US011375033B1

a2 United States Patent 10) Patent No.: US 11,375,033 B1

Sreenivas Prasad 45) Date of Patent: Jun. 28, 2022
(54) AUTOMATED TUNING OF NETWORK 7,693,052 B2 42010 Jin et al.
INTERMEDIARY DEVICES 8,321,583 B2* 11/2012 Weston HO’-’%gg/gg
: : 8,467,390 B2 6/2013 Persson et al.
(71) Applicant: Amazon Technologies, Inc., Seattle, 8713.565 B2 4/2014 Ashok et al.
WA (US) 0,053,070 Bl 6/2015 Arguelles
9,485,323 Bl1* 11/2016 Stickle HO4L 67/1031
(72) Inventor: Arun Kumar Sreenivas Prasad, 9,692,811 B1* 6/2017 Tauddin GOoF 11/3616
Ringsend (IE) 0,883,013 B2* 1/2018 Weston HO4L 69/163
10,524,256 B2 12/2019 Lin et al.
: . 10,587,720 B2 3/2020 Hui et al.
(73) Assignee: Amazon Technologies, Inc., Seattle, 10,735,270 B1* /2020 Whipplecooo...... H04T. 45/02
WA (US) 2009/0117895 Al* 52009 McGuffin HO4L 47/32
455/431
(*) Notice: Subject to any disclaimer, the term of this 2012/0198050 A1* 82012 Maki ...ccoeevveerennne.. HO04L. 43/04
patent 1s extended or adjusted under 35 | 709/224
U.S.C. 154(b) by 0 days, 2012/0230329 ALl* 9/2012 MOITiS ovvvvveeee. H043L7g%ég
5 .
(21) Appl. No.: 16/868,478 2012/0259911 Al1* 10/2012 Melterer HO4L7g;§g§§
_ 2014/0153387 Al 6/2014 Wu et al.
(22) Filed: May 6, 2020 2015/0012661 Al* 1/2015 Elmore HOA4L 67/2842
709/231
(51) Int. CIL. (Continued)
GO6F 15/16 (2006.01)
GO6F 15/173 (2006.01)
OTHER PUBLICATIONS
HO4L 12/741 (2013.01)
HO4L 29/08 (2006.01) Aws, “Elastic Load Balancing User Guide”, Copyright 2020 Ama-
HO4L 12/24 (2006.01) zon Web Services, Inc., pp. 1-27.
HO4L 29/12 (2006.01)
HO4L 67/56 (2022.01) Primary Examiner — David R Lazaro
HO4L 67/10 (2022.01) Assistant Examiner — Berhanu Shitayewoldetadik
(52) U.S. CL (74) Attorney, Agent, or Firm — Robert C. Kowert;
CPC HO4L 67/28 (201301), HO4L 67/10 Kowert, Hood, MUDYOH, Rankin & Goetzel, P.C.
(2013.01)
(58) Field of Classification Search (57) ABSTRACT
CPC HO41., 67/28; HO4L 67/10 An intermediary device configured for request and response
USPC .. 709/201 traf:‘ic Of an ElppliCEltiOIl d@teCtS an UIlEldVertiSEEd Il@‘[WOI'k

See application file for complete search history. parameter setting of an implementation node of the appli-

cation. Based on the detected setting, the ntermediary

(56) References Cited dov; -
evice computes a new value for a networking parameter of
US PATENT DOCUMENTS the intermediary device, and sets the parameter to the new
value.
6,718,358 Bl 4/2004 Bigus et al.
7,380,006 B2 5/2008 Srinivas et al. 20 Claims, 11 Drawing Sheets

Cistributed application companenis

140

Anglication implemeniafion node
{AIN} 1258

Networking parameter
settings 128A controlled by
application owner

Traffic processing service {TP3) 110

Traffic processing intermediary device {TPID)
1154

Traffic progessing rules 120 (e.qg., load
balancing algorithm, encryption/
decryption rutes, request iogging

= &
;\L _
Application % %
client T g Application programis}
105A = i 130A
= :;_:- — ‘"“'"**"—"-' - _
%3 =
= =
= =
2 =
Apptication = 3
client = = AN 1258
1058 =, Networking parameter settings 124 =
-I::E:F' {ﬁfﬂ??ﬂ!fﬁd by TPS) e e % Networking parameter
& = settings 1288 controfled by
= o apphication owner
&)
3 2
— Appiication pregramy{s)
Network! 1308
connections’ e ;
sessions 1604 aliale
useq for client-) |
side application e rrreeeeeeemean e
requests and . Programmatic interfaces 177)
rEspOnASEs - - - Network connections/sessions 1608
TPS clients 182 (e.g.. owners of distibuted applications) used for application-hack-end requests
and responses as well as garameter
discovery

System 100 oo

US 11,375,033 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2015/0085665 Al 3/2015 Kompella et al.
2015/0089034 Al1* 3/2015 Stickleo..e.l. HO041.41/28
709/223
2015/0117506 Al* 4/2015 Simpson HOI1P 1/15
375/228
2015/0319063 Al* 11/2015 Zourzouvillys HO041. 65/80
370/352
2015/0334724 Al1* 11/2015 Faccin HO4W 28/085
370/235
2016/0183168 Al* 6/2016 Horn HO04W 48/14
709/225
2016/0330108 Al1* 11/2016 Gillon HO41L. 65/80
2016/0330286 Al* 11/2016 Keith HO4L 67/327
2017/0048328 Al* 2/2017 Korotaev HO4L. 69/16
2017/0230451 Al1* 8/2017 Paramasivam HO4L 67/1006
2017/0251449 Al1* 8/2017 Malik HO4W 56/0065
2018/0143897 Al* 5/2018 Shani GO6F 11/3688
2018/0351816 A1™* 12/2018 Li .ooveiiiiiiinniiinnn HO041. 67/10
2019/0028560 Al1* 1/2019 Holland H041.41/14
2019/0163544 Al1* 5/2019 Ekambaram HO4L. 67/12
2020/0351643 Al1* 11/2020 Dhanapal HO04B 7/062
2021/0014234 Al1* 1/2021 Kwatra HO4W 76/11
2021/0220208 Al1* 7/2021 Shibata GO8B 21/0423
2021/0227042 A1* 7/2021 Sawant HO4L 67/16

* cited by examiner

R 5 DO s

AIBA0ISIP
19)oweled se ||om Se sasuodsal pue
sisanbai pua-yoeg-uonesldde 1oj pasn
g09[Su0ISSaS/SUOIBUUOCD HIOMION

(suoneaijdde pajnguIsIp Jo s1aumo “69) 7QT Siusld Sl

‘ 771 Seoeusiul onewiwebold b pue sjsanbal

US 11,375,033 Bl

Sheet 1 of 11

Jun. 28, 2022

U.S. Patent

21 SJSAIBS aueld [o1U0D S|

uoneoidde apis
-JUsIjo 10} pasSn
V0G| SuoIssas

/SUONI3ULOI
d0¢] MIOMION
(s)weliboid uoneasddy _
JBUMO uoneoldde R

AQ paJj04u02 g9z | sbumes
19)sweled bupiomiaN

(s)welboid uoneoyddy

JAUMO uonealdde

AQ paJj04u09 Y871 sbumes
19)aweled BupomlaN

VGel (NIv)
apou uonejuatua|dwi uoneslddy

0cl
Suauodwod uonesldde panguasI

including provider network paths)

}

Network 150B (e.g.

(

(Sd.L Aq pajj0nu0d)
$Z1 sbumes Jajsweled buniomsn

(" ‘swiyobie
A1an02sIp Jojsweled ‘sis)sweled 1abie)
“0°'8) ZZ | elepelaw buiuny pajewony

("*‘san.
buibbo) 1sanbai ‘sejns uondAiosp
juondAious ‘wyobie buioueled
peo| “0°9) 071 Sojnt buissaosoid aujel |

VGll

ald 1) 92nap Aselpawaul buissanoid aiyel |

1T (Sd.L) 921nss Buissaooad aujel |

Network 150A (e.g., including links of public Interne

a%01
JusIfo
uoneolddy

Va0l
JUSI
uoneol|ddy

U.S. Patent

Full
response
IS not
received
by client
until ~2
RTT
(client-to-
TPID
round trip
times)

RTT

Application
client 205

Jun. 28, 2022

Response(1st
of 3 segments)

Sheet 2 of 11

US 11,375,033 Bl

TPID
e
1 rit (TPD-to-AIN

i } round trip time,
e
;\

Request

["
b
ﬁ.
[e
ey
e]

e —
uﬁh

Response(2d
and 3rd
segments)
Private
network 202
fr—-

Scenario 251: AIN initial congestion window = 1, TPID initial congestion window = 1

network 202
M_— ﬁ

Scenario 252: AIN initial congestion window = 3, TPID initial congestion window = 1

FIG. 2

U.S. Patent Jun. 28, 2022 Sheet 3 of 11 US 11,375,033 B1

TPID AIN 22

N

—_

N
X

~1 it

RTT

Private
Internet 201 network 202

‘P G———i

Scenario 253: AIN initial congestion window = 3, TPID initial congestion window = 3

FIG. 3

U.S. Patent

Jun. 28, 2022 Sheet 4 of 11 US 11,375,033 B1

AIN 22

on

Request 410 (e.g., HTTP GET
request in a modified health
status probe)

TPID does not

send acks, Response e—Segment #2
counts number segment #1 ' Segment #3

of segments Timeout 420 ,

recelved hefore
re-transmission
of segment #1
to determine
congestion
window
parameter

followed by re-
transmission of
segment #1

Segment #n

Re-sent segment
#1

FIG. 4

U.S. Patent Jun. 28, 2022 Sheet 5 of 11 US 11,375,033 B1

TPID

HTTP connection 510 opened

AIN starts
keepalive
TPID does not timeout interval
send any 512

messages on

connection, Timeout
waits till / expires 514
connection is
closed by AIN
to detect
keepalive
timeout

Connection termination
message 510

TPID

Bursts of requests 550 (gradually
increased in request count)

TPID detects E dropping
burst size after — ol requests based
which requests / on throttling
are throttled to ' parameter 552

estimate

throttling

parameter

Responses 555

FIG. &

US 11,375,033 Bl

Sheet 6 of 11

Jun. 28, 2022

U.S. Patent

Z S
< S

NIV

-
-
N
O

NIV

D
-
N
O

=z
<< &S

-

¢9 1991 NIV

9 9OlId

070 suoneaynou yorewsiw Jajsweled NIy

99

SJOAIBS Bue|d [03U0D Sd |

¢99 sbumass NIV
PBIBA0ISIP UO paseq sbunles

Ja)sweled sisy) abueys o)
5(1d 1 12Uj0 $asned G119 didL

SNV ShoJawnu

J0099 sbumes (991nJ0s Bulouefeq peo| “69) 519 Sdl
19joweled pasiisapeun

SIPAOISIP VG LY (idl

U.S. Patent Jun. 28, 2022 Sheet 7 of 11 US 11,375,033 B1

Service-oriented application (SOA) 791

Inter-CS —
requests 793A o CS2 \—/’;‘-\p'p

e PR e e

App requests

— |

792 /""fﬁ(")onstituent ~

3
: responses
§ T senice CS) CS1 - 704
: “ CS3 ey
beiemmannmenenensansseeeanenannn et W '
i Sidecar proxy E
' (SP) 755A E
SPs may perform
Constituent service (CS) parameter
CS1 discovery and

auto-tuning

Constituent service (CS) CS2

FIG. 7

U.S. Patent Jun. 28, 2022 Sheet 8 of 11 US 11,375,033 B1

Configure TPIDsForApp 814 :'
;
TPIDsConfigured 815 :
__ ‘

bt ‘........

AutoTunePolicyinfo 817 '

TerminateDiscoveryAndAutoTuning 828
DiscoveryAndAutoTuningEnded 831

Traffic
processing
service 812

Client 810

~ ReportDiscoveredParameters 837
DiscoveredParameters 839

‘ Progirammatic interfaces 877

Subscrt beTo!NParameterMismatchReports 841
- MismatchReport 3843

FIG. 8

‘ﬂ-ﬂ‘-‘_‘-ﬂ-ﬂ_-ﬂ-ﬂ‘ﬂﬂ-ﬂ-‘-r‘ LR N B & B o N N a2 88w 40 B 4B I . W 48 4k 40 4N A5 W A% . 48 4 8 . S A% 4 6 4D 4 a5 . AN L A B B X N JL K N B N R _NE_ N LB B B N N B N B N R N

US 11,375,033 Bl

Sheet 9 of 11

Jun. 28, 2022

U.S. Patent

'--‘

6 Ol

‘II'IIIII..I.I.I.II.I‘I"'-I'.".'..Ill'"‘.'ll'Il"-l'll'."'-.l'l"...‘.'l'l"l'.l“.'l"‘l'.llll"-."’

’

)
]

‘_‘l“!i“““_““““““l

¢

876 SJO)euIp1o09 bulun)-ony

076 2.101S elepejaw buiunj-ony

#‘““‘““ﬂ““““““
‘-'-“_ﬂﬂﬂﬂﬂ"_ﬂ'

€76 99IA8S bulun}-oiny

' 4

L 4

t“_““""“""‘"‘_‘I_“'

#

d5G6 9ouelsul 4uN

V556 oUEISUT (4N |

CCH 90IAIBS
Juswiabeuew aseqelep [euoneja-UoN e

4

A A T A X LI L L L L L L
Y I T T T T YT Y Y YY1\,

%

"lll‘-ll-ll'II‘II"II-I"

‘-l..‘ll"."l-l'.‘l.-I_I_‘lll'll-l'-l.-l.--ll-'l.l'l‘.ll.l-.'ll'.-l".l'.'.'..'.Il-.--..'.l...‘..-‘..-l.l"

776 S9oel8)ul onewwelbold

_‘I“““‘““““I“““"

%

9¢6

)99} AX01d 1828pIS

TTeoPwTeORORSSw,
|
-
™

E X E XK X K X ¥ X K X 3 B 4

' TTH 901A9S Jualwsbeuew oiges YOS o

L E X X X FE N X E N X X X N B K ¥ N R N N R R N N

"‘"‘_"I"l“"‘l“""'.

' 4

g4v6 =ouElSUl (Y

Vapo Souejsul g0y

CHH 90IASS
Juswisbeuew aseqelep leuoieey

"I"ll"lllll'll.ll‘III_-‘_

106 MoMm)au JopInOl4

’---------'--------~
LTy Y T T Y T YT I 1 YN Y Y

S

_"""i"“.““““““"““““"l"!"m‘“"“““““"

%
e

G A S5 S G5 D S A D S G D A A A A A R A D A A G D A G A S I D A B S I B N S B G A B B R A B D S D e G A e a

‘:"“""“l““““'l“l“"“"

&

[6 189} Jaoueeq peoy

G16 se10110d g7

'-'n-'--'n----'-‘
. ¥ ¥ X £ 2 2 X XX T XX E .

CTH 90IAI9S Dulouejeq peot

LT I I I T T I T T I T T I T T L L T T T Y T T Y Y Y T Y .

’
%

“"".""l“""“"""“‘“""

’

'

(auIyoRW [BNUIA
. n "69) V606 (1)

aouelsul ayndwon

806 150y UoNezIfenyi

06 (SOA) 991A18s BunRndwod pazienuip

"IIII'I'I‘IIIIlllllllllllillllll“

"--'_-'_"---‘..-'-‘--
*--.-“ﬂﬂ---.--‘--“

‘-‘---'----ﬂ'-ﬂ“-‘----.-------‘------'-‘---'----ﬂ--ﬁ------------‘-‘

U.S. Patent Jun. 28, 2022 Sheet 10 of 11 US 11,375,033 B1

Assign traffic processing intermediary devices (TPIDs) (e.q., load balancers, sidecar proxy nodes,
etc.) for a distributed application comprising one or more application implementation nodes (AINs)
1001

Obtain an indication at a TPID that one or more networking parameters of the TPID are to be
tuned automatically (without receiving a request or command specifying the specific parameter
values to be set) 1004

Implement respective discovery protocols at TPID to detect unadvertised parameter settings at
one or more AINs to which the TPID is assigned 1007

Determine, at TPID based on identified settings of AIN(s), that TPID’s parameter settings should
be modified to optimize performance for application clients 1010

Modify TPID's parameter settings 1013

Transmit network messages from TPID using modified settings; optionally, notify application
owner regarding discovered AIN parameter settings and/or changed TPID settings 1016

FIG. 10

U.S. Patent Jun. 28, 2022 Sheet 11 of 11 US 11,375,033 B1

Computing device
9000

Processor
9010n

Processor Processor

9010a 9010b

/O interface 9030

System memory 9020 Network interface
Code Data 2040
9025 9026

Other device(s)
9060

FIG. 11

US 11,375,033 Bl

1

AUTOMATED TUNING OF NETWORK
INTERMEDIARY DEVICES

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing
systems being co-located (e.g., as part of a local network) or
instead located 1n multiple distinct geographical locations
(e.g., connected via one or more private or public interme-
diate networks). For example, distributed systems housing
significant numbers of interconnected computing systems
have become commonplace. Such distributed systems may
provide back-end services to servers that interact with
clients. Such distributed systems may also include data
centers that are operated by entities to provide computing
resources to customers. Some data center operators provide
network access, power, and secure installation facilities for
hardware owned by various customers, while other data
center operators provide “full service” facilities that also
include hardware resources made available for use by their
customers. As the scale and scope of distributed systems
have increased, the tasks of provisioning, administering, and
managing the resources have become increasingly compli-
cated.

A distributed computing environment may provide
remote clients with access to various network-accessible
services, which can all be accessed over network connec-
tions. In some cases, a given network-accessible service may
be implemented at numerous nodes, which are accessed by
the remote clients via itermediary devices such as load
balancers. Some applications implemented at a distributed
computing environment may comprise multiple computing
and/or storage nodes arranged 1n graphs or pipelines, with a
given client request being processed using several different
messages sent among the pipeline nodes. In some scenarios,
respective subsets of the nodes involved in processing a
given request may be administered by different entities. For
example, nodes of a virtualized computing service, used to
implement the business logic of an application may be
administered by an application owner, while front-end load
balancers used to distribute client requests among the com-
puting nodes may be administered independently by a load
balancing service.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system environment in
which networking configuration settings may be tuned auto-
matically at a traflic processing service based on discovered
values of networking configuration settings of application
nodes, according to at least some embodiments.

FIG. 2 illustrates an example scenario in which the
modification of a networking configuration setting at an
application implementation node may not impact overall
application performance, according to at least some embodi-
ments.

FIG. 3 illustrates an example scenario in which overall
application performance may be improved when an inter-
mediary device automatically adjusts a networking configu-
ration parameter setting to match a corresponding setting at
an application implementation node, according to at least
some embodiments.

FIG. 4 illustrates an example technique which may be
used by a tratlic processing intermediary device to discover

10

15

20

25

30

35

40

45

50

55

60

65

2

an unadvertised value of a congestion window parameter of
an application implementation node, according to at least

some embodiments.

FIG. 5 illustrates example techniques which may be
employed by a traflic processing intermediary device to
discover unadvertised values of keepalive timeout settings
and request throttling settings, according to at least some
embodiments.

FIG. 6 illustrates an example scenario in which a traflic
processing intermediary device may compare discovered
networking configuration settings of several application
implementation nodes and take actions based on the results
of the comparison, according to at least some embodiments.

FIG. 7 illustrates an example scenario in which iterme-
diary devices configured to auto-tune networking configu-
ration settings may be used for processing inter-constituent-
service tratlic of a distributed application, according to at
least some embodiments.

FIG. 8 1llustrates example programmatic interactions per-
taining to auto-tuming ol networking configuration settings,
according to at least some embodiments.

FIG. 9 illustrates an example provider network environ-
ment 1n which networking configuration settings of network
intermediary devices may be tuned automatically, according
to at least some embodiments.

FIG. 10 1s a flow diagram 1llustrating aspects of opera-
tions that may be performed to support automated tuning of
networking configuration settings, according to at least some
embodiments.

FIG. 11 1s a block diagram 1llustrating an example com-
puting device that may be used in at least some embodi-
ments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes” mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase “at least one of X, y, or z” means any one of X, v,
and z, as well as any combination thereof.

DETAILED DESCRIPTION

The present disclosure relates to methods and apparatus
for automated tuning of networking configuration settings at
network intermediary devices such as load balancers of a
distributed computing environment, based on discovery of
unadvertised configuration settings at other components of
the distributed computing environment such as back-end
nodes of distributed applications for which the network
intermediary devices are configured. Key aspects of client-
percerved application performance, such as the response
times for HTTP (Hypertext Transier Protocol) requests
submitted by clients, may be aflected substantially by net-
working configuration settings (including Transmission

US 11,375,033 Bl

3

Control Protocol (TCP) congestion control parameter set-
tings, HI'TP connection keepalive settings, etc.) at the
various resources involved 1n the processing of the clients’
requests. For some application deployed 1n a provider net-
work or cloud computing environment, resources of mul-
tiple independently-administered services may be used for a
given distributed application. For example, compute
instances of a virtualized computing service may be used to
implement the back-end logic of a distributed application,
while a set of load balancers of a load balancing service may
be configured to distribute incoming application requests
among the compute 1nstances. The front-end load balancers
may obtain requests from clients using a first set of client-
side network connections, and may transmit internal mes-
sages comprising the client requests to back-end servers
using a different set ol network connections. Application
owners may be able to tune configuration settings of the
compute instances, but at least some configuration settings
of the load balancers may not be modifiable by the appli-
cation owners. As a result, 1t may sometimes be the case that
while configuration settings at some subset of resources
have been adjusted by administrators, configuration settings
at other resources ivolved 1n the request processing work-
flow have not been adjusted accordingly, leading to sub-
optimal overall performance. Furthermore, at least some
important configuration settings such as the initial conges-
tion window parameters are not advertised during connec-
tion setup procedures and are not included 1n packet headers,
so discovering the current values of such settings may 1itself
require non-trivial eflort.

According to the novel performance tuning techmques
described herein, 1in various embodiments network interme-
diary devices configured for an application may implement
discovery algorithms to detect unadvertised values of at least
some performance-critical parameters of back-end applica-
tion implementation nodes. Based at least in part on the
detected values, a given intermediary device may automati-
cally adjust one or more of its own configuration settings,
even 1n scenarios in which the application owners have no
direct control over the configuration settings being modified,
and 1n which the administrators of the intermediary devices
do not send requests specilying target settings to the inter-
mediary devices. As a result, overall application perior-
mance as perceived by clients may be improved substan-
tially 1n at least some embodiments—Iior example,
depending on the adjusted settings and the total size of the
web page being requested, the time taken to render a web
page at a client’s may be reduced by a factor of two or more
in some cases. In addition, error messages which might
otherwise be sent to application clients (e.g., due to dropped
request messages and the like) may be avoided. Further-
more, the mtermediary device may continue to check for
changes to parameters at the back-end nodes over time 1n at
least some embodiments, adjusting 1ts own parameters to
further optimize performance as and when additional
changes are applied at the back-end nodes.

As one skilled 1n the art will appreciate 1n light of this
disclosure, certain embodiments may be capable of achiev-
ing various advantages, including some or all of the follow-
ing: (a) enhancing responsiveness and other performance
metrics of distributed applications implemented for which
intermediary devices such as load balancers are employed,
(b) improving the user experience of application clients as
well as application administrators, by reducing the number
of errors and/or (c¢) reducing the amount ol computation,
memory, storage, and other resources which may have to be
deployed at customer support organizations responsible for

10

15

20

25

30

35

40

45

50

55

60

65

4

responding to client complaints about application perior-
mance and/or error messages.

In some embodiments, the automated parameter discov-
ery and tuning techniques indicated above may be imple-
mented at one or more network-accessible services of a
provider network. The term “provider network™ (sometimes
simply called a “cloud”) refers to a large pool of network-
accessible computing resources (such as compute, storage,
and networking resources, applications, and services), which
may be virtualized or bare-metal. The cloud can provide
convenient, on-demand network access to a shared pool of
configurable computing resources that can be programmati-
cally provisioned and released in response to customer
commands. These resources can be dynamically provisioned
and reconfigured to adjust to variable load. The resources of
a provider network may 1n some cases be distributed across
multiple data centers, which 1n turn may be distributed
among numerous geographical regions (e.g., with each
region corresponding to one or more cities, states or coun-
tries). For example, a cloud provider network can be formed
as a number of regions, where a region 1s a geographical area
in which the cloud provider clusters data centers. Each
region can include two or more availability zones connected
to one another via a private high speed network, for example
a fiber communication connection. An availability zone
refers to an 1solated failure domain including one or more
data center facilities with separate power, separate network-
ing, and separate cooling from those in another availability
zone. Preferably, availability zones within a region are
positioned far enough away from one other that the same
natural disaster should not take more than one availability
zone oflline at the same time. Customers can connect to
availability zones of the cloud provider network via a
publicly accessible network (e.g., the Internet or a cellular
communication network). A provider network may include
numerous network-accessible services, such as a virtualized
computing service (VCS), one or more storage services,
database services and the like, as well as a parameter tuning
service or a network intermediary service at which param-
eters are tuned automatically. A VCS may also be referred to
as an elastic compute service, virtual machines service,
computing cloud service, compute engine, and/or cloud
compute 1n various implementations.

According to some embodiments, a system may comprise
one or more computing devices. The computing devices may
include instructions that upon execution on or across the one
or more computing devices cause the one or more comput-
ing devices to assign one or more mtermediary devices for
processing network traflic of an application comprising one
or more application implementation nodes. A given inter-
mediary device may be configured to perform a variety of
functions for the application 1n some embodiments, includ-
ing but not limited to: (a) obtaining, via a first set of one or
more network connections, one or more operation requests
originating at a client of the application, (b) transmitting, via
a second set of one or more network connections, one or
more messages representing an operation request of the one
or more operation requests to at least one application imple-
mentation node and (¢) transmitting, to the client via the first
set of one or more network connections, one or more
messages comprising a response generated to an operation
request at an application implementation node. The inter-
mediary device may obtain an indication that 1t (the inter-
mediary device) 1s to perform automated tuning of one or
more networking parameters 1n at least some embodiments,
e.g., from a control plane or admimstrative component of a
network-accessible service of a provider network. The inter-

US 11,375,033 Bl

S

mediary device may identify, 1n response to the indication,
a respective unadvertised value of one or more networking
parameters ol at least a particular application implementa-
tion node. The values may be deemed to be unadvertised 1n
that they may (a) not be indicated 1n messages comprising,
responses to the operation requests and (b) not be indicated
in a connection establishment workilow used for the second
set o connections. Having 1dentified an unadvertised value
of a particular parameter, the intermediary device may
compare the 1dentified value with a value of a corresponding
networking parameter of the intermediary device itself.
Based at least 1n part on a result of the comparison, the
intermediary device may modily the corresponding net-
working parameter without receiving a request to perform
the modification, and transmit one or more network mes-
sages 1n accordance with the automatically modified param-
eter.

In some embodiments, the permissions/privileges
required to make changes of configuration settings of the
application implementation nodes may differ from the per-
missions/privileges required to make changes of configura-
tion settings of the mtermediary devices. This may be the
case 1i, for example, a different provider network service 1s
used for the intermediary devices than 1s used for the
application implementation nodes, or 1f a different client
account 1s associated with the intermediary devices than
with the application implementation nodes.

Any of a number of different kinds of unadvertised
networking configuration parameters at various layers of the
networking software/hardware stacks of the application
implementation nodes may be detected in various embodi-
ments by the intermediary devices, such as congestion
control parameters (1including TCP parameters such as nitial
congestion windows), connection timeout parameters (such
as HI'TP keepalive timeouts), request throttling parameters
(c.g., parameters indicating the maximum number of
requests an application implementation node 1s configured to
accept within a short time interval, before the application
implementation node starts dropping new requests), and so
on. In some embodiments, the parameter which 1s modified
at the intermediary device may be the same as the parameter
whose value 1s detected; 1n other embodiments, the inter-
mediary device may learn the value of one parameter and
modily a different parameter. In some embodiments, when
moditying the value of the same parameter whose value was
detected, the intermediary node may set 1ts own value of the
parameter to exactly the same value as that of the application
implementation node (e.g., 1f the TCP imtial congestion
window of the application implementation node 1s set to 3,
the value of the TCP imitial congestion window of the
intermediary node may also be set to 3). In other embodi-
ments, the modified version of the intermediary device’s
parameter may not necessarily be set to match the detected
value of the same parameter at the application implemen-
tation node.

Depending for example on the particular unadvertised
parameter being considered as an auto-tuning candidate, any
ol a number of diflerent techniques may be used to discover
its value. For example, to discover the TCP 1nitial conges-
tion window parameter, the intermediary device may com-
pute a number of additional network messages which are
transmitted by the application implementation node to the
intermediary device (a) after the application implementation
node sends a particular network message to the intermediary
device and (b) before the particular application implemen-
tation node re-sends the particular network message to the
intermediary device as a result of an absence of an acknowl-

10

15

20

25

30

35

40

45

50

55

60

65

6

edgement of the particular network message from the inter-
mediary device. In some embodiments, the intermediary
device may be configured to implement a health checking
protocol, 1n which the intermediary device sends health
status probes at various intervals to the application 1mple-
mentation nodes, and a modified version of such a health
status probe may be used to detect at least some parameters.
To detect a keepalive timeout, the intermediary device may
simply not send any messages after establishing a connec-
tion with an application implementation node, and wait until
the application implementation node terminates the idle
connection 1n one embodiment. To detect a throttling param-
cter, the intermediary device may submit progressively
larger bursts of fake or simulated client requests to an
application implementation node, and determine or estimate
the throttling parameter based on the number of responses
received.

In at least some embodiments, the automated discovery
and seli-tuning of networking parameters may be conducted
by an intermediary device may be triggered by a program-
matic request submitted by a client of a network-accessible
service. In various embodiments, an intermediary device
may comprise a load balancer, a content server of a CDN
(content delivery network), or a sidecar proxy assigned to
process requests transmitted between constituent services of
an application implemented using a service-oriented archi-
tecture (SOA).

An itermediary device may detect mismatches between
parameter settings of a plurality of application implemen-
tation nodes 1n some embodiments, and cause the applica-
tion owner to be informed regarding the mismatch. For
example, 11 the value of a particular parameter P1 1s set to
V1 at one action implementation node AIN1 of a group of
nodes (expected to be configured 1dentically to one another),
but the value of P1 1s set to V2 (different from V1) at another
action implementation node AIN2, the intermediary device
may discover the discrepancy and generate a message for the
application owner. In one embodiment, in which several
different intermediary devices (such as a collection of load
balancers) are configured for the same application, a given
intermediary device may cause parameters at other interme-
diary devices to also be changed, in addition to modifying 1ts
Oown parameters.

Example System Environment

FIG. 1 illustrates an example system environment in
which networking configuration settings may be tuned auto-
matically at a traflic processing service based on discovered
values of networking configuration settings of application
nodes, according to at least some embodiments. As shown,
system 100 may include resources and artifacts of a traflic
processing service (IPS) 110 and components 120 of a
distributed application. The TPS 110 may comprise a plu-
rality of trathic processing intermediary devices (TPIDs)
115, such as TPID 115A and TPID 115B, as well as TPS
control plane servers 129 responsible for administrative
tasks such as assignment/allocation of TPIDs to various
distributed applications. TPIDs 115 may be configured to
perform any of several different types of tratlic processing
for network messages transmitted 1n either direction
between application clients 105 (e.g., 105A or 105B) and the
application implementation nodes (AINs) 125 (e.g., 125A or
125B). Examples of such traflic processing tasks may
include load balancing application operation requests,
encrypting/decrypting messages, logging requests, trans-
forming requests (or responses generated for the client
requests at the AINs) from one format or networking pro-
tocol to another, implementing encapsulation protocols, and

US 11,375,033 Bl

7

the like 1n different embodiments. In one simple scenario in
which a TPID 115 1s configured primarily as a load balancer,
an application client 105 may submit an application request
to the TPID 115, and the TPID may submit a corresponding,
internal request (also referred to as a back-end request) to a
particular AIN 125 selected based on a load balancing
algorithm 1indicated in rules 120. When the application
programs 130 (e.g., 130A or 130B) at the AIN 125 com-
pletes the requested operations, a response message may be
sent to the TPID 115, and the TPID may send a correspond-
ing response message to the client 105.

In at least some embodiments, the TPIDs 115 may utilize
two sets of network connections or sessions. Network con-
nections 160A may be used by application clients 105A to
send messages, comprising requests for operations to be
performed at the distributed application, to the TPS 110 over
a first network 150A (which may, for example, comprise
portions of the public Internet) 1n the depicted embodiment.
These connections 160A may also be used by the TPIDs to
send response messages (containing responses to, or results
of, the requested operations) back to the application clients.
Messages transmitted by the TPIDs to the application clients
(and to the AINs 1235) may be sent 1 accordance with
networking parameter settings 124 of the TPIDs. Initial
values of the TPID networking parameters may be chosen by
the TPS control plane servers 129 1n at least some embodi-
ments.

Network connections 160B may be used for messages
transmitted between the TPIDs 115 and the AINs 1235 over
a second network 150B. Such messages may comprise
application back-end requests and responses, corresponding
to the client-side requests and responses which are trans-
terred over network 150A. In the depicted scenario, network
150B may include private network pathways of a provider
network or cloud computing environment, and may not
include links of the public Internet. In at least some embodi-
ments, the TPIDs and the AINs may be implemented using,
services of such a provider network—e.g., individual TPIDs
may comprise load balancers of a load balancing service of
the provider network, while individual AINs may comprise
compute 1stances of a virtualized computing service of the
provider network. In at least some implementations, indi-
vidual ones of the TPIDs 115 may be implemented using
some combination of firmware, software and hardware at
respective physical hosts, and individual ones of the AINs
125 may also be implemented using some combination of
firmware, software and hardware at respective physical
hosts. In other implementations, multiple TPIDs 115 and/or
multiple AINs 125 may be implemented at a given comput-
ing device such as a server. The flow of network traflic
between the TPIDs 115 and the AINs 125 may be governed
by networking parameter settings 128 (e.g., 128A or 128B)
of the AINs, as well as the networking parameter settings
124 of the TPIDs. In some implementations, TCP may be
used for at least some connections 160A and/or at least some
connections 160B. In other implementations, other network-
ing protocols may be used.

In some cases, as discussed below 1n further detail, one or
more networking parameters 124 (such as TCP 1nitial con-
gestion window sizes, HT'TP keepalive timeouts, etc.) may
happen to be set in a sub-optimal way with respect to the
current settings of the networking parameters 128 at some or
all of the AINs at various points 1n time; for example, the
combination of settings may result in unnecessarily long
response times (or unnecessarily low throughputs) for appli-
cation requests as perceived by the application clients 105,
or may result 1n timeout-related errors. Different sets of

10

15

20

25

30

35

40

45

50

55

60

65

8

permissions may be needed to alter the networking configu-
ration settings 128 than are needed to alter the networking
configuration settings of the TPIDs 1n at least some embodi-
ments. For example, networking parameter settings 128 may
be altered 11 desired by the owners/administrators of the
distributed application components 120, while permissions
to alter the networking parameters 124 of the TPIDs may not
be granted to the application owners. Instead, networking
configuration settings 124 may be modified, 1 needed, by
the TPIDs themselves and/or by the TPS control plane
servers 129 1n the depicted embodiment. In order to mitigate
or avold sub-optimal application performance, the TPIDs
115 may auto-tune their networking parameters 124 in at
least some embodiments, e.g., based on detected values of
unadvertised networking parameter settings 128.

The TPS 110 may implement a set of programmatic
interfaces 177 1n the depicted embodiment, such as web-
based consoles, command-line tools, graphical user inter-
faces, application programming interfaces (APIs) and the
like. Interfaces 177 may be used by TPS clients 182 such as
the owners/administrators of the distributed applications
implemented at the AINs 125, e.g., to request the allocation
of TPIDs for the applications, to indicate the kinds of traflic
processing rules 120 to be implemented by the TPIDs, and
so on. In response to a request submitted by a TPS client via
programmatic interfaces 177, a TPS control plane server 129
may assign one or more TPIDs 115 for processing network
traflic of an application comprising one or more AINs 125.

In at least some embodiments, a TPID 115 may obtain an
indication, e.g., 1n the form of a message or command 1ssued
by the TPS control plane servers 129, that automated tuning
of one or more networking parameters 1s to be performed.
The TPS control plane servers may send such indications to
the TPID 1n response to auto-tuning requests received from
TPS clients 182 via programmatic interfaces 177 in one
embodiment. In some 1mplementations, such messages or
commands from the TPID control plane servers to the TPIDs
may not be required to trigger auto-tuning; instead, for
example, the TPIDs may each be provided automated tuning
metadata 122 as part of a default TPID initialization proce-
dure. The auto-tuming metadata 122 may indicate, for
example, the set of target parameters to be tuned, the
discovery algorithms or techmques to be used to detect the
values of relevant networking configuration parameters 128
of the AINs, and so on. In embodiments in which the TPS
control plane sends messages/commands to the TPIDs to
initiate or modily auto-tuning procedures, the automated
tuning metadata 122 may be stored 1n response to such
messages/commands.

Based on a message from the TPS control plane servers
and/or the automated tuning metadata 122, the TPID 115
may 1dentily respective unadvertised values of one or more
networking parameters of at least a particular AIN 125. The
values may be described as being unadvertised values 1n that
they are (a) not indicated 1n messages sent by the AINs to the
TPS, comprising responses to operation requests and (b) not
indicated 1n a connection establishment worktlow used for
establishing connectivity between the TPID and the AINs.
The TPID 115 may use the detected values of AIN network-
ing parameters to determine whether any of its own net-
working parameters should be modified (e.g., by comparing
the AIN’s value for a parameter with the TPID’s value) 1n
various embodiments. If the TPID determines that its param-
cters should be changed, the TPID may automatically
modily the parameters, without recerving a request indicat-
ing the specific values to which the parameter should be set,
or even a request to modily the parameter in the depicted

US 11,375,033 Bl

9

embodiment. After the value of the parameter(s) have been
automatically adjusted, subsequent network messages/pack-
cts may be transmitted by the TPID in accordance with the
modified values. The adjustments may help to improve
application performance as perceived by clients 105, and/or
may reduce error messages caused by unnecessary timeouts
and the like.

In some embodiments, a TPID 115 may also perform
other networking configuration-related tasks. For example,
in one embodiment, the TPID may discover the respective
values of a particular parameter setting from multiple AINs
125, and generate a report for the application owner (e.g.,
TPS client 182) indicating whether the values do not match
or should be modified to improve performance or decrease
errors. In one embodiment, when a given TPID chooses a
new value for one of its own parameters, 1t may notify other
TPIDS which are also assigned to the same application
regarding the chosen value, in eflect requesting the other
TPIDs to change their parameters as well.

Initial Congestion Window Settings Example

In some cases diflerences 1n parameter settings between
TPIDs and AINs may result in sub-optimal performance,
and making changes at the AINs alone may be insuflicient to
resolve the performance problems. FIG. 2 illustrates an
example scenari1o in which the modification of a networking
configuration setting at an application implementation node
may not impact overall application performance, according,
to at least some embodiments. In scenario 251, TCP 1s used

for connections established between application clients 205
and TPIDs 215, and also for connections established
between TPIDs 215 and AINs 225 of a distributed applica-
tion. The TCP 1mitial congestion window size (“initcwnd”,
an unadvertised parameter) at AIN 225 1s set to one, and the
value of the TCP initial congestion window size at the TPD
1s also set to one. The owner of the application can make
changes to 1nitcwnd at the AINs, but 1s assumed to be unable
to make changes to mitcwnd at the TPIDs.

Assume that application requests (such as HI'TP GET
requests) 1 the embodiment depicted in FIG. 2 are sent over
Internet links 201, and messages between TPID 215 and
AIN 225 are sent over a private network 202. Assume
turther that a given application request can be sent using a
single network packet or segment, but that the response
requires a total of three packets or segments.

The client 205 sends an application request message to the
TPID, and the TPID 1n turn sends a corresponding request
message to the AIN 225. Because the initial congestion
window 1s 1, the AIN only sends the first of the three
segments of the response to the TPID, and waits for an
acknowledgement (Ack) from the TPID 215 before sending
the remaining two segments. Acknowledgement messages
are shown using dashed lines in FIG. 2 and FIG. 3. The AIN
1s assumed to adjust 1ts congestion window to two after
receiving the first acknowledgement from the TPID. The
time between the sending of the request message from the
TPID 215 to the AIN 225, and the reception of the first
response segment at the TPID 223, 1s referred to as TPID-
to-AIN round-trip-time rtt in FIG. 2. The second and third
response segments are sent close together 1n time from the
AIN to the TPID, and the corresponding acknowledgements
are also received close together in time at the AIN.

When the TPID 215 recerves the first response segment
from AIN 225, it sends the contents of the response on to the
client 205 1n a message over the Internet 201. Because of the
initial congestion window of one, the TPID also has to wait
until it recerves an acknowledgement from the client 203,

before sending the next two response segments on to the

10

15

20

25

30

35

40

45

50

55

60

65

10

client. The full response (all three segments) 1s not available
at the client until approximately two client-to-TPID round-
trip-times (R1Ts) in scenario 251. Note that because mes-
sages between the TPID and the client are sent over the
Internet, while messages between the TPID and the AIN are
sent over a private network, 1t may be the case that the
client-to-TPID round trip time (RTT) may be much greater
than the TPID-to-AIN round trip time (rtt).

In an attempt to improve the response times as perceived
by the client, the application owner may increase the
initcwnd value to (for example) three, as shown 1n scenario
252 of FIG. 2. If such a change 1s made only at the AIN,
however, this may not help overall performance much as
long as the TPD’s mitcwnd value remains set to one. Even
though the AIN 1s able to send all three segments of the
response to the TPD in scenario 252 as soon as the request
1s received at the AIN, the TPID 1s still only able to send the
first segment and then wait for an acknowledgement from
the client before sending the remaining two segments to the
client. As a result, the overall response time for the appli-
cation client remains approximately two RT'Ts, despite the
attempts of the application owner to improve the response
times by adjusting mitcwnd.

FIG. 3 illustrates an example scenario i which overall
application performance may be improved when an inter-
mediary device automatically adjusts a networking configu-
ration parameter setting to match a corresponding setting at
an application implementation node, according to at least
some embodiments. In Scenario 253 of FI1G. 3, the TPID 215
has ascertained the value of the unadvertised parameter
initcwnd 1s three, and has automatically adjusted its own
value of 1nitcwnd to three. As a result, as soon as the second
and third of the three segments of the response are received
at the TPID 215 from the AIN 225, the TPID 1s able to
immediately send on the segment contents to the client 205
without waiting for an acknowledgement for the first seg-
ment. The response time perceived by the client 1s now
approximately one RIT instead of the two-R1T response
time ol scenario 252. Note that the impact of auto-tuning
initcwnd at the TPID to match the initcwnd value of the AIN
may vary based on the average size (1in segments) of the
response messages relative to the initcwnd value selected.
Example Techniques for Detecting Values of Unadvertised
Parameters

FIG. 4 illustrates an example techmque which may be
used by a tratlic processing intermediary device to discover
an unadvertised value of a congestion window parameter of
an application implementation node, according to at least
some embodiments. As part of 1ts regular responsibilities,
unrelated to auto-tuning of networking parameters, TPID
215 may be configured to monitor the health status of one or
more AINs 215 1n the depicted embodiment. In order to
check on the health state of the AIN 225, the TPID may send
health status probes periodically to the AIN, and monitor the
time taken to get a response to get responses to the health
status probes. In some implementations, for example, a
given health status probe may comprise an HI'TP GET
request for a particular data item. If the response to the
HTTP GET request 1s received within a pre-selected time
interval, the AIN may be considered healthy; if no response
1s received 1n the time interval, the AIN may be suspected of
being unhealthy.

The health monitoring protocol may be modified slightly
as follows i1n the depicted embodiment to determine the
setting of the TCP 1nitial congestion window. Instead of the
regular health status probe a modified GET request 410 may
be sent to the AIN 225, in which a large data object which

US 11,375,033 Bl

11

requires multiple response segments may be requested. The
AIN 225 may start sending response segments, such as
segment #1, segment #2, segment #3 and so on; the number
ol segments sent before 1t 1s required to receive an acknowl-
edgement may be dependent on the AIN’s mitcwnd setting.
Instead of the default behavior of immediately sending an
acknowledgement message as soon as each response seg-
ment 1s recerved, the TPID 215 may send no acknowledge-
ment messages to the response segments 1n the depicted
embodiment.

After the AIN 225 has sent mnitcwnd response segments to
the TPID, the AIN may wait for an acknowledgment of the
first segment. Because no acknowledgements are sent by the
TPID, the AIN 225 may eventually time out while waiting
for the first segment’s acknowledgement, as indicated by
label 420, and re-transmit the first segment. By counting the
number of segments the AIN sent without waiting for an
acknowledgement for the first segment, the TPID may be
able to deduce the value of mnitcwnd at the AIN 1in the
depicted embodiment. The TPID may then decide to set 1ts
own 1mtcwnd parameter, e.g., to match the mitcwnd setting
of the AIN 1if it does not already match, as discussed earlier.
The type of parameter discovery technique shown 1n FIG. 4
may be performed periodically by the TPID 1n the depicted
embodiment, because the AIN’s mitcwnd value may be
changed at any time by the AIN’s administrator or applica-
tion owner.

In addition to initcwnd, values ol other unadvertised
parameters may also be discovered by a TPID in various
embodiments. FIG. 5 illustrates example techniques which
may be employed by a traflic processing intermediary device
to discover unadvertised values of keepalive timeout settings
and request throttling settings, according to at least some
embodiments. In the depicted embodiment, clients send
HTTP requests via the TPID 215 to an AIN, and HTTP
keepalive 1s assumed to be enabled. IT an AIN’s keepalive
timeout 1s shorter than that of the TPID, a client’s request
may be accepted by the TPID, but the corresponding internal
request sent by the TPID to the AIN may be rejected due to
a timeout at the AIN. This may result in undesired HT'TP
error messages (e.g., “gateway timeout” or “bad gateway”
error messages) being sent to the client.

To discover an HTTP keepalive timeout interval setting,
a TPID may periodically establish an HT'TP connection 510,
and then not send any data packets on the connection. The
AIN may start 1ts timeout interval 512 when the connection
1s opened. Because the connection remains 1dle, the timeout
may expire 514, and a connection termination message 516
may be sent by the AIN 225 to the TPID. The TPID may
estimate the keepalive timeout parameter based on the time
between the sending of the request 510 for opening the
connection, and the time at which the connection termina-
tion message 516 1s received at the TPID 1n the depicted
embodiment. The TPID may then adjust 1ts own keepalive
timeout accordingly (e.g., by setting it to the same value as
that of the AIN, or to a value slightly less than that of the
AIN). By making such adjustments, the number of error
messages (received by clients) which result from keeping
the TPID’s keepalive timeout longer than the keepalive
timeout of the AIN may be prevented 1n at least some
embodiments.

In some cases, an AIN may enforce workload throttling
policies, 1n which for example the number of requests
processed at the AIN within a given time interval 1s kept
below a threshold, and requests which would lead to exceed-
ing the threshold are dropped or rejected. It may be desirable

for a TPID to discover such throttling threshold parameters

5

10

15

20

25

30

35

40

45

50

55

60

65

12

and adjust 1ts own workload management parameters
accordingly 1 some embodiments. To detect throttling
parameters, 1 some embodiments a TPID 2135 may send a
series of bursts of application requests 550 (with each burst
comprising multiple requests sent nearly simultaneously) to
an AIN, e.g., during a time period in which the client-
submitted request rate 1s low, and examining the responses
sent by the AIN. The number of requests 1n successive bursts
may be increased until the TPID i1s able to detect that some
of the requests are being rejected or dropped by the AIN
based on the throttling parameter 552. The TPID may be
able to estimate the throttling parameter in the embodiment
depicted in FIG. 5 by identifying the smallest burst size
which led to dropped requests, and the number of responses
555 which were received for that burst. If a burst of 80
requests over T milliseconds resulted 1n only 64 responses,
for example, with the remaining requests either explicitly
rejected or assumed to be dropped, the throttling threshold
may be deduced to be approximately 64/T requests per
millisecond.
Example Propagation of Discovered Parameter Information
FIG. 6 illustrates an example scenario i which a traflic
processing intermediary device may compare discovered
networking configuration settings of several application
implementation nodes and take actions based on the results

of the comparison, according to at least some embodiments.
A TPS 610, similar 1in functionality to TPS 110 of FIG. 1,
may comprise TPIDs 615A, 615B and 615C configured to
process network traflic associated with a fleet 620 of AINs,
including AINs 620A-620F 1n the depicted scenario. Using
the kinds of discovery mechanisms discussed above, a given
TPID such as 615A may discover respective values of one
or more unadvertised networking parameters of AINs 615A-
615F. In some embodiments, one of the TPIDs of a fleet of
TPIDs configured for a given distributed application may be
designated as the primary discoverer of AIN parameters, so
that all the TPIDs do not have to attempt to discover values
of the same AIN parameters unnecessarily. In another
approach which may be employed 1n some embodiments,

individual TPIDs may be assigned the responsibility of
detecting parameter values at respective subsets of an AIN
fleet—e.g., TPID 615A may discover parameter values of
AINs 620A and 620B, TOID 6135B may discover parameter
values of AINs 620C and 620D, and so on.

After TPID 615A implements discovery procedures and
detects the parameter settings at the various AINs, 1t may
take two types of actions in addition to adjusting 1ts own
parameters 1 some embodiments. First, TPID 615A may
share the discovered values with other TPIDs such as 6158
and 615C, potentially causing them to change their own
respective parameters 662. Second, 1n at least one embodi-
ment, TPID 615A may send values of the AIN parameters to
the TPS control plane 645. The TPS control plane servers
may 1n turn send notifications 670 to the TPS client 677 on
whose behalf the TPIDS are configured (e.g., the owner/
administrator of the application implemented using AINs
620D) indicating 11 the discovered values for a given param-
cter difler from each other among the AINs 620. In some
embodiments, the TPS client 677 may send requests to the
TPS control plane servers 645, requesting that the client be
informed regarding such mismatches, and the notifications
670 may be sent in response to such requests. Note that 1n
some cases the fact that a given parameter has different
settings at respective AINs need not necessarily represent a
problem: for example, diflerent AINs may have diflerent
performance capacities, so different parameters may be

appropriate. The mismatch notification mechanism may

US 11,375,033 Bl

13

nevertheless be helptul to some TPS clients 1n at least some
embodiments, e.g., to help detect scenarios 1n which some
AINs’ parameters were tuned by the TPS client while other
AINs’ parameters were madvertently left un-tuned.
Example Use of Auto-Tuning at Sidecar Proxies

FIG. 7 illustrates an example scenario 1n which nterme-
diary devices configured to auto-tune networking configu-
ration settings may be used for processing inter-constituent-
service traflic of a distributed application, according to at
least some embodiments. Some distributed applications,
referred to as service-oriented applications (SOAs) or appli-
cations implementing service-oriented architectures, may be
designed as collections of constituent services, with each
constituent service being implemented at a respective set of
nodes. Different subsets of a given application’s overall
functionality may be executed at respective lower-level
self-contained services referred to as constituent services of
the application. Service-oriented architectures may be
employed for a variety of reasons—e.g., to enable different
design and development teams to focus independently on
discrete umits of functionality (each implemented as a sepa-
rate constituent service) which may require different skill
sets than other units, to help achieve faster rollouts of
updates, and so on. The constituent services may also be
referred to as micro-services/microservices, internal ser-
vices, or sub-services. Each constituent service may be
implemented using a respective set ol resources such as a
collection of virtual or physical machines, and may be
assigned a respective 1ternal service name (not exposed to
clients of the application) to {facilitate inter-constituent-
service communications.

Example service oriented application 791 of FIG. 7 com-
prises three constituent service CS1, CS2 and CS3, which
collectively perform the computations required to produce
an application response 794 to each application request 792.
To accomplish a given task at an SOA 791 in response to an
application request 792, network messages (e.g., messages
793A, 793B or 793C) may sometimes have to be transmaitted
between the nodes of different constituent services. When
owners of distributed applications use such service-oriented
architectures, they are typically faced with a number of
cross-cutting concerns. At a minimum, they need to address
service discovery, liveness and load-balancing: each con-
stituent service needs to know how to reach its downstream
dependencies, which of the nodes of various constituent
services are healthy, and how to fairly distribute requests
across those nodes. Increasingly, concerns like request trac-
ing, location-based aflinity, authentication and authorization,
load shedding, backpressure, and support for blue/green
deployments are also becoming important.

Depending on the dimension they want to optimize with
respect to the cross-cutting concerns, application owners
typically choose one of two approaches. In one such
approach, application owners set up respective load balanc-
ers for each constituent service, and send all service-to-
service requests via such load balancers. In this approach,
cross-cutting concerns have to be implemented by the load
balancers. Since load balancers have limited knowledge
about upstream clients, not every cross-cutting concern can
be supported in this approach. In an alternative approach,
known as “service mesh,” a piece of software (called a
sidecar proxy) may be set up by application owners along-
side every 1nstance of their service. Incoming and outgoing
service-to-service requests among constituent services may
be routed through such proxies, and the proxies may help to
implement the cross-cutting concerns. Such proxies form a
“mesh” that 1s aware of how to route requests between

10

15

20

25

30

35

40

45

50

55

60

65

14

individual constituent services, what tracing or monitoring
features should be turned on, and so on. This second
approach 1s more flexible than the load balancer based
approach mentioned above. In the embodiment depicted 1n
FIG. 8, for example, sidecar proxies (SPs) 755A and 7558

may be established to process network traflic generated at
service nodes 705A and 705B of CS1, while SPs 756 A and

7568 may be assigned for managing inter-constituent-ser-
vice traflic for service nodes 715A and 715B of CS2. Similar

sets ol sidecar proxies may be established for the service
nodes of CS3.

In at least some embodiments, sidecar proxies 755 and/or
756 may represent one category of TPIDs discussed earlier,
and 1n that role perform discovery of unadvertised network-
ing parameters of the nodes of the constituent services of a
distributed application with which they communicate. The
sidecar proxies may use the discovered networking param-
cters values to automatically tune their own parameters 1n at
least some embodiments. In at least one embodiment, a
provider network may include a traflic processing service
which implements managed sidecar proxy functionality for
service oriented applications. Such a service may allow
owners of distributed applications to use multi-tenant
resources to implement sidecar proxy functions, instead of
having to configure the sidecar proxies on their own.
Example Programmatic Interactions

As mentioned in the context of FIG. 1, a tratlic processing
service may implement a set of programmatic interfaces
which can be used by clients to submit requests associated
with the tasks which the clients wish to have performed on
their behalf by the service, and receive corresponding
responses. FIG. 8 illustrates example programmatic interac-
tions pertaining to auto-tuning of networking configuration
settings, according to at least some embodiments. A client
810 of a TPS 812, similar in features and functionality to
TPS 110 of FIG. 1, may utilize programmatic interfaces 877
of the TPS to submit a ConfigureTPIDsForApp request 814
in the depicted embodiment. The request 814 may, for
example, indicate the number of TPIDs required, the kinds
of traflic processing (e.g., load balancing, message format
transformation, encapsulation/de-capsulation, etc.) which
are to be performed, the set of AINs to which the TPIDs
should direct traflic, the set of clients from which requests
are expected at the TPIDs, and so on. The requested TPID
confliguration information may be stored at a repository of
the TPS 812, and a TPIDsConfigured message 815 may be
sent to the client 810 to indicate that the requested TPIDs
have been established 1n some embodiments.

The client 810 may submit an AutoTunePolicylnfo mes-
sage 817 1n the depicted embodiment, indicating (a) that
automated discovery and self-tuming of networking param-
cters 1s to be performed by the TPIDs configured for the
client (e.g., by all of the TPIDs set up for the client, or by
a subset), (b) the set of parameters whose values are to be
discovered and auto-tuned, and/or (c) the discovery tech-
niques to be employed. The specific types of modifications
to be made with respect to the TPIDs’ parameters, such as
which specific parameter 1s to be modified 1n response to
detecting a value of an AIN parameter which satisfies a
threshold, and whether the TPID parameter 1s to be set to
match the AIN parameter, exceed the AIN parameter (and 11
s0, by how much), or be kept below the AIN parameter (and
if so, by how much), may be indicated in the policy
information. With respect to the discovery techniques, addi-
tional details may be specified 1n at least some embodiments
in the AutoTunePolicylnfo message, such as how often the
parameter values are to be detected, whether discovery

US 11,375,033 Bl

15

techniques are to be implemented only under specified
workload conditions such as when the rate of client requests
remains below a threshold for some time period, whether a
modified health management protocol 1s to be used for
parameter discovery, and so on. The auto tuning policy
information may be stored at the TPS, and a PolicyInfoS-
aved message 821 may be sent to the client in some
embodiments.

After the automated tuning policy information has been
provided, a client may submit a StartDiscovery AndAuto-
Tuning request 823 in the depicted embodiment, causing the
implementation of the policy to be mitiated by the TPS.
After the TPS causes the TPIDs set up for the client to start
discovery of parameters and auto-tune themselves accord-
ingly, a Discovery And AutoTumingStarted message 825 may
be sent to the client by the TPS in some embodiments.
Similarly, 11 at some point the client 810 wishes to discon-
tinue auto-tuning, a TerminateDiscoveryAndAutoTumng
request 828 may be sent to the TPS. The TPS may then cause
the TPIDs to stop further implementation of the automated
tuning techniques, and send a DiscoveryAndAutoTunin-
gHEnded message 831 to the client 1n the depicted embodi-
ment.

In some embodiments, a client 810 may request values of
the discovered parameters by sending a ReportDiscovered-
Parameters request 837, and the values may be provided by
the TPS 1n a DiscoveredParameters message 839. In at least
one embodiment, a client may wish to be informed 1f/when
mismatches are discovered between the values of a given
parameter at diflerent AINs. The client may submit a Sub-
scribe ToAINParameterMismatchReports request via pro-
grammatic interfaces 877. In response, 1 and when mis-
matched AIN parameters are detected by the TPIDs, a
MismatchReport 843 may be transmitted to the client 810.
It 1s noted that other types ol programmatic interactions
pertaining to auto-tuning of networking configuration
parameters, not shown 1n FIG. 8, may be supported in at
least some embodiments.

Example Provider Network Environment

FIG. 9 illustrates an example provider network environ-
ment 1n which configuration settings of network intermedi-
ary devices may be tuned automatically, according to at least
some embodiments. In the depicted embodiment, provider
network 901 may comprise resources used to implement a
plurality of publicly-accessible services accessible over the
Internet and other types of networks, including for example
a virtualized computing service (VCS) 903, a relational
database management service 943, a non-relational database
management service 953, a load balancing service 913, a
service-oriented application traflic management service 933,
and an auto-tuning service 973. The VCS 903 may comprise
a plurality of virtualization hosts 908, each of which may be
used to implement one or more compute instances 909 (e.g.,
ClIs 909A and 909B, at least some of which may comprise
respective virtual machines) at which VCS clients may run
various types ol applications. The relational database man-
agement service 943 may comprise numerous instances 9435
(e.g., RDB 1instance 945A or 945B) of relational databases
set up on behall of clients; similarly, the non-relational
database management service 953 may comprise numerous
non-relational database 1instances 935 (e.g., NRDB instances
955A or 955B).

Clients of the provider network 901 may utilize compute
instances 909 and/or instances of the database services 943
or 953 as application implementation nodes (AINs) similar
to AINs 125 of FIG. 1 1n some embodiments. Nodes of

constituent services of service-oriented applications (similar

10

15

20

25

30

35

40

45

50

55

60

65

16

to nodes 705 and 715 of FIG. 7) may also be implemented
using the resources of the VCS and/or the database services
943 and 953 in the depicted embodiment. Clients may use
the load balancing service 913 to acquire load balancers of
fleet 916 1n the depicted embodiment to serve as interme-
diary devices for AINs implementing the clients’ applica-
tions, and indicate the specific load balancing policies 915 to
be employed for their applications. SOA traflic management
service 933 may be employed to configure managed sidecar
proxies from fleet 936, similar 1n functionality to SPs 735
and 756 of FIG. 7 for applications implementing service-
oriented architectures. Generally speaking, components of a
given service ol provider network 901 may utilize compo-
nents of other services in the depicted embodiment. Indi-
vidual ones of the services shown 1n FIG. 9 may implement
a respective set of programmatic iterfaces 977 which can
be used by external and/or internal clients (where the
internal clients may comprise components of other services)
in the depicted embodiment.

In some embodiments, load balancers of fleet 913 and/or
sidecar proxies of fleet 936 may be configured to perform
automated discovery and tuning of networking configuration
parameters using the kinds of techniques discussed above. In
at least one embodiment, an auto-tuning service 973 may be
used by provider network clients to coordinate the auto-
mated parameter discovery and tuning operations. For
example, a client of the auto-tuning service 973 may specity
(e.g., using programmatic interactions similar to those dis-
cussed 1n the context of FIG. 8) their application implemen-
tation nodes and itermediary device configuration as well
as auto-tuning requirements. The configuration information
and requirements may be stored at metadata store 976, and
auto-tuning coordinators 979 may commumnicate with the
intermediary devices set up for the applications to trigger
discovery and tuning of networking parameters in the
depicted embodiment. Note that at least in some embodi-
ments, automated discovery of networking parameters and
associated auto-tuning of intermediary device parameters
may be implemented without using provider network
resources—e.g., a set of standalone computing devices
which are not part of a provider network service may be
used.

Methods for Automated Tuning of Networking Configura-
tion Settings

FIG. 10 1s a flow diagram 1llustrating aspects of opera-
tions that may be performed to support automated tuning of
networking configuration settings, according to at least some
embodiments. As shown 1n element 1001, one or more traflic
processing mtermediary devices (TPIDs) may be assigned
for handling request and response messages of a distributed
application comprising one or more AINs. The TPIDs may,
for example receive client requests submitted over a first
group of network paths (which may include portions of the
public Internet 1n some cases), submit corresponding inter-
nal requests to selected AINs over a second group of
network paths (which may include internal or private net-
work pathways of a provider network, which may be faster
than public Internet paths), receive response generated at the
AINs over the second group of network paths, and transmit
messages containing the responses back to the clients over
the first group of network paths. A number of different types
of traflic processing may be implemented at the TPIDs 1n
different embodiments, 1including for example load balanc-
ing, address translation, message format transformation,
encapsulation protocol processing, and so on. In at least
some embodiments the TPIDs may be part of a traflic
processing service (1PS) of a provider network.

US 11,375,033 Bl

17

A TPID may obtain an indication that one or more
networking parameters of the TPID are to be tuned auto-
matically without receiving the specific values to be used for
the parameters 1n a request or command (element 1004),
¢.g., Irom a control plane component of the TPS at which the
TPIDs are implemented in the depicted embodiment. In at
least one embodiment, a client of the TPS may request that
auto-tuning be 1mplemented at the TPIDs assigned to the
client’s AINs, and the TPID may be informed by the TPS
control plane regarding the client’s request. Note that neither
the client nor the TPS control plane may inform the TPID
about specific values to which the parameters are to be set
in various embodiments.

The TPID may implement respective discovery protocols
to detect unadvertised networking parameter settings at one
or more AINs to which the TPID was assigned in the
depicted embodiment (element 1007). The discovery proto-
cols may, for example, utilize modifications of existing
health state management techniques in which the TPID
deliberately does not send acknowledgements for segments
received from the AINs, waiting for idle connections to be
timed out, detecting the sizes of request bursts which lead to
dropped requests, and so on. Techniques that do not impact
customer workloads substantially may be used for the dis-
covery 1n at least some embodiments—e.g., the TPID may
avoild using the discovery mechanisms during periods in
which the client-submitted request rates are above a thresh-
old. Any of a variety of unadvertised AIN parameter settings
whose values are not indicated 1n messages or headers sent
by the AINs, and are not indicated during connection estab-
lishment, may be determined in different embodiments,
including TCP congestion control parameters, HI'TP tim-
cout 1ntervals, request throttling parameters, and so on.

After detecting or deducing the AIN parameter values, the
TPID may determine whether one or more of the TPID’s
own parameter settings should be modified 1n various
embodiments (element 1010), e.g., by comparing the AIN
parameter settings with its own. For example, for some
parameters, the TPID’s setting may ideally be set to the same
value as the value used at the AIN; for other parameters, the
TPID’s settings should be set higher than or lower than the
corresponding setting at the AIN to obtain the best possible
overall application performance from the clients’ perspec-
tive, or to avoid errors being generated 1n response to client
requests. In some embodiments, for example, guidelines on
how the TPID’s settings should be modified based on AIN
settings may be provided to a TPID by the TPS control plane
and/or by clients via the TPS control plane.

If the parameter value analysis or comparison performed
by the TPID indicates that one or more of 1ts own parameters
should be modified, a respective new value for each such
parameter may be determined by the TPID, and the param-
eter settings may then be modified (element 1013). In at least
one embodiment, after discovering the value of an unadver-
tised parameter P1, a different parameter P2 (which may be
related to or affected by the P1 settings) may be automati-
cally modified by the TPID. Subsequent messages from the
TPID (including data segments and/or acknowledgements)
may be sent 1n accordance with the modified settings (ele-
ment 1016). In at least one embodiment, the TPID may
notily application owners (e.g., TPS clients for whose appli-
cations the TPIDs and AINS are used) regarding discovered
AIN settings and/or changed TPID settings.

It 1s noted that in various embodiments, some of the
operations shown in FIG. 10 may be implemented in a
different order than that shown in the figure, or may be
performed in parallel rather than sequentially. Additionally,

10

15

20

25

30

35

40

45

50

55

60

65

18

some ol the operations shown in FIG. 10 may not be
required 1n one or more implementations.
Use Cases

The automated tuning techniques described above may be
extremely useful 1n a variety of scenarios. Many applica-
tions utilize traflic processing intermediaries such as load
balancers, address translators, packet transformers, and the
like for traflic flowing between application clients and
back-end servers. Often, the applications comprise complex
graphs of nodes or micro-services communicating with each
other via imtermediaries. I networking configuration set-
tings 1n one part of a distributed complex application are set
up 1 a sub-optimal manner, this can potentially have a
substantial negative impact on the system as a whole,
aflecting client-perceived performance and in some cases
causing unnecessary errors due to timeouts and the like. The
propose techniques could help alleviate or eliminate many
such misconfigurations with very little overhead.
[lustrative Computer System

In at least some embodiments, a server that implements
the types of techniques described herein (e.g., various func-
tions of traflic processing intermediaries including load
balancers and sidecar proxies, content delivery networks,
application 1mplementation nodes, provider network ser-
vices and the like), may include a general-purpose computer
system that includes or 1s configured to access one or more
computer-accessible media. FIG. 11 illustrates such a gen-
eral-purpose computing device 9000. In the illustrated
embodiment, computing device 9000 includes one or more
processors 9010 coupled to a system memory 9020 (which
may comprise both non-volatile and volatile memory mod-
ules) via an mput/output (I/0) interface 9030. Computing
device 9000 further includes a network interface 9040
coupled to I/O intertace 9030.

In various embodiments, computing device 9000 may be
a umprocessor system including one processor 9010, or a
multiprocessor system including several processors 9010
(e.g., two, four, eight, or another suitable number). Proces-
sors 9010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 9010 may be general-purpose or embedded pro-
cessors 1mplementing any of a variety of instruction set

architectures (ISAs), such as the x86, PowerPC, SPARC,
ARM, or MIPS ISAs, or any other suitable ISA. In multi-
processor systems, each of processors 9010 may commonly,
but not necessarily, implement the same ISA. In some
implementations, graphics processing units (GPUs) and/or
field-programmable gate arrays (FPGAs) may be used
instead of, or 1n addition to, conventional processors.
System memory 9020 may be configured to store mnstruc-
tions and data accessible by processor(s) 9010. In at least
some embodiments, the system memory 9020 may comprise
both volatile and non-volatile portions; 1n other embodi-
ments, only volatile memory may be used. In various
embodiments, the volatile portion of system memory 9020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the
non-volatile portion of system memory (which may com-
prisc one or more NVDIMMs, for example), in some
embodiments {flash-based memory devices, including
NANDN-tlash devices, may be used. In at least some embodi-
ments, the non-volatile portion of the system memory may
include a power source, such as a supercapacitor or other
power storage device (e.g., a battery). In various embodi-
ments, memristor based resistive random access memory

(ReRAM), three-dimensional NAND technologies, Ferro-

US 11,375,033 Bl

19

clectric RAM, magnetoresistive RAM (MRAM), or any of
various types of phase change memory (PCM) may be used
at least for the non-volatile portion of system memory. In the
illustrated embodiment, program instructions and data
implementing one or more desired functions, such as those
methods, techniques, and data described above, are shown
stored within system memory 9020 as code 9025 and data
9026.

In one embodiment, I/O mnterface 9030 may be configured
to coordinate I/O traflic between processor 9010, system
memory 9020, and any peripheral devices in the device,
including network interface 9040 or other peripheral inter-
faces such as various types of persistent and/or volatile
storage devices. In some embodiments, I/O interface 9030
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
(e.g., system memory 9020) into a format suitable for use by
another component (e.g., processor 9010). In some embodi-
ments, I/O mterface 9030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O 1nter-
tace 9030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of I/O 1nterface 9030, such as an interface to system memory
9020, may be incorporated directly into processor 9010.

Network intertace 9040 may be configured to allow data
to be exchanged between computing device 9000 and other
devices 9060 attached to a network or networks 9050, such
as other computer systems or devices as 1illustrated 1n FIG.
1 through FIG. 10, for example. In various embodiments,
network interface 9040 may support communication via any
suitable wired or wireless general data networks, such as
types ol Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via
storage area networks such as Fibre Channel SANs, or via
any other suitable type of network and/or protocol.

In some embodiments, system memory 9020 may repre-
sent one embodiment of a computer-accessible medium
configured to store at least a subset of program instructions
and data used for implementing the methods and apparatus
discussed 1n the context of FIG. 1 through FIG. 10. How-
ever, in other embodiments, program instructions and/or
data may be received, sent or stored upon different types of
computer-accessible media. Generally speaking, a com-
puter-accessible medium may include non-transitory storage
media or memory media such as magnetic or optical media,
e.g., disk or DVD/CD coupled to computing device 9000 via
I/0O interface 9030. A non-transitory computer-accessible
storage medium may also include any volatile or non-
volatile media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc., that may be included 1n
some embodiments of computing device 9000 as system
memory 9020 or another type of memory. In some embodi-
ments, a plurality of non-transitory computer-readable stor-
age media may collectively store program instructions that
when executed on or across one or more processors 1mple-
ment at least a subset of the methods and techniques
described above. A computer-accessible medium may fur-
ther include transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a commu-
nication medium such as a network and/or a wireless link,
such as may be implemented via network interface 9040.

10

15

20

25

30

35

40

45

50

55

60

65

20

Portions or all of multiple computing devices such as that
illustrated 1 FIG. 11 may be used to implement the
described functionality in various embodiments; {for
example, software components running on a variety of
different devices and servers may collaborate to provide the
functionality. In some embodiments, portions of the
described functionality may be implemented using storage
devices, network devices, or special-purpose computer sys-
tems, 1n addition to or instead of being implemented using
general-purpose computer systems. The term “computing
device”, as used herein, refers to at least all these types of
devices, and 1s not limited to these types of devices.
Conclusion

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include storage media or memory media
such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, volatile or non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

The various methods as illustrated 1n the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented 1n software, hard-
ware, or a combination thereolf. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:

1. A system, comprising;

one or more computing devices;

wherein the one or more computing devices include one

or more processors and associated memory configured

via executable instructions that upon execution on or

across the one or more computing devices cause the

one or more computing devices to:

assign one or more itermediary devices for processing
network traflic of a distributed application compris-
ing one or more application implementation nodes,
wherein an intermediary device of the one or more
intermediary devices 1s configured at least to: (a)
obtain, via a first set of one or more network con-
nections, one or more operation requests originating
at a client of the distributed application, (b) transmit,
via a second set of one or more network connections,
one or more messages representing an operation
request of the one or more operation requests to at
least one application implementation node and (c)
transmit, to the client via the first set of one or more
network connections, one or more messages com-
prising a response generated to an operation request
at an application implementation node;

obtain, at the mtermediary device, an indication that
automated tuning of one or more networking param-
eters 1s to be performed at the mtermediary device;

identify, by the intermediary device 1n response to the
indication, a respective unadvertised value of one or
more networking parameters of at least a particular
application implementation node of the distributed

US 11,375,033 Bl

21

application, wherein the respective unadvertised val-
ues are (a) not indicated 1n messages comprising
responses to operation requests and (b) not indicated
in a connection establishment worktlow of the sec-
ond set of connections:

compare, by the mtermediary device, an identified
unadvertised value of a networking parameter of the
particular application implementation node with a
value of a corresponding networking parameter of
the itermediary device;

automatically modily, by the intermediary device,
based at least in part on the comparison, the value of
the corresponding networking parameter, without
recetving a request to perform the modification,
wherein modifying the corresponding networking
parameters decreases a number of round trip times of
the one or more network messages between the client
of the distributed application and the intermediary
device or decreases number of error messages sent to
the client from the intermediary device based on the
network messages; and

transmit, by the itermediary device, the one or more
network messages in accordance with the automati-
cally modified networking parameter value.

2. The system as recited in claim 1, wherein the interme-
diary device comprises a resource of a first service of a
provider network, and wherein the particular application
implementation node comprises a resource of a second
service of the provider network, wherein a set of permissions
enabling a client of the second service to change parameter
settings of the particular application implementation node
does not enable the client to change parameter settings of the
intermediary device.

3. The system as recited 1n claim 1, wherein a network
parameter whose value i1s identified by the intermediary
device comprises one of: (a) a congestion control parameter,
(b) a connection timeout parameter, or (¢) a workload
throttling parameter.

4. The system as recited in claim 1, wherein to 1dentily an
unadvertised value of a networking parameter of the one or
more networking parameters, the one or more computing,
devices include turther mstructions that upon execution on
or across the one or more computing devices further cause
the one or more computing devices to:

compute a number of additional network messages which

are transmitted by the particular application implemen-
tation node to the mtermediary device (a) after the
particular application implementation node sends a
particular network message to the intermediary device
and (b) before the particular application implementa-
tion node re-sends the particular network message to
the intermediary device, wherein the re-sending 1s
triggered by an absence of an acknowledgement of the
particular network message from the intermediary
device.

5. The system as recited in claim 1, wherein to identify an
unadvertised value of a networking parameter of the one or
more networking parameters, the one or more computing
devices include further mstructions that upon execution on
or across the one or more computing devices further cause
the one or more computing devices to:

determine the time taken by the particular application

implementation node to close an 1dle connection.

6. A computer-implemented method, comprising:

determining, by an intermediary device configured for

request and response trathic of a distributed application
comprising one or more application implementation

10

15

20

25

30

35

40

45

50

55

60

65

22

nodes, an unadvertised networking parameter setting of
at least a particular application implementation node of
the one or more application implementation nodes of
the distributed application;

automatically modifying, by the intermediary device,
based at least 1n part on the determined unadvertised
networking parameter setting of the particular applica-
tion 1implementation node, one or more networking
parameters of the mtermediary device, wherein modi-
tying the one or more networking parameters of the
intermediary device decreases a number of round trip
times of one or more network messages between a
client of the distributed application and the intermedi-
ary device or decreases number of error messages sent
to the client from the intermediary device based on the

network messages; and

transmitting, by the intermediary device, the one or more
network messages 1n accordance with the one or more
automatically modified networking parameters.

7. The computer-implemented method as recited in claim
6, wherein a set of permissions enabling the client to change
parameter settings of the particular application implemen-
tation node does not enable the client to change parameter
settings of the mtermediary device.

8. The computer-implemented method as recited in claim
6, wherein the unadvertised network parameter comprises
one of: (a) a congestion control parameter, (b) a connection
timeout parameter, or (¢) a workload throttling parameter.

9. The computer-implemented method as recited 1n claim
6, wherein determining the unadvertised networking param-
cter setting comprises:

computing a number of additional network messages

which are transmitted by the particular application
implementation node to the intermediary device (a)
after the particular application implementation node
sends a particular network message to the mtermediary
device and (b) before the particular application imple-
mentation node re-sends the particular network mes-
sage to the intermediary device, wherein the re-sending,
1s triggered by an absence of an acknowledgement of
the particular network message from the intermediary
device.

10. The computer-implemented method as recited in
claim 6, wherein the intermediary device 1s configured to
send health status probe messages to the particular applica-
tion 1mplementation node, wherein responses to the health
status probe messages are used to determine the health state
of the particular application implementation node, and
wherein determining the unadvertised networking parameter
setting comprises:

transmitting a modified version of a health status probe

message by the intermediary device to the particular
application implementation node.

11. The computer-implemented method as recited 1n claim
6, wherein determining the unadvertised networking param-
eter setting comprises:

determiming the time taken by the particular application

implementation node to close an 1dle connection.

12. The computer-implemented method as recited in
claim 6, wherein determining the unadvertised networking
parameter setting comprises:

examining the responses ol the particular application

implementation node to a burst of request messages
from the mtermediary device.

13. The computer-implemented method as recited in
claim 6, further comprising:

US 11,375,033 Bl

23

obtaining, via a programmatic interface, a request for
automated tuning of networking parameters of the
intermediary device, wherein the determining of the
unadvertised networking parameter setting 1s respon-
sive to the request.

14. The computer-implemented method as recited in
claim 6, wherein the intermediary device comprises a load
balancer.

15. The computer-implemented method as recited 1n
claiam 6, wherein the network intermediary i1s a content
server ol a content delivery network (CDN).

16. One or more non-transitory computer-accessible stor-
age media storing program instructions that when executed
On Or across one or more processors cause the one or more
processors to:

detect, by an intermediary device configured for request

and response trailic of a distributed application com-
prising one or more application implementation nodes,
an unadvertised networking parameter setting of at

10

15

least a particular application implementation node of 2¢

the one or more application implementation nodes of
the distributed application;

compute, by the itermediary device, a new value to be
used for a networking parameter of the itermediary
device, based at least in part on the detected unadver-
tised networking parameter setting; and

set, by the intermediary device, the networking parameter
of the mtermediary device to the new value, wherein
setting the networking parameter of the intermediary
device to the new value decreases number of round trip
times of one or more network messages between a
client of the distributed application and the intermedi-
ary device or decreases number of error messages sent
to the client from the intermediary device based on the
network messages.

25

30

24

17. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, wherein the application
comprises a first set of application implementation nodes
implemented at a first constituent service and a second set of
application implementation nodes at a second constituent
service, and wherein the intermediary device comprises a
sidecar proxy assigned to process requests originating at the
first constituent service and directed to the second constitu-
ent service.

18. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, storing further program
instructions that when executed on or across the one or more
processors cause the one or more processors 1o:

determine, by an intermediary device, that the setting of

the unadvertised networking parameter of another
application implementation node of the one or more
application implementation nodes differs from the set-
ting of the unadvertised networking parameter of the
particular application implementation node; and
causing a notification of the difference to be transmitted.

19. The one or more non-transitory computer-accessible
storage media as recited in claim 16, storing further program
instructions that when executed on or across the one or more
processors cause the one or more processors to:

transmit, to another intermediary device configured for

request and response traflic of the application, a request
to modily the other intermediary device’s networking
parameter to the new value.

20. The one or more non-transitory computer-accessible
storage media as recited in claim 16, wherein the networking
parameter comprises one or more of:

(a) a congestion control parameter, (b) a connection

timeout parameter, or (¢) a workload throttling param-
eter.

	Front Page
	Drawings
	Specification
	Claims

