as, or similar to, the non-rotational structure 34 (FIG. 1A).

Referring to FIG. 10B, the temporary abutment 610 generally includes most of the same features as the temporary abutments 10, 410, 510; however, several differences exist between the temporary abutment 610 and the temporary abutment 510, which is most similar to the temporary abutment 610. Specifically, an outer surface 655 of a flange 650 of the temporary abutment 610 (e.g., the portion of the 60 temporary abutment 610 between a subgingival region 620 and a supragingival region 630) is relatively shorter as compared to the previous embodiments. A longer flange with an outer surface 655 having a relatively longer contour is not provided by the temporary abutment 610 as the 65 shaping of contour of the patient's gingiva during healing is based mostly on the outer contours of the lower portion of

18

the temporary abutment cap **680**, the contours of which are best seen in FIG. **10**E. Various other contours of the lower portion of the temporary abutment **680** can be used depending on the particular conditions present in the patient's mouth.

The temporary abutment 610 lacks the continuous retention groove 532 of the temporary abutment 510 as the temporary abutment cap 680 does not engage the temporary abutment 610 in a snap-fit type engagement. Rather, the temporary abutment cap 680 is coupled to the implant 120 and the temporary abutment 610 via the screw 670 as best shown in FIG. 10E.

A further difference between the temporary abutment 610 (FIG. 10B) and the temporary abutment 510 (FIG. 9B) is that the temporary abutment 610 includes one informational marker location 662 with two informational markers 664 thereon as compared to the two informational marker locations 562 and the one informational marker 564 of the temporary abutment 510. The multiple informational markers 662 results in the need for less informational marker locations 662, which, depending on the size of the temporary abutment 610, can be beneficial as the available real estate on a top surface 660 of the temporary abutment 610 is minimal due to, for example, an internal bore 640 of the temporary abutment 610.

Referring to FIG. 10C, unlike the single-piece temporary abutment caps 80, 280, 480, and 580, the temporary abutment cap 680 includes two pieces—a customizable portion 680a and a rigid portion 680b (best seen when separated in FIGS. 10A and 10D). The customizable portion 680a is similar to the additional material **282** of the temporary abutment cap 280 described above in reference to FIGS. 7A and 7B. That is, the customizable portion 680a can be sculpted into a custom shape for a particular patient and/or come preformed having an anatomical tooth shape. The rigid portion 680b is generally made from metal, such as, for example, titanium, and includes a non-rotational structure **684** and an internal bore **641**. Alternatively, the rigid portion **680***b* can be made from a rigid plastic. The customizable portion 680a is permanently attached to the rigid portion **680**b. However, in an alternative implementation, a kit of customizable portions 680a can be packaged with one or more rigid portions **680***b* such that a clinician selects one of the customizable portions 680a and then permanently attaches the selected one with a selected rigid portion **680**b for attachment to the temporary abutment **610**.

The temporary abutment cap 680 lacks a snap-fit type engagement to the temporary abutment 610. Rather, the temporary abutment cap 680 is coupled to the implant 120 and the temporary abutment 610 via the screw 670 as best shown in FIG. 10E.

The temporary abutment cap **680** includes the non-rotational structure **684** that is a six-sided hexagonal socket (FIG. **10**C) as compared to the single flat surface of the non-rotational structure **84** of the temporary abutment cap **80** (FIG. **4**A). However, the non-rotational structure **684** can be any of a variety of structures that corresponds with the non-rotational structure **634** to prevent relative rotation between the temporary abutment **610** and the temporary abutment cap **680**.

Similar to the temporary abutment **580** (FIG. **9**C), the temporary abutment cap **680** includes an aperture **683** (FIG. **10**E) in a top portion thereof to provide access for the screw **670** to be installed after the temporary abutment cap **680** is installed on (e.g., non-rotationally mounted on) the temporary abutment **610**. As best shown in FIG. **10**E, a lip **677** of

the screw 670 engages with an internal shoulder 642 of the internal bore 641 of the temporary abutment cap 680 to hold the prosthesis assembly 600 on the implant 120. After installation of the screw 670, a plug (not shown) of like material to the customizable portion 680a (e.g., plastic, 5 acrylic, etc.) can be inserted through the aperture 683 and above the lip 677 of the screw 670 into the internal bore 641 to seal the aperture 683.

Referring to FIGS. 10D and 10E, a cross-sectional exploded view (FIG. 10D) and a cross-sectional assembled 10 view (FIG. 10E) of the prosthesis assembly 600 and the dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 600 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) 15 and then the temporary abutment **610** is non-rotationally attached to the implant 120 via a non-rotational feature 622 (FIG. 10B). The two-piece temporary abutment cap 680 is non-rotationally coupled to the temporary abutment 610 such that the non-rotational structure 634 (FIG. 10B) of the 20 temporary abutment 610 engages the non-rotational structure **684** (FIG. **10**C) of the temporary abutment cap **680**. The screw 670 is then installed through the aperture 683 to hold the prosthesis assembly 600 on the implant 120.

Referring to FIGS. 11A to 11E, various views of compo- 25 nents of an alternative prosthesis assembly 700 and the dental implant 120 are shown. As shown in FIG. 11A, the prosthesis assembly 700 includes a temporary abutment 710, a screw 770, a temporary abutment cap 780, and a temporary prosthesis 790, each of which is similar to, or the same as, 30 corresponding components of the previously described prosthesis assemblies. In FIGS. 11A to 11E, each of the components and features is identified by a 700-series reference numeral, and those 700-series reference numerals corretures of the previously described prosthesis assemblies. For example, reference numeral 734 is used to describe the non-rotational structure **734** (FIG. **11**B), which is the same as, or similar to, the non-rotational structure **34** (FIG. **1**A) and the non-rotational structure **534** (FIG. **9B**). Additionally, 40 reference numerals 720, 730, 740, 750, 755, 760, 781, 782, 787, and 788 are used in the figures to illustrate features that are the same as, or similar to, previously described features with reference numbers 20, 30, 40, 50, 55, 60, 81, 82, 487, and **88**, respectively.

Referring to FIG. 11B, the temporary abutment 710 generally includes all of the same features as the previous temporary abutments 10, 410, 510, 610, but lacks the informational marker locations 562 and the informational markers **564** of the temporary abutment **510**. Rather, the 50 temporary abutment cap 780 (FIG. 11C) of the prosthesis system 700 includes informational marker locations 762 and informational markers 764.

Further, a continuous retention groove **732** (FIG. **11**B) of the temporary abutment 710 is positioned relatively higher 55 (e.g., relatively further from the flange 50) as compared to the positioning of the continuous retention groove **532** of the temporary abutment **510** (best shown by comparing FIG. **9**D with 11D). The continuous retention groove 732 (FIG. 11B) functions in the same, or similar, manner as the continuous 60 retention grooves previously described herein in that the continuous retention groove 732 is configured to mate with one or more projections 786 of the temporary abutment cap 780 (FIG. 11C) in a snap-fit type engagement (shown in FIG. **11**E).

Referring to FIG. 11C, the temporary abutment cap 780 includes the informational marker locations 762 and the **20**

informational markers **764**. The information indicated by the informational marker locations 762 and/or the informational markers **764** (e.g., location and orientation of the underlying implant 120) can be gathered by scanning the temporary abutment cap 780 as opposed to scanning the temporary abutment 710.

Further, the temporary abutment cap 780 lacks the aperture 583 of the temporary abutment cap 580 in a similar fashion to the temporary abutment cap 80 lacking the aperture 583. Alternatively, the temporary abutment cap 780 can include an aperture (not shown) similar to the aperture 583 of the temporary abutment cap 580.

Referring to FIGS. 11D and 11E, a cross-sectional exploded view (FIG. 11D) and a cross-sectional assembled view (FIG. 11E) of the prosthesis assembly 700 and the dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 700 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) and then the temporary abutment 710 is non-rotationally attached to the implant 120 via a non-rotational feature 722 (FIG. 11B) and the screw 770. The temporary abutment cap 780 is snap-fitted onto the temporary abutment 710 in a non-rotational manner such that the non-rotational structure 734 (FIG. 11B) of the temporary abutment 710 engages a non-rotational structure **784** (FIG. **11**C) of the temporary abutment cap 780.

Optionally, a temporary prosthesis 790 can be coupled to the temporary abutment cap 780 in the same, or similar, manner as described herein in reference to the temporary prosthesis 90 being coupled to the temporary abutment 80 (FIGS. 6A and 6B). In such an alternative implementation, the informational marker locations 762 and/or the informational markers 764 can also mate with correspondingly spond to like features of the various components and fea- 35 shaped internal surfaces (not shown) of the temporary prosthesis 790 to provide for anti-rotation between the temporary abutment cap 780 and the temporary prosthesis 790. In the case that the temporary prosthesis 790 is not coupled to the temporary abutment cap 780, the temporary abutment cap 780 itself can have an anatomically shaped tooth structure and act as a temporary prosthesis.

Referring to FIGS. 12A to 12E, various views of components of an alternative prosthesis assembly 800 and the dental implant 120 are shown. As shown in FIG. 12A, the 45 prosthesis assembly 800 includes a temporary abutment 810, a temporary abutment cap 880, a screw 870, and a temporary prosthesis 890, each of which is similar to, or the same as, corresponding components of the previously described prosthesis assemblies. In FIGS. 12A to 12E, each of the components and features is identified by a 800-series reference numeral, and those 800-series reference numerals correspond to like features of the various components and features of the previously described prosthesis assemblies. For example, reference numeral 834 is used to describe the non-rotational structure **834** (FIG. **12**B), which is the same as, or similar to, the non-rotational structure **34** (FIG. **1A**) and the non-rotational structure **534** (FIG. **9B**). Additionally, reference numerals 820, 830, 850, 855, 860, 881, and 888 are used in the figures to illustrate features that are the same as, or similar to, previously described features with reference numbers 20, 30, 50, 55, 60, 81, and 88, respectively.

Referring to FIG. 12B, the temporary abutment 810 generally includes all of the same features as the temporary abutments of the previous embodiments except the temporary abutment **810** lacks the continuous retention groove **732** (FIG. 11B) of the temporary abutment 710 such that the temporary abutment 810 does not couple with the temporary

abutment cap **880** (FIG. **12**C) in a snap-fit type engagement. Rather, the temporary abutment cap **880** (FIG. **12**C) is held in a non-rotational fashion onto the temporary abutment **810** (FIG. 12B) via the screw 870, which is best shown in FIG. **12**E. Accordingly, the temporary abutment cap **880** lacks the 5 one or more projections 786 (FIG. 11C) of the temporary abutment cap 780 such that the temporary abutment cap 880 (FIG. 12C) does not couple with the temporary abutment **810** in a snap-fit type engagement.

Additionally, the temporary abutment cap **880** includes an 10 aperture 883 that is similar to the aperture 583 of the temporary abutment cap **580** (FIG. 9C). The aperture **883** provides a path for the screw 870 to mate with the implant 120 through the internal bore 840 of the temporary abutment **810**, thereby securing the temporary abutment cap **880** and 15 the temporary abutment 810 onto the implant 120 in a non-rotational fashion, as best shown in FIG. 12E. The screw 870 (FIG. 12A) has a different head as compared to the screw 770. The head of the screw 870 includes a groove for mating with an O-ring **873** (FIG. **12**E) that aids in sealing 20 the internal bore **840** (FIG. **12**B) of the temporary abutment **810**.

Referring to FIGS. 12D and 12E, a cross-sectional exploded view (FIG. 12D) and a cross-sectional assembled view (FIG. 12E) of the prosthesis assembly 800 and the 25 dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 800 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) and then the temporary abutment **810** is non-rotationally 30 attached to the implant 120 via a non-rotational feature 822 (FIG. 12B). The temporary abutment cap 880 is coupled to the temporary abutment **810** in a non-rotational manner such that the non-rotational structure **834** (FIG. **12**B) of the temporary abutment 810 engages a non-rotational structure 35 884 (FIG. 12C) of the temporary abutment cap 880. The screw 870 is inserted through the aperture 883 of the temporary abutment cap 880 and the internal bore 840 of the temporary abutment 810 and is threadingly coupled to the implant **120**.

Optionally, a temporary prosthesis **890** is coupled to the temporary abutment cap 880 in the same, or similar, manner as described herein in reference to the temporary prosthesis 90 being coupled to the temporary abutment 80 (FIGS. 6A) and 6B). In such an alternative implementation, the infor- 45 mational marker locations 862 and/or the informational markers 864 can also mate with correspondingly shaped internal surfaces (not shown) of the temporary prosthesis **890** to provide for anti-rotation between the temporary abutment cap 880 and the temporary prosthesis 890. In the 50 case that the temporary prosthesis 890 is not coupled to the temporary abutment cap 880, the temporary abutment cap 880 itself can have an anatomically shaped tooth structure and act as a temporary prosthesis.

ponents of an alternative prosthesis assembly 900 and the dental implant 120 are shown. As shown in FIG. 13A, the prosthesis assembly 900 includes a temporary abutment 910, a temporary abutment cap 980, a screw 970, and a temporary prosthesis 990, each of which is similar to, or the same as, 60 corresponding components of the previously described prosthesis assemblies. In FIGS. 13A to 13H, each of the components and features is identified by a 900-series reference numeral, and those 900-series reference numerals correspond to like features of the various components and fea- 65 tures of the previously described prosthesis assemblies. For example, reference numeral 934 is used to describe the

non-rotational structure 934 (FIGS. 13B and 13C), which is the same as, or similar to, the non-rotational structure 34 (FIG. 1A) and the non-rotational structure **534** (FIG. **9**B). Additionally, reference numerals 932, 960, 962, 982, 986, 987, and 988 are used in the figures to illustrate features that are the same as, or similar to, previously described features with reference numbers 432, 60, 62, 82, 486, 487, and 88, respectively.

Referring to FIGS. 13B and 13C, the temporary abutment 910 generally includes all of the same features as the temporary abutments of the previous embodiments except an outer surface 955 of a flange 950 (e.g., portion of 910 that separates a subgingival region 920 and a supragingival region 930) of the temporary abutment 910 has a differently shaped contour for mating with a bottom end 988 (FIGS. 13D and 13E) of the temporary abutment cap 980. Rather than the bottom end **988** resting on a substantially flat upper portion of the flange 950 (as the bottom end 588 of the temporary abutment cap **580** rests on the upper portion of the flange 50 shown in FIG. 9E), the bottom end 988 abuts the flange 950 and forms a portion of the contour (best shown in FIG. 13G) that aids in forming a patient's gingival tissue during the healing process. Various other contours of the bottom end 988 and of the outer surface of the flange 950 can be used depending on the particular conditions present in the patient's mouth.

The temporary abutment 910 includes internal capture threads 943 (FIG. 13C) for threadably engaging with and capturing the screw 970. Such threads 943 are particularly useful for temporarily coupling the temporary abutment 910 with the screw 970 prior to installation of the same in a patient's mouth. As the screw 970 is rather small in size, its manipulation can be difficult. Thus, the temporary coupling between the screw 970 and the temporary abutment 910 prior to being installed in the patient's mouth prevents a clinician from having to perform the potentially difficult step of separately placing the screw 970 within an internal bore **940** for attachment with the implant **120** after the temporary abutment **910** is installed in the patient's mouth. While the 40 threads **943** are only shown and described as being included in the temporary abutment **910**, the same, or similar, threads can be included in any of the other temporary abutments of the present disclosure.

Referring to FIGS. 13D and 13E, a generally cylindrical outer surface 981 of the temporary abutment cap 980 includes a plurality of grooves, notches, ribs, knurling, etc., or any combination thereof, instead of a substantially smooth generally cylindrical outer surface **581** (FIG. **9**C) of the temporary abutment cap **580**. The generally cylindrical outer surface 981 provides relatively more surface area as compared to the smooth generally cylindrical outer surface **581**. The additional surface area of the generally cylindrical outer surface 981 results in a better adhesion or attachment between the temporary abutment cap 980 and the temporary Referring to FIGS. 13A to 13H, various views of com- 55 prosthesis 990 (shown in FIGS. 13G and 13H). Alternatively to an inner bore of the temporary prosthesis 990 being formed to correspond to the contours of the generally cylindrical outer surface 981 of the temporary abutment cap 980 (best shown in FIGS. 13A and 13F), the temporary prosthesis 990 can be sufficiently pliable such that the inner bore of the temporary prosthesis 990 can be formed with one of a variety of shapes (e.g., substantially cylindrical and smooth) and slid over the temporary abutment cap 980.

Referring to FIGS. 13F to 13H, a cross-sectional exploded view (FIG. 13F), a cross-sectional assembled view (FIG. 13G), and a partial front and partial cross-sectional assembled view (FIG. 13H) of the prosthesis assembly 900

and the dental implant 120 are shown for illustrating how the various components of the prosthesis assembly 900 are assembled and attached to the dental implant 120. The dental implant 120 is installed in a patient's jawbone (not shown) and then the temporary abutment 910 is non-rotationally 5 attached to the implant 120 via a non-rotational feature 922 (FIGS. 13B and 13C) and the screw 970. The temporary abutment cap 980 is snap-fitted onto the temporary abutment 910 in a non-rotational manner such that the non-rotational structure 934 (FIGS. 13B and 13C) of the temporary abutment 910 engages a non-rotational structure 984 (FIGS. 13D) and 13E) of the temporary abutment cap 980. The temporary prosthesis 990 is coupled to the temporary abutment cap 980 in the same, or similar, manner as described herein in reference to the temporary prosthesis 90 being coupled to 15 the temporary abutment **80** (FIGS. **6A** and **6B**) and such that the generally cylindrical outer surface **981** (FIGS. **13**D and 13E) engages the internal bore of the temporary prosthesis 990. Alternatively, as the temporary abutment cap 980 includes an aperture 983 (FIGS. 13D and 13E), the tempo- 20 rary abutment cap 980 can be snap-fitted onto the temporary abutment 910 prior to the screw 970 being installed. Then, the screw 970 can be installed through the aperture 983, which is followed by the temporary prosthesis 990 being coupled to the temporary abutment cap 980.

Referring to FIGS. 14A-C, three exploded prosthesis assemblies 1000a (FIG. 14A), 1000b (FIG. 14B), and 1000c(FIG. 14C) are shown for connection with three different dental implants 120 (FIG. 14A), 121a (FIG. 14B), and 121b (FIG. **14**C), where like reference numbers are used for like 30 components previously described herein. Each of the implants 120, 121a, and 121b includes a different antirotational feature for non-rotationally mating with a corresponding anti-rotational feature of a temporary abutment. As shown, the first implant 120 includes a female or socket-type 35 hexagonal anti-rotational feature 120', the second implant **121***a* includes a male or boss-type hexagonal anti-rotational feature 121a', and the third implant 121b includes a male star anti-rotational feature 121b'. Various other types and shapes of anti-rotational features are contemplated for non-rotationally mating with corresponding anti-rotational features of a temporary abutment (e.g., temporary abutments 910, 911a, and **911***b*).

Each of the prosthesis assemblies 1000a, 1000b, and 1000c includes an identical temporary prosthesis 990, an 45 identical screw 970, and an identical temporary abutment cap 980. However, while the temporary abutments 910, 911a, and 911b of each of the prosthesis assemblies 1000a, 1000b, and 1000c have identical external supragingival regions 930 and flanges 950, the subgingival regions 920, 50 921a, and 921b, and the internal arrangements of each of the temporary abutments 910, 9211a, and 921b are different for non-rotationally mating with the different anti-rotational features 120', 121a', and 121b' of the implants 120, 121a, and **121**b, respectively. Thus, depending on the type and/or 55 manufacturer of the underlying implant, a temporary abutment (e.g., temporary abutments 910, 911a, 911b) can be selected (e.g., from a kit of temporary abutments) having a corresponding subgingival region (e.g., subgingival region 920, 921a, 921b) that non-rotationally couples therewith, 60 but also includes a standard external supragingival region 930 and flange 950 that is configured to be coupled with standard components thereafter (e.g., the temporary prosthesis 990, the screw 970, and the temporary abutment cap **980**).

While the supragingival regions 930 and the flanges 950 of the implants 120, 121a, and 121b are described as being

24

identical, the number and/or orientation of the informational markers 964 and/or the informational marker locations 962 can be different. For example, as shown in FIG. 14A, the first temporary abutment 910 includes an informational marker location 962 with a single informational marker 964 thereon, which can, for example, indicate that the underlying implant 120 includes a female/socket-type hexagonal antirotational feature 120'. Similarly, as shown in FIG. 14B, the second temporary abutment 911a includes an informational marker location 962 with two informational markers 964 thereon, which can, for example, indicate that the underlying implant 121a includes a male/boss-type hexagonal antirotational feature 121a' and, as shown in FIG. 14C, the third temporary abutment 911b includes an informational marker location 962 with three informational markers 964 thereon, which can, for example, indicate that the underlying implant **121**b includes a male/boss-type star anti-rotational feature **121**b'. The differences in the informational markers **964** of the three temporary abutments 910, 911a, and 911b may alternatively and/or additionally indicate a different line of implants for a single manufacturer, or a different line of different implant manufacturers. Of course, additional informational markers 964 and/or additional informational marker locations 962 on the temporary abutments 910, 911a, 25 and **911**b could indicate other aspects of the underlying implants 120, 121a, and 121b (e.g., diameter, anti-rotational feature orientation, location of the table surface, etc.).

While some of the anti-rotational features are shown in the figures and described herein as being a male or boss anti-rotational feature and others are shown in the figures and described herein as being female or socket anti-rotational features, it is contemplated that the male-female anti-rotation features can be swapped on different components as needed.

While the temporary abutments 10, 10', 410, 510, 610, 710, 810, and 910 are shown and described herein as being temporary (i.e., not permanent), the temporary abutments 10, 10', 410, 510, 610, 710, 810, and 910 can, in fact, be permanent abutments that are designed to be coupled with a corresponding permanent prosthesis and/or crown. In such an alternative implementation of the disclosed concepts, the permanent prosthesis is developed and designed to be coupled with the temporary abutment 10, 10', 410, 510, 610, 710, 810, and 910 instead of a separate permanent patient specific abutment.

While the temporary abutments 10, 10', 410, 510, 610, 710, 810, and 910 are shown and described herein as having a subgingival region, a supragingival region and a flange therebetween, any portion of the flange and/or of the supragingival region can be placed subgingival (e.g., below the gingival tissue) for a given installation. Similarly, any portion of the flange and/or of the subgingival region can be placed supragingival (e.g., above the gingival tissue) for a given installation. Moreover, the supragingival regions described herein can be referred to as a post region that is partially subgingival and/or partially supragingival. That is, in some instances, the terms supragingival and post can be used interchangeably when referring to the various portions of the temporary abutments described herein.

All of the temporary prostheses 90, 490, 590, 790, 890, and 990 described herein can be cemented to the respective temporary abutment caps 80, 480, 580, 780, 880, and 980 described herein via normal dental cement.

In the various embodiments of FIGS. 1A to 14C, the temporary abutments, the temporary abutment caps, and the temporary prostheses have several physical and functional differences. However, each embodiment is useful in that it

provides an aesthetically pleasing temporary prosthesis that can be installed immediately after implant installation and that can be used to form the adjacent gingival tissue into a desired shape as it heals following surgery. Additionally, the temporary abutment caps and temporary prostheses (which 5 are typically held together via dental cement) can be easily removed from the temporary abutment to reveal the informational markers thereon that provide information about the dimensions and/or orientation of the underlying implant and/or of the temporary abutment itself (or the temporary 10 abutment cap may include the information markers such that removal is not required). Knowing this information regarding the dimensions and/or orientation of the underlying implant and/or the temporary abutment and knowing the actual healed shape of the gingival tissue (or a predicted 15 healed shape, see FIG. 17 below) permits for the design and manufacture of a permanent patient-specific abutment prior to the patient's gingival tissue healing. It also provides for the option of the design and manufacture of the final permanent prosthesis that will fit on the patient-specific 20 abutment.

Regarding one exemplary use of the informational markers disclosed herein (e.g., informational markers 64), an implant line may come in two diameters at the upper table surface (e.g., 4 mm and 5 mm). For each of those two 25 implants, there may be four different types of temporary abutments that can be used. For example, there could be two different overall heights to the temporary abutment (e.g., 8) mm, and 10 mm). And, for each of those two temporary abutments having different heights, there could be two 30 different emergence profiles (e.g., outer surface 55) leading away from the implant to the flange (e.g., flange 50) of the temporary abutment. As such, there are eight potential temporary abutments with different shapes and dimensions. If there are three informational marker locations (e.g., infor- 35 mational marker locations 62) on each of those temporary abutments at which an informational marker may or may not be present, that provides for eight combinations, assuming a binary-type marking system is used. Hence, each of the eight potential temporary abutments would have a unique marking 40 scheme such that the exact temporary abutment can be easily identified by simple inspection (e.g., via scanning) of the informational markers. And, by knowing the exact temporary abutment, important information concerning the implant, such as its table's diameter (i.e., 4 mm or 5 mm) and 45 the exact location of the implant's table (and its angular orientation), is also known. Additionally, by providing another informational marker (or a second type of informational marker location, such as a triangular or rectangular chamfer or flat) on the temporary abutment, the angular 50 orientation of the implant's anti-rotational feature is known, which is also important for developing the permanent patient-specific abutment. In all of these embodiments, the computer system that receives and uses the scan data for developing the patient-specific abutment preferably includes 55 a simple look-up table that, based on the information markers revealed in the scan, indicates the exact temporary abutment mounted on the implant. Then, the implant's information can be modeled in the computer system as well. This is, of course, one exemplary embodiment and more or 60 less information markers may be needed depending on the type of implant system. As another example, the type of implant (e.g., its table's diameter and/or its type of antirotational connection) can be identified via informational markers present on the head of the screw that holds the 65 temporary abutment to the implant. And, the informational markers on the temporary abutment indicate information

26

regarding the temporary abutment (e.g., its emergence profile shape, its overall height, its flange diameter, etc.).

Methods of Developing Permanent Patient-Specific Abutments and Tooth Prostheses

Referring to FIG. 15, a method (1100) of developing a permanent patient-specific abutment ("PSA") and tooth prosthesis typically begins with the installation (1102) of a dental implant (e.g., dental implant 120 shown in FIG. 6A) in the jawbone of a patient. A temporary abutment (e.g., temporary abutment 10, 10', 410, 510, 610, 710, 810, 910) is then installed (1104) in a non-rotational fashion on the implant directly after the implant is installed in the patient's jawbone. The temporary abutment is attached via complementary non-rotational features on the temporary abutment and on the implant. The temporary abutment is axially held in contact with the implant via a fastening device (e.g., fastening device 70, 470, 570, 670, 770, 870, 970) that threadably engages threads in an interior bore of the implant.

A temporary abutment cap (e.g., temporary abutment cap 80, 280, 480, 580, 680, 780, 880, 980) is attached (1106) to the temporary abutment in a removable fashion, such as, for example, via a snap-fit connection. Thereafter, or prior to the temporary abutment cap being attached, a temporary prosthesis, shaped to approximate an anatomically shaped tooth, is attached (1106) to the temporary abutment via the temporary abutment cap. The temporary prosthesis is generally affixed to the temporary abutment cap in a non-removable fashion (e.g., using acrylic, cement, bonding, etc.).

After the temporary components are installed (1104-1106), the patient's gingival tissue is permitted to heal therearound (1108). After the gingival tissue is healed, the temporary abutment cap and the temporary prosthesis are removed from the temporary abutment (1110). Removal of the temporary abutment cap and temporary prosthesis reveals a top surface of the underlying temporary abutment that includes one or more informational markers (e.g., informational markers 64). Additionally, an emergence profile of the healed gingival tissue is exposed, which may be in a non-round anatomical shape.

Both the temporary abutment and the surrounding gingival tissue are scanned using one or more scanning techniques directly in the patient's mouth (1112). Alternatively, an impression of at least the area of the patient's mouth including the temporary abutment is taken and scanned (1112). That is, the impression of the mouth can be scanned instead of scanning directly in the patient's mouth. In a third alternative, a physical model of the patient's dental conditions including the temporary abutment is made from the impression. Then the physical model can be scanned (1112) instead of scanning directly in the mouth or scanning the impression. In any event, scanning directly in the mouth is the preferred method.

Scan data is generated from the scanning that is analyzed via one or more processors and/or computers to obtain information (1114). Specifically, information related to and/or representative of the anatomically shaped emergence profile of the patient's gingival tissue surrounding the temporary abutment and information related to and/or representative of the informational markers on the temporary abutment (1114) is obtained. Additionally, information related to and/or representative of the patient's dental anatomy (e.g., adjacent teeth) surrounding the temporary abutment can be obtained. Further, information related to and/or representative of the geometrical relationships between the patient's

emergence profile, the informational markers, and/or the patient's dental anatomy can be obtained.

After the scanning, the temporary abutment cap and the temporary prosthesis are reattached to the temporary abutment (1116). A three-dimensional virtual model of at least a 5 portion of the patient's mouth/dental conditions is created from the scan data (1118). The three-dimensional virtual model includes a virtual model of at least a portion of the patient's gingiva tissue, the patient's teeth, and the temporary abutment. Using one or more software or computer 10 programs in conjunction with determined parameters based on the scanned informational markers, the three-dimensional virtual model can be modified to remove the temporary abutment, thereby providing/illustrating the location and orientation of the underlying implant and its relative position 15 to the patient's gingival tissue. One non-limiting example is CAD-CAM dental software and scanning software available from 3Shape A/S located in Copenhagen, Denmark.

Using the three-dimensional model, a patient-specific abutment and permanent tooth prosthesis is virtually 20 designed (1120). The designed patient-specific abutment and permanent tooth prosthesis can be created by, for example, sending data to a milling machine and/or a rapid prototype machine that is configured to create a physical patientspecific abutment (which would be attached to the implant) and a physical-permanent tooth prosthesis (which would be attached to the physical patient-specific abutment) that are both eventually installed in the mouth of the patient. After the patient-specific abutment and the permanent tooth prosthesis are created, the temporary abutment, the temporary 30 abutment cap, and the temporary prosthesis are removed from the patient's mouth to expose the underlying dental implant (1122). The method is completed by installing the patient-specific abutment and the permanent tooth prosthesis on the dental implant as is known in the art (1124).

Prior to the dental implant being installed in the patient's mouth, several additional steps can be taken to aid in the installation process. Referring to FIG. 16, a method (1150) of creating and installing a patient-specific abutment and a permanent tooth prosthesis including preparation steps is 40 shown. The preparation steps typically begin by scanning the patient's mouth to obtain initial scan data (1152). The scanning includes two types of scans to obtain data related to and/or representative of different types of tissues. A first soft tissue scan includes a scan configured to obtain data 45 representative of soft tissue in the patient's mouth, such as, for example, the gingival tissue. A second hard tissue or bone scan includes a scan configured to obtain data representative of hard tissue or bone or teeth in the patient's mouth, such as, for example, the patient's jawbone and 50 teeth. Additional details on creating accurate bone and soft-tissue digital dental models can be found in US Patent Application Publication No. 2011/0129792, entitled "Method of Creating an Accurate Bone and Soft-Tissue reference herein in its entirety.

After obtaining the initial scan data, a three-dimensional model of the patient's mouth is created including the patient's bone structure and gingival tissue structure (1154). From the three-dimensional model, using one or more 60 processors and/or computers, a desired location and orientation (e.g., pitch, yaw, depth) of a dental implant to be installed in the patient's mouth is determined (1156). The determined location can be selected or determined based on a number of different variables, such as, for example, the 65 location, position, and orientation of the teeth adjacent to the proposed implant site, the location of nerves or the sinus

28

cavity, and/or the composition and structure of the patient's jawbone. Additional details on surgical guides and methods for using and making the same can be found in U.S. Patent Application Publication 2009/0130630, application Ser. No. 12/271,517, filed Nov. 14, 2008, entitled, "Components for Use with a Surgical Guide for Dental implant Replacement" and in U.S. Patent Application Publication 2009/0263764, application Ser. No. 12/425,202, filed Apr. 16, 2009, now allowed, entitled, "Method for Pre-Operative Visualization of Instrumentation Used with a Surgical Guide for Dental Implant Placement," each of which is hereby incorporated by reference in its entirety.

After the location is determined, a surgical template for installing the implant is created (1158). The surgical template is used to guide and/or aid a surgeon in drilling an aperture in the patient's mouth to receive the implant in the predetermined desired location. The preparation steps typically conclude with the positioning of the surgical guide in the patient's mouth prior to installation of the implant (1160). The rest of the steps directed to creating and installing the patient-specific abutment and the permanent tooth prosthesis (1102-1124) in the method (1150) are the same as previous described in reference to FIG. 15.

Referring to FIG. 17, an alternative method (1200) of developing a permanent patient-specific abutment ("PSA") and tooth prosthesis is described. A primary difference between the method (1200) and the methods (1100) and (1150) of FIGS. 15 and 16 is the timing of the scanning of the patient's mouth. As described below, in the method (1200), the patient's mouth is scanned at the same time that the implant is installed instead of waiting to permit gingival healing to occur prior to removing components and then scanning. Such a method (1200) can eliminate at least one visit to the doctor's office during the overall installation of 35 the PSA and tooth prosthesis. More specifically, in some instances, the saved doctor's office visit prevents additional disruption of gingival tissue during the healing phase as the temporary abutment cap and temporary prosthesis do not have to be removed for scanning the patient's mouth a second time to capture the gingival contours.

The method (1200) typically begins with the installation (1202) of a dental implant (e.g., dental implant 120 shown in FIG. 6A) in the jawbone of a patient. A temporary abutment (e.g., temporary abutment 10, 10', 410, 510, 610, **710**, **810**, **910**) is then installed (**1204**) in a non-rotational fashion on the implant directly after the implant is installed in the patient's jawbone. The temporary abutment is attached via complementary non-rotational features on the temporary abutment and on the implant. The temporary abutment is axially held in contact with the implant via a fastening device (e.g., screw 70, 470, 570, 670, 770, 870, and 970) that threadably engages threads in an interior bore of the implant.

After the attachment of the temporary abutment, a top Digital Dental Model," which is hereby incorporated by 55 surface thereof, that includes one or more informational markers (e.g., informational markers **64**), is exposed in the patient's mouth. The temporary abutment and at least a portion of the surrounding dental features (e.g., adjacent teeth and/or adjacent gingival tissue) are scanned using one or more scanning techniques directly in the patient's mouth (1206). Alternatively, an impression of at least the area of the patient's mouth including the temporary abutment is taken and scanned (1206). That is, the impression of the mouth can be scanned instead of scanning directly in the patient's mouth. In a third alternative, a physical model of the patient's dental conditions including the temporary abutment is made from the impression. Then the physical model

can be scanned (1206) instead of scanning directly in the mouth or scanning the impression. In any event, scanning in the mouth is the preferred method.

A temporary prosthesis (e.g., temporary prosthesis 490, **590**, **790**, **890**, **990**), shaped to approximate an anatomically 5 shaped tooth, is attached to a temporary abutment cap (e.g., temporary abutment cap 80, 280, 480, 580, 680, 780, 880, 980) outside of the patient's mouth (1208). The temporary prosthesis is generally affixed to the temporary abutment cap in a non-removable fashion (e.g., using acrylic, cement, 10 bonding, etc.), thereby forming a subassembly; however, in some implementations of the present aspects, the temporary prosthesis is not permanently affixed to the temporary abutment cap until the temporary abutment cap is attached to the temporary abutment in the patient's mouth via a screw. Prior 15 to and/or after attaching the temporary prosthesis to the temporary abutment cap, the temporary prosthesis can be shaped and/or customized (1210), by, for example, a clinician.

After the temporary prosthesis and the temporary abutment cap are attached and the final shape of the temporary prosthesis has been developed, the subassembly is scanned outside of the patient's mouth using one or more scanning techniques (1212). The subassembly (e.g., the temporary prosthesis and the temporary abutment cap) is then attached (1214) to the temporary abutment in a removable fashion, such as, for example, via a snap-fit connection and/or a screw-type connection. After the temporary components are installed (1214) and the scanning has taken place (1212), the patient's gingival tissue is permitted to heal therearound (1216).

The three-dimensi model of at least a proposition of teeth, and the temporary software or computer mined parameters base remove the temporary ing the location and and its relative position. Further, using one or

Alternatively to scanning the subassembly outside of the patient's mouth, if the opening in the patient's gingiva is large enough—such that all the contours of the subassembly are viewable/scanable when attached to the temporary abutment—the scanning of the subassembly can occur in the mouth instead of outside the mouth. Such a scanning of the subassembly in the patient's mouth can occur immediately after installation and could include information representative of one or more surrounding features of the patient's 40 mouth (e.g., adjacent teeth, gingival tissue, etc.).

Scan data is generated from both of the scans that is analyzed via one or more processors and/or computers to obtain information (1218 and 1220). The analysis of the scan data can occur immediately after the scans are taken and 45 before the gingival tissue is permitted to heal. Of course, the analysis of the scan data can alternatively occur at any time after the gingival tissue is initially permitted to heal. Specifically, the first set of scan data is analyzed to obtain information related to and/or representative of the temporary abutment and information related to and/or representative of the informational markers on the temporary abutment (1218). Additionally, information related to and/or representative of the patient's dental anatomy (e.g., adjacent teeth) surrounding the temporary abutment can be obtained from 55 prosthesis. the first set of scan data. Further, the second set of scan data is analyzed to obtain information related to and/or representative of the temporary prosthesis and/or the temporary abutment cap (1220). Specifically, information, such as, for example, the anatomical contours of the temporary prosthesis can be obtained. Such contours of the temporary prosthesis can be used to predict the contours of the patient's gingiva after being permitted to heal (1216).

After the scan data is acquired and analyzed, the first and the second sets of data are merged to create a three- 65 dimensional virtual model of at least a portion of the patient's mouth/dental conditions (1222). The merging of

30

the data sets includes aligning the two data sets, which can be accomplished many ways. For example, corresponding markers (e.g., notches, grooves, lines, dots, pimple, dimple, etc.) positioned on, for example, a top side of the flange of the temporary abutment and on, for example, a bottom or under/inner surface of the temporary abutment cap can be captured during the scanning such that the markers can be used in conjunction with one or more software or computer programs to align (e.g., rotational align about the z-axis) the two sets of data with respect to each other. For another example, the two sets of data can be aligned using one or more software or computer programs that evaluate the positions of the non-rotational features of the temporary abutment and the temporary abutment cap. For a third example, the subassembly can be installed on the temporary abutment and a third scan is taken of the subassembly and surrounding area in the patient's mouth. The third scan produces a third set of scan data that can be used by one or more software or computer programs to align the first and

The three-dimensional virtual model includes a virtual model of at least a portion of the patient's gingiva tissue (based on one or both sets of the scan data), the patient's teeth, and the temporary abutment. Using one or more software or computer programs in conjunction with determined parameters based on the scanned informational markers, the three-dimensional virtual model can be modified to remove the temporary abutment, thereby providing/illustrating the location and orientation of the underlying implant and its relative position to the patient's gingival tissue. Further, using one or more software or computer programs, the three-dimensional virtual model is designed such that the depicted emergence profile of the patient's gingival tissue adjacent to the implantation site is based on the contours of the temporary prosthesis and/or the temporary abutment cap. That is, the depicted emergence profile in the three-dimensional virtual model is a predicted emergence profile and is not based on scan data from a scan of an actual (e.g., healed) emergence profile of the patient's gingival tissue because the scan in the mouth was taken prior to gingival healing.

Using the three-dimensional model, a patient-specific abutment and permanent tooth prosthesis is virtually designed (1224). The designed patient-specific abutment and permanent tooth prosthesis can be created by, for example, sending data to a milling machine and/or a rapid prototype machine that is configured to create a physical patient-specific abutment and/or a physical-permanent tooth prosthesis that are both eventually installed in the mouth of the patient. Alternatively and/or in addition thereto, one or more rapid prototype models of the patient's mouth, including a replica of the gingival contours, can be fabricated based on the three-dimensional model. The rapid prototype model(s) with the permanent tooth prosthesis thereon can be used by a clinician to develop, for example, the permanent prosthesis.

After the patient-specific abutment and the permanent tooth prosthesis are created, the temporary abutment, the temporary abutment cap, and the temporary prosthesis are removed from the patient's mouth to expose the underlying dental implant (1226). The method is completed by installing the patient-specific abutment and the permanent tooth prosthesis on the dental implant as is known in the art (1228).

In addition to the above described method (1200), after the gingival tissue is at least partially healed, if a clinician determines that the predicted emergence profile of the patient's gingival tissue is inaccurate due to, for example,

the tissue healing in an unpredicted manner or shape, modifications can be made to, for example, the threedimensional model, the temporary prosthesis, the temporary abutment cap, etc. Specifically, the temporary prosthesis and the temporary abutment cap can be removed from the 5 temporary abutment and the temporary prosthesis can be reshaped and/or modified to better shape the gingival tissue in preparation for installing the permanent components. In such an instance of physically modifying the temporary prosthesis after partial healing has occurred, the modified 10 temporary prosthesis and temporary abutment cap is scanned to produce a third set of scan data. The third set of scan data can then be used in the same fashion as the second set of scan data was originally used. In essence, the third set replaces the second set and the three-dimensional virtual 15 model is redesigned to include a newly predicted gingival emergence profile.

Alternatively, in the case that the clinician determines that the predicted emergence profile of the patient's gingival tissue is, for example, slightly inaccurate, but that physical 20 modification of the temporary prosthesis is unnecessary, virtual manipulation of the three-dimensional virtual model can be made in lieu of physical modification such that the designed permanent components are based on a newly predicted gingival emergence profile that accounts for the 25 slight inaccuracies of the original predicted profile.

While the illustrated embodiments have been primarily described with reference to the development of a patientspecific abutment for a single tooth application, it should be understood that the present invention is also useful in 30 multiple-tooth applications, such as bridges and bars for supporting full or partial dentures. In those situations, the patient-specific abutment would not necessarily need a nonrotational feature for engaging the underlying implant(s) because the final prosthesis would also be supported by 35 another structure in the mouth (e.g., one or more additional underlying implants), which would inherently achieve a non-rotational aspect to the design. In any event, using a scanning process to obtain the necessary information about the emergence profile shape of the gingiva and the dimensional and/or positional information for the implant(s) (via information markers in the temporary prosthetic assembly) can lead to the development of an aesthetically pleasing multiple-tooth system.

While the present invention has been described with 45 reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within 50 the spirit and scope of the present invention, which is set forth in the claims that follow.

What is claimed is:

- 1. A prosthesis assembly for attachment to a dental 55 implant, comprising:
 - an abutment for non-rotationally mating with the dental implant, the abutment including a flange and an outer surface of the flange having a shape for shaping gingival tissue in an anatomic fashion; and
 - an abutment cap configured to be removably coupled to the abutment such that a bottom end of the abutment cap aligns with the flange, the abutment cap including a plurality of informational markers on a top surface of the abutment cap that provide information concerning 65 the abutment or the dental implant to assist a user in designing a final prosthesis,

32

- wherein a first informational marker of the plurality of informational markers provides one of a height or a diameter of a portion of the abutment coupled to the dental implant, and
- wherein a second informational marker of the plurality of informational markers is aligned with a flat of a non-rotational feature of the abutment to indicate a location of a flat of a non-rotational feature of the dental implant when the abutment is non-rotationally coupled to the dental implant.
- 2. The prosthesis assembly of claim 1, further including: a temporary prosthesis removably coupled to the abutment cap.
- 3. The prosthesis assembly of claim 2, wherein the combination of the temporary prosthesis and the abutment cap are removably coupled to the abutment.
- 4. The prosthesis assembly of claim 2, wherein the temporary prosthesis has a non-round shape.
- 5. The prosthesis assembly of claim 1, wherein the abutment cap and the abutment are configured to have a snap fit engagement.
- 6. The prosthesis assembly of claim 1, wherein the abutment includes a female or male retention feature configured to mate with a corresponding female or male retention feature of the abutment cap.
- 7. The prosthesis assembly of claim 1, wherein the abutment includes a first anti-rotational structure configured to mate with a second anti-rotational structure of the abutment cap to non-rotationally couple the abutment with the abutment cap.
- 8. The prosthesis assembly of claim 1, wherein the abutment includes an anti-rotational feature for non-rotationally mating with the dental implant.
 - 9. The prosthesis assembly of claim 1, further comprising: a fastening device configured to couple the abutment to the dental implant, the abutment including an aperture, the fastening device extending through the aperture and coupling with the dental implant.
- 10. The prosthesis assembly of claim 1, wherein the abutment cap has an anatomically shaped tooth structure and is a temporary prosthesis.
- 11. An abutment assembly for attachment to a dental implant, comprising:
 - an abutment having a lower region and an upper region, the lower region including an anti-rotational feature for non-rotationally mating with the dental implant;
 - an abutment cap configured to be coupled to the upper region of the abutment, a top surface of the abutment cap including one or more informational markers providing information concerning the abutment or the dental implant, wherein the one or more informational markers include at least one of a groove and projection on the top surface; and
 - a temporary prosthesis removably coupled to the abutment cap, wherein the temporary prosthesis has an internal surface that has a shape that mates with the one or more informational markers for non-rotationally mating with the abutment cap.
- 12. The abutment assembly of claim 11, the abutment cap and the abutment are configured to have a snap fit engagement.
 - 13. The abutment assembly of claim 11, wherein the abutment includes a female or male retention feature configured to mate with a corresponding female or male retention feature of the abutment cap.
 - 14. The abutment assembly of claim 11, wherein the abutment includes a first anti-rotational structure configured

to mate with a second anti-rotational structure of the abutment cap to non-rotationally couple the abutment with the abutment cap.

- 15. The abutment assembly of claim 11, wherein the abutment includes an anti-rotational feature for non-rotationally mating with the dental implant.
- 16. The abutment assembly of claim 11, further comprising:
 - a fastening device configured to couple the abutment to the dental implant, the abutment including an aperture, 10 the fastening device extending through the aperture and coupling with the dental implant.

* * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 11,389,275 B2

APPLICATION NO. : 16/445978

DATED : July 19, 2022

INVENTOR(S) : T. Tait Robb et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 32, Line 59, Claim 12 after "The abutment assembly of claim 11," insert --wherein-- therein.

Signed and Sealed this
Twenty-seventh Day of September, 2022

Kathwine Kelly Vidal

Katherine Kelly Vidal

Director of the United States Patent and Trademark Office