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FILE MANAGEMENT WITH
LOG-STRUCTURED MERGE BUSH
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This application claims priority to, and the benefit of, U.S.
Provisional Patent Application No. 62/801,816, filed on Feb.

6, 2019, the entire disclosure of which 1s hereby incorpo-
rated by reference.

GOVERNMENT FUNDING

The present invention was supported in part by grant no.
[1S-1452595 from the National Science Foundation. The

U.S. Government has certain rights 1n the invention.

FIELD OF THE INVENTION

The field of the invention relates, generally, to key-value
stores and, more particularly, to the key-value stores involv-
ing log-structured file systems.

BACKGROUND

The size of the raw data 1n many “big data™ applications
today 1s larger than the available volatile memory (typically
DRAM); most data thus resides 1n nonvolatile mass storage
devices (e.g., hard disk or solid-state drive (SSD)). Because
storage devices are orders of magnitude slower than memory
devices, accessing storage for input or output (I/O) becomes
the primary performance bottleneck. The choice of data
structure for persisting data 1n storage 1s thus crucial. Dii-
terent data structures may strike diflerent trade-ofls between
the 1/0 costs of application writes, point lookups and range
lookups. Maximizing throughput generally requires choos-
ing the data structure that strikes the best trade-ofl for a
given application.

Conventionally, large data stores are often organized as
key-value stores (KV-stores) that include databases to map
“keys” to their corresponding “values.” (A key refers to a
unique 1dentifier for some item of data, and the value refers
to either the data that 1s 1dentified or a pointer to the location
of that data.) Unlike the more common “transactional”
databases used for routine business applications, KV-stores
are designed to quickly retrieve indexed data items—they
may rapidly ingest application writes while providing fast
point lookups on individual key-value entries as well as
supporting analytical queries of entries having variable-
length ranges. Because of their size, KV-stores may utilize
a hierarchy of storage options reflecting the trade-off
between access speed and cost per bit of storage. Given a
large dataset that receives frequent additions (“writes™) and
the need to index that dataset to support queries, 1t can be
challenging to organize the tiers of available storage for
optimum efliciency and performance.

Additionally, the proportion of writes 1n many applica-
tions today i1s growing significantly; at the same time, the
advent of flash-based SSDs has made write I/Os much more
expensive than read I/Os. As a result, KV-stores increasingly
optimize the application writes using write-optimized data
structures. For example, KV-stores may use a log-structured
hash table (LSH-table), which 1s a data structure that buflers
application writes in memory and then flushes them to a log
in storage when the bufler 1s full. An LSH-table typically
maintains a hash table in memory for mapping the keys to
the locations of the corresponding entries 1n the log.

10

15

20

25

30

35

40

45

50

55

60

65

2

KV-stores may also use a log-structured merge-tree
(LSM-tree). LSM-trees maintain data in two or more sepa-
rate structures, each of which 1s optimized for its respective
underlying storage medium; data 1s synchronized between
the two structures efliciently, in batches. More specifically,
LLSM trees cascade data over time from smaller, higher-
performing (but more expensive) storage facilities to larger,
slower and less-expensive facilities. All incoming insertions,
updates and deletions are first logged 1n an m-memory
bufler. When the bufler fills up, its contents are sorted by key
and flushed onto the disk as a sorted “run”—i.e., an array of
key-value pairs. Once there, any two runs with equal size are
sort-merged (in order to remove obsolete entries to reclaim
space, and bound the number of runs that a lookup has to
probe), and stored as a block of double length. Since the runs
being merged are already sorted, the merging procedure may
be performed efliciently, thereby applying updates and dele-
tions to older data and maintaining the newest version of
inserted elements. In this way, duplicates of the same key
can exist throughout the tree; but because of logging updates
and deletes, the duplicates may be incrementally resolved as
the on-disk levels get incrementally merged to create the
next larger level.

To speed up lookups on individual runs, modern designs
of LSM-trees maintain two additional data structures in
main memory. First, for every run there 1s a set of fence
pointers that contain the first key of every disk page of the
run; this allows lookups to access a particular key within a
run with just one I/O. Second, for every run there 1s a Bloom
filter, which probabilistically allows a run to be skipped 1f 1t
does not contain the target key. (A Bloom filter 1s a proba-
bilistic data structure used to test whether an element 1s a
member of a set. False positive matches are possible, but
false negatives are not—i.e., a query returns either “possibly
in set” or “defimitely not 1n set.” The more elements that are
added to the set, the larger the probability of false positives
will be.)

The LSH-table and LSM-tree data structures have their
advantages and disadvantages. For example, LSH-table
oflers fast writes by virtue of logging them; it also oflers fast
point lookups by using the hash table to find an entry in the
log with one I/O. The memory footprint for the hash table,
however, 1s high as it contains all keys. Moreover, range
lookups may be impractically slow because the log 1is
unordered and, as a result, the entire log 1s scanned to find
all entries within a given target key range. On the other hand,
LSM-tree imposes more expensive writes as 1t sort-merges
entries across a logarithmic number of levels. In exchange,
range lookups 1mn an LSM-tree are fast as they scan only the
target key range at each of the runs. Moreover, the overall
memory footprint 1n an LSM-tree 1s lower as the fence
pointers contain only one key for every storage block and the
filters require only a few bits per entry. FIG. 1 summarizes
the properties of LSH-table and LSM-tree.

Accordingly, conventional KV-stores must choose
between two mutually exclusive sets of data structures:
[LLSH-table, which has fast writes with 1mpractical range
lookups and large memory requirements, or LSM-tree,
which has expensive writes with fast range lookups and
modest memory requirements. With applications becoming
increasingly diverse, tailored designs are required to fully
optimize I/O and memory. The binary choice between
[LLSH-table and LSM-tree, however, forces a rigid compro-
mise one way or the other. Little 1s known today about how
to navigate the space between LSH-table and LSM-tree and
what trade-offs result in this space. In fact, it 1s even
uncertain whether LSH-table and LSM-tree are the best
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possible extreme points 1n the space, or whether 1t 1s possible
to narrow the space by devising dominating designs with

il

better tradeoftls.

Accordingly, there 1s a need for a data structure in
KV-stores bridging LSH-table and LSM-tree, thereby alle-
viating the compromised performance associated therewith.

SUMMARY

Embodiments of the present invention provide a new
multi-level data structure, log-structured merge bush (LSM-
bush), to alleviate the performance compromise between
[LSH-table and LSM-tree. Similar to LSM-tree, LSM-bush
may builer writes in memory, merge the writes as sorted runs
across multiple levels 1n storage, and use 1n-memory fence
pointers and Bloom f{ilters to facilitate lookups. LSM-bush
differs from LSM-tree 1n that i1t allows newer data to be
merged more “lazily” than LSM-tree. This can be achieved
by allowing larger numbers of runs to be collected at the
smaller levels before merging them. More specifically,
L.SM-bush may include two kinds of levels: a “cap level,”
which 1s the largest level L and containing exactly one run
having most of the data, and *“staging levels” corresponding,
to the rest of the levels, each capable of containing multiple
runs. In various embodiments, each staging level in LSM-
bush has a capacity; when runs 1n a level reach the level’s
capacity, all runs within that level may be sort-merged, and
the resulting run may be placed at the next level. Typically,
the capacity increases with the staging level—i.e., a larger
staging level has a larger capacity. As a result, a Capacity
ratio representing the amount by which the capacity of one
staging level 1s larger than that of its adjacent, smaller
staging level can be determined. In one embodiment, LSM-
bush sets growing capacity ratios between adjacent pairs of
the staging levels, while at the same time merging at smaller
levels only when they fill up. In other words, the capacity
ratio between two smaller staging levels 1s set to be larger
than that between two larger staging levels. Thus, larger
numbers of runs can be gathered 1n the smaller staging levels
before merging them. In this way, LSM-bush may eliminate
most merging relative to LSM-tree to achieve asymptoti-
cally faster writes competitive with LSH-table. In addition,
because larger staging levels may gather fewer but larger
runs, they may be progressively more read-optimized.
Accordingly, LSM-bush as described herein may achieve
fast and scalable range lookups competitive with LSM-tree.

In some embodiments, LSM-bush allocates its Bloom
filters such that false positive rates at the smaller, more
write-optimized levels are increasingly improbable (i.e., the
false positive rates increase with the staging levels). This
may enable fast and scalable point lookups. In addition,
based on the application workload, LSM-bush may expose
the number of levels as a tuning parameter so as to provide
- among writes, range lookups, and

a desired trade-off
memory. Accordingly, LSM-bush bridges the design space
between LSH-table and LSM-tree, thereby opening up a
new trade-oll continuum among reads, writes, and memory
that can be navigated tractably based on application require-
ments.

Embodiments of the present invention provides an
improved key-value approach based on LSM-trees that
advantageously strikes the optimal balance between the
costs of updates and lookups with any given main memory
budget. The improved approach involves allocating memory
to Bloom filters differently across diflerent tree levels so as
to minimize the sum of the false positive rates (FPRs)
associated with the Bloom filters. In one implementation, the
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FPR of each Bloom filter 1s set to be proportional to the
number of entries 1 the memory access run to which the

Bloom filter corresponds this indicates that the FPRs for
shallower levels 1n the LSM-tree exponentially decrease.
Because the same amount of memory can have a higher
impact 1 reducing the FPR for smaller runs, this approach
may advantageously shave a factor of O(L) (where L 1s the
number of LSM-tree levels) from the worst-case lookup cost
as well as allow the lookup cost to scale better with the data
volume (as compared with conventional key-value systems
based on LSM-trees). In addition, because the improved
approach may remove the dependence of the lookup cost on
the bufler size of LSM-tree, the contention 1n how to allocate
main memory between the filters and the bufler may be
removed, thereby simplifying system tuning.

In wvarious embodiments, the mmproved key-value
approach can predict how changing a system design param-
cter (e.g., the size ratio among the levels, the merge policy,
the FPRs assigned to the Bloom ﬁltcrs across diflerent
levels, and/or the allocation of main memory between the
bufler and the filters) or an environmental parameter (e.g.,
the main memory budget, the proportion of reads and writes
in the workload, the number and/or size of data entries, the
underlying storage medium, etc.) would impact worst-case
performance. This may be achieved by closed-form models
for the worst-case 1/0 costs of lookups and updates 1n terms
of the LSM tree design parameters. For example, the closed-
form models may predict how a change 1n main memory
utilization or allocation may reposition the Pareto curve in
the LSM-tree design space. (As furthcr described below, a
Pareto curve plots the cost trade-ofl between database look-
ups and updates. Along the Pareto curve, the lookup cost
cannot be improved without sacrificing update cost, and vice
versa). Thus, the improved approach may “self-tune” the
system design parameters and/or environment parameters to
maximize the worst-case throughput. In various embodi-
ments, this 1s achieved by, first, using asymptotic analysis to
map the design space and thereby devise a rule for allocation
of main memory between the builer and the filters; and
modeling worst-case throughput with respect to (1) the
model for the lookup cost and update cost, (2) the proportion
of lookups and updates 1n the workload, and (3) the costs of
reads and writes to persistent storage.

Reference throughout this specification to “one example,”
an example,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the example 1s included 1n at
least one example of the present technology. Thus, the
occurrences of the phrases “in one example,” “in an
example,” “one embodiment,”

or “an embodiment” 1n vari-
ous places throughout this specification are not necessarily
all referring to the same example. Furthermore, the particu-
lar features, structures, routines, steps, or characteristics may
be combined in any suitable manner 1n one or more
examples of the technology. The headings provided herein
are for convenience only and are not intended to limit or
interpret the scope or meaning of the claimed technology.

BRIEF DESCRIPTION OF THE

DRAWINGS

In the drawings, like reference characters generally refer
to the same parts throughout the different views. Also, the
drawings are not necessarily to scale, with an emphasis
instead generally being placed upon illustrating the prin-
ciples of the invention. In the following description, various
embodiments of the present invention are described with
reference to the following drawings, 1n which:
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FIG. 1 graphically summarizes the properties of LSH-
table and LSM-tree data structures.

FI1G. 2A schematically 1llustrates the basic architecture of
the LSH-table data structure.

FIG. 2B schematically illustrates the basic architecture of
the LSM-tree data structure.

FIG. 3 lists comparative complexities among various
log-structured file systems.

FIG. 4 graphically depicts the contributions of various
levels of LSM-tree to the costs of writes, range lookups,
point lookups and memory.

FIG. 5 schematically depicts a representative LSM-bush
configuration.

FIG. 6 1s a table summarizing the properties of LSM-bush
and provides a comparison with LSH-table and LSM-tree.

FIG. 7 graphically depicts the trade-ofls of LSM-bush as
a continuum that can be navigated by tuning L to achieve
any read/write/memory balance along the curve that fits the
workload and available memory resources best.

FIGS. 8 A-8C depict evaluations of the different baselines
using different workloads from the YCSB benchmark.

FIGS. 9A-9D and 10A-10C graphically compare LSH-
table, LSM-bush, and LSM-tree across various metrics.

FIGS. 11 and 12 are tables summarizing various metrics
and parameters for various file systems.

FIG. 13 1s a block diagram illustrating a facility for
performing an improved key-value approach in accordance
with various embodiments.

FIGS. 14 and 13 are tables summarizing various metrics
and parameters for a super-structure of a continuum 1n
accordance with various embodiments.

FIG. 16 graphically depicts point and range read costs
against write cost 1n accordance with various embodiments.

FIG. 17 schematically depicts an exemplary computer-
based system in accordance with various embodiments.

DETAILED DESCRIPTION

Technical Terms and Environment

The following terms and abbreviations are used through-
out the ensuing description:

Term Definition Unit

L number of levels Levels
I, capacity ratio of level 1

B block size entries
T Capacity ratios’ growth rate

N Overall data size Blocks
N, Data size at Level 1 Blocks
P Bufler size Blocks
a, Number of runs at level 1 Tuns
A% Overall number of runs Runs

S Range lookup size blocks
P, Sum of false positive rates

P, False positive rate at Level 1

M Overall memory footprint b1ts
M, Memory foorprint at Level 1 bits

K Average key size b1ts

1) LHS Table

LSH-table optimizes data ingestion by bullering all appli-
cation updates 1n memory and appending them 1in large
batches to a log 1n mass storage whenever the builer fills up.
To enable fast point lookups, LSH-table maintains a hash
table 1n memory that maps every key to its corresponding,
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entry 1n the log. LSH-table also performs garbage-collection
to reclaim space occupied by obsolete entries (i.e., for which
a more recent entry with the same key had been inserted). To
ensure fast and consistent recovery from power failure,
LLSH-table periodically checkpoints the hash table and
recovers the buller using a write-ahead-log or 1s able to

forgo the bufler’s contents while remaining in a consistent
state. F1G. 2 A 1llustrates the basic architecture of LSH-table.

LLSH-table processes application writes by first buflering
them 1 memory. When the bufler fills up, LSH-table per-
forms navigational and garbage-collection bookkeeping 1n
memory as follows. For every “insertion” of a new entry,
LLSH-table inserts the key into the hash table along with a
pointer to the back of the log. For every “update” to an
existing entry, LSH-table updates the corresponding pointer
in the hash table to point to the back of the log; 1n addition,
it increments a “garbage-collection counter” to keep track of
the number of obsolete entries 1n the log. For every “delete,”
[LLSH-table removes the corresponding entry from the hash
table and increments the garbage-collection counter. Finally,
L.SH-table flushes the bufler to the back of the log 1n storage.

The garbage-collection counter allows LSH-table to infer
the fraction of obsolete entries in the log. Once this fraction
reaches a configurable threshold, th (typically set at approxi-
mately 12), LSH-table garbage-collects one or more blocks
from the front of the log. It infers, for each entry of those
blocks, whether the entry 1s obsolete; this can be achieved by
checking whether 1ts pointer in the hash table 1s still pointing
to the block from which it 1s being garbage-collected. It so,
the entry 1s still valid and may be reinserted 1nto the bufjer.
Otherwise, the entry 1s obsolete and may be discarded as a
more recent entry with the same key had to have been
inserted for the pointer to point elsewhere.

The 1I/O cost per application write in LSH-table can be
expressed as O(1/(B-th)) since a single I/O copies B entries
from the bufler to the log, and on average at least (B-th) of
those entries are new application writes (while the rest are
garbage-collected entries). Because th 1s approximately 2 1n
general practice, the write cost may be simplified to O(1/B)
amortized I/O per application write.

For a range lookup, LSH-table scans the entire log to find
all valid entries within the key range at a cost of O(N) 1/Os,

where N 1s the data size 1n blocks. When processing a point
lookup, LSH-table first checks whether the target entry 1s 1n
the bufler. If so, 1t retrieves the entry and terminates.
Otherwise, 1t probes the hash table to identity the location of
the most recent entry with the target key in the log. It then
retrieves that entry with one I/O. Point lookup cost 1s
therefore O(1) I/O. In addition, since the hash table contains
the keys for all entries, i1ts memory footprint can be
expressed as 2(N-B-K) blts where N-B represents the
overall number of entries 1n the system and K represents the
average size ol a key in bits.

2) LSM Tree

LSM-tree sort-merges similarly sized batches of applica-
tion writes into 1ncreasingly large runs in storage. Thus, 1t
amortizes the overheads of sorting with respect to new data
arrival. To enable fast point and range lookups despite
having multiple runs that potentially need to be searched,
modern LSM-tree designs use in-memory fence pointers to
quickly find the relevant key range at each run. Moreover,
in-memory Bloom filters are implemented to further speed
up point lookups by skipping runs that do not contain target
keys. FI1G. 2B 1llustrates the basic architecture of LSM-tree.
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LSM-tree organizes runs in storage into L levels of
exponentially increasing capacities while using a fixed

capacity ratio T between each pair of levels (e.g., T=2 1n
FIG. 2B). As a result, the number of levels L 1s O(log {N)).
Application updates are first bullered 1n memory and then

flushed to level 1 1n storage as a sorted run when the builer
f1lls up. When level 1 reaches capacity, all runs within that
level are sort-merged and the resulting run 1s placed at level
1+1. Since entries are updated, out-of-place, multiple ver-
s10ons of the same entry can accumulate over time. To reclaim
space, when two entries with the same key from different
runs are encountered during a merge operation, the older
entry 1s discarded as 1t 1s less recent and therefore obsolete.

There exist diflerent policies for merging runs 1 LSM-
tree, each with distinct properties. A leveled merging policy
triggers a merge at a level as soon as a new run comes 1n.
This leads to every entry getting merged and rewritten on
average O(T) times within each level (1.e., before the level
fills up and its contents are moved to the next level). Write
cost 1s therefore O(T-log AN)B) I/O. Because each level
contains at most one run, there are at most O(log (N)) runs
in the system potentially needed to be probed for lookups.
With write-intensive workloads, however, leveled merging
may become a performance bottleneck as many merge
operations take place within and across levels. Worse, these
merge overheads grow logarithmically as the data size
increases. To mitigate these overheads, other merging poli-
cies, such as tiered merging allowing multiple runs to accrue
at each level before merging them, have been used. This
reduces write cost to O(log AN)/B) I/0O, while the number of
runs in the system increases to O(T-log (IN)) as every level
contains at most T runs. As further described below, merge
overheads using more write-optimized designs may still
increase as a function of O(log(N)/B) with respect to the size
of the data. In the analysis below, T 1s abstracted out of the
cost expressions for LSM-tree in order to simplity the
analysis while retaiming suflicient generality to represent all
conventional LSM-tree designs. To address the overhead
1ssue, various embodiments provide a new merge policy that
allows the overhead to increase more slowly or not at all 1n
response to the size increase of the data, while still achieving
tast lookups and a modest memory footprint.

A range lookup 1n LSM-tree typically uses fence pointers
to access the relevant key range at each of the runs. This thus
involves O(log(N)) random I/Os to each of the runs and O(s)
additional 1/Os to access all entries 1n the key ranges, where
s 1s the number of pages 1n the key range across all runs. As
a result, range lookup cost 1s O(log(N)+s) I/0.

LSM-tree processes a point lookup by first searching the
bufler and terminating when it finds the target entry. Oth-
erwise, 1t traverses the levels from smallest to largest and
searches the runs within each level (i there are more than
one) from youngest to oldest. In addition, 1t uses mn-memory
Bloom filters to skip probing runs that do not contain the
target key. For every run for which the corresponding Bloom
filter returns a positive, LSM-tree uses the fence pointers to
identify the target key range and accesses 1t with one 1/0.
The cost of a pomnt lookup thus includes one I/O {for
retrieving the target entry and an additional number of 1/Os
resulting from the Bloom filters that potentially return false
positives. The general cost expression 1s thus given by:
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where p, 1s the false positive rate (FPR) at ;evel 1. The FPR
for a Bloom filter may be given by e~ *(*)' where X is the

number of bits (e.g., 10) per entry assigned to the filter. In
one embodiment, LSM-tree assigns the same FPR to filters
at all levels; thus, their point lookup cost simplifies to
O(1+e™-L) I/O. This may be improved to O(14+e™) /O by
assigning slightly less memory to filters at the largest level
and using 1t to linearly set more bits per entry to smaller
levels and thus exponentially reduce their FPRs. As long as
the overall number of bits per entry across all filters 1s
greater than =~1.62, the term O(e™) is less than 1; thus the
cost can be simplified to O(1) I/O.

Because runs in LSM-tree are sorted, LSM-tree may
achieve a modest memory footprint. In addition, because the
fence pointers need to hold only the minor max key from
cach block (as opposed to storing all keys in memory as with
[LSH-table), the footprint of the fence pointers 1s L2(N-K)
bits, where N represents the number of storage blocks
occupied by data and K represents the average key size 1n
bits. For the Bloom filters, the memory footprint 1s £2(N-B)
bits as there are N-B entries 1n the system and the number of
bits per entry 1s a small constant. Adding these terms, the
overall memory footprint for LSM-tree 1s Q(N-(B+K)) baits.

FIG. 2C summarizes the properties of LSH-table and
LSM-tree. As shown, LSM-tree achieves fast point and
range lookups and requires a modest memory footprint
while exhibiting expensive writes on account of 1ts merge
operations. On the other hand, LSH-table offers fast writes
and point lookups, but it exhibits a high memory footprint
and slow range lookups.

Design Goals of a New Multi-Level Data Structure

Due to their different designs, LSM-tree and LSH-table
offer different sets of performance and memory trade-oils
that force applications relying on KV-stores to accept a
compromise. To alleviate the need for this compromise, the
goal 1n various embodiments of the present invention 1s to
provide a new multi-level data structure that narrows the
design space between LSM-tree and LSH-table, thereby
reducing the performance trade-ofls that characterize these
data structures.

FIG. 4 depicts contributions of various levels of LSM-tree
to the costs of writes, range lookups, point lookups and
memory using models developed 1n FIG. 3. In particular,
FIG. 4 depicts the cumulative cost for each metric as 1t
emanates from smaller to larger levels. Specifically, FIG. 4
maps a level’s number on the upper y-axis to the age of an
entry at that level as a percentage of the data size on the
lower y-axis. The vertical distance between two adjacent
points 1 and 1—1 on a given curve represents the percentage
contribution of the i’ level to the total cost of the corre-
sponding metric.

FIG. 4 reveals that LSM-tree merges newer data expo-
nentially more frequently than older data. For example, an
entry incurs 75% of 1ts write cost during the first 5% of 1ts
lifetime (1.e., 1ts “travel” as 1t 1s merged from smaller to
larger levels). This 1s because newer data traverses smaller
levels first, and since these levels are exponentially smaller,
they fill up and trigger merge operations exponentially more
frequently relative to larger levels. In contrast, the costs of
point lookups, long range lookups and memory in FIG. 4
mostly derive from the largest levels, which contain older
data. For example, the largest two levels 1n the figure are
responsible for 75% of lookup costs and for over 65% of the
memory footprint. This 1s because, for long range lookups,
larger levels tend to contain exponentially more entries
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within any given target key range. For pomt lookups,
because the FPRs at larger levels are exponentially higher,
accessing those larger levels 1s exponentially more probable.
For memory, this 1s because the size of the fence pointers
and Bloom filters 1s mostly proportional to the size of the
corresponding level, and larger levels have exponentially
larger sizes.

1) Goal 1: Merging Newer Data Lazily

The cost asymmetry 1 FIG. 4 thus suggests a path for
reconciling the properties of LSM-tree and LSH-table. For
example, most of LSM-tree’s merge overheads may be
climinated to approach a write cost closer to LSH-table by
merging newer data more lazily—i.e., more runs are col-
lected at the smaller levels before being merged. In addition,
as long as most of the data remains 1n large sorted runs at
larger levels, the costs of point lookups, long range lookups
and memory may stay competitive with LSM-tree. Accord-
ingly, various embodiments utilize a new data structure (i.e.,
log-structured merge bush or LSM-bush) that merges newer
data lazily while gradually increasing merge greediness as

the data grows older so as to provide improved trade-oils
between LSH-table and LSM-tree.

2) Goal 2: Bounding the Number of Runs

The design goal above, however, may come with a
caveat—i.¢., lazier merging for newer data may cause newer
data to be spread across a greater number of runs; this may
risk increasing lookup costs. In particular, because a short
range lookup has to 1ssue one I/O to every run, i1ts cost 1s
proportional to the overall number of runs (indeed, FIG. 4
depicts the cumulative cost as arising equally from every
level as all levels 1n LSM-tree contain the same number of
runs). Various embodiments as further described below
address this risk by bounding the overall number of runs so
that all lookups, including short range lookups, are fast and
scalable. In addition, various embodiments provide a tuning
approach to balance merge overheads and the number of
runs present based on the workload.

Log-Structured Merge Bush (LSM-Bush)

Various embodiments provide a new multi-level data
structure—L.SM-bush, which allows newer data to be
merged more lazily than older data for reducing the write
cost while still achieving fast and scalable costs for lookups
and memory. Thus, LSM-bush eflectively occupies the
space of performance and memory trade-oil between LSH-
table and LSM-tree. In addition, LSM-bush can be tuned to
assume different scalability trade-ofls, including ones that
asymptotically dominate conventional designs. The data
structure herein 1s referred to as a “bush’ because 1ts height
grows at a much lower rate in response to the growth of the
data size compared to a selif-balancing *“tree” data structure
where its height grows logarithmically with the data size.

1) High-Level Design

FIG. 5 depicts an exemplary LSM-bush. As shown, LSM-
bush adopts certain core design elements from LSM-tree,
but 1t differs drastically from LSM-tree in ways that enable
new trade-ofls. For example, similarly to LSM-tree, LSM-
bush includes an in-memory bufler as level 0 and multiple
levels 1 to L in storage with increasing capacities. In
addition, LSM-bush may include a Bloom filter and a set of
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fence pointers 1n memory to go with each run. Application
writes may first go into the bufler, and when the butler fills

up, its contents are flushed as a sorted run to level 1 1n
storage.

Unlike LSM-tree, LSM-bush, however, includes two
kinds of levels: “staging levels™ corresponding to levels 1 to
[.-1, each capable of containing multiple runs, and a *“cap
level,” which 1s the largest level L and contains exactly one
run that comprises most of the data. A staging level 1 gathers
runs until 1t reaches capacity, 1t then merges these runs and
moves the merged run to a new level 1+1. This 1s referred to
herein as a “minor compaction.” In contrast, the cap level
immediately merges an incoming run from level L-1 with 1ts
existing run. As used herein, this 1s referred to as a “major
compaction.”

In one embodiment, LSM-bush bounds the frequency of
minor compactions by setting increasing capacity ratios
between adjacent pairs of staging levels so that smaller
levels gather more runs before merging them. In addition,
L.SM-bush restricts the cost of major compactions by setting
the capacity ratio between the cap level and level L-1 to be
a small constant, such that only a small number of entries at
the cap level need to be rewritten for every incoming entry
from level L-1. At the same time, LSM-bush may enable
fast range lookups by scalably restricting the overall number
of runs and allowing longer ranges to be scanned sequen-
tially at larger levels. Furthermore, LSM-bush may enable
fast point lookups using a modest memory footprint by
allocating the Bloom filters such that false positives at

smaller levels are increasingly improbable as further
described below.

2) Writes

The amortized cost of an application write may be
incurred through the compactions that 1t instigates on 1ts
path to the cap level. To analyze this cost, two factors may
be taken into account. The first factor 1s the number of times
a new entry 1s rewritten before reaching the cap level. This
amounts to O(L) minor compactions plus 1 major compac-
tion. The second factor 1s the number of existing entries at
the cap level being rewritten during a major compaction for
every new enfry coming from level L-1. This factor
amounts to r;, which 1s a capacity ratio between the cap level
and level L-1. Two factors may then be divided by B (which
1s the number of entries copied in one I/O during compac-
tion) to obtain the overall write cost per entry: O((L+r, )/B)
I/O. In one implementation, LSM-bush keeps both factors L
and r, small 1n order to guarantee inexpensive writes. This
may be achieved by strategically assigning diflerent capacity
ratios between diflerent levels.

In some embodiments, capacity ratios between di
levels are assigned based on:

I—i—1
TZ
F; = ,
2,

where r, represents the amount by which the capacity at level
11s larger than that at level 1-1, and T represents a knob that
controls the ratios” growth rate. In addition, to keep L small,
L.SM-bush may set explosively increasing capacity ratios
between adjacent pairs of staging levels by setting r, to be
equal to the square of r,, (i.e., r,=r", ;). As a result, far more
runs are gathered 1n smaller levels before being merged; this
allows the smaller levels to be better write-optimized. In

Terent

(1)

staging level ratios (1l =i <L —1)

cap level ratio (i=1)
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addition, because larger levels may gather fewer but larger
runs before a merge 1s triggered, the larger levels may be

progressively more read-optimized.

In some embodiments, LSM-bush fixes r,=2 for the cap
level. This restricts the cost of a major compaction such that
at most 2 entries are rewritten at level L for each entry
coming from level L-1. As a result, write cost may be
simplified from O((L+r;)/B) to O((L)/B) as r; 1s always a
small fixed constant. In addition, by setting capacity ratios
using eqd. (1), the number of levels L (and thus write cost)
remains small even for massive data sizes. As depicted 1n eq.
(2) below, the capacity of the bufler P 1s smaller than the
capacity at the cap level N, by a factor of the product of all
s1ze ratios. Subsequently, the number of levels L can be
computed as follows:

(2)

NL = P-]_[ff‘j

I—1 I—i—1
= P-Q-]_[l T2

use Equation 1 for #;

L-i L
=p.2.7% 1 simplify

L=14+log,(log/ (N /(2-P))+ 1 rearrange in terms of L

Eq. (2) indicates that a higher capacity growth rate T may
correspond to a decrease 1n the number of levels (and thus
the frequency of minor compactions). As a result, writes
may become cheaper yet there are more runs present in the
system and potentially requiring lookups to probe. In this
way, LSM-bush can assume multiple designs with different
performance properties depending on the number of levels.
For example, 1n one extreme, T 1s set to equal to N,/(2:P);
this causes the number of levels to hit a minimum value of
two. As further described below, however, there must be at
least three levels to achieve fast range lookups as the data
s1ize grows. Therefore, in some embodiments, LSM-bush
includes a minimum of three levels (L., . ). On the other
hand, the maximum number of levels (L ) may be deter-
mined based on eq. (2), where L 1s maximized when T 1s set
to 2. Eq. (3) summarizes L._. and L. .

me:3 when T:(NLIJ(E.P))UB

(3)

Two special instances of LSM-bush—Ilog-log-bush (LLL-

bush) and three-level-bush (3L-bush)—may then be utilized
to delineate the new trade-ofls provided by the LSM-bush.
LL-bush 1s the most read-optimized instance and sets the
number of levels to L, whereas 3L-bush 1s the most
write-optimized instance and fixes the number of levels to

L

L x=(1+logs(logs(Npo.py)+1) when 7=2

As described above, the write cost can be computed as
O(L/B). Thus, by pluggingm L. andL._ __for L therein, the
write cost ranges from O(1/B) (with 3L-bush) to O((log log
N)/B) (with LL-bush), depending on the desired perior-
mance properties of the application. FIG. 6 summarizes the
properties of LSM-bush and provides a comparison with
[LSH-table and LSM-tree. As shown, 3L.-bush and LL-bush
both achieve more scalable writes than LSM-tree, while
3L-bush asymptotically matches the write cost of LSH-
table.

Accordingly, LSM-bush exposes the number of levels L
as an integer tuming parameter accepting values between
. . and L __ . In addition, based on eq. (2), the value of T
corresponding to L can be computed as:
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The properties of LSM-bush may then be analyzed 1n terms
of the value of L, which may vary depending on the
applications. In one embodiment, the range of possible
values for L 1s extremely small. This 1s because L., __1s on
the order of O(log log N), and there may be only one or two
possible tunings between L. and L even for massive
data sets.

In some embodiments, LSM-bush 1s 1nitialized from an
empty dataset with L., set to 3 and T set to 2. LSM-bush
accumulates and merges data across levels 1 and 2 until a
merge occurs into level 3. Normal operation then com-
mences. At this point, 3L-bush and LL-bush are structurally
identical as the value of L. 1s still three (based on eq. (3)).
As the data grows, however, L. grows and so a broader
tuning range for L 1s enabled.

With LL-bush, L1s tied to LL___.. To implement this, 1n one
implementation, eq. (3) 1s applied to check whether . __has
grown alter every major compaction. It so, L 1s increased to
L., which then becomes the new cap level. For 3L.-bush
or any other fixed tuning of L, various embodiments follow
every major compaction by placing the resulting run at level
L, which 1s and remains the cap level. The value of T 1s then
adjusted accordingly (using eq. (4)) so as to match the new
data size.

3) Range Lookups

A range lookup utilizes the fence pointers to 1dentity the
start of the target key range at each of the runs, and 1t then
proceeds to scan each of these target key ranges. The cost 1s
O(V+s) 1/0, where V represents the number of 1/0s used to
access each of the runs, and s represents the size of the result
set from across all runs. While the cost associated with s 1s
determined by each application, the term V constitutes a
fixed cost applied on every range lookup. In some embodi-
ments, LSM-bush keeps the value of V small 1n order to
keep the cost of range lookups low.

Because the cap level has only one run and a staging level

1 1s larger by a factor of r, than level 1-1, the maximum
number of runs a, that a given level 1 can gather belfore
reaching capacity can be computed as:

(5)

Using eq. (5), an upper bound on the overall number of runs
V can be obtained. Eq. (6) below summarizes the number of
runs across all levels. As shown, level 1 dominates this sum;
this 1s because the number of runs at smaller levels grows at
a higher than exponential rate.

V=3_,%a, sum up the runs at all levels
©O(a;) Level 1 dominates the sum
€O(r,) use Equation 5 for a,
EO(TE(L_E)) use Equation 1 for r,

Ly o(L+]
cO(( N; ,»)* " ! >_4)) use Equation 4 for T & sim-
plify

L ~(L+]
EO(N*" e )_4>) P 1s fixed & N approximates N; (6)
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The value V derived 1n eq. (6) may then be plugged mto
the range lookup cost 1s O(V+s) to obtain a more detailed
expression of the cost:

L
O(Niiﬂ4 + ,5*)

When L=2, the range lookup cost 1s O(N+s), or more simply
O(N) as 1n this case the factor N dominates s. This thus
matches the range lookup cost for LSH-table, and 1t 1s not
suilicient for allowing fast range lookups. On the other hand,
by plugging i L. for 3L-bush, the cost goes down to
O(N*"+s), and it converges to O(N"*+s) as L is increased
towards L for LL-bush. Thus, with more levels, more
minor compactions may take place and so there are asymp-
totically fewer runs to access. As further described below,
these bounds allow range lookups to execute 1n milliseconds
on an SSD, thereby enabling interactive analytics in real-
time.

In sum, LSM-bush with three or more levels may domi-

nate LSH-table in terms of range lookups. In addition, while
range lookup cost 1s higher with LSM-bush than with
LSM-tree, the term O(s) comes to dominate O(V) for larger
range sizes; this thereby makes LSM-bush increasingly
competitive with LSM-tree for large-scale analytical que-
ries.

4) Point Lookups

A pomt lookup traverses the levels from smallest to
largest, and 1t checks the runs within each level from
youngest to oldest. The point lookup terminates when 1t
finds the first entry with a matching key, as any matching
entry at subsequent runs was created earlier and 1s therefore
obsolete. If the key does not exist in any of the runs, the
point lookup may terminate after checking all runs and
finally returning a zero result to the application. To avoid
having to search all O(V) runs 1n storage, LSM-bush in
various embodiments relies on in-memory Bloom filters to
skip accessing runs that do not contain the target key. While
in the worst case each of the Bloom filters may technically
return a false positive, thereby still leading to a cost of O(V)
I/0s, 1n practice, the Bloom filters eliminate most of these
I/0s for most point lookups. Therefore, 1t may be beneficial
to analyze the expected worst-case point lookup cost with
respect to the Bloom filters” FPRs instead. Because the cost
contribution of each Bloom filter to a point lookup’s I/O cost
1s an independent Bernoulli random wvariable with an
expected value equal to the corresponding Bloom f{ilter’s
FPR, the overall expected cost contribution of all Bloom
filters 1s then equal to the sum of FPRs across all filters
probed (as the expected sum of multiple independent ran-
dom variables 1s equal to the sum of their individual
expected values). As used herein, the sum of FPRs across all
Bloom filters 1s denoted as p__ ...

Eq. (7) below uses p_, .. to model two distinct and 1mpor-
tant types of point lookup costs, R__,_ and R. R__  represents
the cost of a point lookup to a key that does not exist 1n any
of the runs. Such point lookups are common 1n practice, for
example, to perform insert-if-not-exist operations. The
expected I/O cost for such point lookups 1s p_ _ as they
check all Bloom filters before terminating with a zero
answer. In contrast, R represents the cost of a point lookup
to an entry that exists at the cap level. It thus includes one

[/0 to retrieve the target entry from the cap level and
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(p.,...—p;) to account for false positives incurred while
traversing the staging levels, where p, represents the FPR at
level L. In one implementation, p; 1s subtracted fromp_, . to
avold double counting (since accessing level L 1s already
accounted for by having one I/O to retrieve the target entry).
R thus represents the worst-case point lookup cost.

R

.E'E"?"ﬂzp.'j' FELEy

K= 1+(psum_ L)

(7)
In order to bound both R and R__,__ to the worst-case O(1)
[/O, there 1s aneed to bound p_, . to be a small constant using
a modest and scalable memory budget. This may be
achieved by caretfully optimizing the Bloom filters.

The goal 1s thus to allocate a given memory budget of M
bits across the Bloom filters so as to minmimize p_, ... In one
embodiment, the same FPR 1s assigned to the filters at all
levels. For LSM-bush, this would lead to an FPR of
O(e~"/*") for each of the O(V) runs, thereby causing p_  to
be on the order of O(e™/*-V) expected I/Os. An issue of
using this approach 1s that most of the memory 1s allocated
to larger levels as they contain most entries, while most false
positives (which trigger 1/0s) occur at smaller levels as they
contain a greater number of runs. Another embodiment
assigns slightly fewer bits per entry to the Bloom filter at the
largest level and relatively more bits per entry to the filters
at smaller levels. Thus, as few as one bit per entry taken from
the largest level’s filter may be used to increase the size of
smaller levels’ filters by multiple bits per entry as they
contain far less data; this thereby dramatically decreases
their FPRs. A crnitical concern, though, 1s not moving too
much memory from the largest level to smaller levels, as this
may result in diminmishing returns.

Thus, various embodiments utilize a multi-variate con-
strained optimization approach to minimize the p_ . func-
tion and FPRs across diflerent levels with the constraint of
the memory budget M. The multi-variate constrained opti-
mization approach includes a first step that denotes the FPR
at level 1 as p,, and express p_, . by summing up the products
of p, and a, (1.e., the number of runs at level 1) across every

level as shown 1n eq. (8) below.

(8)

In the second step of the multi-variate constrained optimi-
zation approach, a closed-form expression for the number of
entries at level 1 can be derived using eq. (9):

P siom :Zz'= lL ('ﬂf.pz')

l=ixlL-1 ()

N; = NL/]_[? Fis

= (N~ TV(2-17)

In the third step, the memory footprint M, for level 1 1s
modeled 1n terms of eq. (9) using the standard memory
equation for a Bloom filter 1n eq. (10):

M= ) " =(B-N;-In(p))/(In(2)* - ) (10)

= —(B-N; -In(p;))/In(2)*

In a fourth step, the memory footprint M, 1 eq. (10) 1s
summed up across all levels to express the overall memory
footprint M 1n eq. (11).

M=2,_ 1LM1' (11)
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Finally, Lagrange Multipliers are employed to optimize the
FPRs 1n eq. (8) with respect to the constraint 1n eq. (11). Eq.
(12) below represents the result of setting the FPRs for the
staging levels relative to the FPR at the cap level 1n order to
mimmize p,,,,,,.

I-py
2 -1}

(12)

p; = Jforl =i<L—1 and pp <1

Next, an upper bound of p, that ensures p_, .. to be a small
fixed constant for any tuning of LSM-bush can be derived.

l=p_, .. condition for (1) point lookup cost
>>._“(a,p,) apply Equation 8 for p.,,,
=p;+>. 2 Ha,p,) take p; out of the sums

=pr (147722, 7
for p, and a,

#~ 1)) apply Equations 5 and 12

pr=(1+T2-Z_ v 1) rearrange in terms of P;

<% upper bound the right-hand size (13)

Eq. (13) reveals that as long as p; 1s set to 12 or lower and
that other FPRs are set in accordance with eq. (12) with
respect to p,, then p_  may always be a small constant set
to one or lower. This thus ensures that both R and R___ in

Z8F0

eq. (7) are O(1). Accordingly, LSM-bush matches LSM-tree
and LSM-tree 1n terms of point lookup costs.

5) Memory

In some embodiments, the memory requirement 1s
derived 1n eq. (14) below 1n order to ensure that p; 1s set to
at most 4, while all other FPRs are set according to the
optimization 1n eq. (12).

M=X_ *M, start with Equation 11
~=M;+M;_ ; M; and M;_, dominate the sum

~—B/ EH(Q)E-(NL-ln(p 7)+N; _-In(p;_;)) use Equation 10
for M; and M, ,

~— (N B 10y (In(p )+42In(p;, _,)) use Equation 9
for N;_,

~—(N;'B)/ EH(E)E-(ln(p L2 In(p;/.)) use Equation
12 for p;_4

~(NL BY 2y (In(2)+In(T)) py is at most 0.5

~(NL'BY 2y (In(2)+In(Nz/(P-2))/(2%7'-1)) use
Equation 4 for T

MEQ((N; B)In(N;/P)/2%) omit small constants

EQ((B-N-log(N))/25) P is fixed & N approximates

Ny (14)

In addition, because the fence pointers include one key from
every page ol every run in memory, their memory require-
ment 1s £2(N-K), where N represents the number of blocks
across all runs and K represents the average key size 1n bits.
Thus, by adding the memory needed for the Bloom filters
and the fence pointers, the overall memory requirement may
be computed as Q(N:((B-log N)/2°+K)). This expression
indicates that when L 1s fixed (as with 3L-bush), the memory
requirement increases super-linearly with respect to the data
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s1ize at a rate of Q(N-((B-log N)+K)). On the other hand, L
increase as the data grows (as with LL-bush), the bound 1s
simplified to 2(N-(B+K)). This 1s because by increasing L
as the data grows, more merging occurs; there are then fewer
runs and, as a result, less memory 1s needed to filter them.

In sum, LL-bush in various embodiments dominates
[LLSH-table and matches LSM-tree i terms of memory
requirement. In addition, although the memory requirement
for 3L-bush techmically grows faster than for the other
designs, the increasing rate in 3L-bush 1s extremely slow 1n
practice due to constant factors that are omitted in asymp-
totic analysis (as shown below). Overall, the memory
requirements for all istances of LSM-bush 1s within the
same order ol magnitude as for LSM-tree while being an
order of magnitude lower than for LSH-table.

6) New and Dominating Trade-Ofls

Referring again to FIG. 6, all instances of LSM-bush may
ofler the same point lookup cost and a superior write cost to
LSM-tree. Thus, LSM-bush dominates LSM-tree for typical

KV-store workloads having point lookups and writes, while
still achieving a competitive memory footprint and real-time
analytics via range lookups. In addition, all instances of
LSM-bush dominate LSH-table in terms of memory and
range lookups. Thus, LSM-bush described herein may be
better-suited for larger data sizes as well as for workloads
that involve analytical queries.

FIG. 7 depicts the new trade-offs of LSM-bush as a
continuum that can be navigated by tuning L to achieve any
read/write/memory balance along the curve that fits the
workload and available memory resources best. The range of
possible tuningsforLisL., _-I. .  wherelL . 1s3andL
1s O(log log N). Since the function O(log log N) grows
extremely slowly, there are 1n practiceonly L -L. . =3 or
4 possible tunings for LSM-bush even for a data size as large
as exobytes. This makes LSM-bush tractable to tune 1n
practice. For example, this can be done as simply as by
iitializing L to L, and decreasing 1t in steps for as long
as writes remain the performance bottleneck or until reach-
ing L. . This process may take place during runtime based
on performance measurements, or alternatively, 1t may be

performed analytically 1n seconds.

Evaluation

To experimentally demonstrate that LSM-bush may
achieve new and dominating trade-offs compared to con-
ventional key-value store systems, LSM-bush was imple-
mented on top of RocksDB (which 1s a popular and exten-
sible open-source KV-store). At its core, RocksDB 1s a
leveled LSM-tree, though it also supports an API that
enables a client application to monitor the contents of
different levels as well as to select and merge runs using
customizable user-programmed logic. This API was used to
block the RocksDB default merge policy, and the LSM-bush
merge policy was instead 1mplemented to gathers more runs
at smaller levels while using eq. (1) to set the different
levels’ capacities. In addition, RocksDB by default main-
tains an in-memory Bloom filter for every run, and 1t sets the
same false positive rate to runs at all levels. In one 1mple-
mentation, RocksDB was extended using eq. (12) to set
lower false positive rates to runs at smaller levels.

1) LSM-Bush Baseline

As LSM-bush introduces a new trade-ofls continuum, 1ts
two 1nstances that delineate this continuum—i.e., the write-
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optimized 3L-bush and the more read-optimized LL-bush
were tested. Across the results, the area between the curves
for these instances reflects trade-offs that LSM-bush can
strike with different tunings. An overall budget of 10 bits per
entry was used for their Bloom filters.

2) LSM-Tree and LSH-Table Baselines

For LSM-tree, three different designs, RocksDB, Cassan-
dra and Dostoevsky, were used as baselines. The RocksDB
baseline uses leveled merging, a fixed capacity ratio of 10
between any pair of levels, and a umiform FPR applied to

Bloom filters at all levels. The Cassandra baseline uses
tiered merging, a capacity ratio of 4, and also a uniform FPR
across all levels. These two baselines represent the state-oi-
the-art LSM-tree design, the former being more read-opti-
mized and the latter more write-optimized. The Dostoevsky
baseline, implemented on top of RocksDB, is the most
similar LSM-tree variant to LSM-bush as it uses leveled
merging at the largest level and tiered merging at smaller
levels, and it sets optimally decreasing FPRs across smaller
levels. It fundamentally differs from LSM-bush, however, 1in
that the capacity ratios between every pair of levels 1s fixed
to the same constant (1.e., 10 by default). In addition, ten bits
per entry were assigned across the LSM-tree baselines’
Bloom filters. For LSH-table, the recent KV-store, FASTER,
was utilized. It 1s tuned to perform garbage-collection as
soon as S0% of logged entries are obsolete; 1n addition, the
same cache size as the LSM-tree baselines was assigned to
FASTER 1n order to provide the comparison therebetween.

3) Metrics

For each system, the memory footprint, latency and
throughput for application writes, point lookups and range
lookups across different data sizes and workloads were
measured. Since the cost of an application writes 1s mncurred
indirectly after the bufler flushes, the write cost was mea-
sured by running multiple writes across long time windows
and dividing the length of the window by the number of
writes the system was able to process. In addition, the time
windows are ensured to be long enough 1n each experiment
so as to account for the full amortized write cost (e.g., by
waiting for at least one major compaction to take place with

L.SM-bush).

4) Experimental Setup

Experimental workloads were generated using and
extending the YCSB benchmark. By default, each experi-
ment commenced from a fresh clone of a 128 GB dataset
having 128 byte entries of which the key includes 16 bytes.
Both skewed and uniform workloads were used. Every point
in FIGS. 8A-8C 1s an average of three experimental trials.

5) Experimental Infrastructure

The experimental infrastructure includes a machine hav-

ing a one TB SSD connected through a PCI express bus, 32
GB DDR4 main memory, four 2.7 GHz cores with 8 MB L3

caches, running 64-bit Ubuntu 16.04 LIS on an ext4 parti-
tion.

6) Dominating with Zipfian Writes and Point
Lookups

FIG. 8A depicts evaluation of the different baselines using,
workloads A, B and C from the YCSB benchmark. These
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workloads used a Zipfian distribution for writes and point
lookups while having diflerent ratios between the operation
types (1.e., 50%, 95% and 100% of the operations being
point lookups, respectively, while the rest are writes). These
workloads were generalized by varying the proportion
between point lookups and writes, starting with 100% point
lookups and increasing the proportion of writes at incre-
ments of 10%. As shown, with only point lookups (1.e., point
0 on the x-axis), LSM-tree and both LSM-bush varnants
perform similarly to LSH-table as their Bloom filters enable
skipping most runs and to thereby retrieve the target key
with approximately one 1/0O. As the proportion of writes
increases (from left to right on the x-axis), the LSM-bush
variants come to dominate LSM-tree as they perform less
merging. In fact, LSM-tree performs particularly poorly
with a Zipfian write distribution because it merges 1Ire-
quently updated entries multiple times across its smaller
levels. In contrast, LSM-bush merges newer data more
lazily; this provides a bufller time for frequently updated
entries to become obsolete and get discarded during the first
or second merge operations that they participate in. In
addition, while LSH-table does not merge entries at all, 1t
pays a toll for garbage-collecting the log. This allows
3L-bush (the most write-optimized variation of LSM-bush)
to outperform LSH-table 1n write-heavy workloads; 3L-bush
only needs to perform one or two merge operations per entry
with a Zipfian writes distribution.

7) Dominating for Writes with Occasional
Analytics

FIG. 8B depicts evaluations using workload E from
YCSB. This workload used a mix of 5% writes and 95%
range lookups, both using a Zipfian distribution. In addition,
this workload was generalized by varying the proportion
between writes and range lookups starting with mostly range
lookups and increasing the proportion of updates on the
(log-scale) x-axis. As shown, LSM-bush and LSM-tree are
both able to process range lookups 1n the order of millisec-
onds. For range-heavy workloads, LSM-tree achieves a
higher throughput as each range lookup involves accessing
tewer runs. As the proportion of writes increases, however,
the LSM-bush baselines come to dominate the LSM-tree
baselines because they require fewer merges despite being
able to process range lookups scalably by upper bounding
the overall number of runs. FIG. 8B further illustrates that
any number of range lookups, no matter how small, cripples
the performance of LSH-table as each of them requires
scanning the entire log 1n storage. Overall, FIG. 8B 1llus-
trates that LSM-bush performs best for workloads involving
very rapid data ingestion with an occasional need to perform
analytics over incoming data. Further, LL-bush 1s shown to
outperforms 3L-bush with more range lookups, while
3L-bush outperforms LL-bush as the fraction of writes
increases. This demonstrates the ability of LSM-bush to
optimize for diflerent application requirements.

8) Modest Memory Footprint

FIG. 8C, the memory footprint across all baselines over
the previous two experiments were measured. As shown,
FASTER uses an order of magnitude more memory as 1ts
hash table takes up approximately 16 GB. In contrast, the
other systems each take up approximately 1.5 GB for their
Bloom filters and 0.25 GB for their fence pointers.

9) YCSB Summary

Overall, the experiments on YCSB show that (1) LSM-
bush significantly outperforms LSM-tree across write-heavy
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workloads, (2) LSM-bush dominates LSH-table for any
workload with an occasional analytical query, and (3) LSM-
bush takes up a modest memory footprint that 1s one order
of magnitude lower than with LSH-table.

The experiments described below focus on latency (rather
than throughput as in the previous experiments) to map
individual operations’ costs to the corresponding analytical
costs depicted in FIG. 6. This means that lower 1s better
across all remaining figures.

10) Extremely Scalable Writes

FIG. 9A depicts write cost scaling across all systems when
the data size increases from 1 to 512 GB. The workload
includes insertions of new data entries. Thus, every new
entry eventually gets merged across all levels rather than
getting discarded early due to an update. This workload
therefore maximizes merge overheads for LSM-bush and
LSM-tree so as to measure how worst-case performance
scales. On the other hand, this workload represents the
best-case scenario for LLSH-table, as no entries become
obsolete and so garbage-collection does not kick 1. As
shown, both LSM-bush variations exhibit cheaper and more
scalable writes than with the LSM-tree baselines. In addi-
tion, although FASTER exhibits the fastest writes, 1.€., by
logging them, the price 1s an order of magnitude more

memory and slow analytics (as previously illustrated on
YCSB). Further, 3L-bush matches the scalability of LSH-
table as 1t merges each entry 4-5 times on average for any
data size, and in exchange, 1t 1s able to achieve an order of
magnitude lower memory {footprint and asymptotically
faster range lookups.

11) Dominating for Skewed Updates

FIG. 9B depicts measurements of write cost with respect
to skew. The experiment included uniformly randomly dis-
tributed updates with varying working set, 1.e., the propor-
tion of the data set that these updates target on the (log-scale)
x-ax1s. As the working set size decreases from left to right
on the x-axis, write cost decreases for both the LSM-tree and
L.SM-bush baselines. This 1s because the entries get merged
across Iewer levels before a newer version replaces them;
merge operations thus recurse to fewer levels. In addition,
when the working set 1s down to 1% of the data size or
lower, LSM-bush dominates all other systems including
[LSH-table. This 1s because 1n this case merge operations for
L.SM-bush never recurse beyond level 1; whereas LSH-table
pays a toll for garbage-collection. LSH-table 1s therefore the
best design for workloads consisting of moderate to heavily
skewed updates.

12) Scalable Analytics

FIG. 9C shows scaling of latency for small range lookups
(e.g., to 32 entries) when the data size increases from 1 to
512 GB. As depicted, the LSM-bush vanants dominate
LLSH-table by 4-5 orders of magnitude and increasing as the
data grows. While the LSM-tree baselines exhibit the lowest
latency as they have the fewest runs, the LSM-bush variants
are highly competitive achieving scalable latencies in the
order of milliseconds. This demonstrates that for analytics,
LSM-tree performs an excessive amount ol merging.
Removing most of these merge overheads, as implemented
in LSM-bush, still allows processing interactive, real-time
analytics.
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13) Increasingly Competitive for Larger Analytics

FIG. 9D illustrates measurements of range lookup latency
as the target range size increases from 32 entries up to 2°°
entries (1.e., up to ~0.1% of the data size). Again, both
L.SM-bush vanants vastly outperform LSH-table, for which
the cost curve 1s flat as every range lookup scans the whole
data. Furthermore, the LSM-bush variants become increas-
ingly competitive with LSM-tree as the range size grows
since the bottleneck shifts from having to access the runs to
scanning and retrieving entries within the range at the larger
levels.

14) Fast and Scalable Point Lookups

FIG. 10A relates to measurements of the latency of point
lookups to existing entries in the dataset when the data size
increases from 1 GB to 512 GB on the x-axis. With the
exception of Cassandra (which uses relaxed tiered merging
and allocates its Bloom filters sub-optimally), all systems
exhibit fast and scalable performance for point lookups. This
demonstrates that LSH-table wastes an excessive amount of
memory for its hash table, as LSM-bush achieves the same
point lookup performance using only Bloom filters and
fence pointers. Additionally, FIG. 10A demonstrates that
LSM-tree wastes an excessive amount of bandwidth on
merging, as LSM-bush achieves the same point lookup cost
using asymptotically less merging. The same experiment
was repeated i FIG. 10B to demonstrate the same effect
with zero-result point lookups. As show, LSM-bush overall
enables fast and scalable point lookups using a fraction of
the memory and/or merging, thereby enabling new and
dominating trade-offs that were not possible or known
betore.

15) Tunable Memory Footprint

FIG. 10C relates to measurements of the point lookup
latency 1n response to adjustments of the memory budget for
the Bloom filters. LSH-table was omitted from this experi-
ment as 1t does not use Bloom filters. FIG. 10C demonstrates
that both LSM-bush variants provide competitive point
lookup latency even with as few as 2-3 bits per entry, a small
fraction of the default memory budget of 10 bits per entry
used mm KV-stores i industry. This 1s because LSM-bush
assigns a relatively higher number of bits per entry to its
smaller, more write-optimized levels. As these levels contain
a small fraction of the overall data, even a small memory
budget 1s able to make false positives at those levels
extremely improbable. In addition, as power consumption
for memory DRAM chips takes up most of the operational
costs for a database server, LSM-bush can enable systems to
significantly reduce runtime costs while still delivering
advantageous performance for point lookups as well as
writes and range lookups.

Design Continuum

Merge-bush can be viewed 1n the broader context of a
design continuum, which unifies major distinct data-struc-
ture designs under the same model. Such unifying models 1)
render what appear to be fundamentally different data struc-
tures as views ol the same overall design space, and allow
“seeing”’ new data structure designs with performance prop-
erties that are not feasible by existing designs. The core
intuition behind the construction of design continuums 1s
that all data structures arise from the very same set of
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fundamental design principles, 1.e., a small set of data layout
design concepts out of which we can synthesize any design

that exists 1n the literature as well as new ones. As described
below, a design continuum can be formulated to unify major
data structure designs, 1.e., B™ tree, B® tree, LSM-tree, and

[.SH-table.

From B™ Tree to LSM-Tree

We first give an example of a design continuum that
connects diverse designs including Tiered LSM-tree, Lazy
Leveled LSM-tree, Leveled LSM-tree, COLA, FD-tree, B®
tree, and B tree. The design continuum can be thought of as
a super-structure that encapsulates all those designs. This
super-structure has L levels where the larger Y levels are
cold and the smaller L-Y levels are hot. Hot levels use
in-memory lence pointers and Bloom filters to facilitate
lookups, whereas cold levels apply fractional cascading to
connect runs 1n storage. Each level contains one or more
runs, and each run 1s divided into one or more contiguous
nodes. There 1s a buller in memory to ingest application
updates and flush to Level 1 when 1t fills up. This overall
abstraction allows instantiating any of the data structure
designs 1n the continuum. FIG. 11 formalizes the continuum
and the super-structure 1s shown at the bottom left.

Environmental Parameters. The upper right table in FIG.
11 opens with a number of environmental parameters such
as dataset s1ze, main memory budget, etc. which are inherent
to the application and context for which we want to design
a key-value store.

Design Parameters. The upper right table mn FIG. 11
turther 1ncludes five continuous design knobs which have
been chosen as the smallest set of movable design abstrac-
tions that we could find to allow diflerentiating among the
target designs in the continuum. The first knob 1s the growth
tactor T between the capacities ol adjacent levels of the
structure (e.g., “fanout” for B™ tree or “size ratio” for LSM
tree). This knob allows us to control the super-structure’s
depth. The second knob 1s the hot merge threshold K, which
1s defined as the maximum number of independent sorted
partitions (1.e., runs) at each of Levels 1 to L-Y-1 (i.e., all
hot levels but the largest) before we trigger merging. The
lower we set K, the more greedy merge operations become
to enforce fewer sorted runs at each of these hot levels.
Similarly, the third knob 1s the cold merge threshold Z and
1s defined as the maximum number of runs at each of Levels
L-Y to L (i.e., the largest hot level and all cold levels) before
we trigger merging. The node size D 1s the maximal size of
a contiguous data region (e.g., a “node” 1 a B™ tree or
“SSTable” 1n an LSM-tree) within a run. Finally, the fence
and filters memory budget M. controls the amount of the
overall memory that 1s allocated for in-memory fence point-
ers and Bloom filters.

Setting the domain of each parameter 1s a critical part of
crafting a design continuum so we can reach the target
designs and correct hybrid designs. FIG. 11 describes how
cach design parameter 1n the continuum may be varied. For
example, we set the maximum value for the size ratio T to
be the block size B. This ensures that when fractional
cascading 1s used at the cold levels, a parent block has
enough space to store pointers to all of its children. As
another example, we observe that a level can have at most
T-1 runs before 1t runs out of capacity and so based on this
observation we set the maximum values of K and 7 to be
T-1.

Design Rules: Forming the Super-structure. The con-
tinuum contains a set of design rules, shown on the upper
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right part of FIG. 11. These rules enable instantiating spe-
cific designs by deterministically denving key design
aspects. Below we describe the design rules in detail.

Exponentially Increasing Level Capacities. The levels’
capacities grow exponentially by a factor of T starting with
the bufler’s capacity. As a result, the overall number of
levels L 1s

where M, 1s the memory assigned to the bufler and N-E 1s
the data volume.

Fence Pointers vs. Bloom Filters. Our design allocates
memory for fence pointers and Bloom filters from smaller to
larger levels based on the memory budget assigned by the
knob M. Our strategy 1s to first assign this budget for fence
pointers to as many levels as there 1s enough memory for.
This 1s shown by the Equation for the fence pointers budget
M., 1n FIG. 11. The remaining portion of M, after fence
pointers 1s assigned to a Bloom filters memory budget M.
This can also be done 1n the reverse way when one designs
a structure, 1.e., we can define the desired buller budget first
and then give the remaining from the total memory budget
to filters and fence pointers.

Optimally Allocated Bloom Filters Across Levels. The
continuum assigns exponentially decreasing false positive
rates (FPRs) to Bloom filters at smaller levels as this
approach was shown to minimize the sum of their false
positive rates and thereby minimize point read cost. In FIG.
11, we express the FPR assigned to Level 1 as p, and give
corresponding equations for how to set p, optimally with
respect to the different design knobs.

Hot vs. Cold Levels. FIG. 11 further shows how to
compute the number of cold levels Y for which there 1s no
suflicient memory for fence pointers or Bloom filters (the
derivation for Y 1s 1n terms of a known threshold X for when
to drop a filter for a level and 1nstead use that memory for
filters at smaller levels to improve performance). We derive
M, as the amount of memory above which all levels are hot
(1.e., Y=0). We also set a minimum memory requirement
Mg on MF'to ensure tl}at there 1s always enough memory
for fence pointers to point to Level 1.

Fractional Cascading for Cold Levels. To be able to
connect data at cold levels to the structure despite not having
enough memory to point to them using m-memory fence
pointers, we 1nstead use Iractional cascading. For every
block within a run at a cold level, we embed a “cascading”™
pointer within the next younger run along with the smallest
key 1n the target block. This allows us to traverse cold levels
with one I/O for each run by following the corresponding
cascading pointers to reach the target key range.

Active vs. Static Runs. Each level consists of one active
run and a number of static runs. Incoming data 1nto a level
gets merged 1nto the active run. When the active run reaches
a fraction of T/K of a levels’ capacity for Levels 1 to L-Y -1
or T/7Z for Levels L-Y to L, 1t becomes a static run and a new
empty active run 1s initialized.

Granular Rolling Merging. When a level reaches capacity,
a merge operation needs to take place to free up space. We
perform a merge by first picking an eviction keys. Since each
run 1s sorted across its constituent nodes, there 1s at most one
node 1n each of the static runs at the level that intersects with
the eviction key. We add these nodes into an eviction set and
merge them into the active run in the next larger level.
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Hence, the merge granularity 1s controlled by the maximum
node size D, and merge operations roll across static runs and
eventually empty them out.

Fractional Cascading Maintenance. As merge operations
take place at cold levels, cascading fence pointers must be
maintained to keep runs connected. As an active run gradu-
ally fills up, we must embed cascading fence pointers from
within the active run at the next smaller level. We must also
create cascading fence pointers from a new active run into
the next older static run at each level. To manage this,
whenever we create a new run, we also create a block index
in storage to correspond to the fences for this new run.
Whenever we need to embed pointers into a Run 1 from
some new Run j as Run j 1s being created, we include the
block index for Run 1 1n the sort-merge operation used to
create Run j to embed the cascading fence pointers within.

Unified Cost Model. A design continuum includes a cost
model with a closed-form equation for each one of the core
performance metrics. The bottom night part of FIG. 11
depicts these models for our example continuum. These cost
models measure the worst-case number of 1/Os 1ssued for
cach of the operation types, the reason being that I/O 1s
typically the performance bottleneck for key-value stores
that store a larger amount of data than can {it in memory. For
example, the cost for point reads 1s derived by adding the
expected number of I/Os due to false positives across the hot
levels (given by the Equation for p_ . the sum of the FPRs)
to the number of runs at the cold levels, since with fractional
cascading we perform 1 /O for each run. As another
example, the cost for writes 1s derived by observing that an
application update gets copied on average O(1/K) times at
cach of the hot levels (except the largest) and O(1/7) times
at the largest hot level and at each of the cold levels. We add
these costs and divide by the block size B as a single write
I/0O copies B entries from the original runs to the resulting
run.

While our models 1n this work are expressed in terms of
asymptotic notations, such models can be captured more
precisely to reliably predict worst-case performance. A
central advantage of having a set of closed-form set of
models 1s that they allow us to see how the diflerent knobs
interplay to impact performance, and they reveal the trade-
ofls that the different knobs control.

Overall, the choice of the design parameters and the
derivation rules represent the infusion of expert design
knowledge such that we can create a navigable design
continuum. Specifically, fewer design parameters (for the
same target designs) lead to a cleaner abstraction which 1n
turn makes 1t easier to come up with algorithms that auto-
matically find the optimal design. We minimize the number
of design parameters 1n two ways: 1) by adding determin-
istic design rules which encapsulate expert knowledge about
what 1s a good design, and 2) by collapsing more than one
interconnected design decisions to a single design param-
cter. For example, owe used a single parameter for the
memory budget of bloom filters and fence pointers as they
only make sense when used together at each level.

Design Instances. FIG. 12 depicts several known
instances ol data structure designs as they are derived from
the continuum. In particular, the top part of FIG. 12 shows
the values for the design knobs that derive each specific
design, and the bottom part shows how their costs can
indeed be derived from the generalized cost model of the
continuum. For example, a B™ tree is instantiated by (1)
setting the maximum node size D to be one block, (2) setting
K and Z to 1 so that all nodes within a level are globally
sorted, (3) setting M to the minimum amount of memory so
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that Levels 1 to L get traversed using fractional cascading
without the utilization of Bloom filters or in-memory fence
pointers, and (4) setting the growth factor to be equal to the
block size. By plugging the values of these knobs into the
cost expressions, the well-known write and read costs for a
B+tree of O(L) I/Os immediately follow.

As a second example, a leveled LSM-tree design 1is
instantiated by (1) setting K and Z to 1 so that there 1s at
most one run at each level, and (2) assigning enough
memory to the knob M, to enable fence pointers and Bloom
filters (with on average 10 bits per entry in the table) for all
levels. We leave the knobs D and T as variables 1n this case
as they are indeed used by modern leveled LSM-tree designs
to strike different trade-ofls. By plugging in the values for
the design knobs into the cost models, we immediately
obtain the well known costs for a leveled LSM-tree. For
example, write cost simplifies to

as every entry gets copied across O(L) levels and on average
O(T) times within each level.

Construction Summary. FIG. 13 summarizes the process
of constructing a design continuum. We start by selecting a
set of data structures. Then we select the minmimum set of
design knobs that can instantiate these designs and we
impose design rules and domain restrictions to restrict the
population of the continuum to only the best designs with
respect to our target cost critenia. Finally, we derive the
generalized cost models.

Definition of Continuum. We can now revisit the exact
definition of the continuum. A design continuum connects
previously distinct and seemingly fundamentally different
data structure designs. The construction process does not
necessarily result in continuous knobs in the mathematical
sense (most of the design knobs have integer values).

However, from a design point of view a continuum opens
the subspace 1n between previously unconnected designs; 1t
allows us to connect those discrete designs in fine grained
steps, and this 1s exactly what we refer to as the “design
continuum”. The reason that this 1s critical 1s that it allows
us to 1) “see” designs that we did not know belore, derived
as combinations of those fine-grained design options, and 2)
build techniques that smoothly transition across discrete
designs by using those intermediate states.

Interactive Design

The generalized cost models enable us to navigate the
continuum, 1.¢., mteractively design a data structure for a
key value store with the optimal configuration for a particu-
lar application as well as to react to changes in the envi-
ronment, or workload. We formalize the navigation process
by introducing Equation 1 to model the average operation
cost O through the costs of zero-result point lookups R,
non-zeroresult point lookups V, short range lookups (), long
range lookups C, and updates W (the coetflicients depict the
proportions of each in the workload).

O=(r-R+v-V+q-O+c-C+w-W) (15)

To design a data structure using Equation 135, we first
identify the bottleneck as the highest additive term as well
as which knobs 1n FIG. 11 can be tweaked to alleviate 1t. We
then tweak the knob in one direction until we reach its
boundary or until 0 reaches the minimum with respect to that
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parameter. We then repeat this process with other parameters
as well as with other bottlenecks that can emerge during the
process. This allows us to converge to the optimal configu-
ration without backtracking, which allows us to adjust to a
variety ol application scenarios reliably. For example, con-
sider an application with a workload consisting of point
lookups and updates and an 1nitial configuration of a lazy-
leveled LSM-tree with T=10, K=T-1, Z=1, D=64, M, set to
2 MB, and M,set to N-(F/B+10), meaning we have memory
tor all the fence pointers and in addition 10 bits per entry for
Bloom filters. We can now use the cost models to react to
different scenarios.

Scenario 1: Updates Increasing. Suppose that the propor-
tion of updates increases, as 1s the case for many applica-

tions. To handle this, we first increase Z until we reach the
minimum value for 6 or until we reach the maximum value

of Z. If we reach the maximum value of 7, the next
promising parameter to tweak 1s the size ratio T, which we
can increase in order to decrease the number of levels across
which entries get merged. Again, we increase T until we hit
its maximum value or reach a minimum value for 0.

Scenario 2: Range Lookups. Suppose that the application
changes such that short-range lookups appear 1n the work-
load. To optimize for them, we first decrease K to restrict the
number of runs that lookups need to access across Levels 1
to L-1. If we reach the minimum value of K and short-range
lookups remain the bottleneck, we can now increase T to
decrease the overall number of levels thereby decreasing the
number of runs further.

Scenario 3: Data Size Growing. Suppose that the size of
the data 1s growing, yet most of the lookups are targeting the
youngest N entries, and we do not have the resources

vourngest

to continue scaling main memory in proportion to the overall
data size N. In such a case, we can fix M to N . -(F/
B+10) to ensure memory 1s invested to provide fast lookups
tor the hot working set while minimizing memory overhead
of less frequently requested data by maintaining cold levels
with fractional cascading. Effectively the above process
shows how to quickly and reliably go from a high-level
workload requirement to a low level data structure design
configuration at interactive times using the performance
continuum.

Auto-Design. It 1s possible to take the navigation process
one step further to create algorithms that iterate over the
continuum and independently find the best configuration.
The goal 1s to find the best values for T, K, Z, D, and the best
possible division of a memory budget between M. and M.
While iterating over every single configuration would be
intractable as 1t would require traversing every permutation
of the parameters, we can leverage the manner 1n which we
constructed the continuum to significantly prune the search
space. For example, when studying a design continuum that
contained only a lmmited set of LSM-tree variants we
observed that two of the knobs have a logarithmic impact on
0, particularly the size ratio T and the memory allocation
between M, and M. For such knobs, 1t 1s only meaningtul
to examine a logarithmic number of values that are expo-
nentially increasing, and so their multiplicative contribution
to the overall search time 1s logarithmic in their domain.
While the continuum we showed here 1s richer, by adding
B-tree variants, this does not add significant complexity 1n
terms of auto-design. The decision to use cascading fence
pointers or m-memory fence pointers completely hinges on
the allocation of memory between M. and M, while the
node size D adds one multiplicative logarithmic term 1n the
s1ze of 1ts domain.
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Success Criteria

We now outline the ideal success criteria that should guide
the construction of elegant and practically useful design
continuums 1n a principled approach.

Functionally Intact. All possible designs that can be
assumed by a continuum should be able to correctly support
all operation types (e.g., writes, point reads, etc.). In other
words, a design continuum should only aflect the perfor-

mance properties of the different operations rather than the
results that they return.

Pareto-Optimal. All designs that can be expressed should
be Pareto-optimal with respect to the cost metrics and
workloads desired. This means that there should be no two
designs such that one of them 1s better than the other on one
or more of the performance metrics while being equal on all
the others. The goal of only supporting Pareto-optimal
designs 1s to shrink the size of the design space to the
minimum essential set of knobs that allow to control and
navigate across only the best possible known trade-oils,
while eliminating inferior designs from the space.

Bijective. A design continuum should be a byective
(one-to-one) mapping from the domain of design knobs to
the co-domain of performance and memory trade-ofls. As
with Pareto-Optimality, the goal with bijectivity 1s to shrink
a design continuum to the mimimal set of design knobs such
that no two designs that are equivalent 1n terms ol perfor-
mance can be expressed as different knob configurations. IT
there are multiple designs that map onto the same trade-ofl,
it 1s a sign that the model 1s either too large and can be
collapsed onto fewer knobs, or that there are core metrics
that we did not yet formalize, and that we should.

Diverse. A design continuum should enable a diverse set
of performance properties. For Pareto-Optimal and bijective
continuums, trade-ofl diversity can be measured and com-
pared across different continuums as the product of the
domains of all the design knobs, as each unique configura-
tion leads to a diflerent unique and Pareto-optimal trade-off.

Navigable. The time complexity required for navigating
the continuum to converge onto the optimal (or even near-
optimal) design should be tractable. Measuring navigability
complexity allows system designers from the onset to strike
a balance between the diversity vs. the navigability of a
continuum.

Layered. By construction, a design continuum has to
strike a trade-ofl between diversity and navigability. The
more diverse a continuum becomes through the introduction
of new knobs to assume new designs and trade-oils, the
longer 1t takes to navigate it to optimize for different
workloads. With that in mind, however, we observe that
design continuums may be constructed in layers, each of
which builds on top of the others. Through layered design,
different applications may use the same continuum but
choose the most appropriate layer to navigate and optimize
performance across. Layered design enables continuum
expansion with no regret: we can continue to include new
designs 1n a continuum to enable new structures and trade-
ofls, all without 1imposing an ever-increasing navigation
penalty on applications that need only some of the possible
designs.

Expanding a Continuum: A Case-Study with
[LLSH-Table

We now demonstrate how to expand the continuum with
a goal of adding a particular design to include certain
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performance trade-ofls. The goal 1s to highlight the design
continuum construction process and principles.

Our existing continuum does not support the LSH-table
data structure used 1n many key-value stores such as Bit-
Cask, FASTER, and others. LSHtable achieves a high write
throughout by logging entries 1n storage, and it achieves fast
point reads by using a hash table 1n memory to map every

key to the corresponding entry in the log. In particular,
[LSH-table supports writes in O(1/B) I/0O, point reads 1n O(1)

I/0, range reads 1n O(N) I/O, and it requires O(F-N) bits of
main memory to store all keys 1n the hash table. As a result,
it 1s suitable for write-heavy application with ample
memory, and no range reads.

We outline the process of expanding our continuum in
three steps: bridging, patching, and costing.

Bridging. Bridging entails identifying the least number of
new movable design abstractions to introduce to a con-
tinuum to assume a new design. This process imvolves three
options: 1) itroducing new design rules, 2) expanding the
domains of existing knobs, and 3) adding new design knobs.

Bridging increases the diversity of a design continuum,
though 1t risks compromising the other success metrics.
Designers of continuums should experiment with the three
steps above 1n this particular order to minimize the chance
of that happening. With respect to LSH-table, we need two
new abstractions: one to allow assuming a log in storage,
and one to allow assuming a hash table 1n memory.

To assume a log 1n storage, our insight 1s that with a tiered
LSM-tree design, setting the size ratio to increase with
respect to the number of runs at Level 1 (1.e., T=(N-E)/M,)
causes Level 1 to never run out of capacity. This eflectively
creates a log in storage as merge operations never take place.
Our current design continuum, however, restricts the size
ratio to be at most B. To support a log, we expand the domain
of the size ratio with a new maximum value of (N-E)/M ).

To assume a hash table in memory, recall that our con-
tinuum assigns more bits per entry for Bloom filters at
smaller levels. Our 1nsight 1s that when the number of bits
per entry assigned to given level exceeds the average key
s1ze F, 1t 1s always beneficial to replace the Bloom filters at
that level with an in-memory hash table that contains all
keys at the level. The reason 1s that a hash table takes as
much memory as the Bloom filters would, yet 1t 1s more
precise as 1t does not allow false positives at all. We
therefore 1ntroduce a new design rule whereby levels with
enough memory to store all keys use a hash table while
levels with insuflicient memory use Bloom filters. With
these two new additions to the continuum, we can now set
the size ratio to (N-E))M,) and K and 7 to T-1 while
procuring at least F-N bits of memory to our system to
assume LSH-tables. FIG. 14 shows the new super-structure
of the continuum while FIG. 15 shows how LSH-table can
be derived.

An important point 1s that we managed to bridge
[LSHtable with our continuum without introducing new
design knobs. As a rule of thumb, 1introducing new knobs for
bridging should be a last resort as the additional degrees of
freedom 1increase the time complexity of navigation. Our
case study here, however, demonstrates that even data
structures that seem very diflerent at the onset can be
bridged by finding the right small set of movable abstrac-
tions.

Patching. Since the bridging process introduces many
new 1intermediate designs, we follow it with a patching
process to ensure that all of the new designs are functionally
intact (1.e., that they can correctly support all needed types
of queries). Patching imnvolves either introducing new design

10

15

20

25

30

35

40

45

50

55

60

65

28

rules to fix broken designs or adding constraints on the
domains of some of the knobs to eliminate broken designs

from the continuum. To ensure that the expanded continuum
1s layered (1.e., that 1t contains all designs from the con-
tinuum that we started out with), any new design rules or
constraints 1mntroduced by patching should only affect new
parts of the continuum. Let us illustrate an example of
patching with the expanded continuum.

The problem that we identily arises when fractional
cascading 1s used between two cold Levels 1 and 1+1 while
the si1ze ratio T 1s set to be greater than B. In this case, there
1s not enough space inside each block at Level 1 to store all
pointers to 1ts children blocks (1.e., ones with an overlapping
key range) at Level 1+1. The reason 1s that a block contains
B slots for pointers, and so a block at Level 1 has a greater
number of children T than the number of pointer slots
available. Worse, i the node size D 1s set to be small (in
particular, when D<I/B), some of the blocks at Level 1 1 will
neither be pointed to from Level 1 nor exist within a node
whereon at least one other block 1s pointed to from Level 1.
As a result, such nodes at Level 1+1 would leak out of the
data structure, and so the data on these blocks would be lost.
To prevent leakage, we mtroduce a design rule that when
D<T/B and B<T, the setting at which leakage can occur, we
add sibling pointers to reconnect nodes that have leaked. We
introduce a rule that the parent block’s pointers are spatially
evenly distributed across its children (every (T/(B-D))” node
at Level 1+1 1s pointed to from a block at level 1) to ensure
that all sibling chains of nodes within Level 141 have an
equal length. As these new rules only apply to new parts of
our continuum (1.e., when T>B), they do not violate layer-
ng.

Costing. The final step 1s to generalize the continuum’s
cost model to account for all new designs. This requires
either extending the cost equations and/or proving that the
existing equations still hold for the new designs. Let us
illustrate two examples. First, we extend the cost model with
respect to the patch introduced above. In particular, the
lookup costs need to account for having to traverse a chain
of sibling nodes at each of the cold levels when T>B. As the
length of each chain 1s T/B blocks, we extend the cost
equations for point lookups and short-range lookups with
additional T/B 1/Os per each of the Y cold levels. The
extended cost equations are shown 1n FIG. 14.

In the derivation below, we start with general cost expres-
s10n for point lookups 1n FI1G. 14 and show how the expected
point lookup cost for LSH-table 1s indeed derived correctly.
In Step 2, we plug 1n N/B for T and Z to assume a log 1n
storage. In Step 3, we set the number of cold levels to zero
as Level 1 i our continuum by construction 1s always hot
and 1n this case, there 1s only one level (i1.e., L=1), and thus
Y must be zero. In Step 4, we plug 1n the key size F for the
number of bits per entry for the Bloom filters, since with
[LSH-table there 1s enough space to store all keys in memory.
In Step 5, we reason that the key size F must comprise on
average at least log(N) bits to represent all unique keys. In
Step 6, we simplity and omit small constants to arrive at a
cost of O(1) I/O per point lookup.

Elegance vs. Performance: To Expand or Not to
Expand?

As new data structures continue to get mmvented and
optimized, the question arises of when 1t 1s desirable to
expand a design continuum to include a new design. We
show through an example that the answer 1s not always
clearcut.
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In an eflort to make B-trees more write-optimized for
flash devices, several recent B-tree designs builer updates 1n
memory and later flush them to a log 1n storage in their
arrival order. They further use an in-memory indirection
table to map each logical B-tree node to the locations 1n the
log that contain entries belonging to that given node. This
design can improve on update cost relative to a regular
B-tree by flushing multiple updates that target potentially
different nodes with a single sequential write. The trade-off
1s that during reads, multiple I/Os need to be 1ssued to the log
for every logical B-tree node that gets traversed 1n order to
tetch 1ts contents. To bound the number of 1/Os to the log,
a compaction process takes place once a logical node spans
over C blocks 1n the log, where C 1s a tunable parameter.
Overall, this design leads to a point and range read cost of
O(C-log4(N)) I/Os. On the other hand, update cost consists
of O(C-logz(N)) read 1/0s to find the target leal node and an
additional amortized O(1/¢c) write 1/Os to account for the
overheads of compaction. The memory footprint for the
mapping table 1s O((C-N-F)/B) bits. We refer to this design
as log-structured B-tree (LSB-tree). Would we benefit from
including LSB-tree 1n our continuum?

To approach an answer to this question, we analytically
compare LSB-tree against designs within our continuum to
gauge the amount by which LSB-tree would allow us to
achieve better trade-oils with respect to our continuum’s
cost metrics. We demonstrate this process 1in FI1G. 16, which
plots point and range read costs against write cost for both
LSB-tree and Leveled LSM-tree, a representative part of our
continuum. To model write cost for LSB-tree, we computed
a weighted cost of O(C-logz(N)) read 1/0Os to traverse the
tree, O(1/C) write I/Os to account for compaction overheads,
and we discounted the cost of a read I/O relative to a write
I/O by a factor of 20 to account for read/write cost asym-
metries on flash devices. We generated the curve for LSB-
tree by varying the compaction factor C from 1 to 9, and the
curves for the LSM-tree by varying the size ratio T from 2
to 10. To enable an “apples-to-apples” comparison whereby
both LSB-tree and the LSM-tree have the same memory
budget, we assigned however much main memory LSB-tree
requires for i1ts mapping table to the LSM-tree’s fence
pointers and Bloom filters. Overall, the figure serves as a
first approximation for the trade-oils that LSB-tree would
allow us to achieve relative to our continuum.

FIG. 16 reveals that point read cost for the LSM-tree 1s
much lower than for LSB-tree. The reason 1s that when the
same amount ol memory required by LSB-tree’s memory
budget 1s used for the LSM-tree’s fence pointers and Bloom
filters, hardly any false positives take place and so the
LSM-tree can answer most point reads with just one 1/0.
Secondly, we observe that as we 1ncrease LSB-tree’s com-
paction factor C, write cost initially decreases but then starts
degrading rapidly. The reason 1s that as C grows, more reads
I/0s are required by application writes to traverse the tree to
identily the target leal node for the write. On the other hand,
for range reads there 1s a point at which LSB-tree dominates
the LSM-tree as fewer blocks need to be accessed when C
1s small.

Elegance and Navigability versus Absolute Performance.
By weighing the advantages of LSB-tree against the com-
plexity of including 1t (1.e., adding movable abstractions to
assume 1ndirection and node compactions), one can decide
to leave LSB-tree out of the continuum. This 1s because its
design principles are fundamentally different than what we
had included and so substantial changes would be needed
that would complicate the continuum’s construction and
navigability. On the other hand, when we did the expansion
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tor LSH-table, even though, it seemed 1mitially that this was
a fundamentally different design, this was not the case:

L.SH-table 1s synthesized from the same design principles
we already had 1n the continuum, and so we could achieve
the expansion in an elegant way at no extra complexity and
with a net benefit of including the new performance trade-
ofls. At the other extreme, one may decide to include
L.SB-tree because the additional performance trade-ofils out-
weilgh the complexity for a given set of desired applications.
The decision of whether to expand or not to expand a
continuum 1s a continual process, for which the outcome
may change over time as different cost metrics change in
their level of importance given target applications.

While particular embodiments of the invention have been
1llustrated and described in detail herein, 1t should be under-
stood that various changes and modifications might be made
to the 1nvention without departing from the scope and intent
of the invention. From the foregoing it will be seen that this
invention 1s one well adapted to attain all the ends and
objects set forth above, together with other advantages,
which are obvious and inherent to the system and method.
It will be understood that certain features and sub-combi-
nations are of utility and may be employed without reference
to other features and sub-combinations. This 1s contem-
plated and within the scope of the appended claims.

Representative Architecture for Log-Structured
Merge Bush

The experiments described above demonstrate that LSM-
bush eliminates most merging relative to LSM-tree and cuts
down most of LSH-table’s memory footprint, while still
being able to deliver fast and scalable point lookups, as well
as to process interactive small and large analytical queries.
As LSM-bush improves asymptotically on LSM-tree for
merging and on LSH-table for range lookups and memory,
these benelits become more pronounced for larger data sizes.

As explamned above, modern applications relying on
write-optimized KV-stores typically face a rigid compro-
mise by having to choose between LSM-tree vs. LSH-table
based designs, each offering different performance and
memory properties. Various embodiments alleviate this
compromise by providing a new data structure, LSM-bush,
that enables dominating trade-offs between LSM-tree and
LL.SH-table. LSM-bush uses lazier merging for newer data so
as to allow removing most of LSM-tree’s merge overheads
while still achieving competitive lookups and memory. In
addition, LSM-bush may be tuned to open up a new reads/
writes/memory trade-ofl continuum that can be navigated
tractably based on application requirements. Further, as
shown 1n the experiments above, LSM-bush advantageously
dominates LSM-tree for write-intensive workloads and
dominates LSH-table for workloads imvolving analytics
while taking up an order of magnitude less memory. Finally,
the benefits of LSM-bush increase as the data grows.

L.SM-bush can be implemented 1n any suitable combina-
tion of hardware, soitware, firmware, or hardwiring. FIG. 17
illustrates an exemplary system 1700 utilizing a suitably
programmed general-purpose computer. The computer
includes a central processing unit (CPU) 1702, at least a
main (volatile) memory 1704 having a file bufler 1706,
multiple Bloom filters 1708, and a multi-level file-access
data structure 1710. Each Bloom filter 1708 1s associated
with a memory access run. The system 1700 further includes
one or more non-volatile mass storage devices 1712 (such
as, €.g., one or more hard disks and/or optical storage units)
for storing various types of files. The CPU 1702, main




US 11,372,823 B2

31

memory 1704, and storage devices 1712 communicate with
cach other over a bidirectional system bus 1715. The bus
1715 may support internal or external mput/output devices,
such as traditional user interface components 1718 (includ-
Ing, €.g., a screen, a keyboard, and a mouse) as well as a
remote computer 1720 and/or a remote storage device 1722
via one or more networks 1725. The remote computer 1720
and/or storage device 1722 may transmit any information
(e.g., keys and/or values associated with various applica-
tions) to the computer system 1700 using the network 1725.

In some embodiments, the multi-level file-access data
structure 1710 1s part of a database management system
(DBMS), which itself manages reads and writes to and from
various tiers of storage, including the main memory 1704
and secondary storage devices 1712. The DBMS establishes,
and can vary, operating parameters including the size ratio
among levels, the merge policy, the FPR assigned to Bloom
filters across different levels, and the allocation of main
memory between the bufler and the filters as described
above.

In addition, an operating system 1720 may direct the
execution of low-level, basic system functions such as
memory allocation, file management and operation of the
main memory 1704 and/or mass storage devices 1712. At a
higher level, one or more service applications provide the
computational functionality required for implementing the
improved key-value approach described herein. For
example, upon receiving a query from a user via the user
interface 1718 and/or from an application in the remote
computer 1722 and/or the computer system 1700, the CPU
1702 may access the main memory 1704 and/or secondary
storage devices 1712 via the operating system 1730 to look
up the target key as described above. Upon finding the target
key, the CPU 1702 may access the data that 1s 1identified by
the target key; the data may be stored in a database (not
shown) associated with the main memory 1704, secondary
storage devices 1712, remote computer 1720 and/or remote
storage device 1722. To speed up the lookup process using
the mmproved LSM-based approach described above, in
various embodiments, each of the levels of the data structure
1710 has a capacity speciiying the number of runs that will
be included therein before being merged and moved to a
larger adjacent level, and a smaller level having a smaller
capacity. The CPU 1702 determines the capacity associated
with each level such that the capacity ratios corresponding
to different pairs of adjacent levels in the data structure are
different. As described above, at least one capacity ratio
between two adjacent smaller levels may be kept larger than
the capacity ratio between two adjacent larger levels such
that larger numbers of runs are collected at the smaller levels
before being merged.

Generally, program modules such as a DBMS include
routines, programs, objects, components, data structures,
ctc. that performs particular tasks or implement particular
abstract data types. Those skilled 1n the art will appreciate
that the imnvention may be practiced with various computer
system configurations, including multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainirame computers, and the like. The
invention may also be practiced 1n distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules may be located 1n both local and remote computer-
storage media including memory storage devices.

In addition, the CPU 1702 may comprise or consist of a
general-purpose computing device in the form of a computer
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including a processing unit, a system memory, and a system
bus that couples various system components including the
system memory to the processing umt. Computers typically
include a variety of computer-readable media that can form
part of the system memory and be read by the processing
umit. By way of example, and not limitation, computer
readable media may comprise computer storage media and
communication media. The system memory may include
computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) and
random access memory (RAM). A basic input/output system
(BIOS), containing the basic routines that help to transfer
information between elements, such as during start-up, is
typically stored m ROM. RAM typically contains data
and/or program modules that are immediately accessible to
and/or presently being operated on by processing unit. The
data or program modules may include an operating system,
application programs, other program modules, and program
data. The operating system may be or include a variety of
operating systems such as Microsoit WINDOWS operating
system, the Unix operating system, the Linux operating
system, the Xenix operating system, the IBM AIX operating
system, the Hewlett Packard UX operating system, the
Novell NETWARE operating system, the Sun Microsystems
SOLARIS operating system, the OS/2 operating system, the
BeOS operating system, the MACINTOSH operating sys-
tem, the APACHE operating system, an OPENSTEP oper-
ating system or another operating system of platform.

The CPU 1702 that executes commands and 1nstructions
may be a general-purpose processor, but may utilize any of
a wide variety of other technologies including special-
purpose hardware, a microcomputer, mini-computer, main-
frame computer, programmed miCro-processor, micro-con-
troller, peripheral integrated circuit element, a CSIC
(customer-specific integrated circuit), ASIC (application-
specific integrated circuit), a logic circuit, a digital signal
processor, a programmable logic device such as an FPGA
(ield-programmable gate array), PLD (programmable logic
device), PLA (programmable logic array), smart chip, or any
other device or arrangement of devices that 1s capable of
implementing the steps of the processes of the invention.

The computing environment may also include other
removable/nonremovable, volatile/nonvolatile computer
storage media. For example, a hard disk drive may read or
write to nonremovable, nonvolatile magnetic media. A mag-
netic disk drive may read from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive may
read from or write to a removable, nonvolatile optical disk
such as a CD-ROM or other optical media. Other removable/
nonremovable, volatile/nonvolatile computer storage media
that can be used 1n the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM, and the like. The storage
media are typically connected to the system bus through a
removable or non-removable memory interface.

More generally, the computer shown 1n FIG. 17 1s repre-
sentative only and intended to provide one possible topol-
ogy. It 1s possible to distribute the functionality illustrated 1n
FIG. 17 among more or fewer computational entities as
desired. The network 1725 may include a wired or wireless
local-area network (LLAN), wide-area network (WAN) and/
or other types of networks. When used 1n a LAN networking
environment, computers may be connected to the LAN
through a network interface or adapter. When used 1n a WAN
networking environment, computers typically include a
modem or other communication mechanism. Modems may
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be 1internal or external, and may be connected to the system
bus via the user-input intertace, or other appropriate mecha-
nism. Computers may be connected over the Internet, an
Intranet, Extranet, Ethernet, or any other system that pro-
vides communications. Some suitable communications pro-
tocols may include TCP/IP, UDP, or OSI, for example. For
wireless communications, commumnications protocols may
include the cellular telecommunications infrastructure, WiFi1
or other 802.11 protocol, Bluetooth, Zigbee, IrDa or other
suitable protocol. Furthermore, components of the system
may communicate through a combination of wired or wire-
less paths.

Any suitable programming language may be used to
implement without undue experimentation the analytical
functions described within. Illustratively, the programming
language used may include assembly language, Ada, APL,
Basic, C, C++, C*, COBOL, dBase, Forth, FORTRAN,
Java, Modula-2, Pascal, Prolog, Python, REXX, and/or
JavaScript for example. Further, it 1s not necessary that a
single type of instruction or programming language be
utilized 1n conjunction with the operation of the system and
method of the mnvention. Rather, any number of different
programming languages may be utilized as 1s necessary or
desirable.

The terms and expressions employed herein are used as
terms and expressions of description and not of limitation,
and there 1s no intention, in the use of such terms and
expressions, of excluding any equivalents of the features
shown and described or portions thereof. In addition, having
described certain embodiments of the invention, 1t will be
apparent to those of ordinary skill in the art that other
embodiments incorporating the concepts disclosed herein
may be used without departing from the spirit and scope of
the invention. Accordingly, the described embodiments are
to be considered 1n all respects as only illustrative and not
restrictive.

What 1s claimed 1s:

1. A database system comprising:

a main memory comprising volatile storage and including

a file buffer and a plurality of Bloom filters each
associated with a memory access run;

a secondary store comprising nonvolatile storage for

storing files;

memory comprising volatile storage and containing a data

structure providing indexed access to files stored in the
file bufler and the secondary store, the data structure
being organized into a plurality of levels and indexing
the files as key-value pairs; and

a processor for writing files to and reading files from the

main memory and the secondary store in runs each
having a size,

wherein (1) each of the data structure levels has a capacity

specilying a number of runs included therein before
being merged and moved to a level having a larger
capacity, and (11) the processor 1s further configured to
determine the capacity associated with each level such
that a first capacity ratio corresponding to the capacities
of a first pair of hierarchically adjacent levels 1n the
data structure 1s different from a second capacity ratio
corresponding to the capacities of a second pair, dii-
ferent from the first pair, ol hierarchically adjacent
levels 1n the data structure.

2. The database system of claim 1, wherein at least one
capacity ratio between two adjacent smaller levels 1s larger
than the capacity ratio between two adjacent larger levels
such that larger numbers of runs are collected at the smaller
levels before being merged.
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3. The database system of claim 2, wherein the capacity
ratio satisfies an equation:

wherein r, represents the capacity ratio of the capacity 1n
level 1 to the capacity 1n level 1-1; T represents a growth rate
of the capacity ratios; and L represents the largest level in the
data structure.

4. The database system of claim 3, wherein the capacity
ratio further satisfies an equation:

.
=T -

5. The database system of claim 1, wherein the largest
level comprises exactly one run and each of the other levels
COmprises one Or more runs.

6. The database system of claim 1, wherein the processor
1s Turther configured to tune a total number of levels 1n the
data structure so as to provide a desired trade-ofl among a
write cost, a read cost and a memory footprint.

7. The database system of claim 6, wherein the processor
1s Turther configured to tune the total number of levels based
at least 1n part on an application workload and an available
memory budget.

8. The database system of claim 6, wherein the processor
1s Turther configured to tune the total number of levels within
two boundary values.

9. The database system of claim 7, wherein the two
boundary values satisly an equation:

L . =3 when 7=(N,/2-P)V?

L,...=(l+log>(log,(N;/2-P))+1) when 7=2

where L. and L__  represent a mimimal value and a

maximal value of the total number of levels, respectively;
N, represents a number of data entries at the largest level; P
represents a size of the file bufler; and T represents a growth
rate of the capacity ratios.

10. The database system of claim 1, wherein the processor
1s further configured to allocate the Bloom filters so as to
minimize a sum of false positive rates thereacross.

11. The database system of claim 10, wherein each of the
Bloom filters 1s associated with one of the levels, the
processor being further configured to assign a false positive
rate to each Bloom filter based at least 1n part on the capacity
ratio associated with the corresponding level.

12. A method of managing electronic {files, the method
comprising the steps of:

providing a main computer memory comprising volatile

storage and including a file buller and a plurality of
Bloom filters each associated with a memory access
run;

providing a secondary store comprising nonvolatile stor-

age for storing files;

storing, 1n a memory comprising volatile storage, a data

structure providing indexed access to files stored in the
file bufler and the secondary store, the data structure
being orgamized into a plurality of levels and indexing
the files as key-value pairs; and

writing files to and reading files from the main memory

and the secondary store in runs each having a size,
wherein each of the data structure levels has a capacity
specilying a number of runs included therein before
being merged and moved to a level having a larger
capacity; and
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determining the capacity associated with each level such
that a first capacity ratio corresponding to the capacities
of a first pair of hierarchically adjacent levels 1n the
data structure 1s diflerent from a second capacity ratio
corresponding to the capacities of a second pair, dii-
ferent from the first pair, of hierarchically adjacent
levels 1n the data structure.

13. The method of claim 12, wherein at least one capacity
ratio between two adjacent smaller levels 1s larger than the
capacity ratio between two adjacent larger levels such that
larger numbers of runs are collected at the smaller levels
before being merged.

14. The method of claim 13, wherein the capacity ratio
satisflies an equation:

L—i—1
TZ
F; = {
2

wherein r, represents the capacity ratio of the capacity in
level 1 to the capacity 1n level 1-1; T represents a growth rate
of the capacity ratios; and L represents the largest level in the
data structure.

15. The method of claim 14, wherein the capacity ratio
turther satisfies an equation:

.2
i Tier -

16. The method of claam 14, wherein the largest level
comprises exactly one run and each of the other levels
COmMPrises one Oor more runs.
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17. The method of claim 14, further comprising the step
of tuning a total number of levels 1n the data structure so as
to provide a desired trade-ofl among a write cost, a read cost
and a memory footprint.

18. The method of claim 17, further comprising the step
of tuning the total number of levels based at least in part on
an application workload and an available memory budget.

19. The method of claim 17, further comprising the step
of tuning the total number of levels within two boundary
values.

20. The method of claim 18, wherein the two boundary
values satisly an equation:

L. =3 when T=(N,/2-P)'°

L. =(1+log,(log,(N;/2-P))+1) when =2

where L . and L, represent a mimimal value and a

maximal value of the total number of levels, respectively;
N, represents a number of data entries at the largest level; P
represents a size of the file bufler; and T represents a growth
rate of the capacity ratios.

21. The method of claim 12, further comprising the step
of allocating the Bloom filters so as to minimize a sum of
false positive rates thereacross.

22. The method of claim 21, wherein each of the Bloom
filters 1s associated with one of the levels, and further
comprising the step of assigning a false positive rate to each
Bloom filter based at least in part on the capacity ratio
associated with the corresponding level.
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