12 United States Patent

Uno et al.

USO011372576B2

US 11,372,576 B2
Jun. 28, 2022

(10) Patent No.:
45) Date of Patent:

(54) DATA PROCESSING APPARATUS,
NON-TRANSITORY COMPUTER-READABLE
STORAGE MEDIUM, AND DATA
PROCESSING METHOD

(71)
(72)

Applicant: FUJITSU LIMITED, Kawasaki (JP)

Inventors: Tomohiro Uno, Nagoya (IP);
Tomonori Furuta, Nagoya (JP)

(73)

(%)

Assignee: Fujitsu Limited, Kawasaki (IP)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Notice:

(21) 17/095,788

(22)

Appl. No.:

Filed: Nov. 12, 2020

Prior Publication Data

US 2021/0173581 Al Jun. 10, 2021

(65)

(30) Foreign Application Priority Data

Dec. 10, 2019 (IP) JP2019-222855

(51) Int. CL
GO6F 3/06
GO6F 16/90

(2006.01)
(2019.01)

(Continued)
(52)
.......... GO6F 3/0652 (2013.01); GO6l’ 3/0604

(2013.01); GO6F 3/067 (2013.01); GO6F
16/24556 (2019.01); GO6F 16/9027 (2019.01)

Field of Classification Search
CPC GO6F 3/0652; GO6F 3/0604; GO6F 3/067;
GO6F 16/9027; GO6F 16/24556

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

8,290,972 B1 10/2012 Deshmukh et al.
2011/0225182 Al 9/2011 Tsuchiya et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 3495964 Al 6/2019
JP 2011-186954 A 9/2011
(Continued)

OTHER PUBLICATIONS

Guo, Deke et al., “False Negative Problem of Counting Bloom
Filter”, IEEE Transaction,S on Knowledge and Data Engineering,
IEEE Service Centre, vol. 22, No. 5, pp. 651-664, May 1, 2010,
X11299527.

(Continued)

Primary Examiner — Masud K Khan
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

A data processing apparatus includes a memory configured
to store a bit array including a first Bloom filter associating
with a first subset containing a data element matching a first
classification condition and a second Bloom filter associat-
ing with a second subset containing a data element matching
a second classification condition, and a processor configured
to, when a first data element to be a search target 1s inputted,
determine whether the same data element as the first data
clement 1s present 1n the first subset by using the first Bloom
filter, determine whether the same data element as the first
data element 1s present in the second data subset by using the
second Bloom filter, and when all the data elements con-
tained 1n the first subset are deleted, delete the first Bloom
filter from the bit array.

9 Claims, 25 Drawing Sheets

10

FATA PROCESSING APPARATUS W
1 12
STORRGE UNTT 1/ »
2
A
DATASET |
. PROCESSING UNIT
BIT ARRAY f”
!
:
*** i**###*dﬁﬁ———ﬂ—n
- 30

f i}

BLOOMFILTER | BLOOMEILTER | BLOOM FILTER
ST T

PPRE 217 2N !
am | g
001160.. 810106... UBATA SUBSET
000110, 010111,
.9 7
N
DELETE ’ |
Ve 30

L -“!' - . i %

| BLOOMFILTER | BLOOMFILTER BLOOM FILTER

LT nnnwuq-n-na-ut:;nuii‘i.

=312

~ 3N

US 11,372,576 B2

Page 2
(51) Int. CL
Gool’ 16/24 (2019.01)
GO6F 16/2455 (2019.01)
GO6LF 16/901 (2019.01)
(56) References Cited
U.S. PATENT DOCUMENTS
2018/0005126 A1* 1/2018 Yamagami GO6N 20/00
2018/0225321 Al1* 8/2018 Bolescouue... GO6F 16/9027
2019/0155927 Al* 5/2019 Nagao GO6F 16/9535
2019/0220190 A1* 7/2019 Hecooooeeiinnnnnn, GO6F 3/0655
2021/0149580 Al1* 5/2021 Fesselc.ocoee. GOG6F 3/0673

FOREIGN PATENT DOCUMENTS

JP 2018-526737 A
JP 2019-095986 A
WO 2017/044867 Al

9/201
6/201

3/201

8
9
7

OTHER PUBLICATIONS

Crainiceanu, Adina et al., “Bloofi: Multidimensional Bloom filters”,

Information Systems, Elsevier, vol. 54, pp. 311-324, Jan. 17, 2015,

XP29263532.

Extended European Search Report dated May 3, 2021 for corre-
sponding Furopean U.S. Appl. No. 20206928.2, 7 pages.

* cited by examiner

U.S. Patent Jun. 28, 2022 Sheet 1 of 25 US 11,372,576 B2

FIG. T

11

STORAGE UNIT

PROCESSING UNIT

”“‘“311

DATA SUBSET
011011...
010100...

g10111..,

DELETE

BLOOM FILTER |
3N

o = 31

US 11,372,576 B2

Sheet 2 of 25

Jun. 28, 2022

U.S. Patent

WALSAS 3DVHOLS

017

U.S. Patent Jun. 28, 2022 Sheet 3 of 25 US 11,372,576 B2

FlG. 3

5) : : i

READING
DEVICE

COMMUNICAT] |
- ONIF

" PORTABLE
RECORDING

MEDIUM \ _. ETWGR ~_

rrr

e . , %zmwﬂmm%%z% B INIHIWNYIA

FHIVD V.LVO

US 11,372,576 B2

. 37 b 31avL
INFWIOVNVIA dYWOINAHD | | ANOLDINIC

.......

01T

Sheet 4 of 25

LINO GNTISSI00Ud
T z@?ﬁhzmzwﬂmmmm

Pamgmm&zdg vﬁzjzu
R3S

mmH S— et ——

LINA

LINA ONISSID0N
TR A2 WOOTE |
Z@.ﬁ&umzﬁﬁiﬁum . Qmmm .. mmm,m

CLYC B ~ LINN NOLLYNIWY3L30 NOLLYOT1dNT

ONISSTIOUd HOUVES:
" IR AUNIG

Jun. 28, 2022

hzn %&,nm _
FINANT T4 |

_ ENITTD SYN

1 A9YEOLS anoD

U.S. Patent

b Ol

U.S. Patent Jun. 28, 2022 Sheet 5 of 25 US 11,372,576 B2

FIG. ©

. FILE FILE
| NUMBER

NUMBER

NUMBER '

CHUNK | OBJECT THE NUMBER OF

| THE NUMBER OF
| INVALID CHUNKS

N

US 11,372,576 B2

Sheet 6 of 25

Jun. 28, 2022

U.S. Patent

Cmeve || 3ave | 3eve || Teve || Tieve | ave |
| HOWYES || HOWYES | HOWVES || HOWYES | | HOWY3S | HOUYAS |

R ey i .. W R

}
}
¥
{
i
i
3
i
§
§
¥
P

193AT1
(JYIHL

L o ol o R o L SR o o]

T

AT
{1 QNQD3S

W -
_ v | 1S

o BT T S S S S S

T T T R T e e R e T L L T e e R e T L T e e e T e e e L e L T e S T e T e BT e A T I N T T T T S O S e e B S S e L S L e L O e S S e e e e T T O T e e R e L S B T e L N e T TR N O T T T e S e T S I T S S e e O T O N e T B N e e [T I T T TR e N S T O T e e e N T e e e TR e e O e T W T e L e e e L T (R e S L T S e e L O T O T T S e P T O L L S T T e e O B L N e T T N S e T S T e T P S O T S e e L L e R T S) e [S [S [T A S (e [WA (AP R |

.,

s o

U.S. Patent Jun. 28, 2022 Sheet 7 of 25 US 11,372,576 B2

FIG. 7

OX7be2ad01434eabid3h
| de3f0365656ba48f0c09 |

g ~

ool 1

[Ox7C297c1793dadoacs |
| 2a68bddeb8fde3eb5o09 |

SEARCH || HK2

¢/
SANAHD

(1-161 318VL HOUVAS
OL ONIGNOJSTHHE0D)

a 108D ANNHD

US 11,372,576 B2

314140

AWEy s S WS Sy iy NS SR, ST Ry

% 4 4 M X

Sheet 8 of 25

Jun. 28, 2022

fon s e e
£
x|
T
 rates

. SN R N R R e R . T e iy

* L 1 o | L

% % KRR

G

n *
.t .. " ti}i}#}lilr}i}illinﬁ

U.
9_;
n

US 11,372,576 B2

Sheet 9 of 25

Jun. 28, 2022

U.S. Patent

e

P WP R S Wy W TLE P Wy Wy YRR S o WE TRELE T W W, LR T o W, LT T W WML L. Sy W WL R o W W

%

1A
QHIHL

AT
ANOJ3S

158

| 6070J82095959£0462p
"N | GEPIGRRPELTOPRZEGLXO

6 Ol

US 11,372,576 B2

Jun. 28, 2022 Sheet 10 of 25

Patent

U.S

M.#.F.i..w&i.ﬁni.*l._.l A5 vl o A W S S et e At M S A R R e A B R A R W T R B B R e

e mmmmmwmwxaz
6V56VAX0 | 44%0 | | ,
_ 30£980£0%0

CT6FTVZOX0 | ZOXO ZAVIAITOX0

64¥D3ETON0 | T0X0 | V66TVOTOX0

PEYOPO00X0 | 00%0 | Da8vese0xo

N S m.#m,ﬁ; mum@mm ol 378V] HOWYIS
Z-TaL — 78l —

4G

TP LR TSR ;

W o A o 5 WK e W A e

o@xa

Eﬁﬂ Ewmmm _. e — _._ hw“mmﬂh@amm

m 7va - N N,qm

e m _Eagm

o

=

1214 WOOIgG

Wt A o o ol iy ol O A e ol iy o 6 e i ol T B o e

T WAL wah. A R el

EE**EEE&.EE.*E.*i.ii.ii.;.i.ii.ii.i;..;E.i:..;i.ii.ﬁffE.i!t.!.!\..i:EE.E#.EE.EEEE.EEE.EE.t.iii.ii.ii.ii.sEii;ii.ii.i?.ii%

ivd

81T ~ OL Ol

e A o L R e T W B O W e S e B WL e e i e R e B A R BRSO R G iy e Sy R T R e B B AR R W B R R W R R A WL S R B Ay R e N B M R o S e B Mo B R e B S St Ry B B CH N Sl R St e e R R R e R B AR e N e e L W

Sheet 11 of 25

U-S- Patent

,I..I.__m,

7

EI

5534ady mm,ﬂm

U.S. Patent Jun. 28, 2022 Sheet 12 of 25 US 11,372,576 B2

FI1G. 12

NODE NUMBER : XX

HASH KEY CHUNK NUMBER

Ox008F2C73DA
Ox018ABFOF21

U.S. Patent Jun. 28, 2022 Sheet 13 of 25 US 11,372,576 B2

SEARCH TABLE
(x0646A34
Ox013EC4FS
Ox02A14913

449549
U680

U.S. Patent Jun. 28, 2022 Sheet 14 of 25 US 11,372,576 B2

FiG. 14

DETERMINATION ON
PRESENCE OR ABSENCE

¥
¥
¥
;
:

CxQQ646A34

HK4

DETERMINATION ON P
PRESENCE OR ABSENCE .~

Brdl

: {}}{{}1 .
Bi@ﬁm inter

DETERMINATION / S — DETERMINATION ON
ON PRESENCE . PRESENCE OR ABSENCE

RASENE [gy ~_ 7

|DETERMINATION PESENCE OR ABSENCE

BN ?RESE NCE

_— TBL-2

OX013ECAFS |
O0x02A14913

F | OXFF449549
- OxFF4906B0

U.S. Patent Jun. 28, 2022 Sheet 15 of 25 US 11,372,576 B2

FIG. 15

Lo o B o B L e B o

FILTER IS NOT . FILTER IS
ééﬁ?ﬁﬁmg R PRESENT

T v
W ik,
n”“ﬁ
My
™
M
"

stLT‘ER Fi |
' _ TB1-1 - TBI2
5 SEARCH TABLE

x00646A34
Ox013ECAF9
x(02A14913

SEARCH TABLE
| 0x0086ABDC

 OX0308670E -
- XFF | OxFF449549
| OXFF4906B0

| OXFFIFSESS

U.S. Patent Jun. 28, 2022 Sheet 16 of 25 US 11,372,576 B2

FILTER HAS BEEN N\ -
DELETED ..o, S TER

BF} i

SEARCH TABLE
| OXO0BGABDC

82&2&149 13

Ox0308670E 5
| F | OxFF449549
| OxFF490680

© OXFFIFSES9

U.S. Patent Jun. 28, 2022 Sheet 17 of 25 US 11,372,576 B2

FlG. 17

 FILE WRITE PROCESSING

--#511

SELECT CHUNK AND ADD RECORD TO CHUNK
MAP TABLE

INCREMENT THE NUMBER OF REFERENCES IN
CHUNK MANAGEMENT TABLE

(AL CHUNKS HAVE BEEN PROCESSED?
" YES

U.S. Patent Jun. 28, 2022 Sheet 18 of 25

FIG. 18

" ADD RECORD TO CHUNK MANAGEMENT TABLE
f REGISTER DATA OF CHUNK r

CHUNK NUMSER TG CHUNE{ MA?

| REGISTER
TABLE

923

" THE NUMBER OF UNTRANSMITTED CHUNKS NG
| HAS REACHED THRESHGL TH? /

YES |

- 524

 UPLOAD ORJECT GENERATED BY COMBINING
' UNTRANSMITTED CHUNKS

ASSIGN NEW OBJECT NUMBER

US 11,372,576 B2

ASSIGN EXISTING OBJECT NUMBER

REGISTER AND UPDATE THE NUMBER OF VALH}
CHUNKS

U?DATE PROCESSZNG OF ﬁi.@DM FELTER _

U.S. Patent

Jun. 28, 2022 Sheet 19 of 25

US 11,372,576 B2

FIG. 19

/" DUPLICATION DETERMINATION)
PROCESSING

CALCULATE HASH KEY

— §32

SPECIFY INDEX OF FILTER

S?ECiFY FELTER EGRRESPD?‘%EENG m ENDEX j

SELE‘CT N{}QE IN HIGHEST E,EVEL '

o934

D30

S?ECIF‘?’ BET NUMB‘EQ TO BE C@MF’ARED FOR

FACH FILTER

DETERMINE PRESENCE OR ABSENCE OF HASH KEY

: (WHEN FILTER IS PRESENT AND CORRESPONDING BIT |

iS ”i" H&SH KE’Y ES PRESEI‘%T)

538

NG{}E IN wwssz" LEVEL'?

YES 539

SE&RCH THRDUGH BiNﬁRY ?REE SEARCH

U.S. Patent Jun. 28, 2022 Sheet 20 of 25 US 11,372,576 B2

F1G. 20

UPDATE PROCESSING OF BLOOM '\
FILTER

X — 541

YES 1 .. S44

SELECT NODE IN HIGHER LEVEL

U.S. Patent Jun. 28, 2022 Sheet 21 of 25 US 11,372,576 B2

FIG. 21

' RECEIVE FiLE DELETION REQUEST

SELECT CHUNK

- DECREMENT THE NUMBER OF REFERENCES

_ 554

THE NUMBER OF REFERENCES = 07

YES | 555

ADD THE NUMBER OF INVALID CHUNKS
SUBTRACT THE NUMBER OF VALID CHUNKS

C THE NUMBER OF VALID CHUNKS IN OBJECT =
' YES |

DELETE OBJECT

> NO /" RATIO OF THE NUMBER OF INVALID CHUNKS TN\
N\ OBJECT GROUP EXCEEDS THRESHOLD? ~ /

YES |

SET OBJECT GROUP T0 DEFRAGMENTATION
TARGET

—_ ALL CHUNKS HAVE BEEN PROCESSED?)

U.S. Patent Jun. 28, 2022 Sheet 22 of 25 US 11,372,576 B2

DEFRAGMENTATION
PROCESSING

U.S. Patent Jun. 28, 2022 Sheet 23 of 25 US 11,372,576 B2

FIG. 23

STt

SELECT INDEX

572

* HASH KEY CORRESPONDING TO INDEX IS\ Y52
PRESENT?

o

574

DELETE FILTER

NODE IN HIGHEST LEVEL?
NO |

SAME INDEX IS PRESENT IN SAME LEVEL?

' 877
SPECIFY FILTER OF NODE IN UPPER LEVEL |

US 11,372,576 B2

Sheet 24 of 25

Jun. 28, 2022

U.S. Patent

SSAYAAY | dd9dININ

LERNE FCGON

72

US 11,372,576 B2

Jun. 28, 2022 Sheet 25 of 25

Patent

U.S

o e k™ T e b

34X0

653541440
404980£0X0
CAVAA310X0
Yoo iVO1040
SABYIBOUX0

1YL HO¥VS

0890604440
6V 5614440
e Lob TVOX0
64704 TOX0
e V990X 0

4 1YL HOdv3s

- n N | .
-e8L " 14 1-78) — 14 7-191 T

Ty g gt e A iy oyt e e R g o Sy g A e g S g ey L g Rl S My sl O, g oy g o g i iy B g . g ol Syl g A o sy ol g gt gt ol g T e A T A S Ml . R A A L gl R B Y A i s e g gyt g oy g gl g e g iy i Tl g S S iy L L RS St e e Bl S S N Sy g e A Sy Ay

19N W00ig 124 Woolg

1934 Wo0ig A4 WOOIG

W G Bl Al M W Al e Wl WK BN T GG LN R W SN R MGl M B e A R e Wy

rrrrrrrrrrr P R L U e T TR S A e e L T S T TN ST [TN T SO ST N S SRS [R G [N G [SN R R | [U N, SO TN TR S (R [G [T T R e L N T S e e R [e e T YL TR BT e I T

1334 Woo

SRR LT T LR P PSS E

oy woolg | | | o4 woolg | Jaud woolg

................

Y WOoIg 1A wWoolg g woolg | sepd woojg 123{14 LIOOIg

X0 £0X0 200 10X0

00X0

AN g g g N M e g g g D A e DN e e e S T b e e e e e DME e o g g N T e e el N e . O e
g

ivd

N N R e I e, T TG WG N I T L W R R W N N T G W R g I G R NG R T, R W W D e N, O NG K R, g RN R e R G N e O DN L W e N R O WOR e W Y WO N R D N U, e R G e R S W e N L G O G G R N L g W R g e O N i T R G TN W T e e - g, e W D G W N N R VO G G e e W DO G N U e R W N T

egyT - o
G¢c Ol

US 11,372,576 B2

1

DATA PROCESSING APPARATUS,
NON-TRANSITORY COMPUTER-READABLE
STORAGE MEDIUM, AND DATA
PROCESSING METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2019-
2228355, filed on Dec. 10, 2019, the entire contents of which

are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a data
processing apparatus, non-transitory computer-readable
storage medium, and a data processing method.

BACKGROUND

The Bloom filter 1s a data structure used to determine
whether data to be the search target 1s contained 1n a data set
containing a plurality of data elements. As an example of
application of the Bloom filter, a hierarchical Bloom filter
having Bloom filters of multiple levels has been proposed.

One of the general characteristics of such a Bloom filter
1s that even when some data elements are deleted from a data
set to be managed, the number of bits of the Bloom filter 1s
not allowed to be reduced. To deal with this, the following
data processing apparatus has been proposed.

When data elements are to be deleted, this data processing,
apparatus deletes a bit array with the number of bits corre-
sponding to the number of data elements to be deleted from
the higher-level side of the Bloom filter. Upon mnput of a data
clement to be the search target, the data processing apparatus
adds a bit array having the same number of bits as that of the
deleted bit array and all the bit values of which are “1” to the
higher side of the Bloom filter from which the bit array has
been deleted. The data processing apparatus determines
whether the data element to be the search target 1s contained
in the data set by using the Bloom filter to which the bit array
has been added. In this way, it 1s possible to determine the
presence or absence of the data element by using the Bloom
filter from which the bit array has been deleted, without
causing a false negative.

Related techniques are disclosed in for example Japanese

Laid-open Patent Publication Nos. 2011-186954 and No.
2019-95986

SUMMARY

According to an aspect of the embodiments, a data
processing apparatus includes: a memory configured to store
a first bit array including a first Bloom filter and a second
Bloom filter, the first Bloom filter associated with a first data
subset containing a data element that matches a first classi-
fication condition among data elements contained 1n a first
data set, the second Bloom filter associated with a second
data subset containing a data element that matches a second
classification condition among the data elements contained
in the first data set; and a processor coupled to memory and
configured to: when a first data element to be a search target
1s iputted, determine whether the same data element as the
first data element 1s present in the first data subset by using
the first Bloom filter in a case where the first data element
matches the first classification condition, determine whether

10

15

20

25

30

35

40

45

50

55

60

65

2

the same data element as the first data element 1s present in
the second data subset by using the second Bloom filter in

a case where the first data element matches the second
classification condition, and when all the data elements
contained 1n the first data subset are deleted, delete the first
Bloom filter from the first bit array.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out 1n the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram 1llustrating a configuration example
and a processing example of a data processing apparatus
according to a first embodiment;

FIG. 2 1s a diagram 1llustrating a configuration example of
an 1formation processing system according to a second
embodiment;

FIG. 3 1s a block diagram illustrating a hardware con-
figuration example of a cloud storage gateway;

FIG. 4 1s a block diagram illustrating a configuration
example of processing functions included in the cloud
storage gateway.

FIG. § 1s a diagram 1llustrating a configuration example of
management tables;

FIG. 6 1s a diagram 1llustrating a configuration example of
a hierarchical Bloom filter;

FIG. 7 1s a diagram illustrating a processing example
using Bloom filters;

FIG. 8 1s a diagram 1illustrating a comparative example of
processing of reducing the number of bits 1n a hierarchical
Bloom filter:;

FIG. 9 1s a diagram 1illustrating a comparative example of
search processing using a Bloom filter 1n which the number
of bits has been reduced:

FIG. 10 1s a diagram 1llustrating an internal configuration
example of the hierarchical Bloom filter;

FIG. 11 1s a diagram 1llustrating a configuration example
of a filter management table;

FIG. 12 1s a diagram 1llustrating a configuration example
of search tables;

FIG. 13 1s a diagram 1illustrating a processing example 1n
a case where a hash key 1s added to a search table;

FIG. 14 1s a diagram 1llustrating a processing example of
determination on the presence or absence of a hash key;

FIG. 15 1s a diagram illustrating a first processing
example at the time of deleting a chunk;

FIG. 16 1s a diagram illustrating a second processing
example at the time of deleting a chunk;

FIG. 17 1s an example of a flowchart (1) illustrating a
procedure of file write processing;

FIG. 18 1s an example of a flowchart (2) illustrating a
procedure of file write processing;

FIG. 19 1s an example of a flowchart illustrating a
procedure of a duplication determination processing;

FIG. 20 1s an example of a flowchart illustrating a
procedure ol update processing for a Bloom filter;

FIG. 21 1s an example of a flowchart illustrating a
procedure of file deletion processing;

FIG. 22 1s an example of a flowchart (1) illustrating a
procedure of defragmentation processing;

FIG. 23 1s an example of a flowchart (2) illustrating the
procedure of defragmentation processing;

US 11,372,576 B2

3

FIG. 24 1s a diagram 1llustrating a configuration example
of a filter management table 1n a first modification; and

FIG. 25 1s a diagram 1llustrating an internal configuration
example of a hierarchical Bloom filter 1n a second modifi-
cation.

DESCRIPTION OF EMBODIMENTS

In the related art, the above-described data processing
apparatus has a problem that when the presence or absence
of a data element 1s determined by using the Bloom filter
from which a bit array has been deleted, the false positive
rate increases from before the deletion of the bit array.

According to one aspect, an object of the disclosure 1s to
provide a data processing apparatus and a data processing
program which suppress an increase 1n false positive rate
attributable to a reduction of bits of Bloom filters in accor-
dance with a reduction 1n the number of data elements.

Embodiments of the present disclosure are described
below with reference to the drawings.

First Embodiment

FIG. 1 1s a diagram 1illustrating a configuration example
and a processing example of a data processing apparatus
according to a first embodiment. A data processing apparatus
10 1llustrated 1n FIG. 1 includes a storage unit 11 and a
processing unit 12.

The storage unit 11 1s implemented, for example, as a
storage area of a storage device (not 1llustrated) included 1n
the data processing apparatus 10. The storage unit 11 stores
a data set 20 contaiming a plurality of data elements and a bat
array 30 used to determine the presence or absence of a data
clement 1n the data set 20. The data set 20 does not have to
be stored inside the data processing apparatus 10. For
example, some of the data elements contained 1n the data set
20 may be cached inside the data processing apparatus 10.

The processing unit 12 1s implemented, for example, as a
processor (not illustrated) included in the data processing
apparatus 10. Upon input of a data element to be the search
target, the processing unit 12 determines whether the same
data element as the mputted data element 1s present in the
data set 20, by using the bit array 30.

The data set 20 and the bit array 30 are further described
using FIG. 1. The data elements imncluded in the data set 20
are classified into N data subsets 21-1, 21-2, ..., 21-N (N
1s an 1nteger of 2 or more) 1n accordance with N classifica-
tion conditions different from one another. For example, the
data subset 21-1 (a first data subset) contains data elements
that match a first classification condition among the data
clements contained 1n the data set 20. The data subset 21-2
(a second data subset) contains data elements that match a
second classification condition among the data elements
contained 1n the data set 20.

As the classification conditions, for example, bit values
within a predetermined range 1n bit arrays of data elements
are used. For example, in the case where the values of
high-order 2 bits of a data element are used, 3 classification
conditions 1 each of which the values of the high-order 2
bits are any one of sets “007, “01”, and “11” are applied. In
this case, for example, a data element in which the values of
the high-order 2 bits are “00” 1s classified 1nto a certain data
subset, a data element 1n which the values of the high-order
2 bits are “01” 1s classified into another data subset, and a
data element 1n which the values of the high-order 2 bits are
“11” 1s classified into still another data subset.

10

15

20

25

30

35

40

45

50

55

60

65

4

On the other hand, the bit array 30 1s divided into N partial
bit arrays having the same size, and each of the partial bit
arrays 1s used as an individual Bloom filter. Specifically, for
example, the bit array 30 contains Bloom filters 31-1,
31-2, ..., 31-N. The Bloom filters 31-1, 31-2, ..., 31-N
are assoclated with the data subsets 21-1, 21-2, . .., 21-N,
respectively.

The Bloom filters 31-1, 31-2, . . ., 31-N are used to
determine the presence or absence of a data element 1n the
corresponding data subsets 21-1, 21-2, . . ., 21-N, respec-
tively. Hence, 1n the Bloom filters 31-1, 31-2, ..., 31-N, b1t
values are set by a predetermined calculation using data
clements contained 1n the corresponding data subsets 21-1,
21-2, . .., 21-N, respectively. For example, the bit value of
cach bit of the Bloom filter 31-1 1s set by the predetermined
calculation using each data element contained in the data
subset 21-1. The b1t value of each bit of the Bloom filter 31-2
1s set by the predetermined calculation using each data
clement contained 1n the data subset 21-2.

Upon mput of a data element to be the search target
(referred to as “inputted data element”), the processing unit
12 determines whether the same data element as the inputted
data element 1s present in the data set 20, as described below.
The processing unit 12 determines which classification
condition the mputted data element matches. In the case
where the mputted data element matches a certain classifi-
cation condition, the processing unit 12 uses the Bloom filter
corresponding to the certain classification condition to deter-
mine whether the same data element as the inputted data
clement 1s present in the data subset corresponding to the
Bloom filter.

For example, 1n the case where the mputted data element
matches the first classification condition corresponding to
the data subset 21-1, the processing umt 12 determines
whether the same data element as the inputted data element
1s present in the data subset 21-1 by using the Bloom filter
31-1. In the case where the inputted data element matches
the second classification condition corresponding to the data
subset 21-2, the processing unit 12 determines whether the
same data element as the inputted data element 1s present 1n
the data subset 21-2 by using the Bloom filter 31-2.

Next, the case where a data element contained 1n the data
set 20 15 deleted 1s described. In the case where all the data
clements contained i1n a certain data subset have been
deleted, the processing umt 12 deletes the Bloom filter
corresponding to the certain data subset from the bit array
30. This means that 1n the case where all the data elements
that match a certain classification condition have been
deleted from the data set 20, it 1s possible to delete the
Bloom filter corresponding to the certain classification con-
dition from the bit array 30.

For example, as illustrated in FIG. 1, in the case where all
the data elements that match the above-described first clas-
sification condition have been deleted from the data set 20,
or 1n the case where all the data elements contained 1n the
data subset 21-1 have been deleted, the processing unit 12
deletes the Bloom filter 31-1 from the bit array 30.

Such a deleting process makes 1t possible to reduce the
number of bits in the bit array 30 that are used as the Bloom
filters without increasing the false positive rate in determin-
ing the presence or absence of an iputted data element 1n
the data set 20. For example, even when the Bloom filter
31-1 has been deleted by the above-described procedure, 1n
the case where the presence or absence of an inputted data
element 1s determined for the data subsets 21-2, . .., 21-N
by using the Bloom filters 31-2, . . ., 31-N, respectively, the
rate of occurrence of the false positive does not change. In

US 11,372,576 B2

S

the case where an inputted data element that matches the first
classification condition has been mputted with the Bloom
filter 31-1 having been deleted by the above-described
procedure, since the Bloom filter 31-1, which corresponds to
the first classification condition, 1s not present, 1t allows the
processing unit 12 to correctly determine that the same data
clement as the mputted data element 1s not present 1n the
data set 20. In this case, neither the false negative rate nor
the false positive rate changes as compared to those before
the deletion of the Bloom filter 31-1.

Hence, according to the data processing apparatus 10 of
the first embodiment, 1t 1s possible to suppress an increase in
talse positive rate attributable to a reduction of bits of the
Bloom filters in accordance with the reduction 1n the number
ol data elements.

As a method of reducing the number of bits 1n the bit array
30 1n accordance with the reduction in the number of data
clements, a method as described below may be considered.
For example, the entire bit array 30 1s used as a single Bloom
filter to determine the presence or absence of a data element
for the entire data set 20 with this Bloom filter. When some
ol the data elements contained in the data set 20 have been
deleted, the number of bits 1n the bit array 30 1s reduced 1n
accordance with the number of deleted data elements, and all
the bit values of the bit array 30 after the reduction 1n the
number of bits are reset. All the data elements remaining in
the data set 20 are used to set the bit values for the bit array
30 after the reduction of bits again.

This method also makes 1t possible to reduce the number
of bits 1 the bit array 30 without increasing the false
positive rate. This however involves calculation for setting,
the bit values for the bit array 30 after the reduction of bits
again, and causes a high processing load at the time of
reducing the number of bits. According to the data process-
ing apparatus 10 of the first embodiment, since such calcu-
lation does not have to be conducted at the time of reducing
the number of bits for the bit array 30, 1t 1s possible to
suppress the processing load at the time of reducing the
number of bits.

Applying the above-described bit array 30 to each node of
a hierarchical Bloom filter makes it possible to reduce the
number of bits in the bit arrays 30 1n accordance with the
reduction of data elements over multiple levels while sup-
pressing an increase of the false positives. In a second

embodiment below, an example of an information process-
ing system including such a hierarchical Bloom filter is

described.

Second Embodiment

FI1G. 2 1s a diagram 1llustrating a configuration example of
the information processing system according to the second
embodiment. The information processing system illustrated
in FIG. 2 includes a cloud storage gateway 100, a network
attached storage (NAS) client 210, and a storage system 220.
The cloud storage gateway 100 1s coupled to the NAS client
210 via a network 231, and 1s also coupled to the storage
system 220 via a network 232. The network 231 1s, for
example, a local area network (LLAN), and the network 232
1s, for example, a wide area network (WAN).

The storage system 220 provides a cloud storage service
via the network 232. In the following description, a storage
area made available to a service user (here, the cloud storage
gateway 100) by the cloud storage service provided by the
storage system 220 i1s sometimes referred to as “cloud
storage”.

10

15

20

25

30

35

40

45

50

55

60

65

6

In this embodiment, as an example, the storage system
220 1s implemented by an object storage in which data 1s
managed 1n units of object. For example, the storage system
220 1s implemented as a distributed storage system having a
plurality of storage nodes 221 each including a control
server 221a and a storage device 221b. In this case, in each
storage node 221, the control server 221a controls access to
the storage device 2215, and part of the cloud storage 1s
implemented by a storage area of the storage device 2215.
The storage node 221 to be the storage destination of an
object from the service user (cloud storage gateway 100) 1s
determined based on information unique to the object.

The NAS client 210 recognizes the cloud storage gateway
100 as a NAS server that provides a storage areca managed
by a file system. The storage area 1s a storage area of the
cloud storage provided by the storage system 220. The NAS
client 210 then requests the cloud storage gateway 100 to
read and write data 1n units of file according to, for example,
the Network File System (NFS) protocol or the Common
Internet File System (CIFS) protocol. Specifically, for
example, a NAS server function of the cloud storage gate-
way 100 allows the NAS client 210 to use the cloud storage
as a large-capacity virtual network file system.

The NAS client 210 executes, for example, backup soft-
ware for data backup. In this case, the NAS client 210 backs
up a lile stored 1n the NAS client 210 or a file stored in a
server (for example, a business server) coupled to the NAS
client 210, to a storage area provided by the NAS server.

The cloud storage gateway 100 1s an example of the data
processing apparatus 10 illustrated 1n FIG. 1. The cloud
storage gateway 100 relays data transierred between the
NAS client 210 and the cloud storage.

For example, the cloud storage gateway 100 receives a file
write request from the NAS client 210 and caches a file for
which the write request 1s made 1n the cloud storage gateway
100 by using the NAS server function. The cloud storage
gateway 100 divides the file for which the write request 1s
made 1n units of chunk and stores actual data within the
chunks (chunk data) in the cloud storage. At this time, a
predetermined number of chunk data are grouped to gener-

ate an object, and the generated object 1s transierred to the
cloud storage.

When caching the file from the NAS client 210, the cloud
storage gateway 100 performs “deduplication” by dividing
the file 1n units of chunks and avoiding duplicate saving of
chunk data having the same contents. The chunk data may
also be stored in a compressed state. For example, 1n a cloud
storage service, a fee 1s charged depending on the amount of
data to be stored in some cases. Performing deduplication
and data compression reduces the amount of data stored 1n
the cloud storage and suppresses the service use cost.

FIG. 3 1s a block diagram illustrating a hardware con-
figuration example of the cloud storage gateway. The cloud
storage gateway 100 1s implemented as, for example, a
computer as illustrated 1n FIG. 3.

The cloud storage gateway 100 includes a processor 101,
a random-access memory (RAM) 102, a hard disk drive
(HDD) 103, a graphic interface (I/’F) 104, an input interface
(I'’F) 105, a reading device 106, and a communication
intertace (I'F) 107.

The processor 101 generally controls the entire cloud
storage gateway 100. The processor 101 1s, for example, a
central processing unit (CPU), a microprocessor unit
(MPU), a digital signal processor (DSP), an application-
specific integrated circuit (ASIC), or a programmable logic

US 11,372,576 B2

7

device (PLD). The processor 101 may also be a combination
of two or more elements of the CPU, the MPU, the DSP, the

ASIC, and the PLD.

The RAM 102 1s used as a main storage device of the
cloud storage gateway 100. At least part of an operating
system (OS) program and an application program to be

executed by the processor 101 1s temporarily stored in the
RAM 102. Various kinds of data to be used in processing by
the processor 101 are also stored 1n the RAM 102.

The HDD 103 1s used as an auxiliary storage device of the
cloud storage gateway 100. The OS program, the application
program, and various kinds of data are stored 1n the HDD
103. A different type of nonvolatile storage device such as a
solid-state drive (SSD) may be used as the auxiliary storage
device.

A display device 104a 1s coupled to the graphic interface
104. The graphic interface 104 displays an image on the
display device 104a according to a command from the
processor 101. The display device includes a liquid crystal
display, an organic electroluminescence (EL) display, and
the like.

An mput device 105a 1s coupled to the mput interface
105. The mput interface 105 transmits a signal outputted
from the mput device 105a to the processor 101. The mput
device 105¢q includes a keyboard, a pointing device, and the
like. The pointing device includes a mouse, a touch panel, a
tablet, a touch pad, a track ball, and the like.

A portable recording medium 1064 1s removably mounted
on the reading device 106. The reading device 106 reads data
recorded 1n the portable recording medium 1064 and trans-
mits the data to the processor 101. The portable recording
medium 106a 1ncludes an optical disc, a semiconductor
memory, and the like.

The communication interface 107 exchanges data with
other apparatuses via a network 107a.

The processing functions of the cloud storage gateway
100 may be implemented by the hardware configuration as
described above. The NAS client 210 and the control server
221a may also be implemented as computers having the
same hardware configuration as that in FIG. 3.

FIG. 4 1s a block diagram illustrating a configuration
example of processing functions included in the cloud
storage gateway. The loud storage gateway 100 includes a
storage unit 110, a file imnput/output unit 120, a deduplication
processing unit 130, and a cloud communication unit 140.

The storage unit 110 1s implemented as, for example, a
storage area of a storage device included 1n the cloud storage
gateway 100, such as the RAM 102 or the HDD 103.
Processing of the file input/output unit 120, the deduplica-
tion processing unit 130, and the cloud communication unit
140 1s implemented, for example, by causing the processor
101 to execute a predetermined program.

The storage unit 110 stores a directory table 111, a chunk
map table 112, a chunk management table 113, a hash key
management data 114, an object management table 115, and
a Bloom filter data 116. Part of the storage area of the storage
unit 110 1s used as a data cache 117.

The directory table 111 1s management information for
representing a directory structure in a file system. In the
directory table 111, records corresponding to directories
(folders) 1n the directory structure or to files 1n the directo-
ries are registered. In each record, an mmode number for
identifying a directory or a file 1s registered. For example,
relationships between directories and relationships between
directories and files are expressed by registering the 1node
number of the parent directory in each record.

10

15

20

25

30

35

40

45

50

55

60

65

8

The chunk map table 112 1s management information for
managing correspondences between files and deduplicated
chunks. The chunk management table 113 1s management
information for managing correspondences between chunks
and objects, and the number of references of chunks.

The hash key management data 114 1s management
information for managing the hash key corresponding to the
chunk. In the hash key management data 114, the hash keys
are classified and managed for each lowest node in the
hierarchical Bloom filter as described later.

The object management table 1135 1s management infor-
mation for managing, for each object, the number of valid
chunks indicating valid chunks among chunks included 1n
the object and the number of invalid chunks indicating
invalid chunks among chunks included in the object. The
object management table 115 1s used to determine the
desirability of executing defragmentation of objects stored
in a cloud storage 240.

The Bloom filter data 116 1s management information for
managing data related to the lierarchical Bloom filter. The
Bloom filter data 116 contains management information
indicating the configuration of the hierarchical Bloom filter
and bit arrays which actually serve as the Bloom filters. This
hierarchical Bloom filter 1s utilized for the duplication
determination of chunks.

The data cache 117 1s a storage area for caching dedu-
plicated chunks. Data of chunks corresponding to a file for
which the write request 1s made from the NAS client 210 1s
deduplicated and temporarily stored in the data cache 117
and then, incorporated into an object and stored 1n the cloud
storage 240. When the capacity of the data cache 117 has
decreased due to the chunks stored, chunks that have been
stored 1n the cloud storage 240 and are inirequently accessed
from the NAS client 210 are deleted from the data cache 117.

The file input/output unit 120 executes interface process-
ing as a NAS server. For example, the file input/output unit
120 accepts a file write/read request from the NAS client
210, requests the deduplication processing unit 130 to
execute processing corresponding to the requested contents,
and responds to the NAS client 210.

In response to the request from the deduplication process-
ing unit 130, the cloud communication unit 140 executes
communication processing with the cloud storage 240. For
example, the deduplication processing unit 130 transmits
and receives objects to and from the cloud storage 240,
which 1s the object storage. The deduplication processing
unit 130 uploads objects to the cloud storage 240 according
to a PUT command. The deduplication processing unit 130
acquires objects from the cloud storage 240 according to a
GET command. The deduplication processing unit 130
deletes objects 1n the cloud storage 240 according to a
DELETE command.

The deduplication processing unit 130 executes process-
ing of storing deduplicated actual data of a file. The dedu-
plication processing unit 130 includes a duplication deter-
mination unit 131, a chunk management unit 132, and a
defragmentation processing unit 133.

The duplication determination unit 131 divides actual data
of a file for which the write request 1s made 1n units of chunk,
and stores the divided actual data in the data cache 117 while
deduplicating the divided actual data. The duplication deter-
mination unit 131 includes a Bloom filter processing umnit
131a and a binary tree search processing unit 1315.

The Bloom filter processing unit 131a and the binary tree
search processing unit 1315 execute processing to search for

the same chunk as the chunk divided from the file from
among chunks registered in the chunk management table

US 11,372,576 B2

9

113 (stored chunks). The Bloom filter processing unit 131a
narrows a chunk group containing the same chunk as the
chunk divided from the file by using the hierarchical Bloom
filter. The binary tree search processing unit 1315 searches

for the same chunk as the chunk divided from the file from

among the narrowed chunk group through the binary tree
search.

The chunk management unit 132 collects a plurality of
chunks stored in the data cache 117 by the duplication
determination unit 131 to generate an object of proper size,
and stores the object 1n the cloud storage 240 via the cloud
communication unit 140. In this embodiment, as an
example, a predetermined number of chunks form an object.

The defragmentation processing unit 133 monitors
chunks that have become unreferenced due to file updating
or delete request (1nvalid chunks) and performs defragmen-
tation based on the monitoring result. The defragmentation
1s processing of deleting the occurred mnvalid chunks from
the cloud storage 240 to reduce the used capacity of the
cloud storage 240. In defragmentation, for example, the
object containing invalid chunks 1s acquired from the cloud
storage 240, chunks remaining after the deletion of the
invalid chunk data reconstruct an object, and the recon-
structed object 1s stored in the cloud storage 240.

FI1G. 5 1s a diagram 1llustrating a configuration example of
management tables. FIG. § illustrates the chunk map table
112, the chunk management table 113, and the object
management table 115 among the management tables stored
in the storage unit 110.

The chunk map table 112 1s management information for
managing correspondences between files and stored chunks.
As 1llustrated 1 FIG. 5, records with 1tems including {ile
number, oflset, size, and chunk number are registered 1n the
chunk map table 112. Fach record 1s associated with one
chunk generated by dividing the actual data of the file.

The file number indicates the identification number of the
le. The oflset indicates the amount of offset from the start
t the file to the start of the chunk. The si1ze indicates the size
f the chunk. An area of the chunk in the file 1s specified
ased on values of oflset and size.

The chunk number 1ndicates the 1dentification number of
the stored chunk corresponding to the chunk of the file.
When a first chunk of a certain file and a second chunk of
the same or another file have the same data contents, the
same chunk number 1s registered in the record correspond-
ing to the first chunk and the record corresponding to the
second chunk. For example, in FIG. 5, the same chunk
number “ckl” 1s registered in a chunk record identified
based on a file number “t1” and an offset “o01” and a chunk
record 1dentified based on a file number “12” and an oflset
“014”. This means that the former chunk and the latter chunk
have the same data contents, and the data 1s stored as the
chunk having the chunk number “ck1” 1n the data cache 117
and the cloud storage 240.

The chunk numbers are added in the order in which
unique and unduplicated chunks occur and are stored in the
data cache 117. Thus, the chunk number indicates the order
occurred or stored of the deduplicated chunk.

The chunk management table 113 1s management infor-
mation for managing correspondences between stored
chunks and objects, and the number of references of stored
chunks. As 1llustrated in FIG. 5, records with 1items including
chunk number, object number, offset, size, and the number
of references are registered in the chunk management table
113. Each record 1s associated with one stored chunk.

The object number 1ndicates the 1dentification number of
an object to which the chunk belongs. The oflset indicates

-p

o o O

10

15

20

25

30

35

40

45

50

55

60

65

10

the amount of ofiset from the start of the object to the start
of the chunk. The size indicates the size of the chunk. An
area of the chunk in the object 1s specified based on values
ol oflset and size. The number of references indicates how
many chunks among the chunks generated by dividing the
file refer to the stored chunk indicated by the chunk number.
For example, the number of references indicates among how
many chunks on the file, the stored chunk indicated by the
chunk number 1s duplicated. For example, 1n the case where
the number of references corresponding to a certain chunk
number 1s “2”, two records that have the same chunk number
registered therein are present in the chunk map table 112.

In the example of the chunk map table 112 1n FIG. 5, the
file having the file number “11” 1s divided mto two chunks,
and the file having the file number “12” 1s divided 1nto four
chunks. In the example of the chunk management table 113
in FIG. 5, data of the two chunks contained 1n the former file
and data of the first two chunks contained in the latter file are
stored as chunks belonging to the object having an object
number “obl1” 1n the cloud storage 240.

In this embodiment, a predetermined number of chunks
form one object. Once a new chunk (stored chunk) occurs
due to the writing of a file, the chunk 1s assigned an object
number. When the number of chunks contained 1n a certain
object does not reach a predetermined number, the object 1s
managed as being 1n an “active” state. An active object 1s
assigned a newly occurring chunk sequentially. Once the
number of chunks contained in the object reaches the
predetermined number, the object 1s made “inactive™ to be
allowed to be stored in the cloud storage 240. The object
number 1s added to the object in the order generated. Chunks
having consecutive chunk numbers are assigned to one
object.

As another generation method for objects, for example, 1n
the case where the total size of chunks assigned to an object
has exceeded predetermined size, the object may be made
mactive.

As 1llustrated 1in FIG. 5, the number of valid chunks and
the number of mvalid chunks are registered in the object
management table 115 1n association with the object num-
ber. The number of valid chunks indicates the number of
valid chunks (chunks having the number of references of 1
or more) among chunks contained 1n an object. The number
of 1invalid chunks indicates the number of invalid chunks
(chunks having the number of references of 0) among
chunks contained 1n an object. This object management table
115 1s utilized to determine the desirability of executing
defragmentation.

Next, the hierarchical Bloom filter utilized in the process-
ing of the Bloom filter processing umt 131a 1s utilized.

FIG. 6 1s a diagram 1llustrating a configuration example of
the hierarchical Bloom filter. A hierarchical Bloom filter 118
illustrated 1n FIG. 6 1s implemented by a tree structure in
which a bit array operating as a Bloom filter 1s assigned to
cach of nodes. In this way, the hierarchical Bloom filter
including Bloom filters of multiple levels 1s formed.
Although the detailed description 1s given later, the bit array
of each node 1s divided by the same number, and each
divided bit array operates as an individual Bloom filter.

In this embodiment, a bit array BA1 having n bits 1s set
in the node of the uppermost first level. The number of bits
“n” 1s determined according to the maximum number of
clements to be the search target (specifically, for example,
the maximum number of chunks to be registered 1n the
chunk management table 113 of the storage unit 110).

In the next lower level, bit arrays each having the number

of bits (1/d) of that of the higher level are placed, the number

US 11,372,576 B2

11

of which 1s d times that of the higher level. For example, 1n
the level immediately below a certain node, d nodes are
coupled, and the bit array of each node of the lower level has
the number of bits (1/d) of that of the higher level. Hence,
the total number of bits of bit arrays (Bloom filters) con-
tained 1n each level 1s n bits, and the hierarchical Bloom
filter 118 occupies a storage area corresponding to the
number of bits n times the number of levels.

In this embodiment, as an example, the number of levels
of the hierarchical Bloom filter 118 1s assumed to be “3”. In
this case, as 1llustrated in FIG. 6, 1n the second level, d bit
arrays BA2-1, BA2-2, . .., BA2-d are placed. The number
of bits of each of the bit arrays BA2-1, BA2-2, . .., BA2-d
1s (n/d) bats.

In the third level, d bit arrays are placed below each of the
bit arrays 1n the second level. For example, below the bit
array BA2-1, d bit arrays BA3-1-1, BA3-1-2, ..., BA3-1-d
are formed. Below the bit array BA2-2, d bit arrays BA3-
2-1, BA3-2-2, ..., BA3-2-d are formed. Below the bit array
BA2-d, d bit arrays BA3-d-1, BA3-d-2, . . ., BA3-d-d are
formed. Hence, in the third level, d* bit arrays in total are
placed. The number of bits of each of these bit arrays 1s
(n/d*) bits.

A chunk group to be the search target for 1s assigned to the
bit array of each node 1n the third level. The actual search 1s
conducted by using a hash key, which 1s a hash value
calculated based on data of the chunk. In this embodiment,
the search targets of the bit arrays of the respective nodes in
the third level are given as search tables 1n each of which the
hash keys based on the respective chunks are reglstered

For example, search tables TB1-1, TB1-2, ..., TB1-d are
assigned to the respective bit arrays BA3-1-1,
BA3-1-2, ..., BA3-1-d, as the search targets. Search tables
TB2-1, TB2-2, .. ., TB2-d are assigned to the respective bit
arrays BA3-2-1, BA3-2-2, . . ., BA3-2-d, as the search
targets. Search tables TBd-1, TBd-2, , 1Bd-d are
assigned to the respective bit arrays BA3-d-1,
BA3-d-2, ..., BA3-d-d, as the search targets. These search
tables contain chunk data belonging to 20 objects at the
maximum, for example.

The search target for the bit array of each node in the
second level 1s all the search tables that are the search targets
for the respective bit arrays placed below the above-men-
tioned bit array. For example, the search target of the bit
array BA2-1 1s the search tables TB1-1, TB1-2, . .., TB1-d.
Similarly, the search target for the bit array BA1 1n the first
level 1s all the search tables that are the search targets for the
bit arrays BA2-1, BA2-2, ..., BA2-d placed below the bit
array BA1. Hence, the search target for the bit array BA1 1n
the first level 1s all the chunks registered in the chunk
management table 113.

Every time an 1nactive object occurs, a hash key corre-
sponding to a chunk belonging to the object 1s added to the
search table. For example, when an inactive object occurs
first, a hash key based on a chunk belonging to the object 1s
added to the first search table TB1-1. Thereafter, along with
the occurrence of 1nactive objects, hash keys corresponding
to 20 objects are added to the search table TB1-1. When the
21st mactive object occurs, a hash key corresponding to a
chunk belonging to the object 1s added to the next search
table TB1-2. In this way, hash keys corresponding to 20
objects at the maximum are contained 1n each search table.

A processing example in the case where the bit arrays of
the respective nodes in the hierarchical Bloom filter 118
illustrated 1n FIG. 6 are used as individual Bloom filters 1s
described as a comparative example using FIGS. 7 t0o 9. In
this case, the hierarchical Bloom filter 118 1s a hierarchical

10

15

20

25

30

35

40

45

50

55

60

65

12

Bloom filter having a general configuration in which Bloom
filters are simply multi-layered.

First, FIG. 7 1s a diagram illustrating a processing
example using Bloom filters. A Bloom filter BF 1llustrated 1n
FIG. 7 indicates the Bloom filter of any one node. All the
values of the bits of all the Bloom filters contained in the
hierarchical Bloom filter are set to “0” in the i1mtial state
before data 1s inserted into a data group to be the search
target.

First, the case where a hash key HK1 1s added to a data
group DG (set of hash keys) which 1s assigned to the Bloom
filter BF as the search target 1s described. In this case,

calculations using k types of hash functions are conducted
on the hash key HK1 to calculate k hash wvalues. The

positions ol k bits whose bit value 1s to be set to “1” are
specified based on the k hash values calculated.

In FIG. 7, k=3 as an example. Remainders obtained by
dividing values calculated by using 3 types of hash functions
from the hash key HK1 by the number of bits of the Bloom
filter BF are specified as bit numbers whose bit value 1s set

to “1”. In the example of FIG. 7, when bits B1, B2, and B3
are supposed to have been specified, the value of each of the
bits B1, B2, and B3 is set to “1”".

Next, the case where 1t 1s determined whether a hash key
HK2 based on a chunk divided from a certain file 1s
contained 1n the data group DG 1s described. In this case, the
positions of bits whose bit values are set to “1” are specified
based on hash values calculated by using k types of hash
functions from the hash key HK2 1n the same procedure as
described above. In the example of FIG. 7, when bits B2, B3,
and B4 are supposed to have been specified, the value of
cach of the bits B2, B3, and B4 1s acquired from the Bloom
filter BF.

In the case where all the values of the bits B2, B3, and B4
are “17, 1t 1s determined there 1s a possibility that the hash
key HK2 1s contained in the data group DG. However, 1t
does not mean it 1s guaranteed that the hash key HK2 1s
contained 1n the data group DG (false positive). On the other
hand, 1n the case where the value of at least one of the baits
B2, B3, and B4 1s “07, 1t 1s determined that the hash key
HK2 1s not contained 1n the data group DG.

This 1s the basic processing using a Bloom filter. Next, a
processing example in the case where the bit arrays of the
respective nodes 1n the hierarchical Bloom filter 118 1illus-
trated 1n FIG. 6 are used as individual Bloom filters 1s
described.

In the hierarchical Bloom f{ilter, at the time of adding a
hash key, the setting of a bit value “1” for the Bloom filter
1s conducted sequentially from the lowest Bloom filter to the
upper levels. For example, 1n FIG. 6, 1n the case of adding
a hash key to the search table TB1-1, the processing of
setting 3 bit values to “1” 1s first conducted on the bit array
BA3-1-1 (Bloom filter) assigned to the search table TB1-1
in the third level. The processing of setting 3 bit values to
“1” 1s conducted on the bit array BA2-1 (Bloom filter) in the
upper level. The processing of setting 3 bit values to “1” 1s
conducted on the bit array BA1 (Bloom filter) in the upper
level.

On the other hand, at the time of determining the presence
or absence of a hash key, the bit values are referred to
sequentially from bit array BA1 (Bloom filter) in the highest
level to the lower levels. Specifically, for example, the bit
array BA1 (Bloom filter) in the first level 1s first referred to,
and 1t 1s determined whether all the 3 bit values specified by
hash calculation are “1”. In the case where all the 3 bit
values are “17, 1t 1s next determined whether all the 3 bat

US 11,372,576 B2

13

values specified by hash calculation are *“1” for each of the
bit arrays BA2-1, BA2-2, ..., BA2-d (Bloom filters) in the
second level.

For example, it 1s assumed that all the 3 bit values
specified 1n the bit array BA2-1 (Bloom filter) are “1”. In this
case, 1t 1s determined whether all the 3 bit values specified
by hash calculation are *“1” for each of the bit arrays
BA3-1-1, BA3-1-2, .. ., BA3-1-d (Bloom filters) belong to
the level below the bit array BA2-1 (Bloom filter).

For example, 1t 1s assumed that all the 3 bit values
specified 1n the bit array BA3-1-1 (Bloom filter) are *“1”. In
this case, 1t 1s determined there 1s a possibility that the
desired hash key 1s present in the search table TB1-1
assigned to the bit array BA3-1-1 (Bloom filter).

The number of bits of each Bloom filter of the hierarchical
Bloom filter 1s determined according to the number of
clements to be the search target (specifically, for example,
the number of chunks registered 1n the chunk management
table 113). The more the number of elements to be the search
target, the more the number of bits of each Bloom filter. For
this reason, The storage area occupied by data constituting,
the hierarchical Bloom filter 1s also increased.

On the other hand, as the nature of a general Bloom filter,
even 1n the case where the number of elements to be the
search target has decreased, the number of bits of the Bloom
filter 1s not allowed to be reduced. This 1s because even when
a bit whose bit value 1s found to be “1” by calculation based
on a deleted element 1s deleted from the bits of the Bloom
filter, there 1s a possibility that the bit value of the bit 1s
found to be “1” by calculation based on another element. In
such a case, false negative occurs 1n the search processing
using the Bloom filter after the deletion of the bait.

To deal with such problem, a method of reducing the
number of bits as illustrated in FIGS. 8 and 9, which 1s
described below, 1s considered.

FI1G. 8 1s a diagram 1illustrating a comparative example of
processing of reducing the number of bits 1n a hierarchical
Bloom filter.

A chunk group CG 1llustrated in FIG. 8 corresponds to the
search table TB1-1 illustrated in FIG. 6 as an example.
Specifically, for example, a hash key based on each chunk
contained 1n the chunk group CG has been registered in the
search table TB-1. In FIG. 8, as an example, the case where
the number of chunks contained 1n the chunk group CG has
been reduced by defragmentation processing of objects 1s
assumed. The defragmentation processing 1s processing of
re-storing fragmented valid chunks (chunks with the number
of references being “1” or more) among chunks contained 1n
the chunk group CG collectively 1n the storage area to
release the storage area of invalid chunks (chunks with the
number of references being “07).

The Bloom filter BF3-1-1 illustrated 1n FIG. 8 1s a Bloom
filter using the entire bit array BA3-1-1 illustrated in FIG. 6,
and 1s used to search the chunk group CG (the search table
TB1-1). The Bloom filter BF2-1 1illustrated in FIG. 8 1s a
Bloom filter using the entire bit array BA2-1 illustrated 1n
FI1G. 6, and the Bloom filter BF1 illustrated in FIG. 8 1s a
Bloom filter using the entire bit array BA1 1llustrated 1n FIG.
6.

In FIG. 8, as an example, 1t 1s assumed that the number of
chunks contained 1n the chunk group CG has been reduced
to 13 by the defragmentation processing. In this case, among
the Bloom filters in the lowest level (the third level) in the
hierarchical Bloom filter, the number of bits of the Bloom
filter BF3-1-1 having the chunk group CG (the search table
TB1-1) as the search target 1s reduced. In this processing, 1in
the Bloom filter BF3-1-1, the bat array of 14 of those on the

10

15

20

25

30

35

40

45

50

55

60

65

14

lower side 1s left as 1t 1s, while the bit array of the remaining
%4 on the higher side 1s deleted from the storage area. It 1s
assumed that a bit array having m bits has been deleted from
the Bloom filter BF3-1-1 at this time.

Next, the number of bits of the Bloom filter BF2-1 located
above the Bloom filter BF3-1-1 1s reduced. In this process-
ing, in the Bloom filter BF2-1, the bit array having m bits on
the higher side 1s deleted from the storage area, while the
remaining bit array 1s left as 1t 1s. The number of bits 1s not
reduced for the other Bloom filters 1n the second level.

Next, the number of bits of the Bloom filter BF1 located
above the Bloom filter BF2-1 1s reduced. In this processing,
like the second level, in the Bloom filter BF1, the bit array
having m bits on the higher side 1s deleted from the storage
area, while the remaining bit array 1s left as 1t 1s.

By the above-described procedure, the storage area of the
hierarchical Bloom filter 1s also reduced 1n accordance with
the reduction of the storage area of the chunk group CG.

FIG. 9 1s a diagram 1illustrating a comparative example of

the search processing using a Bloom filter 1n which the
number of bits has been reduced. FIG. 9 illustrates the case
where search for a chunk CK1 divided from a file 1s
requested in the state where the number of bits of each of the
Bloom filters BF1, BF2-1, and BF3-1-1 has been reduced by
the procedure as illustrated 1n FIG. 8.

In this case, first, the presence or absence of the chunk
CK1 1s determined by using the Bloom filter BF1 1n the first
level. At this time, a bit array BS1 having the same number
of m bits as the reduced number of bits 1s virtually added to
the level above the Bloom filter BF1. In the bit array BS1
added, all the bit values are set to “1”. It 1s then determined
whether the chunk CK1 1s contained in the chunk group to
be the search target by using the Bloom filter BF1 to which
the bit array BS1 has been added.

When 1t 1s determined by this determination that there 1s
a possibility that the chunk CK1 1s contained 1n the chunk
group to be the search target, the presence or absence of the
chunk CK1 1s determined by using each of the Bloom filters
(corresponding to the bit array BA2-1, BA2-2, ..., BA2-d)
in the second level. In the processing using the Bloom filter
BEF2-1, a bit array BS2 having the same number of m bits as
the reduced number of bits 1s virtually added to the level
above the Bloom filter BF2-1. Like the bit array BS1, in the
bit array BS2 added, all the bit values are set to “1”. It 1s then
determined whether the chunk CK1 1s contained in the
chunk group to be the search target by using the Bloom filter
BEF2-1 to which the bit array BS2 has been added.

It 1s assumed that it 1s determined by the determination
processing using the Bloom filter BF2-1 that there 1s a
possibility that the chunk CK1 1s contained 1n the chunk
group to be the search target. In this case, next, the presence
or absence of the chunk CK1 1s determined by using each of
the Bloom filters (corresponding to the bit arrays BA3-1-1,
BA3-1-2, . . . , BA3-1-d) placed in the level below the
Bloom filter BF2-1. In the processing using the Bloom filter
BEF3-1-1, a bit array BS3 having the same number of m bits
as the reduced number of bits 1s virtually added to the level
above the Bloom filter BF3-1-1. Uke the bit arrays BS1 and
BS2, in the bit array BS3 added, all the bit values are set to
“1”. It 1s then determined whether the chunk CK1 1s con-
tained 1n the chunk group CG to be the search target by using

the Bloom filter BF3-1-1 to which the bit array BS3 has been
added.

In the above-described comparative example, when the
search 1s conducted by using a Bloom f{ilter from which the
number of bits has been reduced, a bit array that has the
same number of bits as the reduced number of bits and 1n

US 11,372,576 B2

15

which the values of all the bits are “1”” 1s virtually added to
the level above the Bloom filter. The search 1s conducted by
using the Bloom filter to which the bit array has been added
as described above. In this way, 1t 1s possible to suppress an
occurrence of significant erroncous determination in the
search processing (specifically, for example, determination
that an element that 1s actually present 1n a set 1s not present)
while reducing the amount of actual data of Bloom filters
stored 1n a storage area to increase the use efliciency of the
storage area.

In this comparative example, since the presence or
absence 1s determined by temporarily adding a bit array 1n
which all the bit values are “1”, there 1s a problem that the
probability of occurrence (false positive rate) of erroneous
determination (specifically, for example, determination that
an element that 1s actually present 1n a set 1s not present) due
to false positive increases as compared with before reduction
of bits.

For example, for the Bloom filter BF3-1-1 in the lowest
level, a method of reducing the number of bits by regener-
ating the Bloom filter BF3-1-1 along with the reduction 1n
the number of chunks 1n the chunk group CG to be the search
target 1s conceivable. In this re-creation, a Bloom filter
having a smaller number of bits than that of the original
Bloom filter BF3-1-1 (a bit array in which all the bit values
are “0” 1s generated. Hash calculations are conducted by k
types of hash functions using a hash key for each of chunks
remaining in the chunk group CG, and k bits 1n a new Bloom
filter are set to “17.

Such regeneration makes 1t possible to reduce the number
of bits without causing an increase in false positive rate, 1in
view of the Bloom filter BF3-1-1 itself. However, even when
the Bloom filter BF3-1-1 in the lowest level 1s regenerated,
an 1ncrease 1n false positive rate 1in the Bloom filters 1n the
higher level causes an increase 1n false positive rate 1n the
Bloom filter BF3-1-1 1n the lowest level as well.

To deal with such problem, the hierarchical Bloom filter
118 of the second embodiment has the following configu-
ration. The bit array of each node 1n the lierarchical Bloom
filter 118 1s umiformly divided into the same number of bit
arrays, and the bit arrays thus divided are utilized as indi-
vidual Bloom filters, respectively. Each of the Bloom filters
contained 1n one bit array 1s i1dentified by an index.

A plurality of Bloom filters contained in the bit array of
cach node are used to search for hash keys classified based
on different classification conditions, respectively. Specifi-
cally, for example, a certain Bloom filter 1s used to determine
whether hash keys that match the same classification con-
dition are present 1n a set of hash keys that match a certain
classification condition. The same classification condition 1s
associated with Bloom filters identified by the same index 1n
a bit array. Once all the hash keys to be the search target for
a certain Bloom filter are deleted, the Bloom filter 1s deleted
from the bit array of the corresponding node. This makes 1t
possible to achieve a reduction 1n the number of bits 1n the
hierarchical Bloom filter 118.

In the case where among Bloom filters of the nodes
located below the same higher node, all the Bloom filters
identified by the same index are deleted, the Bloom filters
identified by the same index in the higher node are also
allowed to be deleted. In thus way, the positions of Bloom
filters that may be deleted are propagated from the lower
level to the higher level.

Such a configuration makes i1t possible to delete the
number of bits of the hierarchical Bloom filter 118 across
Bloom filters 1n multiple levels without increasing the false
positive rate.

10

15

20

25

30

35

40

45

50

55

60

65

16

Hereinafter, the detail of the hierarchical Bloom filter 118
of the second embodiment 1s described.

FIG. 10 15 a diagram 1llustrating an internal configuration
example of the hierarchical Bloom filter. In FIG. 10, for
simplification of description, the number of virtual nodes
coupled to one node 1s assumed to be “2” (specifically, for
example, d=2).

As described above, the bit array of each node in the
hierarchical Bloom filter 118 1s uniformly divided into the
same number of bit arrays, and the bit arrays thus divided are
utilized as individual Bloom filters, respectively. Each of the
Bloom filters contained 1n one bit array 1s 1dentified by an
index. In the example of FIG. 10, indices from “0x00” to
“OxFF” are given to the Bloom filters in the bit arrays.

A plurality of Bloom filters contained 1n the bit array of
cach node are used to search for hash keys classified based
on different classification conditions, respectively. Specifi-
cally, for example, the indices from “0x00” to “OxFF” are
associated with mutually different classification conditions,

respectively. In this embodiment, as an example, bit values
of the high-order 1 byte among the bit values of a hash key
are used as the classification condition. The values of the
index 1s the same as the bit values of the classification
condition such that the bloom filters with the index “0x00”
1s used to search for a hash key in which the high-order 1
byte 1s “0x00”, and the bloom filters with the index “0x01”
1s used to search for a hash key i which the high-order 1
byte 1s “0x01”.

The relationships between the Bloom filters and hash keys
to be the search target are as described below, for example.
In the third level (the lowest level), the search target of the
Bloom filter of index “0x00” among the Bloom filters 1n the
bit array BA3-1-1 1s a hash key in which the high-order 1
byte 1s “0x00” among the hash keys registered 1n the search
table TB1-1. The search target of the Bloom filter of index
“Ox01” among the Bloom filters in the bit array BA3-1-1 1s
a hash key in which the high-order 1 byte 1s “Ox01” among
the hash keys registered in the search table TB1-1.

In the second level, the search target of the Bloom filter
of index “0x00” among the Bloom filters in the bit array
BAZ2-1 1s a hash key in which the high-order 1 byte 1s “0x00”
among the hash keys registered 1n the search tables TB1-1
and TB1-2. The search target of the Bloom filter of index
“Ox01” among the Bloom filters i the bit array BA2-1 1s a
hash key 1n which the high-order 1 byte 1s “0x01” among the
hash keys registered in the search tables TB1-1 and TB1-2.

In the first level, the search target of the Bloom filter of
index “0x00” among the Bloom filters in the bit array BA1
1s a hash key in which the high-order 1 byte 1s “Ox00” among
the hash keys registered in the search tables TB1-1, TB1-2,
TB2-1, and TB2-2. The search target of the Bloom filter of
index “0x01” among the Bloom filters in the bit array BA1
1s a hash key in which the high-order 1 byte 1s “0x1” among
the hash keys registered in the search tables TB1-1, TB1-2,
TB2-1, and TB2-2.

FIG. 11 1s a diagram 1llustrating a configuration example
of a filter management table. In the Bloom filter data 116 1n
the storage unit 110, management information indicating the
configuration of the hierarchical Bloom filter 118 and bat
arrays which actually serve as the Bloom filters are regis-
tered. A filter management table 116q illustrated 1n FIG. 11
1s an example of the former.

The filter management table 116a 1includes records of the
respective nodes of the hierarchical Bloom filter 118. In each
record, a node number for 1dentifying the node 1s registered.
In each record, filter addresses for the respective indices, a
filter size indicating the size of the Bloom filter, child node

US 11,372,576 B2

17

numbers 1dentifying child nodes placed in the level below
the node are registered. The filter addresses indicate the start
addresses of the bit arrays which actually serve as the Bloom
filters corresponding to the indices in the storage umt 110.
The filter address and the filter size allow for the access to
the Bloom f{ilter corresponding to the index. From the
correspondences between the node numbers and the child
node numbers, the tree structure of the hierarchical Bloom
filter 118 1s specified.

FI1G. 12 1s a diagram 1illustrating a configuration example
of the search tables. The search tables TB-1, TB-2, . . . are
registered 1n the hash key management data 114. Each of the
search tables TB-1, TB-2, . . . i1s assigned the node number
indicating the node 1n the lowest level. In each of the search
tables TB-1, TB-2, . . ., a hash key and a chunk number

indicating the chunk based on which the hash key 1s calcu-
lated are registered. In each of the search tables TB-1,
TB-2, ..., akey-value database 1n which the hash keys serve
as keys and the chunk numbers serve as values 1s formed.

Next, the processing using the hierarchical Bloom filter of
this embodiment 1s described using FIGS. 13 to 16.

FIG. 13 1s a diagram 1llustrating a processing example in
a case where a hash key 1s added to a search table. FIG. 13
illustrates the case where a hash key HK3 1s added to the
search table TB1-2.

When the high-order 1 byte of the hash key HK3 1s

“0x01”, the deduplication processing unit 130 determines
that the index indicating the Bloom filter to be used 1s

“0x01”. The deduplication processing unit 130 first specifies
the Bloom filter of index “0x01” (denoted by “BF11”") from
the bit array BA3-1-2 of the lowermost node having the

search table TB1-2 as the search target.

The deduplication processing unit 130 conducts calcula-
tions using k types of hash functions on the hash key HK3
to calculate k hash values. The deduplication processing unit

130 divides each of the calculated k hash values by the
number of bits of the specified Bloom filter BF11 and
speciflies k remainders obtained by the division as the bit
numbers whose bit values are set to “1”. The deduplication
processing unit 130 sets the bits of the specified bit numbers

to “1” among the bits of the Bloom filter BF11.

Next, the deduplication processing unit 130 refers to the
bit array BA2-1 placed above the bit array BA3-1-2 and
specifies the Bloom filter of mndex “0x01” (denoted by
“BF12”) from the bit array BA2-1. The deduplication pro-
cessing unit 130 divides each of the k hash values calculated
based on the hash key HK3 by the number of bits of the
specified Bloom filter BF12 and specifies k remainders
obtained by the division as the bit numbers whose bit values
are set to “1”. The deduplication processing unit 130 sets the
bits of the specified bit numbers to “1” among the bits of the
Bloom filter BF12.

Next, the deduplication processing unit 130 refers to the
bit array BA1 placed above the bit array BA2-1 and specifies
the Bloom filter of index “0x01”” (denoted by “BF13”) from
the bit array BA1. The deduplication processing unmt 130
divides each of the k hash values calculated based on the
hash key HK3 by the number of bits of the specified Bloom
filter BF13 and specifies k remainders obtained by the
division as the bit numbers whose bit values are set to “17.
The deduplication processing unit 130 sets the bits of the
specified bit numbers to “1” among the bits of the Bloom
filter BF13.

By such processing, the bit setting 1s conducted for the
Bloom filters of the hierarchical Bloom filter 118.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 14 1s a diagram 1llustrating a processing example of
determination on the presence or absence of a hash key. FIG.
14 1llustrates the case where the presence or absence of a
hash key HK4 1s determined.

When the high-order 1 byte of the hash key HK4 1s
“0x00”, the deduplication processing unit 130 determines
that the index indicating the Bloom filter to be used 1s
“0x00”. The deduplication processing unit 130 first specifies
the Bloom filter of index “0x00”” (denoted by “BF21”) from
the bit array BA1 of the highest node.

The deduplication processing unit 130 conducts calcula-
tions using k types of hash functions on the hash key HK4
to calculate k hash values. The deduplication processing unit
130 divides each of the calculated k hash values by the
number of bits of the specified Bloom filter BF21 and
speciflies k remainders obtained by the division as the bit
numbers to be compared.

The deduplication processing unit 130 acquires the bit
values of the specified bit numbers from the Bloom filter
BF21 and determines whether all the bit values are “1” or
not. In the case where all the acquired bit values are “1”, the
deduplication processing unit 130 determines that a hash key
having the same value as the hash key HK4 1s present in any
of the search tables TB1-1, TB-2, TB2-1, and TB2-2. In the
case where even one of the acquired bit values 1s “0”, the
deduplication processing unit 130 determines that a hash key
having the same value as the hash key HK4 1s not present in
any of the search tables TB1-1, TB1-2, TB2-1, and TB2-2.

In FIG. 14, 1t 1s assumed that all the acquired bit values
are “1” as an example. In this case, the deduplication
processing unit 130 specifies the Bloom filter of index
“0x00” (denoted by “BF22”) from the bit array BA2-1 of the
lower node. Along with this, the deduplication processing
unit 130 specifies the Bloom filter of index “0x00” (denoted
by “BF23”") from the bit array BA2-2 of the lower node. The
deduplication processing unit 130 then determines the pres-
ence or absence by using the specified Bloom filters BF22
and BF23.

Specifically, for example, the deduplication processing
unit 130 divides each of the k hash values calculated based
on the hash key HK4 by the number of bits of the specified
Bloom filter BF22 and specifies k hash values obtained by
the division as the bit numbers to be compared. The dedu-
plication processing unit 130 acquires the bit values of the
specified bit numbers from the Bloom filter BF22 and
determines whether all the bit values are *“1” or not.

Along with this, the deduplication processing unit 130

divides each of the k hash values calculated based on the
hash key HK4 by the number of bits of the specified Bloom

filter BF23 and specifies k hash values obtained by the
division as the bit numbers to be compared. The deduplica-
tion processing unit 130 acquires the bit values of the
specified bit numbers from the Bloom filter BF23 and
determines whether all the bit values are “1” or not.

In FIG. 14, 1t 1s assumed that all the bit values acquired
from the Bloom filter BF22 are “1” as an example. In this
case, 1t 1s determined that a hash key having the same value
as the hash key HK4 1s present 1n any of the search tables
TB1-1 and TB1-2. The deduplication processing umt 130
specifies the Bloom filter of index “0x00” (denoted by
“BF24) from the bit array BA3-1-1 of the lower node.
Along with this, the deduplication processing unit 130
specifies the Bloom filter of index “0x00” (denoted by
“BF25”) from the bit array BA3-1-2 of the lower node. The
deduplication processing unit 130 then determines the pres-
ence or absence by using the specified Bloom filters BF24
and BF25 1n the same manner as described above.

US 11,372,576 B2

19

In FIG. 14, 1t 1s assumed that all the bit values acquired
from the Bloom filter BF25 are “1” as an example. In this
case, 1t 1s determined that a hash key having the same value
as the hash key HK4 1s present in the search table TB1-2. In
this way, the search range for the duplicated hash keys 1s
narrowed to the search table TB1-2.

FIG. 15 1s a diagram illustrating a {first processing
example at the time of deleting a chunk. In FIG. 15, 1t 1s
assumed that all the hash keys in each of which the start 1
byte 1s “0Ox01” have been deleted among the hash keys
registered in the search table TB1-1 by the execution of the
defragmentation processing.

In this case, the deduplication processing unit 130 deter-
mines the index indicating the Bloom filter to be deleted as
“Ox01”. The deduplication processing umt 130 then speci-
fies the Bloom filter of index “0x01” (denoted by “BF31”)
from the bit array BA3-1-1 of the lowest node having the
search table TB1-1 as the search target. In this way, the
number of bits in the hierarchical Bloom filter 118 1s
reduced.

Next, the deduplication processing unit 130 refers to the
other bit array BA3-1-2 having the same parent node (the bit
array BA2-1 of the higher node) as the bit array BA3-1-1
and determines whether the Bloom filter of index “0x01” 1s
present. In the example of FIG. 15, since the Bloom filter
BF11 with the index “0x01” 1s present in the bit array 3-1-2,
the deduplication processing unit 130 ends the bit reduction
processing.

FIG. 16 1s a diagram 1llustrating a second processing
example at the time of deleting a chunk. In FIG. 16, 1t 1s
assumed that all the hash keys in each of which the start 1
byte 1s “Ox01” have been deleted among the hash keys
registered in the search table TB1-2 by the execution of the
defragmentation processing from the state where the bit
reduction has been conducted as in FIG. 15.

In this case, the deduplication processing unit 130 deter-
mines the index indicating the Bloom f{ilter to be deleted as
“0x01”. The deduplication processing unit 130 then deletes
the Bloom filter BF11 with the index “0x01” from the bit
array BA3-1-2 of the lowest node having the search table
TB1-2 as the search target. In this way, the number of bits
in the hierarchical Bloom filter 118 1s reduced.

Next, the deduplication processing unit 130 refers to the
other bit array BA3-1-1 having the same parent node (the bit
array BA2-1 of the higher node) as the bit array BA3-1-2
and determines whether the Bloom filter of index “Ox01” 1s
present. In the example of FIG. 16, in the bit array BA3-1-1,
the Bloom filter BF31 with the index “0x01” has already
been deleted. In this case, the deduplication processing unit
130 deletes the Bloom filter BF12 with the index “0x01”
from the bit array BA2-1 of the higher node. In this way, the
position of the Bloom filter that may be deleted 1s propa-
gated from the lower level to the higher level, allowing the
number of bits of the hierarchical Bloom filter 118 to be
deleted across the Bloom filters 1n multiple levels.

Even when the Bloom filter 1s deleted, the false positive
rate does not change. For example, 1t 1s assumed that the
presence or absence of a hash key in which the first 1 byte
1s “0x01” (referred to as “inputted hash key”) 1s determined
after the Bloom filter BE31 1s deleted as 1n FIG. 15. It 1s also
assumed that the presence or absence 1s determined by using
the bit array BA3-1-1 based on the result of determination in
the higher node. In this case, since the Bloom filter BF31
with the mndex “Ox01” 1s not present in the bit array
BA3-1-1, the deduplication processing unit 130 determines
that a hash key having the same value as the inputted hash
key 1s not present in the search table TB1-1.

10

15

20

25

30

35

40

45

50

55

60

65

20

In this state, even when an inputted hash key in which the
first 1 byte 1s other than “0x01” 1s inputted and the presence
or absence 1s determined by using the bit array BA3-1-1, the
presence or absence 1s determined regardless of the deletion
of the Bloom filter BF31. Hence, also 1n the determination
on the presence or absence in all the nodes of the hierar-
chical Bloom filter 118 including the node of the bit array
BA3-1-1 from which the Bloom filter BF31 has been
deleted, the false positive rate does not change from before
the deletion of the Bloom filter BF31.

For example, 1t 1s assumed that the presence or absence of

an mputted hash key in which the first 1 byte 1s “0x01” 1s

determined after the Bloom filters BF11 and BF12 are
deleted as 1n FIG. 16. It 15 also assumed that the presence or
absence 1s determined by using the bit array BA2-1 based on
the result of determination 1n the higher node. In this case,
since the Bloom filter BF12 with the index “0x01” 1s not
present 1n the bit array BA2-1, the deduplication processing
umt 130 determines that a hash key having the same value
as the mputted hash key 1s not present in either of the search
tables TB1-1 and TB1-2.

In this state, even when an inputted hash key 1n which the
first 1 byte 1s other than “0x01” 1s inputted and the presence
or absence 1s determined by using the bit array BA2-1, the
presence or absence 1s determined regardless of the deletion
of the Bloom filter BF12. Hence, also 1n the determination
on the presence or absence 1n all the nodes of the hierar-
chical Bloom filter 118 including the node of the bit array
BA2-1 from which the Bloom filter BF12 has been deleted,
the false positive rate does not change from before the
deletion of the Bloom filter BF12.

In this way, even when a Bloom filter forming a bit array
of part of each node 1s deleted, the false positive rate 1n
determination on the presence or absence 1n any node of the
hierarchical Bloom filter 118 does not change. For this
reason, the false positive rate in the entire hierarchical
Bloom filter 118 does not change. Hence, 1t 1s possible to
delete the number of bits of the hierarchical Bloom filter 118
across Bloom filters in multiple levels without increasing the
false positive rate.

The classification condition for determining an 1ndex of a
Bloom filter to be used i determination on the presence or
absence 1s not limited to the method using the value of the
first 1 byte of a hash key as described above. For example,
various classification conditions depending on the value or
attribute of a hash key or a corresponding chunk may be
used. For example, a bit value in not only the higher 1 byte
but also within another predetermined range (such as the
lower 1 byte) 1n a bit array of a hash key may be used as a
classification condition. In this case, the value of an index
may be the same as the bit value used as the classification
condition, the processing to specily an index based on a hash
key 1s facilitated.

For example, a bit value within a predetermined range 1n
a bit array of a chunk from which a hash key 1s calculated
may be used as a classification condition. As an example
using the attribute of a hash key or a chunk, 1n the case where
the writing of files belonging to multiple logical storage
areas 1s requested from the NAS client 210, the 1identification
number of the logical storage area to which the file from
which a chunk 1s divided belongs may be used as a classi-
fication condition.

Next, the processing of the cloud storage gateway 100 1s
described using flowcharts.

FIGS. 17 and 18 are examples of flowcharts illustrating
the procedure of file write processing.

US 11,372,576 B2

21

[Step S11] The file 1input/output unit 120 receives a file
write request and file data from the NAS client 210. The
duplication determination unit 131 of the deduplication
processing unit 130 acquires data of the file for which the
write request 1s made, and adds a record indicating directory
information of the file to the directory table 111. At this time,
a file number 1s added to the file. The duplication determi-
nation unit 131 divides the file data into chunks of variable
length.

[Step S12] The duplication determination unit 131 selects
one chunk to be the processing target 1n the order from the
start of a file. The duplication determination unit 131 adds a
record to the chunk map table 112, and registers the follow-
ing imnformation in the record. The file number of the file for
which the write request 1s made 1s registered in the item of
file number, and information about the chunk to be the
processing target 1s registered 1n the 1tems of offset and size.

[Step S13] The duplication determination unit 131
executes duplication determination processing. In this dupli-
cation determination processing, it 1s determined whether
the chunk having the same contents as the chunk selected in
step S12 has been stored (whether 1t 1s duplicated). The
duplication determination processing 1s described 1n detail
later with reference to FIG. 19.

[Step S14] The duplication determination unit 131
acquires the result of determination in the duplication deter-
mination processing in step S13. In the case where 1t 1s
determined 1n the duplication determination processing that
the chunk having the same contents as the chunk selected in
step S12 has been stored (duplicated), the duplication deter-
mination unit 131 moves the processing to step S15, while
in the case where 1t 1s determined that the chunk having the
same contents as the chunk selected 1n step S12 has not been
stored (not duplicated), the duplication determination unit
131 moves the processing to step S21 1 FIG. 18.

[Step S15] The duplication determination unit 131 regis-
ters the chunk number of the stored chunk which has been
determined to be duplicated 1n the duplication determination
processing of step S13 in the record added to the chunk map
table 112 1n step S12.

[Step S16] The duplication determination unit 131 refers
to the record containing the chunk number added 1n step S16
among records in the chunk management table 113, and
increments the number of references registered 1n the record.

[Step S17] The duplication determination unit 131 deter-
mines whether or not all the chunks divided 1n step S11 have
been processed. The duplication determination unit 131
moves the processing to step S12 when any unprocessed
chunk 1s present, and selects one unprocessed chunk from
the start and continues the processing. On the other hand,
when all chunks have been processed, the duplication deter-
mination unit 131 notifies the file input/output unit 120 of
the completion of file write. The notified file 1nput/output
unit 120 received the notification transmits response infor-
mation indicating the completion of file write to the NAS
client 210.

Hereinatter, the description continues with reference to
FIG. 18.

[Step S21] The duplication determination unit 131 calcu-
lates a new chunk number for the chunk selected 1n step S12.
This chunk number 1s a value obtained by adding “1” to a
maximum value of the chunk number registered 1n the chunk
management table 113. The duplication determination unit
131 adds a new record to the chunk management table 113,
and registers the calculated new chunk number, chunk size,
and the number of references “1” 1n the record.

10

15

20

25

30

35

40

45

50

55

60

65

22

The duplication determination unit 131 stores data of the
chunk selected 1n step S12 1n the data cache 117. At this
time, the data storage position 1s associated with the chunk
number.

[Step S22] The duplication determination unit 131 regis-
ters the new chunk number calculated 1n step S21 1n the
record added to the chunk map table 112 1n step S12.

[Step S23] The chunk management unit 132 determines
whether or not the number of untransmitted chunks to the
cloud storage 240 has reached a predetermined threshold
(TH). The number of untransmitted chunks 1s the number of
chunks contained 1n the active object. The threshold TH 1s
set to, for example, about 10000. The chunk management
unit 132 moves the processing to step S24 when the number
of untransmitted chunks has reached the threshold TH, and
moves the processing to step S26 when the number of
untransmitted chunks has not reached the threshold TH.

[Step S24] The chunk management unit 132 requests the
cloud communication unit 140 to upload the object gener-
ated by combining TH untransmitted chunks to the cloud
storage 240. Thereby, the concerned object 1s made 1nactive.
The cloud communication unit 140 uploads the object to the
cloud storage 240 according to the PUT command.

[Step S25] The chunk management unit 132 assigns a new
object number to the chunk selected 1n step S12. This object
number 1s a value obtained by adding “1” to the object
number of the object uploaded in step S24. The chunk
management unit 132 registers the new object number and
the offset “0” 1n the record added to the chunk management
table 113 1n Step S21. The object corresponding to the new
object number 1s made active. The chunk management unit
132 adds a new record to the object management table 115,
and registers the new object number 1n this record.

[Step S26] The chunk management unit 132 assigns the
existing maximum object number to the chunk selected 1n
step S12. This object number 1s the object number assigned
to the untransmitted chunk to be determined 1n step S23. In
step S26, the chunk selected 1n step S12 1s turther assigned
to the untransmitted object assigned to these chunks (active
object).

The chunk management unit 132 registers the assigned
object number and the offset in the corresponding object 1n
the record added to the chunk management table 113 1n step
S21. The registered oflset 1s calculated based on the offset
and size that are registered in the previous record.

[Step S27] The chunk management umt 132 registers or
updates the number of valid chunks 1n the object manage-
ment table 115. Upon completion of step S25, the chunk
management unit 132 registers TH as the number of valid
chunks in the record added to the object management table
115 1n step S25. On the other hand, when step S26 has been
executed, the chunk management unit 132 identifies the
record contaiming the object number assigned 1n step S26
from the object management table 115, and adds TH to the
number of valid chunks registered in the i1dentified record.

[Step S28] The chunk management unit 132 executes the
update processing of the Bloom filters. In this processing,
the bit setting 1s conducted for Bloom filters related to a
newly registered chunk among the Bloom filters contained
in the hierarchical Bloom filter 118. The update processing

of the Bloom filters 1s described 1n detail later with reference
to FIG. 20.

Upon completion of the above processing in step S28, the
processing proceeds to step S17 i FIG. 17.

US 11,372,576 B2

23

FIG. 19 1s an example of a flowchart illustrating a
procedure of a duplication determination processing. The
processing of FIG. 19 corresponds to the processing of step
S13 m FIG. 17.

[Step S31] The duplication determination unit 131 calcu-
lates a new hash key based on the chunk selected 1n step S12
in FIG. 17.

[Step S32] The Bloom filter processing unit 131a speci-
fies an 1ndex of the Bloom filter to be used 1n the duplication
determination based on the calculated hash key. For
example, as 1n the example of FIGS. 13 to 16, the value of
the high-order 1 byte of the hash key 1s specified as the value
of the index.

[Step S33] The Bloom filter processing unit 131a selects
the highest node 1n the hierarchical Bloom filter 118 as the
processing target based on the Bloom filter data 116.

[Step S34] The Bloom filter processing unit 131a speci-
fies the bit array of the node selected 1n step S33 or step S40
executed immediately before. After step S40, since a plu-
rality of nodes are selected, the bit arrays corresponding to
the respective nodes are specified. The Bloom filter process-
ing unit 131a specifies the Bloom filter corresponding to the
index specified 1 step S32 from the bit arrays specified. At
this time, the range of the bit array of the Bloom filter 1n the
storage unit 110 1s specified based on the filter management
table 116a.

[Step S35] The Bloom filter processing unit 131a speci-
fies the bit number to be compared for each Bloom filter
specified 1n step S34. For example, the Bloom filter pro-
cessing umt 131a conducts calculations using k types of
hash functions on the hash key calculated in step S31 to
calculate k hash values. The Bloom filter processing unit
131a divides each of the calculated k hash values by the
number of bits of the Bloom filter for each Bloom filter and
specifies k remainders obtained by the division as the bit
numbers to be compared.

[Step S36] The Bloom filter processing unit 131a deter-
mines the presence or absence of the hash key calculated in
step S31 by using each Bloom filter specified in step S34.
For example, in the case where the corresponding Bloom
filter 1s not present in the bit array of the selected node, it 1s
determined that hash keys having the same value are not
present 1n the search table below the Bloom filter. In the case
where the corresponding Bloom filter 1s present, when all the
bit values of the respective bit numbers specified 1n step S35
are “17, 1t 1s determined that hash keys having the same
value are present in the search table below the Bloom filter.
In the case where the corresponding Bloom filter 1s present,
when even one of the bit values of the respective bit numbers
specified 1n step S35 15 “07, 1t 15 determined that hash keys
having the same value are not present in the search table
below the Bloom filter.

[Step S37] In the case where 1t 1s determined that hash
keys are present based on any one of the Bloom filters 1n the
determination on the presence or absence in step S36, the
Bloom filter processing unit 131a moves the processing to
step S38. On the other hand, in the case where 1t 1s
determined that hash keys are not present 1n the determina-
tion on the presence or absence by using any of the Bloom
filters 1n step S36, the Bloom filter processing unit 131a ends
the duplication determination processing and moves the
processing to step S14 in FIG. 17. In the latter case, 1t 1s
determined that the chunk having the same value as the
chunk selected 1n step S12 has not been stored (not dupli-
cated).

[Step S38] The Bloom filter processing unit 131a deter-
mines whether the node to be the current processing target

10

15

20

25

30

35

40

45

50

55

60

65

24

1s a node 1n the lowest level 1n the hierarchical Bloom filter
118. The Bloom filter processing unit 131a moves the
processing to step S39 in the case where the node 1s a node
in the lowest level, and moves the processing to step S40 1n
the case where the node 1s not.

[Step S39] The binary tree search processing umt 1315
specifies the search table associated with the Bloom filter 1n
which 1t 1s determined that a hash key 1s present 1n step S36.
From hash keys that match the classification condition
which the hash key calculated 1n step S31 matches as search
targets among the hash keys registered in the specified
search table, the binary tree search processing unit 1315
searches for a hash key having the same value as the
calculated hash key through binary tree search. Specifically,
for example, in the processing up to step S38, the search
range 1s narrowed to the range of the specified search table
by the processing using the hierarchical Bloom filter 118,
and 1n step S39, the search i1s conducted on the narrowed
search range through the binary tree search.

In the case where a hash key having the same value as the
calculated hash key 1s specified by the search in step S39, the
chunk number of the chunk corresponding to the specified
hash key 1s outputted, and 1t 1s determined that the chunk
having the same value as the chunk selected 1n step S12 has
been stored (duplicated). On the other hand, 1n the case
where a hash key having the same value as the calculated
hash key 1s not specified, 1t 1s determined that the chunk
having the same value as the chunk selected 1n step S12 has
not been stored (not duplicated). Upon completion of step
S39, the deduplication processing 1s ended and the process-
ing proceeds to step S14 in FIG. 17.

[Step S40] The Bloom filter processing unit 131a selects
all the nodes placed below the node to which the Bloom
filter 1n which it 1s determined that a hash key 1s present 1n
step S36 belongs as processing targets and moves the
processing to step S34.

FIG. 20 1s an example of a flowchart illustrating a
procedure of update processing for a Bloom filter. The
processing of FIG. 20 corresponds to the processing of step
S28 m FIG. 18.

[Step S41] The chunk management unit 132 specifies a
search table in which the hash key calculated 1n step S31 1n
FIG. 19 1s to be registered, and registers the hash key 1n the
specified search table.

[Step S42] The chunk management unit 132 selects a node
associated with the search table 1n which the hash key has
been registered as the processing target from the nodes in the
lowest level 1n the hierarchical Bloom filter 118.

[Step S43] The chunk management unit 132 specifies the
bit array of the node selected as the processing target in step
S42 or step S48 mmmediately before, and determines
whether the Bloom filter to be used 1s present 1n the specified
bit array. The Bloom filter to be used 1s a Bloom filter
corresponding to the index specified from the hash key
registered 1n the search table. The presence or absence of the
Bloom filter to be used 1s determined from whether the filter
address corresponding to the index has been registered 1n the
record corresponding to the node to be the processing target
in the filter management table 116a. The chunk management
unit 132 moves the processing to step S43 1n the case where
the Bloom filter to be used 1s present, and moves the
processing to step S44 in the case where the Bloom filter 1s
not present.

[Step S44] The chunk management unit 132 reregisters
the Bloom f{ilter to be used. In this processing, the bit array
indicating the Bloom filter 1s stored in the storage unit 110,
and the start address of the storage area of the bit array 1s

US 11,372,576 B2

25

registered 1n the corresponding item of the filter manage-
ment table 116a. The bit value of each bit of the reregistered
Bloom filter 1s set to the initial value “0”.

[Step S45] The chunk management unit 132 specifies the
bit number of the bit to be set to “1” among the bits of the
Bloom filter to be used. In this processing, calculations using
k types of hash functions are conducted on the hash key
registered 1n the search table to calculate k hash values. Each
of the k hash values calculated 1s divided by the number of
bits of the Bloom filter to be used, and k remainders obtained
by the division are specified as bit numbers to be set to <17,

[Step S46] The chunk management unit 132 sets the value
of the specified bit number to “1” among the bits of the
Bloom filter to be used.

[Step S47] The chunk management unit 132 determines

whether the node to be the current processing target 1s a node
in the highest level 1n the hierarchical Bloom filter 118. The

chunk management umt 132 moves the processing to step
S48 in the case where the node 1s not a node 1n the highest
level, and ends the update processing for the Bloom filter
and moves the processing to step S17 1n FIG. 17 1n the case
where the node 1s a node 1n the highest level.

[Step S48] The chunk management unit 132 selects a node
in the level higher than the node to which the Bloom filter
to be used belongs as the processing target. Thereafter, the
processing proceeds to step S43.

FIG. 21 1s an example of a flowchart illustrating a
procedure of file deletion processing.

[Step S51] The file input/output unit 120 receives a file
deletion request from the NAS client 210. The chunk
management unit 132 of the deduplication processing unit
130 identifies the file number of a file for which the delete
request 1s made by using the directory table 111.

[Step S52] The chunk management unit 132 identifies the
record 1n which the file number i1dentified 1 step S51 1s
registered from the chunk map table 112, and selects one
identified record. In this manner, one chunk generated from
the file for which the delete request 1s made 1s selected.

[Step S53] The chunk management unit 132 acquires the
chunk number from the record selected in Step S32. The
chunk management unit 132 decrements the number of
references associated with the acquired chunk number by
“1” 1n the chunk management table 113.

[Step S54] The chunk management unit 132 determines
whether or not the decremented number of references 1s “07.
The duplication determination unit 131 moves the process-
ing to Step S55 when the number of references 1s “0”, and
moves processing to Step S60 when the number of refer-
ences 1s not “0” (“1” or more).

[Step S55] In this case, the chunk selected i Step S52 1s
invalid. The chunk management unit 132 identifies the
object number associated with the chunk number acquired 1n
Step S53, from the chunk management table 113. The chunk
management unit 132 refers to the object management table
115, adds “1” to the number of invalid chunks associated
with the 1dentified object number, and subtracts “1”” from the
number of valid chunks associated with the concerned object
number.

[Step S56] The chunk management unit 132 determines
whether or not the number of valid chunks registered 1n the
concerned record 1n the object management table 115 has
become “0” as a result of the subtraction from the number
of valid chunks 1n Step S55. The chunk management unit
132 moves the processing to Step S57 when the number of
valid chunks 1s “0”, and moves the processing to Step S38
when the number of valid chunks 1s not “0” (*1” or more).

10

15

20

25

30

35

40

45

50

55

60

65

26

[Step S57] In this case, all chunks 1n the object to which
the chunk selected 1n Step S52 are invalid. For this reason,
this object 1s unnecessary. Thus, the chunk management unit
132 requests the cloud communication unit 140 to delete this
object. The cloud communication umt 140 requests the
cloud storage 240 to delete the object according to the
DELETE command. Thus, the object 1s deleted from the
cloud storage 240.

The chunk management unit 132 specifies the search table

in which the hash key based on each chunk 1n the deleted

object 1s registered. The chunk management unit 132 deletes
the hash key based on each chunk in the deleted object from
the specified search table. From the search table, the record
containing the concerned hash key 1s deleted.

[Step S58] The chunk management unit 132 specifies the

search table i which the chunk number of the chunk
selected 1n step S52 1s registered. From the chunk numbers
registered 1n the specified search table, the chunk manage-
ment unit 132 specifies all the objects to which the chunks
corresponding to these chunk numbers belong. In this way,
an object group that contains the objects in which mvalid
chunks have occurred and 1s associated with the same search
table 1s specified.

The chunk management unit 132 refers to the object
management table 1135 and calculates the ratio of the number
of mnvalid chunks to the number of all the chunks (the sum
of the number of valid chunks and the number of mnvalid
chunks) contained in the specified object group. The chunk
management unit 132 moves the processing to step S39 in
the case where the ratio of the number of invalid chunks
exceeds a predetermined threshold, and moves the process-
ing to step S60 1n the case where the ratio 1s less than or
equal to the threshold.

[Step S59] In the case where the ratio of the number of
invalid chunks exceeds the threshold in step S58, 1t is
determined that the data deletion effect by the defragmen-
tation 1s high 1n the object group to which the chunk selected
in step S52 belongs. In this case, the chunk management unit
132 sets this object group to a defragmentation target.

Although 1n the present embodiment, as illustrated 1n
steps S58 and S59, the desirability of defragmentation 1s
determined with an object group corresponding to one
search table being used as a unit, the unit for determining the
desirability of defragmentation 1s not limited to this
example. For example, the desirability of defragmentation
may be determined based on units of object. In this case,
when the determination 1s “No” 1n step S56, the concerned
object 1s set as the defragmentation target. For example, the
desirability of defragmentation may be determined with a set
of chunks whose chunk keys match the same classification
condition as the classification condition which the chunk key
based on the chunk selected 1n step S52 matches being as a
umt among chunks contained in the object group corre-
sponding to the search table.

[Step S60] The chunk management unit 132 determines
whether or not chunks corresponding to all records 1dentified
in Step S52 (for example, all chunks generated from a file for
which the delete request 1s made) have been processed. The
chunk management unit 132 moves the processing to Step
S52 when any unprocessed chunk 1s present, selects one
unprocessed chunk and continues the processing. On the
other hand, the chunk management unit 132 notifies the file
input/output unit 120 of the completion of file deletion when
all chunks have been processed. The notified file mput/
output unit 120 transmits response information indicating
the completion of file deletion to the NAS client 210.

US 11,372,576 B2

27

FIGS. 22 and 23 are an example of flowcharts 1llustrating
a procedure of the defragmentation processing.

[Step S61] The defragmentation processing unit 133 of
the deduplication processing umt 130 selects one object
group set to be the defragmentation target in step S59 1n FIG.
21. The defragmentation processing unit 133 requests the
cloud communication unit 140 to acquire all objects belong-
ing to the selected object group. The cloud communication
unit 140 downloads all of the concerned objects from the
cloud storage 240 according to the GET command and
passes the objects to the defragmentation processing unit
133.

In step S61, only an object having the ratio of the number
of 1nvalid chunks to all the chunks i1n the object exceeding
a predetermined value among the objects contained 1n the
object group may be downloaded.

[Step S62] The defragmentation processing unit 133, for
cach acquired object, combines only valid chunks contained
in the object to reconstruct an object. The defragmentation
processing unit 133 requests the cloud communication unit
140 to upload each reconstructed object. The cloud com-
munication unit 140 uploads each object to the cloud storage
240 according to the PUT command. In fact, after the
original object downloaded 1 Step S61 i1s deleted, the
reconstructed object 1s uploaded.

[Step S63] The defragmentation processing unit 133
resets the number of invalid chunks registered 1n the record
corresponding to each object acquired 1n Step S61 among
the records 1n the object management table 1135 to “0”.

[Step S64] The defragmentation processing unit 133
selects the search table 1n which the hash key based on the
chunk 1n each object acquired in step S61 1s registered, as the
processing target from this time. The defragmentation pro-
cessing unit 133 deletes the record 1n which the hash key
based on the invalid chunk (the hash key based on the chunk
removed from the object in step S62) 1s registered from the
specified search table.

The description continues below by using FIG. 23. In the
processing 1llustrated in FIG. 23, bit reduction processing on
the Bloom filter corresponding to the search table selected in
step S64 1s executed.

[Step S71] The defragmentation processing unit 133
selects one 1ndex.

[Step S72] The defragmentation processing unit 133
determines whether the hash key classified by the selected
index 1s present in the search table to be the processing
target. For example, 1n the case where the index “0x00” has
been selected, the presence or absence of the hash key in
which the start 1 byte 1s “0x00” 1s determined. The defrag-
mentation processing unit 133 moves the processing to step
S78 1n the case where even one corresponding hash key 1s
present, and moves the processing to step S73 1n the case
where there 1s no such hash key.

[Step S73] The defragmentation processing unit 133
selects a node associated with the search table to be the
processing target among the nodes in the lowest level of the
hierarchical Bloom filter 118. The defragmentation process-
ing unit 133 specifies the Bloom filter corresponding to the
index specified 1 step S71 from the bit array of the selected
node.

[Step S74] The defragmentation processing unit 133
deletes the Bloom filter specified in step S73 or step S77
immediately before. Specifically, for example, the defrag-
mentation processing unit 133 deletes the filter address of
the corresponding Bloom filter from the filter management
table 116a to release the storage area of the Bloom filter in
the storage unit 110.

10

15

20

25

30

35

40

45

50

55

60

65

28

[Step S75] The defragmentation processing unit 133
determines whether the node to which the Bloom filter
specified 1n step S73 or step S77 immediately before belongs
1s the node 1n the highest level of the hierarchical Bloom
filter 118. The defragmentation processing unit 133 moves
the processing to step S78 1n the case where the node 1s the
node 1n the highest level, and moves the processing to step
S76 1n the case where the node 1s not.

[Step S76] The defragmentation processing unit 133
selects the other nodes 1n the same level as the node to which
the Bloom filter specified 1n step S73 or step S77 immedi-
ately before belongs. The defragmentation processing unit
133 determines whether the Bloom filter corresponding to
the index specified 1n step S71 1s present in the bit arrays of
the selected other nodes. In this determination, in the case
where an address 1s registered 1n the 1tem of filter address
corresponding to the corresponding Bloom filter 1n the filter
management table 1164, 1t 1s determined that the Bloom
filter 1s present. On the other hand, an address is not
registered 1n this item (NULL 1s registered), 1t 1s determined
that the Bloom filter 1s not present.

In the case where the Bloom filter 1s not present 1n the bit
arrays of all the other nodes, the defragmentation processing
unit 133 moves the processing to step S77. In this case, it 1s
determined that the Bloom filter of the same index in the
node 1n the level higher than these nodes may be deleted. On
the other hand, in the case where the corresponding Bloom
filter 1s present 1n the bit array of at least one of the other
nodes, the defragmentation processing unit 133 determines
that the Bloom filter 1in the node in the higher level i1s not
allowed to be deleted, and moves the processing to step S78.

[Step S77] The defragmentation processing unit 133
selects a node 1n the level higher than the node in which the
Bloom filter has been deleted in step S74. The defragmen-
tation processing unit 133 specifies the Bloom filter corre-
sponding to the index selected 1n step S71 from the bit array
of the selected node 1n the higher level. Thereafter, the
processing proceeds to step S74, and the specified Bloom
filter 1s deleted.

[Step S78] The defragmentation processing unit 133
determines whether all the indices have been processed. The
defragmentation processing unit 133 moves the processing
to step S71 1n the case where any unprocessed indices are
present, and selects one of the unprocessed indices and
continues the processing. Meanwhile, the defragmentation
processing unit 133 ends the defragmentation processing in
the case where all the indices have been processed.

Next, a modification 1n which part of the processing of the
cloud storage gateway 100 according to the second embodi-
ment 1s modified 1s described.

<First Modification>

In the above-described second embodiment, the storage
location address in the storage unit 110 1s managed for each
Bloom filter in the bit array of each node by using the filter
management table 116a illustrated in FIG. 11. For this
reason, the deduplication processing unit 130 1s allowed to
access the Bloom filter corresponding to a desired 1index 1n
a desired node by reading the filter address and the filter size
from the filter management table 116a. However, as another
method, it 1s possible to store the bit arrays of the respective
nodes 1n continuous storage areas, and to access a desired
Bloom filter 1n accordance with the amount of offset from
the start address of the bit array. FIG. 24 illustrates a filter
management table 1n this case below.

FIG. 24 1s a diagram 1illustrating a configuration example
of a filter management table 1n a first modification. The filter
management table 116a1 illustrated in FIG. 24 1s diflerent

US 11,372,576 B2

29

from the filter management table 116 in FIG. 11 that the
filter management table 11641 holds the start address of a bit
array in the item of filter address instead of holding the
address of a Bloom filter of each index.

The filter management table 1164l holds a bitmap in each
record. The bitmap contains bits corresponding to each
index, and the value of each bit indicates whether or not a
Bloom filter corresponding to the index 1s present. As an
example here, in the case where a Bloom filter 1s present, a
bit value “1” 1s set, while 1n the case where a Bloom filter
1s not present (or deleted), a bit value “O” 1s set. Hence, 1n
the mitial state, each bit value of the bitmap 1s set to “1”.

In the case where this filter management table 116al 1s
used, the deduplication processing unit 130 1s allowed to
specily a record corresponding to a node, and to access a
desired Bloom filter based on the filter address, the filter
s1ze, and the bitmap 1n the record. For example, 1n the case
of accessing a Bloom filter of index “0Ox03” in the state
where no Bloom filters 1n a bit array have been deleted, the
deduplication processing unit 130 1s allowed to specity, as
the start address of the Bloom filter, the position of oflset 3
times the filter size from the start address registered 1n the
item of filter address.

In the case where a Bloom filter 1n the bt array 1s deleted
in step S74 1n FIG. 23, the remaining bit arrays are combined
and re-stored in another storage area in the storage unit 110,
and along with this, the filter addresses 1n the filter man-
agement table 11641 are also updated. In the bitmap, the bit
value corresponding to the index of the deleted Bloom filter
1s updated to “0”.

For example, in the case of accessing the Bloom filter of
index “0x03” 1n the state where the Bloom filter of index
“Ox01” 1n the bit array has been deleted, the deduplication
processing unit 130 recognizes that the Bloom filter of index
“Ox1” has been deleted from the corresponding bitmap. The
deduplication processing unit 130 1s allowed to specily, as
the start address of the Bloom filter, the position of oflset 2
times the filter size from the start address registered 1n the
item of {filter address.

The bitmap may be used to determine whether a Bloom
filter of the same 1ndex as that of the deleted Bloom filter 1s
present 1n another bit array 1n the same level 1n step S76 1n
FIG. 23. Specifically, for example, in the case where the bit
value corresponding to the index 1s “1” 1n the bitmap, 1t 1s
determined that the Bloom filter 1s present, while in the case
where the bit value 1s “0”, 1t 1s determined that the Bloom
filter 1s not present (has been deleted).

In the above-described first modification, 1t 1s possible to
reduce the data size of management data (filter management
table) for managing the storage position of each Bloom filter
and enhance the use efliciency of the storage area of the
storage unmit 110 as compared with the second embodiment.
On the other hand, since when a Bloom filter 1s deleted, the
remaining bit arrays are collected and re-stored in another
storage area, the processing load at the time of deleting a
Bloom filter 1s higher than that 1n the second embodiment.

<Second Modification>

The configuration of the hierarchical Bloom filter 118
may be modified as in FIG. 25 described below.

FIG. 25 1s a diagram 1llustrating an internal configuration

example of a hierarchical Bloom filter 1n the second modi-
fication. The hierarchical Bloom filter 118a illustrated in
FIG. 25 has a configuration different from that of the
hierarchical Bloom filter 118 illustrated in FIG. 10 1n that bit
arrays BA3-1-1, BA3-1-2, BA3-2-1, and BA3-2-2 of nodes
in the lowest level are each used integrated Bloom filters.

10

15

20

25

30

35

40

45

50

55

60

65

30

In the configuration of FIG. 25, each bit value of the bit
arrays of the node 1n the lowest level 1s set by using all hash
keys registered in the corresponding search table. For
example, the bit values of the bit array BA3-1-1 are set by
conducting calculations using k types of hash functions and
all the hash keys registered in the search table TB1-1. On the
other hand, the bit arrays of nodes 1n the second level and
higher are each used as Bloom filters divided for indices as
in the case of the second embodiment.

In the configuration of FIG. 25, 1n the case where a hash
key has been deleted from a certain search table, a Bloom
filter of the corresponding node in the lowest level 1s
regenerated. For example, 1n the case where a certain
number of hash keys have been deleted from the search table
TB1-1, the number of bits 1s reduced from the corresponding
bit array BA3-1-1 1n accordance with the number of deleted
hash keys, and all the bit values are reset to “0”. The setting
of bit values for the bit array BA3-1-1 after the reduction of
the number of bits 1s conducted again by using all the hash
keys remaining in the search table TB1-1.

However, 1n this method, when 1t 1s determined whether
Bloom filters may be reduced for the second node from the
lowest level, the deduplication processing unit 130 1s not
allowed to check whether the Bloom filter 1s present 1n each
node in the lowest level. In view of this, in the second
modification, the bitmap illustrated in FIG. 24 1s registered
in at least the record corresponding to each node in the
lowest level among the records in the filter management
table. In the case where all the hash keys corresponding to
a certain idex 1n the search table corresponding to one of
the nodes in the lowest level, the deduplication processing
unit 130 updates the values of bits corresponding to the
index to “0” among the bits in the bitmap corresponding to
the node. In this way, the deduplication processing unit 130
1s allowed to determine whether the Bloom filter of the
above-described index in another bit array in the lowest
level based on the bitmap 1n step S76 1n FIG. 23.

In the second embodiment, the rate of reduction of the
number of bits for bit arrays of the nodes 1n the lowest level
changes depending on the number of indices and the number
of hash keys for the same index to be stored in the search
table. On the other hand, in the second modification, the
number of bits for the bit arrays of the nodes 1n the lowest
level may be reduced 1n accordance with a reduction 1n the
number of hash keys 1n the search table regardless of the
indices. For this reason, according to the second modifica-
tion, the possibility of improving the space etliciency of
Bloom filters 1s increased as compared with the second
embodiment.

The processing functions of the apparatuses (for example,
the data processing apparatus 10 and the cloud storage
gateway 100) illustrated 1n the above embodiments may be
implemented by a computer. In such a case, there 1s provided
a program describing processing contents of functions to be
included 1n each apparatus, and the computer executes the
program to implement the aforementioned processing func-
tions 1n the computer. The program describing the process-
ing contents may be recorded on a computer-readable
recording medium. The computer-readable recording
medium mcludes a magnetic storage device, an optical disc,
a magneto-optical recording medium, a semiconductor
memory, and the like. The magnetic storage device includes
a hard disk drive (HDD), a magnetic tape, and the like. The
optical disc includes a compact disc (CD), a digital versatile
disc (DVD), a Blu-ray disc (BD, registered trademark), and
the like. The magneto-optical recording medium includes a
magneto-optical (MO) disk and the like.

US 11,372,576 B2

31

In order to distribute the program, for example, portable
recording media, such as DVDs and CDs, on which the
program 1s recorded are sold. The program may also be
stored 1n a storage device of a server computer and be
transierred from the server computer to other computers via
a network.

The computer that executes the program, for example,
stores the program recorded on the portable recording
medium or the program transierred from the server com-
puter 1n 1ts own storage device. The computer then reads the
program from 1ts own storage device and performs process-
ing according to the program. The computer may also
directly read the program from the portable recording
medium and perform processing according to the program.
The computer may also sequentially perform processes
according to the received program each time the program 1s
transierred from the server computer coupled to the com-
puter via the network.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader 1n understanding the invention and the concepts
contributed by the imventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples 1n the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described 1n detail, 1t should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What 1s claimed 1s:

1. A data processing apparatus, comprising:

a memory configured to store a first bit array including a
first Bloom filter and a second Bloom filter, the first
Bloom filter associated with a first data subset contain-
ing a data element that matches a first classification
condition among data elements contained 1n a first data
set, the second Bloom filter associated with a second
data subset containing a data element that matches a
second classification condition among the data ele-
ments contained 1n the first data set, the first classifi-
cation condition being different from the second clas-
sification condition; and

a processor coupled to the memory and configured to:

when a {irst data element to be a search target 1s inputted,
determine whether the same data element as the first
data element 1s present in the first data subset by using
the first Bloom filter in a case where the first data
element matches the first classification condition,

determine whether the same data element as the first data
clement 1s present in the second data subset by using
the second Bloom filter in a case where the first data
element matches the second classification condition,

when all the data elements contained in the first data
subset are deleted, delete the first Bloom filter from the
first bit array,

when all data elements are deleted 1n the first data subset
contained 1n the first data set associated with one bit
array of the plurality of first bit arrays, delete the first
Bloom filter from the one bit array,

determine whether the first Bloom filters have been
deleted 1n all the other bit arrays other than the one bit
array among the plurality of first bit arrays,

when the first Bloom filters have been deleted in all the
other bit arrays, delete the third Bloom filter from the
second bit array, and

5

10

15

20

25

30

35

40

45

50

55

60

65

32

when the first data element 1s inputted and the first data
element matches the first classification condition, deter-
mine that the first data element 1s not present 1n the first
data set 1n a case where the first Bloom filter has been
deleted,

the memory stores a plurality of the first bit arrays and

stores a second bit array containing a third Bloom filter
and a fourth Bloom filter,

the plurality of first bit arrays are associated with 1ndi-

vidual ones of the first data set,
the first Bloom filter contained in each of the plurality of
first bit arrays 1s used to determine whether a data
clement to be a search target 1s contained in the first
data subset contained 1n the corresponding first data set,

the second Bloom filter contained 1n each of the plurality
of first bit arrays 1s used to determine whether the data
clement to be the search target 1s contained in the
second data subset contained 1n the corresponding first
data set,

the third Bloom filter 1s used to determine whether the

data element to be the search target is contained in the
first data subset contained 1n the first data set associated
with each of the plurality of first bit arrays, and

the fourth Bloom filter 1s used to determine whether the

data element to be the search target 1s contained in the
second data subset contained in the first data set asso-
ciated with each of the plurality of first bit arrays.

2. The data processing apparatus according to claim 1,
wherein the processor 1s further configured to:

when the first data element 1s inputted, determine whether

the same data element as the first data element 1s
present 1n the first data subset contained in the first data
set associated with each of the plurality of first bit
arrays by using the third Bloom filter in a case where
the first data element matches the first classification
condition, and

when the same data element 1s determined to be present,

determine 1 which of the first data sets associated with
cach of the plurality of first bit arrays has the same data
clement as the first data element by using the first
Bloom filter contained in each of the plurality of first bit
arrays.

3. The data processing apparatus according to claim 1,
wherein the first classification condition and the second
classification condition are conditions based on a value or
attribute of a data element.

4. The data processing apparatus according to claim 1,
wherein

the first classification condition indicates that a bit value

at a specific position 1n a data element 1s a first value,
and

the second classification condition indicates the bit value

1s a second value.

5. A non-transitory computer-readable storage medium
storing a program that causes a processor included in a data
processing apparatus to execute a process, the process
comprising:

when a first data element to be a search target 1s inputted,

executing determination processing by referring to a
memory that stores a first bit array containing a first
Bloom filter associated with a first data subset contain-
ing a data element that matches a first classification
condition among data elements contained 1n a first data
set and a second Bloom filter associated with a second
data subset containing a data element that matches a
second classification condition among the data ele-
ments contained 1n the first data set, the first classifi-

US 11,372,576 B2

33

cation condition being different from the second clas-
sification condition, the determination processing
including determining whether the same data element
as the first data element 1s present 1n the first data subset
by using the first Bloom filter 1n a case where the first
data element matches the first classification condition
and determining whether the same data element as the
first data element 1s present in the second data subset by
using the second Bloom filter 1n a case where the first
data element matches the second classification condi-
tion; and
when all the data elements contained in the first data
subset are deleted, deleting the first Bloom filter from
the first bit array, the deleting includes:
when all data elements are deleted 1n the first data
subset contained 1n the first data set associated with
one bit array of the plurality of first bit arrays,
deleting the first Bloom filter from the one bit array,
and
determining whether the first Bloom filters have been
deleted 1n all the other bit arrays other than the one
bit array among the plurality of first bit arrays, and
when the first Bloom filters have been deleted 1n all the
other bit arrays, deleting the third Bloom filter from
the second bit array, and
in the determination processing, when the first data ele-
ment 1s mputted and the first data element matches the
first classification condition, the first data element 1is
determined to be not present 1n the first data set 1n a
case where the first Bloom filter has been deleted,
the memory stores a plurality of the first bit arrays and
stores a second bit array containing a third Bloom filter
and a fourth Bloom filter,
the plurality of first bit arrays are associated with indi-
vidual ones of the first data set,
the first Bloom filter contained 1n each of the plurality of
first bit arrays 1s used to determine whether a data
clement to be a search target 1s contained in the first
data subset contained in the corresponding first data set,
the second Bloom filter contained in each of the plurality
of first bit arrays 1s used to determine whether the data
clement to be the search target i1s contained in the
second data subset contained 1n the corresponding first

data set,

the third Bloom filter 1s used to determine whether the
data element to be the search target is contained in the
first data subset contained 1n the first data set associated
with each of the plurality of first bit arrays,

the fourth Bloom filter 1s used to determine whether the

data element to be the search target is contained in the
second data subset contained 1n the first data set asso-
ciated with each of the plurality of first bit arrays.

6. The non-transitory computer-readable storage medium
according to claim 3, wherein the determination processing
includes:

when the first data element 1s inputted, determining

whether the same data element as the first data element
1s present 1n the first data subset contained in the first
data set associated with each of the plurality of first bat
arrays by using the third Bloom filter in a case where
the first data element matches the first classification
condition, and

when the same data element 1s determined to be present,

determining which of the first data sets associated with
cach of the plurality of first bit arrays has the same data

5

10

15

20

25

30

35

40

45

50

55

60

65

34

clement as the first data element by using the first
Bloom filter contained 1n each of the plurality of first bat
arrays.

7. The non-transitory computer-readable storage medium
according to claim 5, wherein the first classification condi-
tion and the second classification condition are conditions
based on a value or attribute of a data element.

8. The non-transitory computer-readable storage medium
according to claim 5, wherein

the first classification condition indicates that a bit value

at a specific position 1n a data element 1s a first value,
and

the second classification condition indicates the bit value

1s a second value.
9. A data processing method, comprising:
storing a first bit array including a first bloom filter and a
second bloom f{ilter, the first Bloom filter associating,
with a first data subset containing a data element that
matches a {first classification condition among data
elements contained 1n a first data set, the second Bloom
filter associating with a second data subset containing
a data element that matches a second classification
condition among the data elements contained in the first
data set, the first classification condition being different
from the second classification condition;
recetving a lirst data element to be a search target;
determiming whether the same data element as the first
data element 1s present 1n the first data subset by using
the first Bloom f{ilter in a case where the {first data
element matches the first classification condition;

determining whether the same data element as the first
data element 1s present in the second data subset by
using the second Bloom filter 1n a case where the first
data element matches the second classification condi-
tion; and
when all the data elements contained i1n the first data
subset are deleted, deleting the first Bloom filter from
the first bit array, the deleting includes:
when all data elements are deleted 1n the first data
subset contained 1n the first data set associated with
one bit array of the plurality of first bit arrays,
deleting the first Bloom filter from the one bit array,
and
determining whether the first Bloom filters have been
deleted 1n all the other bit arrays other than the one
bit array among the plurality of first bit arrays, and
when the first Bloom filters have been deleted 1n all the
other bit arrays, deleting the third Bloom filter {from
the second bit array, and
in the determining, when the first data element 1s received
and the first data element matches the first classification
condition, the first data element 1s determined to be not
present 1n the first data set 1n a case where the first
Bloom filter has been deleted,

the storing includes storing a plurality of first bit arrays
including the first bit arrays and stores a second bit
array containing a third Bloom filter and a fourth
Bloom filter,

the plurality of first bit arrays are associated with 1ndi-

vidual ones of the first data set,

the first Bloom filter contained in each of the plurality of

first bit arrays 1s used to determine whether a data
clement to be a search target 1s contained 1n the first
data subset contained in the corresponding first data set,
the second Bloom filter contained 1in each of the plurality
of first bit arrays 1s used to determine whether the data

US 11,372,576 B2
35 36

clement to be the search target is contained in the
second data subset contained 1n the corresponding first
data set,

the third Bloom filter 1s used to determine whether the
data element to be the search target is contained in the 5
first data subset contained 1n the first data set associated
with each of the plurality of first bit arrays,

the fourth Bloom filter 1s used to determine whether the
data element to be the search target 1s contained in the
second data subset contained 1n the first data set asso- 10
ciated with each of the plurality of first bit arrays.

¥ ¥ # ¥ o

	Front Page
	Drawings
	Specification
	Claims

