12 United States Patent

USO011372632B2

(10) Patent No.: US 11,372,632 B2

Hadi Salim 45) Date of Patent: Jun. 28, 2022
(54) SYSTEMS AND METHODS FOR CREATING (56) References Cited
AND DEPLOYING APPLICATIONS AND 1.9 PATENT DOCUMENTS
SERVICES T -~
_ _ 10,169,007 B1* 1/2019 Zakian HO04L 63/10
(71) Applicant: Mojatatu Networks, Ottawa (CA) 2006/0224533 Al* 10/2006 Thaler GO6N 3/105
706/15
(72) Inventor: Jamal Hadi Salim, Ottawa (CA) 2009/0265243 Al* 10/2009 Karassner G06Q 30/0275
705/14.54
(73) Assignee: MOJATATU NETWORKS, Ottawa 2016/0132309 Al* 52016 Rajasekhar HO’L%?/’?{ (1)2
(CA) 2019/0213046 Al1* 7/2019 Matusconnn, HO041. 41/12
| | o | 2019/0229939 Al* 7/2019 Tuatiniocove...... HO41. 51/36
(*) Notice: Subject to any disclaimer, the term of this 2019/0349426 Al* 11/2019 Smith eeeeoeoeooin. HO4W 4/08
patent 1s extended or adjusted under 35 2020?0313999 A: 10/{2020 Lee .o, HO4L 43/(3{847
U.S.C. 154(b) by 0 days. 2020/0314219 AT 10/2020 Watson HO4L 69/161
2021/0005185 Al1* 1/2021 Ma ...c..ooooeiviniiiiiinnn., GI10L 15/22
(21) Appl. No.: 17/099,691 2021/0258284 Al* 8/2021 Popecoooovvvvinnnnn, HO4L 63/029
ppl. No.: .
(22) Filed: Nov. 16, 2020 OTHER PUBLICALIONS
Title: OpenNetVM: A platform for high performance network
(65) Prior Publication Data service chains, author: W Zhang et al, published on 2016.*
Title: Region streams: Functional macroprogramming for sensor
US 2021/0149650 Al May 20, 2021 networks, author: R Newton, published on 2004.*
Title: Compiling business process models for sensor networks,
author: A Caracas, published on 2011.%
Related U.S. Application Data _ _
- / e * cited by examiner
60) Provisi ication No. 62/935,355 Nov.
(60) 120281109113 “PpHEATDE O 0=, HEE O EOY Primary Examiner — Chameli Das
j | (74) Attorney, Agent, or Firm — Jonathan Kidney;
(51) Int. CI Intelink Law Group, P.C.
GO6l 9/44 (2018.01) (57) ABSTRACT
Gool’ 8/41 (2018.01) A method for generating target codes for one or more
GO6l’ 8/60 (2018.01) network functions for execution 1n a network 1s provided.
GO6F 8/38 2018.01 The method comprises: receiving, at a processor, a network
() P g, atap
(52) U.S. CL function definition; receiving, at the processor, one or more
CPC oo, GOGF 8/447 (2013.01); GO6F 8/38 ‘emplates comprising preprogrammed codes in a preset
(2013.01); GO6F 3/30 (2013.01) format; compiling, at the processor, the network function
(58) Field of Classification Sear (;h definition and the one or more templates by providing key
CPC GOGE 9/447- GOGE 9/38: GOGF 9/60 terms from the network function definition to the one or
USPC oo e ... 717/107 ~ more templates; and generating the target codes.
See application file for complete search history. 22 Claims, 21 Drawing Sheets
1300

/_ 1302

Receiving a3 network function definition

-
-

]

g
=
u
"

| s
1 .

Receiving one or more templates comprising preprogramed codes in a
preset format

compiting, at the pmce:ssar, the network function definition an:d the one
or more tempiates by providing key terms from the network function
definition to the one or more tempiates

n
=
=
n
=
u
n

é -

generating the target codes

1304

1306

1308

U.S. Patent Jun. 28, 2022 Sheet 1 of 21 US 11,372,632 B2

107

; | Libraries

Human Interface | - and
{ 1 Helpers

104

Target Definitions

ez Machine inlerface
108 é; é

Transformer

110

- Test Cases and
5 Simulation
Manitest
114

target Code and Network
: Data

Artifacts

112 107

FiG. 1

U.S. Patent

Hulder Human interface

Tempilales

240

Jun. 28, 2022

Lo 201

Nabtwork Funchion

alg

ILFB/ADLFR
Definitions

210

Compiler
212

CE
Shared

Libraries | |

FE
Shared
L ranes

ang

Sheet 2 of 21

Test Cases

| Simulation

FIG. 2A

US 11,372,632 B2

ME Libraries
{ and Helpers
204

| Machine interface]

200

| _twa" '
: Data

L L L LA WL L

r_F L

&

S

LY

S

A

T N AR AR A R

‘I. .

s

T A

N e A A
>
-
i‘r‘h
LN

WO ke
N
s

A

E
L]
L

4=

K
208

=
n
L]
L]
A B T I R A

o
L]

T, o

US 11,372,632 B2

':h'.'?';.'"-?':'i;v.

L

S
L) t@f??%%‘w r -, ;
£ .__ ..”
e ﬂft-M . 4 _: : " ety
n ﬁ l\-ﬂ : “ .._.“__. . - .- .._. |
S m] -, - ? w ”_-.__. h .1...
e b: x ; =3
__-_._,._._.w b " ' .
P % b : - ;
% 3 % Z :
iy Ak 3) " e ;
Sl AL 2 ; : wh : :
SEAEE r g X : g ; -
L s * . Ty B3 A
g F ; ” X A . u_._-..l-._.u__. . “
el 3 . P wl % v
S e % X N % syt W
. WHE om 3 RS ST AT i
“._-... r A L moma s a e pE e s mw N , FYrrs k “ v o " p “rﬁui_.._ ..uh-_.....__-._....__. roaa e . A “.
D * il £ e -
- g 3 4 .‘x..ﬂ.“..\m s
2 A - . £ :
— A S 1HEN .
Sug b : R 4
-..n...“l.-.. lale s A u..\..\-..E.i.-... * ¢
2 nﬁ .n‘..ﬁ..___ﬂl1 ” “ - : x
T g p. . o
o KA % . . -
[h_..____- ..__H_.“_.__“.____..L__.__,._W : “ x : o !
Z u 2 : :
8 W o -) :
- " A '
[“ x o
- ‘ e~ S
2 -4
: - Ko
B,
i iy / St
' . e .
- .__-..." s =
|.-.. . .‘v __.-.-. i

 d
T
i .m_ﬂw- .-WNM

s
A “

Ar 44 W

£ L

T : .

W
"\""."-.
A
3

2226

Templates
248

U.S. Patent

FiG. 2B

US 11,372,632 B2

>
o : :
— S . g t B
3 o+ 2 I W
o ; ; et] “
o P ”
e : o =] : T §:
L : ST el : A 4
n {3 ; P S : : e ”
£y LT 4 ‘ . Do “
‘ AR Y i oo ”
u " L R A e i A, :
g sy Ay e] i by 3
J At s Aoy .. A :
VR e, - s &
: w2 pen T u ety g
x % \?vm o ; Yot - A :
.---....|..-..|----|-..L.. o .. g SRR A e e __.... : "4 _M-..._._-_“.u_“. ; n.“ m .”-_u._.._m___._tp.___u_m-
. : N : P e 4r
ZE 2% £ i m
O s al S %, bw 3 Kt 3
G T B
4 , p A :
% : S
u 2
- 3 Ml : -
: : m..,ﬁ” ”
i Vi ”
- N g
" N .
> . ¢ Wi
. w m
* :

2426
FIG. 2C

2423

U.S. Patent Jun. 28, 2022 Sheet 5 of 21 US 11,372,632 B2

o '\‘ " ;:.h . l.: . :I.‘. :;_. Y ..%‘h |.|: I.:"I‘ . e [\; ;:\.{\I:li "1...1‘].!.‘ ey ‘: L % mtw" . iy q:'l- . a :u,:_ - i -
NI Dhoxigrms Renses Dlesimes Service Dupioyes

FIG, 2D

U.S. Patent

 Applications and
| Service
Management

308

Anaiviics

- Horizontally
| Scalable Analytics
'f Collection

B W s o kA

L iReporti
‘Publish

Jun. 28, 2022

Tiﬁmﬁryé SUOTUOTUUIUIIOIIOIIOp

__

S ——

Sheet 6 of 21 US 11,372,632 B2

| Machine Learning
301

302 ' Control

Control

T@E&etf“}f

Resource Control »

Control

304

Horizontally
Scalable Actuation |

- -
5 .
) 4
]
i
L
|
\ ;
> ; |
. i
]
[
- ; |
r
i
- ; :
- I
T
i
r -
. .
r
3 E d
*
i
]
i
"

~ Control Actuation

RESOUIces

U.S. Patent Jun. 28, 2022 Sheet 7 of 21 US 11,372,632 B2

: Applications and
: Services B B » Maching Leaming
Management

service Agent
Manaemem

Controt Application

Raesource Agent (Fkxd)

Hasource
inte ﬁaces

--------- Datapath Resources

U.S. Patent Jun. 28, 2022 Sheet 8 of 21 US 11,372,632 B2

Services HostiServer
220

GE Host/iServer
244

Switches/Routers

switches/Routers

F1G. 3B

400

US 11,372,632 B2

G P e T T L P

Sheet 9 of 21

.....................

Jun. 28, 2022

11111111111111111111111111111111

U.S. Patent

e el

...................................

P r e T

Eop g g g Nl gl ity el b ol g i g g L el i " b e 1._"._.

..............................

FiG. A

US 11,372,632 B2

Sheet 10 of 21

Jun. 28, 2022

U.S. Patent

4
ﬂ%..xn___.._”

......

T R R R I Y R Y

11111 - h._.

R N

-

e

e

Tirugiae W A e A W A N

%
3

-...ld-_l—.

G
Lo
s
s

R

-
'

3

-

N
£

S
SR

FiG. 4B

US 11,372,632 B2

Sheet 11 of 21

Jun. 28, 2022

U.S. Patent

0

3383

N

ane Interface

|

Control P

FlG. 40

U.S. Patent Jun. 28, 2022 Sheet 12 of 21 US 11,372,632 B2

N Transforn: S1
\ Program | | ﬁ

Component

i T L R o o L L

vy 82

Scalar Component

U.S. Patent Jun. 28, 2022 Sheet 13 of 21 US 11,372,632 B2

510
| Sourea LB i Danved LFR Control Block
| 602 E: S0
S8
Tabie
- Lomponanis:
| Kports
Cartin R Transform F%xi TX
" Tx8 1 Frogram R 1R

FiL. 8

U.S. Patent Jun. 28, 2022 Sheet 14 of 21

Scaist Lomponent

Source LB
 J00

Table Component; Ports |

— Ciriin ¥

o
h

iy,

714

US 11,372,632 B2

P %""'“"R\N
< Transform’, |
. Program ™
RN - I

",

Ty ¥
-
J-'L-“-"'-ﬁ-‘ L *

Tabie |
Component’ |
FPorts |

=l s
LRLR

Cirlin2

US 11,372,632 B2

Sheet 15 of 21

Jun. 28, 2022

U.S. Patent

7
)
”-.s..,
7
%
%
7
7
e
7
%
%
L
Z
”n“”
”““”
|
Z
Z
7
Z
%
%
-z,

AT AR AR AR AR A RS A A A A A A A A,

- -

A hﬂ%&%ﬁiﬁ\\ﬁ\\\%!&iﬁ%\%\ih&ﬁ)
4.
Ak,
U
LR
ey

A

'
.h“.
Mx
i A s
n.%tﬂ-_ 1 i-...._. "
Byt .
..-.u.__\.i-.l“- 1 . __... ool
2. , o Vi
.._‘_._u...u_,._______F ” =L A
. _..-....\....“h-. 1 - F.” k
T * e T
T h .
M

AN

. .::h
1] - 1‘
R
e e,
e

A
0

Al

PP £)
T

GREAE

-

M

R L,

RN
..;
3
“ [} ‘I

s ;

N O e

M

4

N
T

{
%
%..- . s

. Pl : T A
%ﬁ%\m‘wﬁ\xx&xxﬁxxxx T et

3

o

-
r
'

R T R S N T S T

.....1.. .
) .litt_..__:.

..............

Bl L) L) F F L) L) L] L] L] L] L] L]

N ¢ s

X T T FL

HiaTr™ ¥

p W\..m.u.n

PR : A
e ; N

-+ L) L) L) L) F F L) L) L) L] L]

&+
-
-
-
-
-
a
a
-
a
-
r]
L]

L o e B I I R T L Y Ll N R P I [o gt]
v

'
.11

- l._ -
- r

4 LN LM LT L 1
ATn A
LANCRN N
o
+
“I

e

..................................... X
Pl -

_
o g 4 :

A, - s

o Y A . o g el i it gl i gl s e Pl ot o s o

-
A N e S
*y
»
%

|||

Ll I ol o LT

3 -
el
LW -
2]
N
'
.
.l-.-
Il e el
Pl
i. .
IS
1]
-
L
-

..mﬂ%xﬁ...h&%
A A

)
.
-
.
-‘
s
4
PRy
A h
I
W -
L] e
L
+ il
s -
-
3
._.I
"
--‘-
A
-ﬂ-
K
'n
. 7
"
* r .q.-
r
v h
-.1.-... J.L
.
A .]
1 il
' "
il
v
- '
"
£
]
.
. -
- I 1
. AR -
rl =
..-_-__...--_.
P
v T ...“\Jg v
= L]
' .
- .
k
-‘-
. .
. -
- .
T 'y o
.L I-
L 0
wouan gl <
]
.
X
'y
.-
-‘-
.
. ¥
'
e o
Ll £
- T‘-
.
-h-
-ﬂ-
-h-
.
.
'n
=
.......................
Pl 4 a7 e Tl i

W IO
s R ot
et ot '
...h__..\...“_.._. vhuﬁ..__ :

%
Soxsimmmrrriie

P ol S Sl R L g Ly L d L Il e

P U el T el e e e e i

E il Bl i i i e i Y

r

P L e e Y

L T

I

e e e e

PR B B

ey el ey

Ly L e e e L y o h

el el ey ny + L] L n 4

[e o e e el Tl i

Lo i iy N g N

Y Bk Ty o Rk R Dol g NN

...........

A Al e

: i
. Py ;

R A A A A A A A A

RiIG. 7A

U.S. Patent Jun. 28, 2022 Sheet 16 of 21 US 11,372,632 B2

.....................................

dentily

Derived LRB Control Block e} T Pw
, fransform /7

ioutt

Service! " e

Contral | | Cirdin | ¢

| Application |
B3

. Component foo A e

111 Cliow?

L { Transform \ [

\ Program

816 R = S o
P Liriowt3
814

5. 8

U.S. Patent Jun. 28, 2022 Sheet 17 of 21 US 11,372,632 B2

 Service

o
Coritral Path

raiapsati

D
Caontrol Path

nnn [g I B o TR Y YR O YU RN "N] YR N N WY VPN R

Condrol Fath
- -

Datapain

Liatapath

TR o
Contrnd Path

Ty .
Condrof Path

Datapath

Datapath

M4

U.S. Patent Jun. 28, 2022 Sheet 18 of 21 US 11,372,632 B2

mm SErvice LFB

R de e S B R P R R R

Controt Block e Transform T
M hﬁxﬁ.ﬁu"““‘-‘t'ﬁh% s fi 1 2%) 1_#..-1&-1.-&““*.:#"#
*Mﬁ% A & b e e ke o A o A = TR i
| i SEVICEd serviceid] dowr_ tﬂaﬁ% < | down_rate down_burst
) s:t&*ltjg:} ' voly iii}fm ,
1146 . 1428
Eﬁf‘t 8&%"3‘!{%{:& LFB ‘i ?22 qqqqq LA AR A P bRk

Datanath Bilook -
T e 1113 1168b
\ B Rrvaowerl |
E;a:!:} " _ | | :WW%WW t \?:;.f o _egress| T
- ' Wg - Fyoseded }v(23 m‘ " L ra Q*’*’T’WW 1164 1120
1112 $13 P instance: Drop |

HER: Policer ;1102 3?1663
j agmzm

instance: u : RN 101 2 T .
RSWANCE UP POy pebae e

fram agress
114

Wﬁ'ﬁ j ._
HF8Oropper - P TV T a— :

P §:z ;t
instance: Urop ﬁﬁé}i:: H{%ﬁa } HLFE Policer 1104
NGress i; Rmaﬁance down_pol |

US 11,372,632 B2

Sheet 19 of 21

Jun. 28, 2022

U.S. Patent

Yy
e

v,

u._._

N a s PR
I e e e T

natr

e

A A T A e

-

b

. ?""‘f‘i*-"-.h};:-.'

o
T
O B L

i‘
®
%

.
S

RN
RSEERE

&

:'!hl{‘;'r

"{'-.u)
Bl

asr,
ol
vidus
e,
an

%

i i b

- a
4 ke w T
'

iiiiiiiiiiiiiiiiiiiiiiii

) o R LM,) L] a

LA

oo oy oy

Li

....................

.......................

PG, 11

US 11,372,632 B2

Sheet 20 of 21

Jun. 28, 2022

U.S. Patent

ST

L htt'ﬁttithitithii.itlithi.i.ii.lhii.‘l.'i.i.ithttithiti‘ttithtltthitiilitttt*ﬁ

111

..

-
*
-

- e
NN N OO S

X -,:K?'i:u:*..
: 'K""*-'--.

K
g

IO DR LR ARSI AR RS EE L L

S

llllll

L

L L L
- ':”'u";_':..‘-.."ﬂﬂ:ﬂ.;l.\'.l.ﬁ.'.'-.,‘hﬂ"n."ﬂﬂu'\‘.‘q:‘f"":“ -
~:
"

TSR

"

h 1111111111111111111111111111111111

&
1284

111

~ &

1202

o o o o L i]

D
AR

W

o

w
B oL
Akl

4
.. T

o r o oo N Fa

iiiiii

.....................................

D ol

207

111

FiG, 12

U.S. Patent Jun. 28, 2022 Sheet 21 of 21 US 11,372,632 B2

1300

1302

Receiving a network tunction detinition

Receiving one or mare templates comprising preprogramed codes in a
preset format

1306

-‘;.H...E-:"E-m

'y

n

n

n

..

..

1-

1.

1.

1-

..

..

I-

II

II

.I'

L .
L

L .
W :
. e

" .

" 3

L

| compiling, at the processor, the network function definition and the one |
o more tempiates by providing key terms from the network function |
gefinition to the one or more tempiates

— 1308

"u
LY
'
.
w

generating the target codes

FiG. 13

US 11,372,632 B2

1

SYSTEMS AND METHODS FOR CREATING
AND DEPLOYING APPLICATIONS AND
SERVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority from U.S. provi-
sional patent application No. 62/935,355, filed Nov. 14,
2019, entitled SYSTEMS AND METHODS FOR CREAT-
ING AND DEPLOYING APPLICATIONS AND SER-
VICES, which 1s incorporated in this application by refer-
ence.

FIELD

The present application relates to automated creation of
pristine network infrastructure from a model intent, in
particular to systems and methods for automated generation
ol network functions and services, their respective deploy-
ment and control and management.

BACKGROUND

The exponential growth of network data [Refl] has called
to question the traditional ways of deploying and operating,
infrastructure. There are not enough humans or time to
operate inirastructure in the traditional approach. The status
quo modus operandi 1s no longer sustainable from an
economics (CAPEX and OPEX) point of view. To address
these challenges an equivalent to the “industrial revolution”™
for compute and network infrastructure has been energized.

The desire to introduce new features in reasonable time
frames, as well as reduce associated growth costs, has
galvanized the dawn of an attempt for massive automation
of network and associated compute infrastructure opera-
tions. A lot of eflort has been mvested 1n the last few years
towards Application Lifecycle Management (ALM) orches-
tration, Software Defined Networking (SDN) and Network
Function Virtualization (NFV).

Infrastructure orchestration 1n the form of ALM systems
such as Openstack and Kubernetes have seen adoption as
part of the resolution towards compute scaling. Such sys-
tems are focused 1n deploying applications and managing
their life cycles.

SDN (the separation of control plane from the data plane)
enables parallel development of the two planes by possibly
two different organizations or suppliers. As a result, SDN
accelerates the development of network services and reduces
the mvolved costs by enabling competition from multiple
inirastructure suppliers (from each plane).

The FETSI Network Function Virtualization (NFV)
attempts disaggregation of hardware from software. Ideally,
the NFV 1s to disaggregate supply of Network Function
solftware away from the required hardware to execute the
Network Function. Ideally multiple software vendors can
supply competing solutions to the NFV consumer.

Although there are noticeable improvements to address
the aforementioned scaling issues, there are still many
outstanding challenges.

For example, substantial human interventions and higher
crafts skills are required on the creation and operations in the
new inirastructure approach. Infrastructure Application
Litecycle Management (ALM) orchestration systems like
Openstack and Kubemetes have very high learning curves.

Skills to write custom SDN applications and Network
Functions are also hard and thus expensive to acquire and

10

15

20

25

30

35

40

45

50

55

60

65

2

maintain, and substantial technical personnel skills 1n net-
working and compute operations are needed.

As well, each organization’s network infrastructure 1is
highly different as the needs of different organizations vary.
As such, services and applications deployed across diflerent
organization network infrastructures vary in network func-
tional requirements and services needs.

The status quo service creation approach 1s to put together
network functions in a *“square-peg-round-hole” approach,
in which the service has to be created out by adjusting
available vendor supplied network functions to fit the ser-
vices of the clients.

It 1s desired to quickly deploy network services to meet
evolving functional requirements or to address security
1SSues.

However, the desire to be able to customize infrastructure
and services based on business needs remains an important
requirement across the board.

The current approach to resolve this challenge i1s to
migrate inirastructure to managed cloud services who have
under their employ high skill personnel; the extra cost in
operations 1n the cloud i1s justified in exchange for the
expertise provided by the cloud provider.

Cloud operators provide bundled infrastructure services
and when possible up-sell on extra functions that organiza-
tions may desire to meet their needs when not covered by the
basic cloud functions.

For extra Network Functions (required for specific orga-
nization’s business needs) not offered by the public cloud
operators, a current trend 1s to purchase these functions or
services from either incumbent box vendors (1n the form of
NFV appliances) or the new emerging industry of ISVs (in
the form of cloud infrastructure extensions).

To summarize, to substitute the legacy vendor supplied
network pre-packaged-box-with-software, organizations are
building dependencies on: cloud operators providing basic
infrastructure functions; NFV appliance vendors, who are
mostly the same legacy box vendors repackaging their box
software 1n a VM or a container.

A brand of emerging ISVs who typically deploy XaaS
operations on public cloud.

Incumbent network box vendors have opted, so far, to
maintain their existing business models; they package their
existing hardware appliance functions into VMs and require
that customers buy an appliance-per-network-function —a
continuation of the round-hole-square-peg quagmire. Addi-
tionally, every Network Function has a lock-in to the ven-
dor’s NFV appliances which 1s tied to the use of the
vendor-proprietary interfaces for appliance-control. For
example, migrating from a CISCO™ firewall Network
Function to an equivalent one oflered by Palo Alto™
requires acquisition of new operational knowledge which 1s
costly.

While there 1s a good calculus on the deployment auto-
mation aspect with NFV, the current approach defeats an
NFV main value proposition that one could use what they
need for their business goals and when desired migrate to
different vendors for a specific Network Function on a
need-to basis.

On the other hand, the nouveau ISVs ofler specific
software solutions (example orchestration enhancements
addressing new semantics or security soltware-as-a-service)
and typically tiered license-based pricing models based on
the number of deployed nodes. The ISVs also typically offer
customized changes to their solutions for a fee.

This calls out for vanations 1n ISV products and customi-
zations to accommodate for the business logic. The impli-

US 11,372,632 B2

3

cation to consumers includes extra capital costs for the
customizations, extra recurring/operational fees for mainte-
nance of the customizations, more importantly, time to value
(1.e to get these features in place for consumption and
stabilization) 1s often high.

There 1s a need to deliver new Services and functions
quickly and at large infrastructure scale.

The ALM compute infrastructure world has moved to
address this requirement with an approach of continuous
development and deployment termed “devops”—which
allows introduction and updates to compute infrastructure at
high velocity. This 1s not the case with the networking world.

In the networking world reality 1s still defined by what
was described earlier as the round-hole-square-peg quag-
mire. The network box vendor approach 1s to standardize
products around “fixed” network functions and then building,
services from said functions.

SUMMARY

The systems and methods disclosed in the present appli-
cation aim to reduce human intervention for creation of
pristine new Network Functions(NFs) that are used in ser-
vice creation, to reduce human intervention, and to improve
acceleration for service creation using existing or newly
created NFs.

In an embodiment, there 1s provided a method for gen-
erating target codes for one or more network functions for
execution 1n a network, comprising: receiving, at a proces-
sor, a network function definition; receiving, at the proces-
sor, one or more templates comprising preprogrammed
codes 1n a preset format; compiling, at the processor, the
network function definition and the one or more templates
by providing key terms from the network function definition
to the one or more templates; and generating the target
codes.

In another embodiment, there 1s provided a system for
generating target codes for one or more network functions
for execution in a network, comprising: one or more network
definitions modules; one or more preprogrammed templates
modules; and a processor configured to: receive a network
function definition from the one or more network function
definitions modules; receive, at the processor, one or more
templates selected from the one or more preprogrammed
templates modules, wherein the one or more templates
comprises comprising preprogrammed codes 1n a preset
format; and compile, at the processor, the network definition
and the one or more templates by providing key terms from
the network definition to the one or more templates; and
generate the target codes.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example, to the
accompanying drawings which show example embodiments
of the present application, and in which:

FIG. 1 1s a block diagram of a creator system, according,
to an embodiment of the present application;

FIG. 2A 1s a block diagram of a creator Tooling when the
target 1s a Network Function(NF);

FIG. 2B 1s a block diagram 1llustrating a creator Tooling
when the target 1s a Network Service;

FIG. 2C 1s a block diagram illustrating Service Deploy-
ment;

FI1G. 2D 1s a block diagram illustrating different phases of
the service creation and deployment;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a block diagram 1illustrating a runtime service
intent realization via a closed loop feedback control system,

according to an embodiment;

FIG. 3A 1s a block diagram illustrating an exemplary
deployment scenario;

FIG. 3B 1s a block diagram illustrating a service Deploy-
ment system, according to an embodiment;

FIG. 4A 15 a block diagram 1illustrating an LFB abstraction
as defined by the ForCES standard;

FIG. 4B 1s a block diagram 1llustrating an ILFB structure,
according to an embodiment.

FIG. 4C 1s a block diagram illustrating a control block
structure, according to an embodiment;

FIG. 5§ 1s a block diagram illustrating derivation of a
DLFB which uses a subset components of a source LFB with
an 1dentity transform;

FIG. 6 1s a block diagram illustrating a DLFB Vector
transform, according to an embodiment;

FIG. 7 1s a block diagram illustrating defining a DLFB
using two source LFB s;

FIG. 7A 1s a block diagram 1llustrating a compiler block;

FIG. 8 1s a block diagram 1llustrating a use case where a
DLFB 1s used as the source LFB and performs difierent
transforms for different target destination LFBs;

FIG. 9 1s a block diagram illustrating a sample service
class, according to an embodiment;

FIG. 10 1s a block diagram illustrating a modeling of a
service, according to an embodiment;

FIG. 11 1s a block diagram illustrating a workilow
involved 1n creating and testing a new NF, according to an
embodiment;

FIG. 12 1s a block diagram illustrating a workilow for
designing a service, according to another embodiment; and

FIG. 13 1s a flow chart illustrating a process of generating,
target codes.

Similar reference numerals may have been used 1n dif-
ferent figures to denote similar components.

DESCRIPTION OF EXAMPLE EMBODIMENTS

In the present application, the term “a network function”
(NF) or “network functions” (NFs) refer to a standalone
module that encapsulates both a resource path, such as
datapath, as well as control blocks. In an example, the NF
may be in the form of an LFB or an extended ForCES LFB.
In the present application, a NF 1s derived from extending
the IETF ForCES data model for the Logical Functional
Block(LFB) as will be described in greater detail below. NF
in the present application 1s different from the classical NF
definition of Network Function Virtualization (NFV). The
NFV world has adopted a world of network appliances
packaged into standalone virtual environments.

In the present application, the term “a Service” or “Ser-
vices” refer to a collection of NFs acting 1n unison to process
packets with a specified goal or intent. NFs are composed
into a service as a graph with a specified processing flow.
Relevant NFs of a Service can be deployed and integrated 1n
the control infrastructure needed to achieve the desired
service intent or goal.

The creation and injection (or implementation or deploy-
ment) of new NFs and Services 1s an orthogonal role to the
underlying SDN policy management and control. In one
embodiment, a service deployment i1s tasked to an ALM
orchestration system such as kubernetes, openstack, etc., and
the SDN system 1s 1in charge of management and control.

FIG. 1 illustrate an example of a creator system 100. As
illustrated 1n FIG. 1, which shows an overview of the tooling

US 11,372,632 B2

S

for creation of NFs and services, a human interface 102 may
specily the mtent by a human operator 101 for a target. The
human interface 102 takes input from a human operator 101
and uses existing tooling helpers and libraries 104, such as
a library of existing NFs or a library of existing Service
templates, to generate a definition for the intended target.

Alternative to the human interface 102 1s a machine
interface 106 which may use runtime policy, machine leamn-
ing, and the like to prescribe the target definitions. The
machine interface 106 may receive mput from either real
time or pre-collected network data 107, instead of from the
human operator 101, and deduces the target intent. Similar
to the approach taken by the human interface 102, the
machine interface 106 may utilize target helpers and librar-
ies 104 to generate the intent.

Target Definition 108 1s specific to the approprate target,
such as a NF, a service, a LFB, etc. A transformer 110 may
receive the Target Definition 108 as input and generate target
codes and all necessary artifacts 112, and test cases and
simulation manifests 114.

FIG. 2A illustrates a system 200 for creation ol NFs
and/or services and generation of codes for the target, when
the target 1s a Network Function(NF). As illustrated 1n FIG.
2A, a network function builder and human interface 202
may specily the NFs intent. The human interface 202
receives mput from a human operator 201 and uses existing,
tooling helpers and libraries 204 to generate a definition for
the intended one or more targets or NFs.

Alternative to the human interface 202 1s an machine
interface 206 which uses machine learning to prescribe the
NF specification. The machine interface 206 may receive
iput from eirther real time or pre-collected network data
208, mstead from the human operator 201, and deduce the
target intent. Similar to the approach of the human interface
202, the machine mterface 206 utilizes target helpers and
libraries 204 to generate the intent.

ILFB/DLFB Definitions 210 are examples of NF defini-
tions including LFB defimitions, which describes the net-
work function(s) of a module 1s supposed to achieve in its
datapath as well as control path. NF definition describes the
NF 1ntent.

A compiler 212 receives ILFB/DLFB Definitions 210 as
input and may generate: control path code 214 which may
include shared libraries, CE applications, application shared
libraries and FE shared libraries; datapath code 216 which
includes Kernel Module, SDK API, eBPF, p4, FPGA, etc.;
test cases and a manifest 218 which 1s used by a simulation
environment to execute the validation testing. The compiler
212 may be implemented by a processor.

The execution targets 215 1in FIG. 2A may compile the
generated target codes to binaries or machine code and
execute the binaries or machine code compiled from the
control path codes or data path codes. For example, control
code may be compiled to run 1n an ARM processor or intel
X86 processor.

As described above, a Service comprises a plurality of
NFs working 1n unison to achieve a defined service intent.
For example, a service intent may be to provide upstream
and downstream bandwidth management as illustrated 1n
FIG. 10. A NF intent for a service intent may be encoded 1n
the NF or service definition. FIG. 3 described below may
implement the NF intent or service intent.

FIG. 2B illustrates a system 250 for generating target
codes for one or more NFs and services when the target 1s
a network service or a Service. In FIG. 2B, a human
interface 202 may be used to specily the service intent. The
human interface 202 may receive mput from a human

10

15

20

25

30

35

40

45

50

55

60

65

6

operator 201 and use existing tooling helpers and libraries
204 of NFs to generate a definition for the Service.

Alternative to the human interface 202 1s a machine
interface 206 which uses machine learning to prescribe the
service specification. The machine interface 206 receives
input from eirther real time or pre-collected network data
208, instead of the human operator 201, and deduces the
target intent. Similar to the approach taken by the human
interface 202, the machine interface 206 utilizes target
helpers and libraries 204 of NFs to generate the intent.

The service definition describes the intent that the service
1s to achieve 1n its datapath as well as control path. In one
example, the service definition may be in the form of SLFB
definitions 220, such as an extended ILFB definition. A
compiler 212, which may be a processor, may receive SLFB
definitions 220 and templates 240 as inputs, and generate:
Service Frontend 222 as a service interface, which may be
protocols or APIs to communicate with an external entity,
and artifacts to be deployed at a CE; Service Backend 224
which may include a datapath interface to be described
below, and artifacts to be deployed at the FE; Test cases and
simulation 226 for executing the validation testing; and
Service Manifest 228 which describes the manners to deploy
the composition of NFs. The service front end 222 may
include shared libraries 222a, service APIs 22254, and service
application 222¢. The service backend 224 may include
shared libraries 224a.

In an embodiment, a system 200 1s for generating target
codes for one or more network functions for execution 1n a
network. The system 200 comprises: one or more network
definitions modules; one or more preprogrammed templates
modules; and processor or compiler 212 configured to:
receive a network function definition 210 from the one or
more network function definitions modules; receive, at the
processor or compiler 212, one or more templates 240
selected from the one or more preprogrammed templates
modules, wherein the one or more templates comprises
preprogrammed codes 1n a preset format; compile, at the
processor or compiler 212, the network definition and the
one or more templates by providing key terms or parameters
from the network defimition to the one or more templates
240; and generate the target codes based on the prepro-
grammed codes and the key terms provided from the net-
work function definition 210.

In an embodiment, the system 200 further comprises a
machine 1terface 206 1n communication with the processor
or compiler 212 for creating the network function definition.

In the present application, a “module” can refer to a
combination of a hardware processing circuit and machine-
readable instructions (software and/or firmware) executable
on the hardware processing circuit. A hardware processing
circuit can include any or some combination of a micropro-
cessor, a core of a multi-core microprocessor, a microcon-
troller, a programmable integrated circuit, a programmable
gate array, a digital signal processor, or another hardware
processing circuit. In the present application, the network
definitions modules and the templates modules may be a
combination of a hardware processing circuit and machine-
readable instructions for generating network definition 210,
and the templates 240, respectively. FIG. 2C illustrates the
abstraction for deploying services. In FIG. 2C, a human
interface 230 may select from a library of service manifests
and helpers 234 created by the Service Designer aided by
service deployment tooling helpers.

Alternative to the human interface 230 i1s a machine
interface 236 which may use machine learning to select the
service to be deployed. The interface 236 may receive input

US 11,372,632 B2

7

from either realtime or pre-collected network data, instead of
the human operator 201, and deduce the target intent.
Similar to the approach taken by the human interface 230,
the machine interface 236 may utilize tooling helpers and
service libraries.

The service deployment compiler 240 uses the service
manifest definition 228 as 1ts mput and generates nstruc-
tions for a selected Service orchestrator system 242 on how
to deploy the service. The orchestrator system 242 1s depen-
dent on the underlying sample space includes: Kubemetes,
Openstack, etc. The orchestrator system 242 may deploy
production infrastructure 242q and test infrastructure 24254.

FIG. 2D shows diflerent phases of the service creation and
deployment. In FIG. 2D, the NF designer defines and
validates the NFE, the service designer defines the NF com-
position for a Service as well as validating the Service based
on the validated NFs, and the service deployer deploys the
Service 1 the NFs of a given infrastructure.

Operator inirastructure, such as a plurality of processors
or machines which can be used as a canvas for deployment
can be repeatedly revised with respect to NFs and services.

The target codes generated in FIGS. 2A and 2B for one or
more NFs and services may be implemented in a SDN
system. Illustrated 1n FIG. 3 are three abstraction layers that
are typically present in an SDN system 300: the service
interfaces layer 302, resources layer 306, and resource
interfaces layer 304 which bridge between the service inter-
taces layer 302 and the resources layer 306. At the top of the
hierarchy reside services and applications 308. The interface
at each of the layers vary in granularity and any protocols
may be used for communication between different layers.

Services and applications 308 invoke service the resource
control APIs, which may be utilizing a protocol like Hyper-
text Transier Transport Protocol (HTTP), to actuate specific
resource behavior or to simply request a snapshot of
resource state and configuration; such a request will be
delivered to a resource actuation interface, which may be
utilizing a protocol such as ForCES, where 1t eventually 1s
relayed to the underlying resource via one or more APIs.

Services and applications 308 may participate 1n collect-
ing telemetry by either polling or request periodic telemetry
data from the service interface 302. Likewise, the service
analytics engine collects the telemetry data on 1its south-
bound interface by either polling or requesting for periodic
delivery of data from the resource interfaces 304. The
resource interfaces 304 will either periodically poll the
resources for telemetry data or subscribe to resource telem-
etry related events (which are delivered asynchronously by
the resources). Analytics data granularity gets more refined
in the southbound direction and richer 1n contention aggre-
gation 1n the northbound direction.

FIG. 3A 1llustrates an exemplary abstraction of a deploy-
ment scenario for FIG. 3. At the lowest layer of the abstrac-
tion are the packet processing datapath resources 306, such
as ASICs, NPUs, software based datapath, etc. Typically, the
datapath 1s colocated with a resource control agent (FEd 1n
FIG. 3C). The resource agent (FEd) communicates with a
control agent (CEd in FIG. 3C), typically using a protocol
such as ForCES or OpenFlow 1s used between those two. On
top of the control agent 1s a service agent that acts as a bridge
between services and the control agent. On 1ts north-bound,
the service agent oflers an interface for service applications.
A service application may 1ssue requests to a service agent
which may be translated by the service agent as requests to
one or more control applications. The control application 1n
return will take a service agent’s request and translate 1t as
a request to one or more control agents. The request hier-

10

15

20

25

30

35

40

45

50

55

60

65

8

archy continues with a control agent breaking down the
control applications request into one or more resource agent
requests. And finally, a request reaching the resource agent
1s submitted by the resource agent to the resource. It should
be noted that all the indicated agents and applications as well
as resources may reside in the same hardware but are
typically distributed 1n order to allow for scaling.

FIG. 3B illustrates an exemplary physical hardware or
virtual distribution of the deployment described in FIG. 3A.
Service agents and service applications may sit 1 the
plurality of physical or virtual machines labelled as “Ser-
vices host/server” 320. Control applications may reside in
the plurality of physical/virtual machines labelled as “Con-
trol Application host/server” 322. Control agents may reside
in the plurality of physical/virtual machines labelled as “CE
host/server” 324. The resource agents may reside in the
plurality of physical/virtual machines labelled as “FE host/
server” 326 where the resources may also be colocated.
Network Function And Services

In the example, an IETF ForCES data model 1s used as the
basis for defining Network Functions and Services control.
ForCES Data model(RFC 5812) defines: 1) Operational
Components to control the behavior of the resources/data-
path as dictated by the control plane. Components can be
created, read, updated and deleted via the control interfaces;
2) Operational Capabilities to describe the abilities and
constraints of each LFB (example table sizes etc). Capabili-
ties can only be read via the control plane 1nterfaces; and 3)
Operational Events to describe reports that are emitted by
LFBs. Events can be subscribed-to via the control plane
interfaces.

FIG. 4A illustrates an LFB abstraction 400 as defined by
the ForCES standard. LFB abstraction 400 may include a
control block 401, which may i1nclude Operational Compo-
nents 402 for controlling the behavior of the resources/
datapath as dictated by the control plane, Operational Capa-
bilities 404 for describing the abilities and constraints of
cach LFB, such as table sizes etc., Operational Events 406
for describing events that are emitted by LFBs. datapath
Input ports 408 and datapath Output ports 410 along with
description of allowed data and metadata. Events 406 are
subscribed to by the control plane.

In some examples, the ForCES LFB may further include
a separation ol control and datapath blocks as coupled
blocks; additional ports at the control entry points to allow
for control data as input/output (see FIG. 3B and FIG. 4), or
ports only for the datapath (See FIG. 4A), access control for
both control and datapath to differentiate CRUD(Create/
Read/Update/Delete) permissions for operational compo-
nents as applied from either the control plane or data plane,
formalized LFB Ports to include a definition that allows
parsing in the input direction and deparsing 1n the output
direction; an optional “program” construct to the data
model, Programs are associated with either datapath or

control ports, and various types of programs can be defined
(as will be described later—see FIG. 3B and FIG. 4);
Infrastructure LFB(ILFB) and Derived LFB(DLFB), ILFBs

are tied to resources whereas DLFBs are tied to (re)model-

ling based on dernivations from one or more ILFB; and
Service LFBs (SLFB), which 1s a specialized DLFB that

constitutes a composition of ILFBs 1n a graph.

With these new semantics for both data and control paths,
code generation can be formalized for both the datapath or
resource level as well as the control level.

US 11,372,632 B2

9

Network functions (generated from LFBs) are executed
on Execution . = Ele-

Engines (EE s) remdmg on Forwardmg
ments(FEs). An Execution Engine (EE) 1s “a resource can-
vas for execution of NFs”.

There are two types of EEs: 1. Pre-populated EEs, which
are typically “fixed NFs”. Examples of such EEs are imple-
mentations of NFs 1mn ASICs or software that 1s not dynami-
cally replaceable. Such functions come pre-packaged with
the underlying operating environment; IOW, they are avail-
able whether you use them or not and have long lifetimes (1.¢
replacing them takes relatively longer time and efiort). For
hardware variants, such types of functions are built 1nto
ASICs. For software variants, such types of functions can be
in-kernel code that can only be changed after going through
a lengthy exercise of developer interfacing.

2. “Open Canvas” EEs, which are EEs allowing for either
arbitrary NF execution (example i CPUs, GPUs) or a
specific type of NF (e.g. P4 match/actlon based NFs).
Dynamic functions are ILFBs that can be loaded on demand
and executed at runtime on behall of a service. For hard-
ware, dynamic programs which can be loaded on a hardware
“canvas” {it this description. For example, P4 hardware,
FPGASs or other infrastructures like smart NICs can be used
for such functionality. For software, kernel modules, ebpf
code or even user space code fit into this category.

A Network Function 1s modelled as an ILFB. FIG. 4B
illustrates an ILFB structure, according to an embodiment.
An LFB class 1s defined using the ForCES data modelling
language. Once an LFB class 1s instantiated at runtime, the
control block allows access to the LFB 1nstance’s Compo-
nents, Capabilities, and Events.

The control block data 1s shared by the datapath (east-
west) and the control path (north-south). The control path
reads, writes, or deletes control constructs (such as LFB
components) and the datapath uses control constructs.

As 1llustrated 1n FIG. 4B, the NF resources are interfaced-
to via the control and data planes. The control elements or
artifacts are defined using the ForCES data model.

In FIG. 4B, LFB ports are unidirectional. LFB ports
ingress data and metadata into an LFB to an LFB program,
and/or egress data and metadata from LFB programs out of
the LFB. These rules apply to the ports of both a control
block and a datapath block (see FIG. 3B).

FIG. 4B shows LFB ports at both the traditional East/ West
direction dpathin and dpath outl and dpathout 2 as specified
by the ForCES standard.

On every ingress LFB port, a parser abstraction extracts

necessary data and metadata from the input as pre-deter-
mined and feeds the extracted data and metadata to the
attached program. The parser recognizes the relevant data as
specified in the LFB definition which describes the data or
metadata type (which describes the size as well) and where
to find 1t on 1nput. An optional instantiation-time or run-time
filter can be used to further refine the specified data allowed
1.

FIG. 4B 1llustrates a single datapath input port(“dpathIn’)
322 feeding into a datapath program “foo” 324 and two
egress ports “dpathOutl™ 326 and “dpathOut2” 328 that are
fed data and metadata by the same “fo0” program 324.

At every egress port 326 or 328, there 1s an optional
deparser abstraction which may be used to construct and
format the data and metadata that 1s expected out of the LFB
port.

From a datapath resource perspective, each NF 1s embed-
ded with programmable intelligence, such as Datapath Pro-
gram 100 324 1n FIG. 4B. The runtime “Program™ may be
implemented by a processor, and 1s essentially the resource

10

15

20

25

30

35

40

45

50

55

60

65

10

mediator; the runtime “Program” reads the control informa-
tion to decide on the treatment of mcoming data and/or
metadata and on results to send out to the egress ports. The
“Program” may update the control block 330 by updating
state information or generating events towards the control
path.

The LFB “ports” 322, 326, 328 in FIG. 4B (whether
East-West or North-South direction) allows diflerent pro-
grams type mnstances attached to those ports. As an example,
a sample NF may expect packet data at Layer 2 alongside
associated metadata which specifies the protocol of the
packet data. An LFB program at the socket layer on the other
hand may have very diflerent expectations and signature,
both defined by the “port” details.

FI1G. 4B 1illustrates a control block 330, where control data
resides, accessed on its north by control applications (or
other LFB control blocks). The control interface used by
control applications, per ForCES specs, may have two types

of APIs: request-response (RR) and publish-subscription
(PS) of events.

FIG. 4C details a control block 330 exposing a more
claborate use of programs and mput/output ports. For 1llus-
tration purposes both northbound and southbound of FIG.
4C show a control plane interface where control applications
or other upstream or downstream LFB control blocks may
access the 1llustrated control block via the input and output
ports. Downstream or upstream control applications or LFB
blocks may use ForCES semantics for reading and writing
which manifest as request-response (RR) or publish-sub-
scribe (PS) interfaces. For illustration purposes, a simple
operational component 1n the form of a table 331 1s shown.
The table 331 may be written to by control applications or

other LFB control blocks via programl 332a or program2b
334. The table 331 can be read from via programlb 33256 or

program3 342. The “CtrlIn” ports 336, 338, and 340 are used
to abstract the interface from the control applications and
other LFB control blocks to control block 330.

CtrlOutl and CtrlOut2 ports 337, 338a and 3385 are used
to 1llustrate the 10 towards control Applications or other
LFB blocks. From a ILFB perspective, both the “Cirlin” 336
and CtrlOut 1 and Ctrlout 2 ports 338a, 3385 abstract both
of the RR and PS interfaces.

In FIG. 4C, a “program” 1s attached to either the Cirlln 1
port 336 or CtrlOut 1 338a or CtrlOut 2 port 338b. This 1s
in concert with the model extension of an optional “pro-
gram’ attached to either mput or output port illustrated 1n
FIG. 3B. In an ILFB, these programs are intended to perform
transformation of the data incoming to the LFB instance
control block 330 or outgoing from the LFB instance control
block 330.

Although FIG. 4C uses a control block 330 as an example,
the principles described 1n FIG. 4B are applicable to both
resource blocks or datapath blocks 350 1n FIG. 4B.

For example, 1n FIG. 4C, incoming data from the appli-
cations (or other LFB control blocks) arrives at Ctrlln 1 port
336. The mput Ctrlln 1 port 336 first parses the incoming
data for the data and metadata of interest. The data and
metadata 1s then passed on to programl 332 which trans-
forms data and metadata 1nto a format suitable for storing
into the operational table component 331.

As 1llustrated 1n FIG. 4B, the datapath may trigger reading
of one or more operational table component 331 (or a subset
of the component) which 1s delivered via CtrlOut 3 port 336
to the resource/datapath. In this example, the “program”
components programl, program 1b, and program2b are
optional.

US 11,372,632 B2

11

The applications and connected control blocks may also
write to the operational table component 331 by submitting
via Ctrlln 2 port 338, which parses data and passes on to
Program2b 334 which transforms the data into the table
component for storage at table component 331.

The control block 330 may also be triggered to generate
an event either by a timer or other triggers. This may result
in a program reading one or more components from table
component 331, transforming the data, and then transmitting
the transformed data out via a port, for example, CtrlOut 1
338a.

Dernved LFB(DLFB)

In some examples the LFB may be a dennved LFB
(DLEFB), which 1s a meta LFB derniving 1ts constructs from
one or more ILFBs. Sometimes, different operational views
from multiple LFBs are needed to formulate service intents
as well as rich control applications. DLFBs provide a virtual
view ol resource data derived from one or more LFBs.

To model such virtual views, we borrow i1deas from the
world of database “views” with some caveats:

Extend the “view” concept to be centered around LFB
constructs (instead of SQL table focus). In the database
view world the result constructs are “virtual” tables
whereas DLFBs are equivalent to “Virtual” LFBs.

A DLFB component 1s stored unlike in database views
where they are dematenalized (not stored but rather
reference derived values).

In database views the virtual fields are “selected” runtime
entities; whereas 1n the case of DLFBs they are derived
as defimtions. Runtime mapping of values to views
happens after a DLFB 1s instantiated.

A DLFB component has directionality(read-write)
whereas a database view 1s typically read-only (You
could do writes on table views 11 the key 1s part of the
view but that use case 1s uncommon).

A DLFB component value can undergo a variety of
transformations at runtime (by the program) before 1t 1s
written-to or after 1t 1s read from; whereas a database
view of a field, when possible to write to, undergoes an
identity transformation since it 1s 1dentical to 1ts origi-
nal storage.

DLFB Sample Use Cases

In this section we demonstrate a few examples of DLFBs
control blocks. The figures show the control ports in the
cast-west flow direction mstead of north-south for conve-
nience of illustration.

FI1G. S shows derivation of a new LFB which uses a subset
of another (*Source”) LFB’s components with an identity
transform. In FIG. §, a simple source LFB 3502 definition
with two scalar components S1 and S2. The source LFB 502
1s a DLFB. The DLFB derives the S1 component from the
source LFB 502. The DLFB control block 503 input port
Ctrlln 504 expects only the S1 component as input, and 1ts
associated parser rejects any mput that does not match the S1
component data.

FIG. 6 shows a source LFB 602 with a defined table
component named ports 604. the DLFB control block 606 1s
derived from source LFB 602. The DLFB has a component
(table) Dports 608, which have two components RxB and
1xB.

The DLFB 606 1n FIG. 6 accepts as mput one or more
unmodified rows of the ports table 604 1n its input port Ctrlin
610. The parser of Ctrlin port 610 1s configured to extract
two components from each incoming ports table row,
namely: RxB and TxB. The port CtrlIn 610 then transiorms,
by the transform program 612, the values of two compo-
nents, for example, by computing rate over time and uses the

10

15

20

25

30

35

40

45

50

55

60

65

12

results to update relevant row content on Dports/{RxR and
TxR}. Computing the rate of a variable over time is a
common operation in analytics for example.

FIG. 7 illustrates that a DLFB 702 1s defined by using two
source LFBs 704 and 706. The DLFB 702 adopts a scalar
component S2 from the LFB 704 and a vector table ports
from the LFB 706.

The DLFB 702 1n FIG. 7 has a component or table Dports

whose rows have two components RxB and TxB, which are

a transformation from the ports table 710 of the source LFB

706 (component RxB and TxB). The DLFB 702 also has a
scalar component S2 which 1s derived using the identity
transform from 1ts source LFB 704. The mput ports of the
DLFB 702 know how to parse relevant data and pass the
parsed data on to the transform program 712. For example,
port CtrlIn2 714 extracts the RxB and TxB components only
from the imcoming table data 710, and port Ctrllnl 716
parses scalar component S2 from the incoming data from
LFB 704.

FIG. 8 1llustrates an exemplary use case 800. In FIG. 8, a
DLFB 802 i1s used as the source LFB and performs different
transformations for different target destination LFBs, such as
804, 806 and 808. The use case 800 fits into a “service” LFB,
which will be discussed 1n greater detail below. The service
LFB 1s similar to this illustration of abstracting multiple
LFBs from a source service LFB. In the use case 800, the
transformation occurs in the outgoing direction towards the
CtrlOutl port 810-CtrlOut3 port 814.

In FIG. 8, a runtime service application interacting with
the depicted DLFB instance. The DLFB instance control
block 802 transforms requests from the service/control
application 803 wvia Ctrlin port 805 referencing the table
component foo 816 to map to 3 different downstream
(1infrastructure) LFB instances 804, 806, 808 by using trans-
form program 818. For example, ForCES has very simple
APIs: GET/SET/DEL and the program 818 accepts those
inputs and then translates them nto requests to downstream
LFBs. In an example, when a GET, SET or DEL operation
1s 1ssued by the service 803, the DLFB instance transior-
mation program 818 may issue one or more, for example 3,

transactions, one to each downstream LFB to diflerent

destination LFB instances. The requests 1ssued to the des-
tination LFBs 804, 806, 808 may have some of the fields set
to default values since the DLFB i1s only interested in a
subset of the fields. Responses from all the destination LFB
instances are merged before the application 1s responded to.
More details on how a “service LFB” operates will be
provided later.

Example DLFB

The example below shows a DLFB derivation using
YAML. Other data models may also be used for a DLFB
derivation, for example, using an extended RFC 5812 data
model which uses XML.

The YAML prescription below describes an example of a
“HistoGram™ DLFB, which 1s derived from the Hflow LFB.
A plurality of stanzas are used to prescribe a DLFB, includ-
ng:

A list of LFB Components, LFBComps;

A list of LFB Capabilities, LFBCapabs;

A list of LFB Events, LFBEvents;

A list of LFB Input ports, LFBInputs

A list of LFB Output ports, LFBOutputs; and A list of LFB
Programs, LFBProgs.

Listingl below describes an example of details of an LFB

named “HistoGram”.

US 11,372,632 B2

13

Listingl: Derived LFB Sample

LEB:
Id: 7689
Name: “HistoGram”™
LFBComps:
- Comp:
Name: “HG”
Id: 1
Type: “Array”™
Struct:
- From: “/hflow/flows/rtt”
Name: “myrtt”
Id: 1
LEFBCapabs:
- Comp:
Name: “HGcap™
Id: 41
Struct:
- From: “/types/tloat”
Name: “min”
Id: 1
- From: “/types/float”
Name: “max”™
Id: 2
- From: “/types/uint32”
Name: “bins”
Id: 3
- From: “/types/bool™
Name: “cumulative”
Id: 4
default: “true”
LFBEvents:
baselD: 60
Events:
- Bvent:
Name: “HGReport™
Id: 1
Watch: “HG/*”
WatchFor: “Changed™
ReportInfo: “HG/*”
LEFBInputs:
- LEBInput: “CtrlIn”
Id: 1
AllowedData:
- From: “/hflow/hflows”
Extract: *rtt”
LFBProgs:
-Prog:
Type: “Instantiate”
Id: 1
Name: “HGInstantiate™

-Prog:
Type: “Transform™
Id: 2
Name: “HGTP”

Hook: “LFBInput/CtrlIn™

In the example above, 1n the LFBComps, the HistoGram
LFB defines a table named “HG” with a single column of a

component named “myrtt” which 1s derived from the
“hilow” ILFB “rtt” component, which 1s found in the
“flows” table row component of LFB “htlow™).

In LFBCapabs, the HistoGram LFB defines several capa-
bilities which specity the behavior of HistoGram LFB. For
example, the “bins™ capability component defines the num-
ber of buckets or rows of the table “HG” will be present. The
“min” and “max’’ capacities define respectively the Histo-
Gram’s lower bound used 1n bucketing (inclusive) and upper
bound(exclusive). The number of bins and the range derived
from the “min” and “max” values define the width of the
“HG” bucket of equal size. The capability flag “cumulative™
will define whether the HistoGram will be cumulative
(CDF) or not. In this example, the HistoGram is set to be
cumulative.

In LFBInputs, a single “LFBInput” port named “CtrlIn” 1s
defined. This port will accept data structures 1n the form of

10

15

20

25

30

35

40

45

50

55

60

65

14

“hilow” LFB “hilows” table rows. “htlow” table data com-
ing 1 “Ctrlln” will have 1ts “rtt” data extracted then pre-
sented to the program “HGTP” defined in LFBProgs. The
program “HGTP” will then use “rtt” value and update a
counter “myrtt” in specific index of table “HG”. Program
“HGTP” denives 1ts selection of the array index based on the
received “rtt” value. In this example, the program “HGTP”

may be present either as a predefined library or a “helper”
204 1n FIG. 2A.

Services

A service LFB class serves as a blueprint from which
service mstances are created at runtime. A service LFB class
may include a coupling of:

A graph of ILFBs which process packets as per specified
service intent (see FIG. 9).

A special multi-dst DLFB (see the example in FIG. 8) on
the control plane (North-south) that defines service
control knobs derived from specific ILFBs that are part
of the service composition.

Service Definition And Abstraction

FIG. 9 1llustrates an example of a service class comprising
5 NF classes NF1-NF3S 1n a graph. In FIG. 9, the entry point
for the service starts with NF1 and egresses at NF3. Data and
metadata flows NF1 to NFS, namely from east to west. The
NFs 1-5, based on their functionalities, may have varying
inputs and outputs. For example, NF1 has three outputs and
may transition data and metadata to one of NF2, NF3 and
NFS, depending on runtime state or service configuration,
and NF5 has input coming in from any of NF1, NF2 and
NF4. In the example of FIG. 9, NF2, NF3, NF4 each has a
single mput and output port.
Sample Modelling: BW1

FIG. 10 1s an example of modeling of a service “BW1”
illustrated which provides bandwidth services for subscrib-
ers 1n both an upstream direction from subscriber to the
service provider system as well as a downstream direction
from the service provider system to the subscriber. Subscrib-
ers are provisioned via the service interface for different up
or downstream rates, for example, 1 Mbps upstream and 10
Mbps downstream or 2 Mbps upstream and 20 Mbps down-

stream, €lc.
In the example of FIG. 10, the “BW1” service 1100

comprises a BW1 Service LFB Control Block 1100qa, and a
BW1 service LFB Datapath Block 110054. The BW1 service
LFB Datapath Block 11006 includes two Policer ILFBs
1102 and 1104, and two Dropper ILFBs 1106 and 1108. The
Policer ILFB 1102 and 1104 receives at its input port, pol-in
1102a and 1104a, a packet, which may include two meta-
datum: “‘serviceid” and “pktlen”. The metadatum “servi-
ceid” 1s translated by the Policer ILFB to a “Policer index”™
component which 1s used to lookup a configured Policer
instance state. The metadatum “pktlen™ specifies the size of
the packet and may be used for computing cumulative
bandwidth utilization as well as the burst. If the “BW1”
service determines that the cumulative bandwidth or burst of
the packet exceeds the predetermined threshold values, then
the packet 1s sent out to the port “Exceeded” 11025 or 11045,
clse the packet 1s sent out to the port “Conform™ 1102¢ or
1104c.

If the cumulative bandwidth or burst of the packet
exceeds the predetermined threshold values, the Dropper
ILFB 1106 or 1108 receives packets at its mput port “dro-
p_in” 1106a or 1108a and drops the packet. The Policer
ILFB 1102 1s named as “up_pol”, and the Policer ILFB 1104
1s named as “down_pol”. and the Dropper ILFBs 1106 and
1108 are named “drop_ingress” 1108a and “drop_egress”

1106a.

US 11,372,632 B2

15

The “BW1” service mtent may be provided by control
interface 1100a, for example, by configuring the following
parameters:

1. A “serviceid” which uniquely 1dentifies type of service
subscribed by a subscriber;

2. “up_rate” defining service upstream rate ol the sub-
scriber;

3. “up_burst” defining service upstream burst size of the
subscriber;

4. “down_rate” defining service downstream rate of the
subscriber; and

5. “down_burst” defining service downstream burst size
of the subscriber.

These parameters are transformed at the transform pro-
gram 1120 to map to specific parameters of the ILFBS 1102,
1104, 1106 and 1108.

The Serviceid selection used as input into “BW1” 1100
may be achieved by several approaches, including:

An IP address, for example, a source IP address towards
“from_ingress” 1112 and a destination IP address
towards “from_egress” 1114 direction;

A subscriber MAC address, for example a source MAC
address towards “from_ingress” 1112 and a destination
MAC address towards “from_egress” direction 1114.

A PPPOE session, for example an ID at “from_ingress”
1112 and the subscriber destination IP in the down-
stream “from_egress” 1114 direction, etc.

In some examples, the Serviceid 1s set as metadata at the

input ports 1112 and 1114.

The resulting service abstraction 1100 in the SLFB model
1s used to generate the appropriate code and deployment
manifest needed to tulfil the service.

Developer-Less
The present application discloses systems and methods

for NF Code generation, analytics code generation, tooling
for Service Generation and deployment, and improving the
application API usability by introspection. As such, the
systems and methods reduce the involvement or needs for
human developers for these purposes.

As described above, FIG. 2a illustrates a system inira-
structure 200 for generating target codes and creating net-
work functions. In an example, FIG. 11 illustrates a work-
flow 1nvolved 1n creating and testing a new NF.

In the field of network functions, the workflow of a human
operator 201 1s as follows:

1. At step 760, the human operator 201 designs the NF via
the human interface 202 such as a graphical user interface
(GUI). The human operator 201 may use NF libraries and
Helpers 204, including selecting pre-designed NFs for
derivation, etc.

2. The human operator 201 commits the design on the GUI
by clicking “submait”.

3. The GUI 202 consults 1ts backend to validate the design
at step 762 for any constraints:

If there are any 1ssues, an appropriate error message 1s
presented to the operator 201 and control 1s returned to
the design stage.

If no 1ssue 1s 1dentified, the GUI backend creates an ILFB
definition 761.

4. At step 764, the human operation 201 may bind or create

the target. For example, the human operator 201 selects

the target such as P4, a vendor ASIC, etc. and clicks on

“Generate” on the GUI 202 to generate NF artifacts 766.

Using the ILFB definition as input, all the necessary

artifacts, including codes, Maketfiles, etc., for the selected

target are created. In addition, a test manifest 1s also
created.

10

15

20

25

30

35

40

45

50

55

60

65

16

5. The human operator 201 selects the targets (CPU archi-
tecture) for the controller, FE and application plane and
then clicks on “Build”. At this point the GUI mvokes 1ts
backend to use the artifacts in step 4 to compile, 1f
necessary, all the generated code using the appropriate

CPU(ARM, x86, etc) targets selected. It 1s also at this

stage that the code for the datapath execution 1s also built.
At step 768, the human operator 201 may test target codes
in a target execution environment. After step 768, deploy-
able NF artifacts 770 are generated and ready to deploy.
6. At step 772, the human operator 201 may test the
execution of the resulting deployable artifacts 770 by
clicking on “test”. At that point the artifacts built 1n step
5 are deployed to a virtual environment using the GUI’s
backend. Tests generated i1n step #4 are executed for
validation purposes. The user 1s presented with the results
at the end of the test run.
Step 1: Human Interface For NF Creation
In an example, the human operator 1s to create a repre-
sentation of FIG. 4B. An example worktlow for step 1 above
includes:

creating a canvas for the NF by an operator; and

Selecting LFB items. For example, the operator can drag
and drop LFB 1tems from a selection onto the canvas
via a GUI. The GUI allows the operator to interact with
the helpers and other existing ILFBs for either extend-
ing the helpers and other existing ILFBs or creating
DLFBs. Items that can be dragged and dropped into the
canvas include:
a) Control Block

b) Datapath block

¢) Ports that get attached to either control or datapath.

d) Define components, Capabilities and events. Define
CRUD permissions on how both the datapath block
or control block access these control entities.

¢) Defining datapath or control block programs and
their connectivity to defined ports.

Sample Generated LFB Model

Once the operator clicks on the “submit” button, and the
design meets the expected constraints, an LFB data model 1s

generated. The example below shows a sample generated
LFB Listing3A. The LFB name 1s “example” and its 1D 1s

1234. The LFB has two operational components:
an unsigned 64 bit packet counter (named packetcount)
for read and update operations.
a command that 1s sent to hardware (named command).

Listing3A: Sample Generated LFB Data Model

<LFBLibrary xmlns="urn:etf:params:xml:ns:forces:lfbmodel:1.0™
xmlns:xsi="http://www.w3.org/2001/ XMLSchema-instance”
provides="Example’>
<L.FBClassDefs>
<LFBClassDef LFBClassID="1234">
<name>Example</name>
<SYNOpPsis™
This LB 1s an example, for 1llustrative purposes.
</Synopsis>
<version>1.0</version>
<components>
<component componentIlD="1" control-access="read”
resource-access="read update’>
<name>packetcount</name>
<synopsis>Count of packets processed</synopsis>
<typeRef>uint64d</typeRef>
</component>
<component componentID="2" control-access="update”
resource-access="read >

US 11,372,632 B2

17

-continued

Listing3A: Sample Generated LFB Data Model

<name>command</name=>
<synopsis>Command to the hardware</synopsis>
<typeRef>uint32</typeRef>
</component>
</components>
</LFBClassDef>
</LFBClassDefs>
</LFBLibrary>

As defined 1n componentID="1"", the control block 1s only
allowed to read the packetcount component but 1s not able
to update the command component. As defined 1n compo-
nentID="2", the datapath(resource) can both read and
update the packetcount component but only read the com-
mand component.

Step 4: Generating Code

In step #4 above, the human operator generates code. A
compiler 1s engaged 1n this step. In the example of FIG. 7A,
the compiler block 750 of FIG. 7A 1s illustrated 1n greater
detail. As discussed above, depending on the operator’s
choices, three blocks of code may be generated: Control
Path code, Tescases and instrumentation, and Datapath code.

In the example of FIG. 7A, a compiler 750 may use
templates 752 for describing diflerent treatments. Templates
752 are used for transforming the design or NF definitions

10

15

20

25

18

to the target codes. The compiler 750 first transforms the
ILFB definition 754 1nto appropriate target code. The tem-
plates 752 may include:

Transtorm templates for generating the target code.

Optimization templates for optimizing the generated tar-
get codes.

Examples of Optimization templates include:

Get the generated code to take advantage of paralleliza-
tion. For example when generating ebpt target code, the
compiler 750 can be instructed by the NF designer to
create per-cpu tables to avoid locking at the expense of
more eflort from the control plane that needs to access
these tables; and

Target specific optimizations such as loop unrolling, etc.

In an example, 1n order to construct the example LFB of

Listing3 A above, a transform template of templates 752 may
be used for describing a pseudo resource path code genera-
tion 1n a C-like language 1n Listing7A below. The template
1s aware ol the defimition notation of Listing3A. For
example, the template 1s aware of the definitions component
definition: that the component has a name (surrounded by
<name></name> tags), access permission for both the data
path(tagged with “resource-access”) and control path
(tagged with “control-access”). As an example the compo-
nent named “packetcount” in Listing3A grants permissions
of “read” for the control path trying to access it and “read
update” when the datapath tries to access 1t; meaning the
control path could only read the packetcount component but
the datapath could both read and write to 1t. The template in
Listing/ A makes use of these access permission annotations
to generate the necessary code.

Listing7A: Sample Template:

@to(**/dev/stdout™)
@defmac(accessors,ENDaccessors,name)
control__access__(@$(name)(KIND kind, ...)

1

switch (kind) {

case ACCESS_ READ:

@it ((comp__ctl__access(comp__named(libclass,name)) & ACCESS__ R) == {false)
return(ERR_ACCESS__ NOT__ PERMITTED);

(welse

..read @3$(name)...
return(SUCCESS);

@endif

case ACCESS_ WRITE:
@it ((comp__ctl__access(comp_ named(libclass,name)) & ACCESS_U) == false)
return(ERR__ACCESS__NOT__PERMITTED);

(welse

...update @$(name)...
return(SUCCESS);

(@endif
h

resource__access_ (@$(name)(KIND kind, ...)

{

switch (kind) {

case ACCESS__ READ:

@it ((comp__res_ access(comp__named(libclass,name)) & ACCESS__R) == false)
return(ERR_ACCESS__ NOT__ PERMITTED);

(welse

..read @3$(name)...
return(SUCCESS);

(@endif

case ACCESS_ WRITE:
@it ((comp__res_ access(comp_ named(lfbclass,name)) & ACCESS_ U) == {false)
retum(ERR__ACCESS__NOT_PERMITTED);

(welse

...update @$(name)...
return(SUCCESS);

(@endif
h

US 11,372,632 B2

19

-continued

Listing7A: Sample Template:

ENDaccessors

(wcall(accessors,“packetcount™)
(@call(accessors, “command’)

As set out 1 the example of Listing 7A, the sample
template comprises preprogrammed codes 1n a preset for-
mat. In this example, the transform template may be invoked
for each ILFB component, the compiler 750 checks each
component’s control or resource(datapath) permissions and
generates the appropriate code. For example, the component
named “packetcount” in Listing3A will be subjected to the
subroutine “control_access_(@” to generate code for the
control path access. The subroutine will have access to the
component’s name(“packetcount”) as well as 1ts access-
control permissions. It first checks i1 the named component

control-access allows for “read” permission. If 1t does not,

code 1s generated to deny access to the component (C-like
code emitted 1s: “return(ERR ACCESS NOT PERMIT-

TED);”). If'1t 1s permr[ted then code 1s generated first to read
the data value of “packetcount” and then indication of
success 1s returned to the invoker. For the datapath access
control “packetcount” will be subjected through the same
exercise via the subroutine “resource_access_(@”

As an example, the control access in Listing 8A below

relates the code generating to the template and XML listing
3a.

For the LFB model 1n Listing3 A, the template generates
code 1llustrate 1n Listing8A below:

Listing8A: Sample Datapath source code:

control__access_ packetcount(KIND kind, ...)
{
switch (kind) {
case ACCESS__ READ:
...read packetcount...
return(SUCCESS);
case ACCESS_ WRITE:
return{ERR__ ACCESS__ NOT_ PERMITTED);

h

resource__access_ packetcount(KIND kind, ...)
{
switch (kind) {
case ACCESS__READ:
...read packetcount...
return(SUCCESS);
case ACCESS_ WRITE:

...update packetcount...
return(SUCCESS);

h

control__access_command(KIND kind, ...)
{
switch (kind) {
case ACCESS__READ:
return{ERR__ ACCESS__ NOT__ PERMITTED);
case ACCESS_ WRITE:
...update command...
return{ SUCCESS);

h

resource__access__command(KIND kind, ...)

{
switch (kind) {

case ACCESS__ READ:
...read command...
return{ SUCCESS);

case ACCESS WRITE:

return{ERR__ ACCESS__NOT__ PERMITTED);

10

15

20

25

30

35

40

45

50

55

60

65

20

2

As an example, the component or key term “packetcount
which had defined control permissions of “read” in
Listing3 A results 1n generation of routine “control_access_
packetcount” 1n Listing8A, as a result of the template in
Listing /A which will allow reading of that component but
deny writing to 1t by the control plane. Likewise, the
component “command” which had defined control permis-
sions of “update” in Listing3A results in generation of
routine “control_access_command” 1n Listing8A as a result
of the template 1n Listing7 A which will allow writing to the
component but reject the reading of the component. In the
example of Listing8A, the key terms from the network
function definition Listing 3A are provided to the template
Listing /A to generate target codes 1in Listing8A.

At runtime, this code 1s invoked when either the control
or data(resource) path needs to read or write to either the
control or data(resource) paths. The functions with prefix
resource_ are invoked when the datapath accesses the com-
ponents and the functions with prefix control_ are invoked
when the control path datapath accesses the components.
Library Code

Reference 1s made to FIG. 2A, which also shows genera-
tion of control path codes. The control path codes include:

Application library, which may be loaded, at either a CE
level or an FE level, by an SDN platform on demand
when an application references a generated LFB;
= library, which may be loaded by a CE agent, on
demand, to mediate on behalf of the LFB between the
application on the northbound and FE on 1ts south-
bound of a SDN platform;

FE library, which may be loaded by an FE agent to
mediate between the CE agent(s) and the resources
targeted on behalf of the LFB; and
Datapath code, which depends on the target. Illustrated 1n

FIG. 4B are ebpl, P4 and standard kernel modules.

Step 6: Validating The NF
Reference 1s made to FIG. 2A, which also shows genera-

tion of 1structions to run a test environment for validating

the NF functionality. The instructions will describe the target
simulation/test environment and architecture. For example,
the target environment may be Arachne, described in the
paper: “Arachne: Large Scale Data Center SDN Testing”,

Salim et al., Netdev 2.2. conference, Seoul, Korea, Novem-

ber 2017, as described 1n the on Intel x86 hardware. In an

example, the 214 artifacts are compiled for execution target

215, such as Intel x86 and arachne configuration to install

the appropriate control and datapath binaries in the right

location.

NF Machine Interfacing,

FIG. 3 illustrates a runtime service intent realization via
a closed loop feedback control system 300. In FIG. 3, the
system 300 1s configured to observe and react to events, such

as incoming packets, patterns, etc., in a network. The system
300 may include traditional policy updates at runtime,
extending or replacing resources, and associated control
applications and policies.

US 11,372,632 B2

21

The machine interface 301 may be configured to actively
create and 1nject NFs. Active NF creation and 1njection may
be activated by:

runtime policy, which may be triggered by actionable
events, such as programmed or defined by a human
operator, which 1nject pre-existing NFs at appropriate
locations 1n a network to extend existing and/or create
new services;

runtime policy, which may be triggered by actionable
events, including events programmed by a human
operator, which facilitate code generation of new 1nfra-
structure NFs and/or services that may be injected at
appropriate locations 1n a network; and

runtime ML reaction to events which facilitate code
generation of new NFs, services and control counter-
parts that then get injected at appropriate locations.

Services
Reference 1s made to FIG. 2B described above and FIG.

12. As described above, FIG. 2B illustrates tooling inira-

structure for creating Network services. FIG. 12 illustrates a

workilow mvolved in creating and testing a new NF.

The human operator workflow 1s as follows:

1. At step 1202, the human operator designs the service, for
example, via the graphical user iterface(GUI). This
includes selecting, for example, from NF libraries and
helpers 1204, the NFs/ILFBs presented that are required
for the service.

2. The human operator commits the design on the GUI by
clicking “‘submit”.

3. At step 1206, the GUI consults 1ts backend to validate the
design for any constraints:

a. If there are any 1ssues, an appropriate error message 1s
presented to the operator and control 1s returned to the
design stage; and

b. If there 1s no 1ssue, the GUI backend creates an SLFB

definition 1207.
4. At step 1208, the human operator selects the target for the

orchestrator, e.g., kubernetes, and then clicks on “Build”.
At step 1210, the GUI mvokes its backend to use the
SLEFB definition 1207 from step #3 to compile the appro
priate tooling for deployment. When this stage 1s done,
artifacts that are ready to deploy for the target orchestrator
are generated.

5. At step 1212, the human operator clicks on “test” or
“deploy”. At that point the artifacts built 1n step #4 are
deployed to a target orchestrator environment using the
GUTI’s backend. In case the user clicked on “test”, tests
generated 1n step #4 are executed for validation purposes.
The user 1s presented with the results at the end of the test
run.

Step 1: Human Interface for Service Creation
In an example, the human operator may create a upstream

and downstream bandwidth management service in FI1G. 10.

In one embodiment, the GUI presents a builet of NFs. The

human operator may select, for example, by dragging and

dropping NF's into a canvas, and then connect the NFs using
dotted arrows 1121, 1122 and 1124 for connection between
control block and datapath block, and arrows for connec-

tions between the programs and the NF policers and drop-
pers ol datapath block, such as 11134, 11135, 11034, 11035,
11635a, 11656, 1167a, 11675, 1162a, 11625, 1168a, 11685. as
shown in FIG. 10. There are also arrows in the east-west
direction for connections between the components of data-
path block. The dotted arrows 1n the north to south and south
to north direction show relationship between control block
1100q and datapath block 110056. The solid arrows, such as
1113a, 11135, 11034, 11035, 1165a, 1165b, 1167a, 11675,

10

15

20

25

30

35

40

45

50

55

60

65

22

11624, 11625, 1168a, 11685, 1n the east to west direction or
west to east direction to show the datapath tflow. The arrow
may have one or two directions to indicate the relationship
of relevant components of the datapath, or of relevant
components between the control block 1100a and the data-
path block 110054, and of relevant components of the control.
A service definition 1s therefore created by using the human
interface with the selected NFs and the defined relationship
between different NFs and the control block and datapath
blocks. The human interface may be a GUI or other interface
between the system 200 and the human operation.

In an example, the worktlow for step #1 above may
include:

Creating a canvas for the service by clicking on a “New”
control button;

Creating a Control 1100q and datapath block 11005,

On both the control block 1100a and datapath block
11005 create mput 1112, 1114 and output ports 1120
and 1122, and input and out ports 1124, 1126 and 1128
at the control block, create identity transform helper
program P3 1160, or P1 1158, P2 1164, P4 1166,
P51162, or P6 1168, and define the expected mput and

output.

Selecting datapath LFBs and connecting them. An
example worktlow for the relationship between Policer
ILFB 1nstance “up_pol” 1102 connecting to the Drop-

per ILFB 1nstance 1106:

Drag and drop ILFBs from a GUI selection that is
presented onto the canvas and connect them. For
example, 1n the case of the Policer ILFB instance
“up_pol” 1102 connecting to the Dropper ILFB
instance “drop_egress” 1106, the process will be as
follows:

1. Drag and drop a Policer ILFB and name it
“up_pol” (1102).

2. Drag and drop a Dropper ILFB and name it
“Drop_egress” (1106).

3. Drag and drop an identity transform helper pro-
gram and name 1t “P3” 1160, or P1 1158, P2 1164,

P4 1166, P51162, or P6 1168.

4. Click on the “exceeded” port of Policer ILFB
istance “up_pol” (11025) to highlight it and pull
an arrow from 1t to P3 program 1160; highlight P3
and pull an arrow from it to the “drop_in> port
1106a 1n Dropper ILFB “Drop_egress™ instance.
At this pomnt the two ILFB instances are con-
nected.

Define the Service control block

Describe which selected datapath LFBs components
are derived for the service components; what the
Capabilities and events for the service are and finally

their associated access permissions; For example, on
block 1100a:

Create a component which 1s a table type with 7
clements 1n 1ts row:

serviceid—which 1s a service identifier.

up_index, up_rate and up_burst which are derived
from the datapath block’s “up_poll” Policer
ILFB instance index, rate and burst;

down_index, down_rate and down_burst which
are derived from the datapath block’s “down_
poll” Policer ILFB 1instance components index,
rate and burst.

US 11,372,632 B2

23

Drag and drop a transform program 1120 into the
control block
Connect the transform program to the associated
ports ctrlDown, ctrlUp and ctrlintf ports with
arrows 5
Describe the relationship between the control ports
ctrlDown, ctrlUp and ctrlintf to the transform
program by connecting with arrows the diflerent
ports and the transform program. For example,
port Ctrlintf to the transform program relation- 10
ship: the service will receive data of the form
{serviceid, up_rate, up_burst, down_rate,
down_burst} from a service application via the
port CtrlIntf which the transformation program
will break 1t down 1nto:

24

fup_index, uprate, up_burst} that is sent via
port ctrlUp to datapath “up_poll” Policer ILFB
instance port up_ctrl.

{down_index, down_rate, down_burst} that is
sent via port ctrlDown to datapath “down_poll”
Policer ILFB 1nstance port down ctrl 11044.

During the validation phase, the GUI backend may check
for constraints, for example, whether the human operator 1s
attempting to connect non-compatible LFBs(based on their
respective LFB 1nput/output port definitions) in the same
graph, etc.

When the GUI backend determines that the service design
1s acceptable, the GUI creates a service definition. Listing?2
below shows an example manifestation of a service defini-

tion for the “BW1” Service of FIG. 10:

Listing?2: Sample Service

-1: {BW1, BW1_1, from_ ingress}-->{Policer, up_ pol, pol__in}

-2: {Policer, up_ pol, Conform}-->{BW1, BWI1_ 1, to_ egress}

-3: {Policer, up_ pol, Exceeded}-->{Dropper, drop_ egress, drop__in}

-4: {BW1, BW1_1, from_egress}-->{Policer, down_ pol, pol_in}

-5: {Policer, down__pol, Conform}-->{BW1, BW1_1, to_ingress}|

-6: {Policer, down__pol, Exceeded }-->{Dropper, drop__ingress, drop__in}

Name: “serviceid”
To: “/types/u32”
Transform:

- Type: “Identity”

Name: “up_ rate™
To: “/Policer/up__pol/actions/rate”

Transform:
- Type: “Identity”

Name: “up__burst”

To: “/Policer/up__pol/actions/burst™
Transform:

- Type: “Identity”

Name: “up__index”

To: “/Policer/up__pol/actions/index™
Transform:

- Type: “Identity”

Name: “down__rate”™

To: “/Policer/down__pol/actions/rate”
Transform:

- Type: “Identity”

Name: “down_ burst”

To: “/Policer/down__pol/actions/burst™

Transform:

- Type: “Identity”

Name: “down_ index”

To: “/Policer/down__pol/actions/index™

Transform:

- Type: “Identity”

Service:
Id: 1234
Name: “BW1”
TopologyTable:
ServiceComps:
- comp:
- comp:
- comp:
- comp:
- comp:
- comp:
- comp:
LEFBInputs:
- LFBInput: “from__ingress”
Id: 1
Type: Resource
AllowedData:
- Type: “meta”

Name: “serviceid”

id: 11
Type: u32

US 11,372,632 B2

25

-continued

Listing2: Sample Service

- Type: “meta”
Name: “pktlen”
1id: 12
Type: u3’

- Type: “data”
Name: “pktdata”
1id: 13

- LFBInput: “from__egress”

Id: 2

Type: Resource

AllowedData:

- Type: “meta”
Name: “serviceid”
1d: 21
Type: u32

- Type: “meta”
Name: “pktlen”
1d: 22
Type: u3’

- Type: “data”
Name: “pktdata”
1d: 23

Type: byte[|

LEFBProgs:
-Prog:

Type: “Identity™

Id: 1

Name: “P1”

Hook: “LEFBInputs/LFBInput/from__ingress”
-Prog:

Type: “Identity™

Id: 3

Name: “P3”

Hook: “LEFBInputs/LFBInput/from_ egress™

Listing2: Sample Service
In Listing2 above, the “TopologyTable” stanza describes
different ILFBs to form a service graph. The syntax 1is:

Source {LFB Class,LFB class instance name, egress
port}->Destination {LFB Class,LFB class instance

name, ingress port}

In the example of Listing2, the “ServiceComps™ stanza 1s
used to define the service components that are specific to the
service “BW1”. In addition, the stanza 1s used to describe
transforming the service components to the ILFB specific
components. In the case of the “BW1” service, an 1dentily
transform 1s used: for example, the “up_rate” value will be
mapped, unchanged, to the relevant upstream Policer ILFB
instance’s “rate” component.

In the example of Listing2, the “LEFBInputs” stanza illus-
trates two of the BW1 input ports, namely “from_ingress”™
1112 and “from_egress” 1114, as well as the data and
metadata acceptable to “from_ingress” 1112 and “from_e-
oress” 1114.

In the example of Listing?2, the “LFBProgs™ stanza illus-
trates two of BW1 programs “P1” 1158 and “P3” 1160. The
description defines the kind of programs of “P1” 1158 and
“P3” 1160 and the ports from which “P1” 1158 and “P3”
1160 accept 1nput.

Step 4: Generating Artifacts

In Step #3, the human operator selects a target orchestra-
tion system. The orchestration system sets up the inirastruc-
ture; examples are openstack and kubernetes. In step #4
above, the human operator in FIG. 13 generates the artifacts
tor the targeted orchestration system. A compiler 1s engaged
in this exercise.

In an example, a compiler may use “templates” for
describing the different treatments. Different treatments may
generate different templates.

35

40

45

50

55

60

65

26

Service Machine Interfacing
Similar to NF Machine Interfacing, the service machine

interface may create and update services. Active service

creation and updating may be activated by:

1. runtime policy, triggered by actionable events, as pro-
grammed or defined by a human operator, which allow
injection of new NFs in a service graph at existing
Services:

2. runtime policy, triggered by actionable events, as pro-
grammed by a human operator, which facilitate code
generation ol new infrastructure NFs to create new ser-
vices that then get deployed at appropriate locations; and

3. runime ML reaction to events which facilitate code
generation of new NFs, services and control counterparts
that then get 1mnjected at appropriate locations.

The codes generated 1n 1tems 2 and 3 would have to

otherwise be written by a developer.

Service Deployment
The service deployment compensates for placement

shortcomings of the different orchestration schemes. In

some examples, two deployment modes may be used:

1. Getting data to the NF. In other words, the design intent
separates the handling of where NF execution takes place
and how the data 1s delivered to the NFs to achieve a
service.

2. Getting the NF closer to the data. This includes creating
and placing NF's 1n locations closer to the sources as well
as moving parts of the control applications closer to the
NFs, as opposed to a centralized deployment mode.

The second deployment mode getting the NF closer to the

data 1s useful for edge computing. The orchestration system

scheduling may be determined based on the above two
modes. In addition, additional scheduling hooks may be

US 11,372,632 B2

27

added to compensate on the orchestration system used. For
example, most of the orchestration systems, such as kuber-
netes, derive their scheduling decisions based on compute
resource utilization, whereas 1n packet processing systems,
other mnputs, such as link utilization and table size con-
straints, etc., play a role.

FIG. 13 1illustrates a process 1300 for generating target
codes for network functions. In the example of FIG. 13, a
method 1300 for generating target codes for one or more
network functions for execution 1n a network, including: at
step 1302, receiving, at a processor or the complier 212 or
750, a network function definition 210, 220 or 754; at step
1304, recerving, at the processor or the complier 212 or 750,
one or more templates 240 or 752 comprising prepro-
grammed codes 1n a preset format; at step 1306 compiling,
at the processor or the complier 212 or 750, the network
function definition 210, 220 or 754 and the one or more
templates 240 or 752 by providing key terms from the
network function definition 210, 220 or 754 to the one or
more templates 240 or 752; and at step 1308, generating the
target codes.

The key terms from the network function definition 210,
220 or 754 may include parameters or specifications defined
in the network function definition 210, 220 or 754, such as
parameter related to packetcount. 1 the example of
Listing8A. For example, the target codes 1n Listing8 A may
be generated when the template 1n Listing7A 1s filled with
the key terms or parameters defined network function defi-
nition 1n the Listing 3A.

In an embodiment, the network function comprises a LFB
data model.

In an embodiment, the LFB data model comprising a
control block definition and a definition for one or more
datapath blocks and a definition of relationship between the
control block definition and the definition for one or more
datapath blocks, and the relationship between one or more
datapath blocks.

In an embodiment, the network function definition i1s
received from a human machine interface.

In an embodiment, the human machine interface 1is
graphical user interface.

In an embodiment, the network function definition 1s
created by selecting network functions 1n the graphical user
interface.

In an embodiment, the selected network functions com-
prises one or more Control Blocks, one or more Datapath
blocks, one or more mput or output ports respectively
associated with the one or more control blocks and the one
or more datapath blocks.

In an embodiment, the network function definition com-
prises a defimition of transtorms applied to data or metadata
passing through one or more ports of the one or more control
blocks.

In an embodiment, the target codes comprise at least one
ol control path codes and datapath codes.

In an embodiment, the control path codes comprises at
least one of an application library, a CE library, an FE
library.

In an embodiment, the datapath codes comprising codes
for processing packets.

In an embodiment, the datapath codes comprises kernel
module, SDK API, p4, eBPF, PFGA.

In an embodiment, the LFB data model comprises one or
more of ILFBs, DLFBs, or SLFBs.

In an embodiment, the one or more templates comprise at
least one optimization template for optimizing the generated
target codes.

10

15

20

25

30

35

40

45

50

55

60

65

28

In an embodiment, the network function definition com-
prises create, read, update, delete (CRUD) permission defi-
nition for one or more Control Blocks or one or more
Datapath blocks access to shared data.

In an embodiment, the network function definition com-
prises mput ports and output ports for one or more Control
Block or one or more Datapath blocks, wherein the mput
ports comprising parsers and the output ports comprising
deparsers.

In an embodiment, the network function definition com-
prises a definition of LFBs derived from other LFBs.

In an embodiment, the network function definition com-
prises a transform program.

In an embodiment, the LFB definition comprises defining,
a service datapath and associated connectivity by connecting
the one or more ILFBs via mput and output ports of the
service datapath.

In an embodiment, the LFB definition comprises a net-
work service definition.

In an embodiment, a system for generating target codes
for one or more network functions for execution 1n a
network, comprises: one or more network defimitions mod-
ules; one or more preprogrammed templates modules; and a
processor configured to: receive a network function defini-
tion from the one or more network function definitions
modules; receive, at the processor, one or more templates
selected from the one or more preprogrammed templates
modules, wherein the one or more templates comprises
preprogrammed codes 1n a preset format; compile, at the
processor, the network defimition and the one or more
templates by providing key terms from the network defini-
tion to the one or more templates; and generate the target
codes.

In an embodiment, the system further comprises a
machine mterface in communication with the processor for
creating the LFB definition.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not
restrictive.

What 1s claimed 1s:

1. A method for generating target codes for one or more
network functions for execution 1n a network, comprising:

receiving, at a processor, a network function definition

that 1s a standalone module encapsulating a resource
path and one or more control blocks;

recerving, at the processor, one or more templates for

transforming the network function definition to the
target codes, the one or more templates comprising
preprogrammed codes 1n a preset format;

compiling, at the processor, the network function defini-

tion and the one or more templates by providing key
terms from the network function definition, wherein the
key terms include parameters or specification from the
network function definition, to the one or more tem-
plates; and

generating, at the processor, the target codes based on the

preprogrammed codes and the key terms provided from
the network function definition.

2. The method of claim 1, wherein the network function
comprises a Logical Functional Block (LFB) data model.

3. The method of claim 2, wherein the LFB data model
comprises one or more of Infrastructure Logical Functional
Block (ILFBs), Dertved Logical Functional Block (DLFBs),
or Service Logical Functional Block (SLFBs).

4. The method of claim 3, wherein a definition 1n the LFB
data model comprises defining a service datapath and asso-

US 11,372,632 B2

29

ciated connectivity by connecting the one or more ILFBs via
iput and output ports of the service datapath.

5. The method of claim 3, wherein a definition in the LFB
data model comprises a network service definition.

6. The method of claim 2, wherein the LFB data model
comprises a control block defimition and a definition for one
or more datapath blocks and a definition of relationship
between the control block definition and the definition for
one or more datapath blocks, and the definition of relation-
ship between one or more datapath blocks.

7. The method of claim 1, wherein the network function
definition 1s recerved from a human machine interface.

8. The method of claim 7, wherein the human machine
interface 1s graphical user interface.

9. The method of claim 8, wherein the network function
definition 1s created by selecting network functions in the
graphical user interface.

10. The method of claim 9, wherein the selected network
functions comprise one or more Control Blocks, one or more
Datapath blocks, one or more mput or output ports respec-
tively associated with the one or more Control Blocks and
the one or more Datapath blocks.

11. The method of claim 10, wherein the network function
definition comprises a definition of transforms applied to
data or metadata passing through one or more ports of the
one or more control blocks.

12. The method of claim 10, wherein the network function
definition comprises create, read, update, delete (CRUD)
permission definition for the one or more Control Blocks or
the one or more Datapath blocks access to shared data.

13. The method of claim 10, wherein the network function
definition comprises mput ports and output ports for the one
or more control block or one or more datapath blocks,
wherein the input ports comprises parsers and the output
ports comprising deparsers.

14. The method of claim 1, wherein the target codes
comprise at least one of control path codes and datapath
codes.

15. The method of claim 14, wherein the control path
codes comprise at least one of an application library, a
Control Element (CE) library, an Forward Element (FE)
library.

10

15

20

25

30

35

40

30

16. The method of claim 14, wherein the datapath codes
comprise codes for processing packets.

17. The method of claim 14, wherein the datapath codes
comprise kernel module, Software Development Kit (SDK)
Application Programming Interface (API), p4, Extended
Berkeley Packet Filter (eBPF), Field-programmable Gate
Array (PFGA).

18. The method of claim 1, wherein the one or more
templates comprise at least one optimization template for
optimizing the generated target codes.

19. The method of claim 1, wherein the network function
definition comprises a defimtion of Logical Functional
Blocks (LFBs) derived from other LFBs.

20. The method of claim 1, where the network function
definition comprises a transform program.

21. A system for generating target codes for one or more
network functions for execution in a network, comprising:

one or more network function definitions modules;

one or more preprogrammed templates modules; and

a processor configured to:

receive a network function defimition that encapsulate a
resource path and one or more control blocks from
the one or more network function definitions mod-
ules:;

receive, at the processor, one or more templates
selected from the one or more preprogrammed tem-
plates modules, wherein the one or more templates
transform the network function definition to the
target codes, the one or more templates comprises
preprogrammed codes 1n a preset format;

compile, at the processor, the network function defini-
tion and the one or more templates by providing key
terms from the network function definition to the one
or more templates; and

generate the target based on the preprogrammed codes
and the key terms provided from the network func-
tion definition.

22. The system of claim 21, further comprising a machine
interface 1 communication with the processor for creating
a Logical Functional Block (LFB) definition.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

