

US011370762B2

# (12) United States Patent

## Ran et al.

## (54) VINYLARENE DERIVATIVE AND APPLICATION

(71) Applicant: SHENYANG RESEARCH
INSTITUTE OF CHEMICAL
INDUSTRY CO., LTD., Liaoning (CN)

(72) Inventors: **Zhaojin Ran**, Liaoning (CN); **Baoshan Chai**, Liaoning (CN); **Wanqiu Wang**,
Liaoning (CN); **Haihong Guang**,
Liaoning (CN); **Jiayuan Jiao**, Liaoning
(CN)

(73) Assignee: SHENYANG RESEARCH
INSTITUTE OF CHEMICAL
INDUSTRY CO., LTD., Liaoning (CN)

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Aug. 29, 2019

(21) Appl. No.: 16/489,815

(22) PCT Filed: May 31, 2018

(86) PCT No.: PCT/CN2018/089152 § 371 (c)(1),

(87) PCT Pub. No.: **WO2018/219309** 

(2) Date:

PCT Pub. Date: **Dec. 6, 2018** 

(65) **Prior Publication Data**US 2019/0382356 A1 Dec. 19, 2019

(30) Foreign Application Priority Data

Jun. 2, 2017 (CN) ...... 201710407896.9

(51) Int. Cl.

A61P 35/00 (2006.01)

C07D 257/04 (2006.01)

C07C 233/55 (2006.01)

C07C 275/40 (2006.01)

C07C 275/42 (2006.01)

C07C 335/22 (2006.01)

(58) Field of Classification Search

CPC ..... A61P 35/00; C07D 257/04; C07C 233/55; C07C 275/40; C07C 275/40; C07C 275/42; C07C 335/22

See application file for complete search history.

## (10) Patent No.: US 11,370,762 B2

(45) **Date of Patent:** Jun. 28, 2022

#### (56) References Cited

#### U.S. PATENT DOCUMENTS

| 6,872,729<br>7,781,595 |    |         | Shibata et al.<br>Chen | A61P 33/02 |
|------------------------|----|---------|------------------------|------------|
|                        |    |         |                        | 548/304.4  |
| 9,790,169              | B2 | 10/2017 | Balog et al.           |            |
| 16/0145247             |    |         | Belanger et al         |            |

#### FOREIGN PATENT DOCUMENTS

| CN | 1333768 A      | 1/2002  |
|----|----------------|---------|
| CN | 105267214 A    | 1/2016  |
| CN | 105555766 A    | 5/2016  |
| JP | 2016-529238 A  | 9/2016  |
| WO | 2016/161269 A1 | 10/2016 |
| WO | 2016/161279 A1 | 10/2016 |
| WO | 2016/161286 A1 | 10/2016 |

#### OTHER PUBLICATIONS

CAPLUS printout of RN 2171074-33-0 (Year: 2018).\*

International Search Report for PCT/CN2018/089152, dated Sep. 12, 2018 (6pgs. with English translation).

Abou-Zied, O. K., et al. Detecting local heterogeneity and ionization ability in the heat group region of different lipidic phases using modified fluorescent probes. Scientific Reports. 2015. vol. 5, No. 8699 (26 Pages).

Attachment 1. Summary of CAPLUS Database Search Results, pp. 10-18. 附件 1. 《CAPLUS數据库检索结果汇总》 10-18頁。Caplus Printout. 2020 ACS on STN (23 Pages).

Written Opinion of the International Search Authority dated Sep. 18, 2018 for International Application No. PCT/CN2018/089152 (4 pages in Chinese with English translation).

International Preliminary Report on Patentability dated Dec. 3, 2019 for International Application No. PCT/CN2018/089152 (5 pages in Chinese with English translation).

Office Action dated Aug. 11, 2020 for Japanese Patent Application No. 2019-565605 (5 pages in Japanese with English translation).

(Continued)

Primary Examiner — Brenda L Coleman (74) Attorney, Agent, or Firm — Smith, Gambrell & Russell, LLP.

## (57) ABSTRACT

The present invention relates to a vinylarene deriv. which modulates or inhibits the enzymic activity of indoleamine 2,3-dioxygenase 1 (IDO-1), and the use thereof, and further relates to a vinylarene deriv. and the use thereof. The vinylarene deriv. and its stereoisomer, cis- or trans-isomer, or tautomer thereof and pharmaceutically acceptable salt thereof, has an IDO-1 enzyme inhibitory activity, and is expected to provide brand new therapeutic methods and schemes for related diseases caused by IDO enzymes.



## (56) References Cited

#### OTHER PUBLICATIONS

Decision to Grant dated Feb. 9, 2021 for Japanese Patent Application No. 2019-565605 (4 pages in Japanese with English translation).

Search Report dated Sep. 23, 2020 for Chinese Patent Application No. 2018105503039 (1 page).

First Office Action dated Sep. 29, 2020 for Chinese Patent Application No. 2018105503039 (6 pages in Chinese with English translation).

Notification to Grant dated Feb. 20, 2021 for Chinese Patent Application No. 2018105503039 (1 page in Chinese with English translation).

European Search Opinion dated Oct. 28, 2020 for European Patent Application No. 18809189.6 (7 pages).

Korean Office Action dated May 28, 2021 received in Korean Patent Application No. 10-2019-7025635 (11 pages in Korean, with English translation).

<sup>\*</sup> cited by examiner

## VINYLARENE DERIVATIVE AND APPLICATION

#### FIELD OF THE INVENTION

The invention relates generally to compounds vinylarene derivative that modulate or inhibit the enzymatic activity of indoleamine 2,3-dioxygenase 1 (IDO-1) and its application, further vinylarene derivative and its application.

#### BACKGROUND OF THE INVENTION

Indole-2,3-dioxygenase (IDO) is a heme-containing intracellular enzyme that catalyzes the first and rate-determining step in the degradation of amino acid L-tryptophan. IDO 15 catalyzes the essential amino acids L-tryptophan to N-formyl kynurenine and cleans up L-tryptophan in humans. By degrading tryptophan, IDO causes a microenvironment in which tryptophan is absent in the body, which in turn leads to a variety of diseases related to tryptophan 20 deficiency such as cancer, viral infection, depression, organ transplant rejection or autoimmune diseases. Therefore, in recent years, the research of high-efficiency IDO inhibitors has become a hot research in drug development.

There are no IDO-1 inhibitors were approved for listing, 25 and the diseases associated with IDO-1 enzymes still lack treatment methods and treatment options. The development of IDO-1 enzyme inhibitors has a huge potential market.

#### SUMMARY OF THE INVENTION

The purpose of the invention is to provide a compound which modulates or inhibits the enzymatic activity of IDO and/or a pharmaceutically acceptable salt, its stereoisomer, lates or inhibits IDO-1 enzymatic activity, and a application of the compound for the preparation of pharmaceutical.

In order to achieve the above purposes, the technical scheme adopted by the present invention is as follows:

The present invention is a vinylarene derivative as a 40 regulator or inhibitor of indoleamine-2,3-dioxygenase (IDO-1). The aromatic ethylene derivative is a compound shown in formula I, its stereoisomer, cis-trans isomer, tautomer and pharmaceutically acceptable salt thereof.

wherein

W is selected from CH<sub>2</sub>, O or NH;

X is selected from CH<sub>2</sub>, O or NH;

Y is selected from O or S:

J is selected from N or C;

K is selected from N or C;

M is selected from N or C;

R<sup>1</sup> and R<sup>2</sup> are selected from H, COOH, CONHR<sup>10</sup>,

 $-CONHSO_2R^{10}$ ,  $COOR^{10}$ ,  $C_1-C_{12}$  alkyl,  $C_2-C_{12}$  alkenyl, 65 the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl;

 $R^3$  is selected from H,  $C_1$ - $C_{12}$  alkyl, halo  $C_1$ - $C_{12}$  alkyl,  $C_2$ - $C_2$  alkenyl, halo  $C_2$ - $C_{12}$  alkenyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl;

R<sup>4</sup> is selected from H or halogen;

R<sup>5</sup> is selected from H or halogen;

R<sup>6</sup> is selected from the group consisting of H, halogen, nitro, cyano, C<sub>1</sub>-C<sub>12</sub> alkyl, C<sub>3</sub>-C<sub>12</sub> cycloalkyl, C<sub>3</sub>-C<sub>12</sub> heterocycloalkyl, halo C<sub>1</sub>-C<sub>12</sub> alkyl, C<sub>1</sub>-C<sub>12</sub> alkoxy, halo  $C_1$ - $C_{12}$  alkoxy,  $C_1$ - $C_{12}$  alkoxy  $C_1$ - $C_{12}$  alkyl, halo  $C_1$ - $C_{12}$ alkoxy C<sub>1</sub>-C<sub>12</sub> alkyl, C<sub>2</sub>-C<sub>12</sub> alkenyl, C<sub>3</sub>-C<sub>12</sub> cycloalkenyl, halo C<sub>2</sub>-C<sub>12</sub> alkenyl, C<sub>2</sub>-C<sub>12</sub> alkynyl, halo C<sub>2</sub>-C<sub>12</sub> alkynyl, the following group which is unsubstituted or substituted by 1-5  $R^{11}$ : aryl, heteroaryl, aryl  $C_1$ - $C_{12}$  alkyl, heteroaryl  $C_1$ - $C_{12}$  alkyl, aryl  $C_1$ - $C_{12}$  alkoxy, heteroaryl  $C_1$ - $C_{12}$  alkoxy, aryloxy or heteroaryloxy;

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from the group consisting of H, C<sub>1</sub>-C<sub>12</sub> alkyl, C<sub>3</sub>-C<sub>12</sub> cycloalkyl,  $C_3$ - $C_{12}$  heterocycloalkyl, halo  $C_1$ - $C_{12}$  alkyl,  $C_1$ - $C_{12}$  alkoxy  $C_1$ - $C_{12}$  alkyl, halo  $C_1$ - $C_{12}$  alkoxy  $C_1$ - $C_{12}$  alkyl,  $C_2$ - $C_{12}$ alkenyl, C<sub>3</sub>-C<sub>12</sub> cycloalkenyl, halo C<sub>2</sub>-C<sub>12</sub> alkenyl, C<sub>2</sub>-C<sub>12</sub> alkynyl, halo  $C_2$ - $C_{12}$  alkynyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl  $C_1$ - $C_{12}$  alkyl, heteroaryl  $C_1$ - $C_{12}$  alkyl;

 $R^9$  is selected from the group consisting of H,  $C_1$ - $C_{12}$ alkyl, C<sub>3</sub>-C<sub>12</sub> cycloalkyl, C<sub>3</sub>-C<sub>12</sub> heterocycloalkyl, halo  $C_1$ - $C_{12}$  alkyl,  $C_1$ - $C_{12}$  alkoxy, halo  $C_1$ - $C_{12}$  alkoxy,  $C_1$ - $C_{12}$ alkoxy  $C_1$ - $C_{12}$  alkyl, halo  $C_2$ - $C_{12}$  alkoxy  $C_1$ - $C_{12}$  alkyl,  $_{30}$   $C_2$ - $C_{12}$  alkenyl,  $C_3$ - $C_{12}$  cycloalkenyl, halo  $C_2$ - $C_{12}$  alkenyl,  $C_2$ - $C_{12}$  alkynyl, halo  $C_2$ - $C_{12}$  alkynyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl  $C_1$ - $C_{12}$  alkyl, heteroaryl  $C_1$ - $C_{12}$  alkyl;

 $R^{10}$  is selected from the group consisting of  $C_1$ - $C_{12}$  alkyl, cis-trans isomer and a tautomer, and a method which modu- $_{35}$   $C_3$ - $C_{12}$  cycloalkyl, halo  $C_1$ - $C_{12}$  alkyl, halo  $C_3$ - $C_{12}$  cycloalkyl, the following group which is unsubstituted or substituted by 1-5  $R^{11}$ : aryl, heteroaryl, aryl  $C_1$ - $C_{12}$  alkyl, heteroaryl  $C_1$ - $C_{12}$  alkyl;

> R<sup>11</sup> is selected from the group consisting of H, halogen, nitro, cyano,  $C_1$ - $C_{10}$  alkyl, halo  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, halo  $C_1$ - $C_{10}$  alkoxy,  $C_1$ - $C_{10}$  alkylthiol,  $C_1$ - $C_{10}$  alkylcarbonyl,  $C_1$ - $C_{10}$  alkoxycarbonyl,  $C_2$ - $C_{10}$  alkenyl, halo  $C_2$ - $C_{10}$ alkenyl,  $C_3$ - $C_{10}$  alkenyloxy, halo  $C_3$ - $C_{10}$  alkenyloxy,  $C_2$ - $C_{10}$ alkynyl, halo  $C_2$ - $C_{10}$  alkynyl,  $C_3$ - $C_{10}$  alkynyloxy, halo  $C_3$ - $C_{10}$  alkynyloxy, halo  $C_1$ - $C_{10}$  alkylthiol, halo  $C_1$ - $C_{10}$ alkylcarbonyl,  $C_1$ - $C_{10}$  alkylamino, halo  $C_1$ - $C_{10}$  alkylamino,  $C_2$ - $C_{10}$  dialkylamino,  $C_1$ - $C_{10}$  alkylcarbonylamino, halo C<sub>1</sub>-C<sub>10</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>10</sub> alkylaminocarbonyl or halo  $C_1$ - $C_{10}$  alkylaminocarbonyl.

The compound of the formula I, its stereoisomers, cistrans isomers, tautomers and pharmaceutically acceptable salts thereof, the more preferred compounds of the formula are:

$$\mathbb{R}^2$$
 is  $\mathbb{R}^3$  or  $\mathbb{R}_2$   $\mathbb{R}^3$   $\mathbb{R}$ 

W is selected from CH<sub>2</sub>, O or NH;

X is selected from CH<sub>2</sub>, O or NH;

Y is selected from O or S;

60

J is selected from N or C;

K is selected from N or C;

M is selected from N or C:

R<sup>1</sup> and R<sup>2</sup> are selected from the group consisting of COOH, CONHR<sup>10</sup>, —CONHSO<sub>2</sub>R<sup>10</sup>, ČOOR<sup>10</sup>, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl;

 $R^3$  is selected from the group consisting of H,  $C_1$ - $C_6$  alkyl, 5 halo  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl, halo  $C_2$ - $C_6$  alkenyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl;

R<sup>4</sup> is selected from H or halogen;

R<sup>5</sup> is selected from H or halogen;

R<sup>6</sup> is selected from the group consisting of H, halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>6</sub> heterocycloalkyl, halo  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halo  $C_1$ - $C_6$ alkoxy, C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkyl, halo C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> cycloalkenyl, halo C<sub>2</sub>-C<sub>6</sub> alkenyl,  $C_2$ - $C_6$  alkynyl, halo  $C_2$ - $C_6$  alkynyl, the following <sup>15</sup> group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl C<sub>1</sub>-C<sub>6</sub> alkyl, heteroaryl C<sub>1</sub>-C<sub>6</sub> alkyl, aryl  $C_1$ - $C_6$  alkoxy, heteroaryl  $C_2$ - $C_6$  alkoxy, aryloxy or heteroaryloxy;

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from the 20 group consisting of H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>6</sub> heterocycloalkyl, halo  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$ alkyl, halo  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_3$ - $C_6$ cycloalkenyl, halo C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, halo C<sub>2</sub>-C<sub>6</sub> alkynyl, the following group which is unsubstituted or 25 substituted by 1-5  $R^{11}$ : aryl, heteroaryl, aryl  $C_1$ - $C_6$  alkyl, heteroaryl  $C_1$ - $C_6$  alkyl;

 $R^9$  is selected from the group consisting of H,  $C_1$ - $C_6$  alkyl,  $C_3$ - $C_6$  cycloalkyl,  $C_3$ - $C_6$  heterocycloalkyl, halo  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halo  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl, halo  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkenyl,  $C_3$ - $C_6$ cycloalkenyl, halo  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl, halo  $C_2$ - $C_6$ alkynyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl;

 $R^{10}$  is selected from the group consisting of  $C_1$ - $C_6$  alkyl,  $C_3$ - $C_6$  cycloalkyl, halo  $C_1$ - $C_6$  alkyl, halo  $C_3$ - $C_6$  cycloalkyl, <sup>35</sup> unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl  $C_1$ - $C_6$  alkyl, heteroaryl  $C_1$ - $C_6$  alkyl;

R<sup>11</sup> is selected from the group consisting of H, halogen, nitro, cyano,  $C_1$ - $C_6$  alkyl, halo  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halo  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkylthiol,  $C_1$ - $C_6$  alkylcarbonyl, 40  $R^{11}$ : phenyl, pyridyl;  $C_1$ - $C_6$  alkoxycarbonyl,  $C_2$ - $C_6$  alkenyl, halo  $C_2$ - $C_6$  alkenyl,  $C_3$ - $C_6$  alkenyloxy, halo  $C_3$ - $C_6$  alkenyloxy,  $C_2$ - $C_6$  alkynyl, halo  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_6$  alkynyloxy, halo  $C_3$ - $C_6$  alkynyloxy, halo  $C_1$ - $C_6$  alkylthiol, halo  $C_1$ - $C_6$  alkylcarbonyl,  $C_1$ - $C_6$ alkylamino, halo C<sub>1</sub>-C<sub>6</sub> alkylamino, C<sub>2</sub>-C<sub>6</sub> dialkylamino, 45  $C_1$ - $C_6$  alkylcarbonylamino, halo  $C_1$ - $C_6$  alkylcarbonylamino,  $C_1$ - $C_6$  alkylaminocarbonyl or halo  $C_1$ - $C_6$  alkylaminocarbonyl.

The compound of the formula I, a stereoisomer, a cis-trans isomer, a tautomer thereof and a pharmaceutically acceptable salt thereof, further preferred compounds of the formula:

$$R^2$$
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $R^5$ 
 $R^5$ 
 $R^6$ 
 $R^8$ 
 $R^8$ 

-continued

$$R^4$$
 $R^4$ 
 $R^4$ 
 $R^5$ 
 $R^6$ 
 $R^6$ 
 $R^5$ 
 $R^6$ 
 $R^6$ 

W is selected from NH;

X is selected from CH<sub>2</sub>, O or NH;

Y is selected from O or S;

R<sup>1</sup> and R<sup>2</sup> are selected from COOH, CONHR<sup>10</sup>,  $-CONHSO_2R^{10}$ ,  $COOR^{10}$ ,

 $R^3$  is selected from the group consisting of H,  $C_1$ - $C_2$  alkyl, halo  $C_1$ - $C_2$  alkyl,  $C_2$ - $C_4$  alkenyl, halo  $C_2$ - $C_4$  alkenyl, the following group which is unsubstituted or substituted by 1-5

R<sup>4</sup> is selected from H or halogen;

R<sup>5</sup> is selected from H or halogen;

R<sup>6</sup> is selected from the group consisting of H, halogen,  $C_1$ - $C_6$  alkyl,  $C_3$ - $C_6$  cycloalkyl,  $C_3$ - $C_6$  heterocycloalkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  Alkenyl,  $C_3$ - $C_6$  cycloalkenyl,  $C_2$ - $C_6$  alkynyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl  $C_1$ - $C_6$  alkyl, heteroaryl  $C_1$ - $C_3$  alkyl, aryl  $C_1$ - $C_3$  alkoxy, heteroaryl  $C_1$ - $C_3$  alkoxy, aryloxy or heteroaryloxy;

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from the group consisting of H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>6</sub> heterocycloalkyl,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl, <sub>55</sub> C<sub>3</sub>-C<sub>6</sub> cycloalkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, the following groups which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl  $C_1$ - $C_3$ : alkyl, heteroaryl  $C_1$ - $C_3$  alkyl;

 $R^9$  is selected from the group consisting of H,  $C_1$ - $C_6$  alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>6</sub> heterocycloalkyl, halo C<sub>1</sub>-C<sub>6</sub> alkyl,  $C_1$ - $C_6$  alkoxy, halo  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl, halo  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_3$ - $C_6$ cycloalkenyl, halo C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, halo C<sub>2</sub>-C<sub>6</sub> alkynyl, the following group which is unsubstituted or substituted by 1-5 R<sup>11</sup>: aryl, heteroaryl, aryl C<sub>1</sub>-C<sub>3</sub> alkyl, 65 heteroaryl C<sub>1</sub>-C<sub>3</sub> alkyl;

 $R^{10}$  is selected from the group consisting of  $C_1$ - $C_3$  alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, halo C<sub>1</sub>-C<sub>3</sub> alkyl, halo C<sub>3</sub>-C<sub>6</sub> cycloalkyl,

50

60

65

5

the following group which is unsubstituted or substituted by 1-5  $R^{11}$ : aryl, heteroaryl, aryl  $C_1$ - $C_3$  alkyl, heteroaryl  $C_1$ - $C_3$  alkyl;

 $R^{11}$  is selected from the group consisting of H, halogen, nitro, cyano,  $C_1$ - $C_6$  alkyl, halo  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxycarbonyl,  $C_2$ - $C_6$  alkenyl, halo  $C_2$ - $C_6$  alkenyl, halo  $C_2$ - $C_6$  alkenyl, halo  $C_3$ - $C_6$  alkenyloxy, halo  $C_3$ - $C_6$  alkynyl,  $C_3$ - $C_6$  alkynyl,  $C_3$ - $C_6$  alkynyloxy, halo  $C_3$ - $C_6$  alkylthiol, halo  $C_1$ - $C_6$  alkylcarbonyl,  $C_1$ - $C_6$  alkylamino, halo  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_6$  dialkylamino,  $C_1$ - $C_6$  alkylamino, halo  $C_1$ - $C_6$  alkylamino, halo  $C_1$ - $C_6$  alkylamino or halo  $C_1$ - $C_6$ 

The compound of the formula I, a stereoisomer, a cis-trans isomer, a tautomer thereof and a pharmaceutically acceptable salt thereof, wherein a further preferred compound is:

$$R^{3}$$
 is  $R^{3}$  or  $R_{2}$ 
 $R^{3}$  is  $R^{4}$  or  $R_{2}$ 
 $R^{5}$ 
 $R^{5}$ 
 $R^{6}$ 
 $R^{6}$ 

W is selected from NH;

X is selected from CH<sub>2</sub>, O or NH;

Y is selected from O or S;

R<sup>1</sup> and R<sup>2</sup> are selected from COOH,

R<sup>3</sup> is selected from H, CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub> or CF<sub>3</sub>;

R<sup>4</sup> is selected from H;

R<sup>5</sup> is selected from H;

R<sup>6</sup> is selected from H;

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from the group consisting of H, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl;

 $R^9$  is selected from the group consisting of H,  $C_1$ - $C_6$  alkyl,  $C_3$ - $C_6$  cycloalkyl,  $C_{3-6}$  heterocycloalkyl, halo  $C_1$ - $C_6$  alkoxy, halo  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkenyl,  $C_3$ - $C_6$  cycloalkenyl, halo  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl, halo  $C_1$ - $C_6$  alkynyl, the following group which is unsubstituted or substituted by 1-5  $R^{11}$ : aryl, heteroaryl, aryl  $C_1$ - $C_3$  alkyl, heteroaryl  $C_1$ - $C_3$  alkyl;

R<sup>11</sup> is selected from the group consisting of H, halogen, nitro, cyano, C<sub>1</sub>-C<sub>3</sub> alkyl, halo C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, halo C<sub>1</sub>-C<sub>3</sub> alkoxy, C<sub>1</sub>-C<sub>3</sub> alkylthiol, C<sub>1</sub>-C<sub>3</sub> alkylcarbonyl, C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl, C<sub>2</sub>-C<sub>3</sub> alkenyl, halo C<sub>2</sub>-C<sub>3</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkenyloxy, halo C<sub>3</sub>-C<sub>6</sub> alkenyloxy, C<sub>2</sub>-C<sub>3</sub> alkynyl, halo C<sub>2</sub>-C<sub>3</sub> alkynyl, C<sub>3</sub>-C<sub>6</sub> alkynyloxy, halo C<sub>3</sub>-C<sub>6</sub> alkynyloxy, halo C<sub>1</sub>-C<sub>3</sub> alkylthiol, halo C<sub>1</sub>-C<sub>3</sub> alkylcarbonyl, C<sub>1</sub>-C<sub>3</sub> alkylamino, C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino, halo C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl or halo C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl.

The compound of the formula I, a stereoisomer, a cis-trans isomer, a tautomer thereof and a pharmaceutically acceptable salt thereof, and a still further preferred compound of the formula:

$$R^2$$
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 
 $R^5$ 
 $R^6$ 
 $R^6$ 

CONHSO<sub>2</sub>CH<sub>3</sub>, CONHSO<sub>2</sub>CF<sub>3</sub> or COOCH<sub>2</sub>CH<sub>3</sub>;

-continued 
$$\mathbb{R}^4$$
  $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^5$   $\mathbb{R}^5$   $\mathbb{R}^6$  or  $\mathbb{R}^6$  ;

W is selected from NH;

X is selected from CH<sub>2</sub>, O or NH;

Y is selected from O or S;

R<sup>1</sup> and R<sup>2</sup> are selected from COOH,

CONHSO<sub>2</sub>CH<sub>3</sub>, CONHSO<sub>2</sub>CF<sub>3</sub> or COOCH<sub>2</sub>CH<sub>3</sub>;

R<sup>3</sup> is selected from H, CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub> or CF<sub>3</sub>;

R<sup>4</sup> is selected from H;

R<sup>5</sup> is selected from H;

R<sup>6</sup> is selected from H;

R<sup>7</sup> and R<sup>6</sup> are the same or different and selected from the group consisting of H, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl;

R<sup>9</sup> is selected from the group consisting of phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-fluoro-4-methylphenyl, 3-trifluoromethyl-4-chlorophenyl, 2-chlorophenyl, 3-chlorophenyl, 40 4-chlorophenyl, 2,4-dichlorophenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 5-methylisoxazolyl.

The compound of the formula I, a stereoisomer, a cis-trans isomer, a tautomer thereof and a pharmaceutically acceptable salt thereof, and a still further preferred compound of the formula:

$$\mathbb{R}^2$$
 is  $\mathbb{R}^3$  or  $\mathbb{R}_2$   $\mathbb{R}^3$  ;

W is NH;

X is NH or CH<sub>2</sub>;

Y is O;

R<sup>1</sup> and R<sup>2</sup> is selected from COOH,

or COOCH<sub>2</sub>CH<sub>3</sub>;

 $R^3$  is selected from  $CH_3$ ;

R<sup>4</sup> is selected from H;

R<sup>5</sup> is selected from H;

R<sup>6</sup> is selected from H;

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from n-butyl or isobutyl;

R<sup>9</sup> is selected from the group consisting of 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,4-difluorophenyl, 2-fluoro-4-methylphenyl, 3-trifluoromethyl-4-chlorophenyl, phenyl, 2-chlorophenyl, 3-chlorophenyl, 1,4-chlorophenyl, 2,4-dichlorophenyl, 2-fluorophenyl, 2-fluorophenyl, 4-fluorophenyl, 3-fluorophenyl or 5-methylisoxazolyl.

The above pharmaceutically acceptable salt prepared by compound and base can be sodium salt, potassium salt, calcium salt, zinc salt, magnesium salt and other metal ion salt. It also can be meglumine salt, aminobutanediol salt, aminoethanol salt, lysine salt, arginine salt and other organic salt. Acid radical salt can be hydrochloride, sulfate, hydrobromate, mesylate, citrate, oxalate, succinate, maleate, citrate, acetate, lactate, phosphate, hydroiodate, nitrate, tartaric acid, p-toluene sulfonic acid, etc.

In the definition of compound of formula I, the terms are generally defined as follows:

Halogen: fluorine, chlorine, bromine or iodine.

Alkyl: straight or branched alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, or tert-butyl.

Cycloalkyl: a heterocyclic ring alkyl; such as cyclopropyl, cyclopentyl, or cyclohexyl, which is substituted or unsubstituted. Substituent group such as methyl, halogen, etc.

Heterocyclic alkyl: a ring alkyl substituted or unsubstituted containing one or more N, O, S heteroatoms, such as tetrahydrofuranyl or cyclopentanyl. Substituent group such as methyl, halogen, etc.

Halo alkyl: straight or branched alkyl, in which the hydrogen atoms may be partially or completely replaced by halo atoms, such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, etc.

Alkoxy: Straight or branched alkyl groups are linked to the structure by oxygen atom bonds.

Halo alkoxy: Straight or branched alkoxy groups in which the hydrogen atoms may be partially or completely replaced by halogen atoms. For example, chloromethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoromethoxy, trifluoromethoxy, etc.

Alkoxy alkyl: The alkoxy group is linked to the structure by alkyl group. Such as, —CH<sub>2</sub>OCH<sub>3</sub>, —CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>.

Halo alkoxy alkyl: The hydrogen atoms in alkoxyalkyl groups may be partially or completely replaced by halogen atoms. Such as, —CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>Cl.

Alkylthiol: Straight or branched alkyl groups that is bonded to a structure by an atomic sulfur bond.

Halo alkylthiol: Straight or branched alkylthiol groups in which the hydrogen atoms may be partially or completely replaced by halogen atoms. For example, chloromethane, dichloromethane, trichloromethane, fluoromethane, difluoromethane, trifluoromethane, chlorofluoromethane, etc.

Alkylamino: Straight or branched alkyl groups bonded to a structure by a nitrogen atom.

Halo alkylamino: Straight or branched alkylamino groups in which the hydrogen atoms may be partially or completely replaced by the halogen atoms.

Alkenyl: Straight or branched alkenes groups, such as vinyl, 1-propylene, 2-propylene, and different butylene, pentenyl, and hexenyl isomers. Alkenes also include polyenes, such as 1,2-propylene, and 2,4-hexadienyl.

Halo alkene: Straight or branched alkenes groups in 15 which hydrogen atoms may be partially or completely replaced by halogen atoms.

Alkynyl: Straight or branched alkynes groups, such as acetylenyl, 1-propargynyl, 2-propargynyl, and different butynyl, pentynyl, and hexynyl isomers. Alkynyl also 20 includes groups consisting of multiple triple bonds, such as 2,5-hexylenyl.

Halo alkynyl: Straight or branched alkynes groups in which hydrogen atoms may be partially or completely replaced by halogen atoms.

Alkenyloxy: Straight or branched alkenyl groups bonded to a structure by an oxygen bond.

Halo alkenyloxy: Straight or branched alkenyl groups in which the hydrogen atoms may be partially or completely replaced by halogen atoms.

Alkynyloxy: Straight or branched alkynyl groups bonded to a structure by an oxygen atom.

Halo alkynyloxy: Straight or branched alkynyl groups in which the hydrogen atoms may be partially or completely replaced by halogen atoms.

Alkyl carbonyl: Straight or branched alkyl groups bonded to a structure by a carbonyl group (—CO—), such as an acetyl group.

Halo alkyl carbonyl: Straight or branched Alkyl carbonyl groups in which the hydrogen atoms may be partially or 40 completely replaced by halogen atoms.

Alkoxy carbonyl: Straight or branched alkoxy groups bonded to a structure by a carbonyl group (—CO—). Such as —COOCH<sub>3</sub>, —COOCH<sub>2</sub>CH<sub>3</sub>.

Halo alkoxyl carbonyl: Straight or branched alkoxyl car- 45 bonyl groups in which the hydrogen atoms may be partially or completely replaced by halogen atoms. Such as —COOCH<sub>2</sub>CF<sub>3</sub>, —COOCH<sub>2</sub>CH<sub>2</sub>Cl etc.

Alkyl carbonyl amino: Such as —NHCOCH<sub>3</sub>, —NHCOC (CH<sub>3</sub>)<sub>3</sub>

Alkyl aminocarbonyl: Such as —C(=O)NHCH<sub>3</sub>, —C(=O)N(CH<sub>3</sub>)<sub>2</sub>

The aromatic parts of aryl, aryl alkyl, aryloxy, aryl aryloxy and aryl amino include phenyl or naphthalene group, etc.

Hetero aryl groups are five-membered rings or six-membered rings containing one or more N, O, S hetero atoms. For example, furanyl, pyrazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl, quinolyl, etc.

Heteroaryl part of heteroaryl alkyl, heteroaryloxy and 60 heteroaryl alkoxy groups refers to a five or a six-membered ring containing one or more N, O, S heteroatoms. For example, furyl, pyrazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl, quinolyl, benzoxazolyl, indolyl, etc.

The application of a vinylarene derivative, the compound shown in formula I, its stereoisomer, cis-trans isomer, tau**10** 

tomer and pharmaceutically acceptable salt thereof, or a combination thereof, in the preparation of an inhibitor for inhibiting the activity of IDO-1 enzyme.

The application of a vinylarene derivative, the compound shown in formula I, its stereoisomer, cis-trans isomer, tautomer and pharmaceutically acceptable salt thereof, or a combination thereof, in the preparation of an anti-cancer drug, a viral infectious agent, a depressant, an organ transplant rejection agent or an autoimmune enhancer.

The cancer is colon cancer, pancreatic cancer, breast cancer, prostate cancer, lung cancer, ovarian cancer, cervical cancer, kidney cancer, head and neck cancer, lymphoma, leukemia or melanoma.

A pharmaceutical composition comprising any one or more compounds shown in formula I, its stereoisomer, cis-trans isomer, tautomer, pharmaceutically acceptable salt thereof and pharmaceutically acceptable carriers or diluents.

The compounds in the present invention, stereoisomer can be formed by connecting different substituents with carbon-carbon double bond (Z and E are used to represent different configurations, respectively). The present invention includes Z-type isomer and E-type isomer and their mixtures in any proportion.

In formula I

30

55

$$R^{4}$$

$$K$$

$$R^{5}$$

$$K$$

$$M$$

$$R^{6}$$

the specific substituent is:

30

-continued -continued 
$$\mathbb{R}^4$$
 or  $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^4$   $\mathbb{R}^5$   $\mathbb{R}^5$   $\mathbb{R}^5$   $\mathbb{R}^6$ 

In formula I, the specific substituent of W is CH<sub>2</sub>, O or NH;

In formula I, the specific substituent of X is CH<sub>2</sub>, O or NH;

In formula I, the specific substituent of Y is O or S;

In formula I, the specific substituents in R<sup>3</sup> are H, CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> and CF<sub>3</sub>.

In formula I, the specific substituents of R<sup>4</sup> are H, Cl, Br and I.

In formula I, the specific substituents of R<sup>5</sup> are H, Cl, Br and I.

The specific substituents of R<sup>6</sup> in formula I are shown in table 1,

 $\sim$ 

In formula I, R<sup>1</sup> and R<sup>2</sup> are the same or different, and the specific substituents are shown in table 2. The definitions of other substituents in formula I, such as R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup>, are the same as above.

TABLE 2

| 35 | $\begin{array}{c} H \\ COOH \\ COOCH_2CH_3 \\ CONHSO_2CH_3 \\ CONHSO_2CF_3 \end{array}$ |
|----|-----------------------------------------------------------------------------------------|
| 40 | N=N                                                                                     |

In formula I, R<sup>7</sup> and R<sup>8</sup> are the same or different, and the specific substituents are shown in table 3. The definitions of other substituents in formula I, such as R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup>, are the same as above.

TABLE 3

| 50 | H                                                                                          |
|----|--------------------------------------------------------------------------------------------|
|    | $\begin{array}{c} \mathrm{CH_3} \\ \mathrm{CH_2CH_3} \\ \mathrm{CH_2CH_2CH_3} \end{array}$ |
| 55 |                                                                                            |
|    | ~~~~                                                                                       |
| 50 |                                                                                            |
|    | ξ <u></u>                                                                                  |
| 55 | ξ                                                                                          |

| TABLE 3-continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | TABLE 3-continued                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | \$<br>}                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | § ( )                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 | ξ<br>ξ                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 |                                        |
| \tag{ \  \tag{ \ta | 35 |                                        |
| §<br>§                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| \$<br>\$<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 | CF <sub>3</sub>                        |
| \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 | \$ CF <sub>3</sub>                     |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 | ξ                                      |

TABLE 3-continued

| TARIF | 4-continued |
|-------|-------------|
| IADLE | 4-commuea   |

| TABLE 4-continued |    | TABLE 4-continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CF <sub>3</sub>   | 5  | N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EF3               | 10 | SE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Se OCH3           | 15 | Se N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OCH <sub>3</sub>  | 25 | N<br>CF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OCH <sub>3</sub>  | 30 | See No. In the second s |
| \{ \}             | 35 | <b>§</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| § Br              | 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 45 | § N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Br                | 50 | See No. Con.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CN<br>CN          | 55 | SE N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>\{</b>         | 60 | <b>\{</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EN CN             | 65 | R CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**20** 

In the present invention, the specific compound in formula I which inhibits the activity of the IDO enzyme is shown as formula II, The specific compound listed in table 5, but the present invention is not limited by these compounds

Formula II 
$$R^{3}$$

$$R^{1}$$

$$R^{1}$$

$$R^{8}$$

$$R^{7}$$

TABLE 5

| Compound<br>Number | $R^1$                                                                    | $R^3$           | $R^7$              | R <sup>8</sup>     | R                                        | Y      | X  |
|--------------------|--------------------------------------------------------------------------|-----------------|--------------------|--------------------|------------------------------------------|--------|----|
| 1                  | COOCH CH                                                                 | CH              | n hutarl           | n hutul            | 2 CU                                     | 0      | NH |
| 2                  | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | n-butyl<br>n-butyl | n-butyl<br>n-butyl | 2-CH <sub>3</sub><br>4-CH <sub>3</sub>   | O<br>O | NH |
| 3                  | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | n-butyl            | n-butyl            | $2,4-2CH_3$                              | O      | NH |
| 4                  | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | n-butyl            | n-butyl            | 2,4-2C11 <sub>3</sub><br>2-F             | Ö      | NH |
| 5                  | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | n-butyl            | n-butyl            | 2-1<br>4-F                               | Ö      | NH |
| 6                  | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | n-butyl            | n-butyl            | 2,4-2F                                   | Ö      | NH |
| 7                  | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | n-butyl            | n-butyl            | 2-F-4-CH <sub>3</sub>                    | Ö      | NH |
| 8                  | COOH COOH                                                                | $CH_3$          | n-butyl            | n-butyl            | 2-1-4-C11 <sub>3</sub> 2-CH <sub>3</sub> | Ö      | NH |
| 9                  | COOH                                                                     | $CH_3$          | n-butyl            | n-butyl            | 4-CH <sub>3</sub>                        | Ö      | NH |
| 10                 | СООН                                                                     | $CH_3$          | n-butyl            | n-butyl            | 2,4-2CH <sub>3</sub>                     | Ö      | NH |
| 11                 | СООН                                                                     | $CH_3$          | n-butyl            | n-butyl            | 2-F                                      | Ö      | NH |
| 12                 | СООН                                                                     | $CH_3$          | n-butyl            | n-butyl            | 4-F                                      | Ŏ      | NH |
| 13                 | СООН                                                                     | $CH_3$          | n-butyl            | n-butyl            | 2,4-2F                                   | Ö      | NH |
| 14                 | СООН                                                                     | $CH_3$          | n-butyl            | n-butyl            | 2-F-4-CH <sub>3</sub>                    | Ŏ      | NH |
| 15                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      |                 | n-butyl            | n-butyl            | 2-CH <sub>3</sub>                        | Ö      | NH |
| 16                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | 4-CH <sub>3</sub>                        | Ö      | NH |
| 17                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | 2,4-2CH <sub>3</sub>                     | Ō      | NH |
| 18                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | 2-F                                      | O      | NH |
| 19                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | 4-F                                      | Ο      | NH |
| 20                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | 2,4-2F                                   | O      | NH |
| 21                 |                                                                          | _               | n-butyl            | n-butyl            | 2-F-4-CH <sub>3</sub>                    | O      | NH |
| 22                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl            | n-butyl            | 2-CH <sub>3</sub>                        | O      | NH |
| 23                 |                                                                          | $CH_3$          | n-butyl            | n-butyl            | $4-CH_3$                                 | Ο      | NH |
| 24                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | _               | n-butyl            | n-butyl            | $2,4-2CH_{3}$                            | Ο      | NH |
| 25                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl            | n-butyl            | 2-F                                      | Ο      | NH |
| 26                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl            | n-butyl            | 4-F                                      | Ο      | NH |
| 27                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl            | n-butyl            | 2,4-2F                                   | Ο      | NH |
| 28                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl            | n-butyl            | 2-F-4-CH <sub>3</sub>                    | Ο      | NH |
| 29                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | $2\text{-CH}_3$                          | Ο      | NH |
| 30                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | $4-\mathrm{CH}_3$                        | O      | NH |
| 31                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | $2,4-2CH_{3}$                            | Ο      | NH |
| 32                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | 2-F                                      | O      | NH |
| 33                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | 4-F                                      | O      | NH |
| 34                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | 2,4-2F                                   | O      | NH |
| 35                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | $2\text{-F-4-CH}_3$                      | O      | NH |
| 36                 | 5-tetrazolyl                                                             | $CH_3$          | n-butyl            | n-butyl            | $2\text{-CH}_3$                          | О      | NH |
|                    |                                                                          |                 |                    |                    |                                          |        |    |

21
TABLE 5-continued

|                    |                                                                            | 17 11           | EL 5-con                 | illiaca              |                                 |        |          |
|--------------------|----------------------------------------------------------------------------|-----------------|--------------------------|----------------------|---------------------------------|--------|----------|
| Compound<br>Number | $R^1$                                                                      | $R^3$           | $R^7$                    | R <sup>8</sup>       | R                               | Y      | X        |
| 37                 | 5-tetrazolyl                                                               | CH <sub>3</sub> | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>               | О      | NH       |
| 38                 | 5-tetrazolyl                                                               | CH <sub>3</sub> | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>            | Ö      | NH       |
| 39                 | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2-F                             | O      | NH       |
| 40                 | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 4-F                             | O      | NH       |
| 41                 | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2F                          | Ο      | NH       |
| 42                 | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>           | O      | NH       |
| 43                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 | isobutyl             | $2\text{-CH}_3$                 | O      | NH       |
| 44                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 | isobutyl             | 5                               | O      | NH       |
| 45                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | 0      | NH       |
| 46                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH       |
| 47                 | COOCH CH                                                                   | $CH_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH       |
| 48<br>49           | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub> | O<br>O | NH<br>NH |
| 50                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 | isobutyl             | 5                               | Ö      | NH       |
| 51                 | СООН                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 5                               | Ö      | NH       |
| 52                 | СООН                                                                       | CH <sub>3</sub> | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | Ö      | NH       |
| 53                 | СООН                                                                       | $CH_3$          | isobutyl                 | isobutyl             | , ,                             | O      | NH       |
| 54                 | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 4-F                             | O      | NH       |
| 55                 | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 2,4-2F                          | O      | NH       |
| 56                 | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>           | Ο      | NH       |
| 57                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             | 5                               | O      | NH       |
| 58                 | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | 5                               | O      | NH       |
| 59                 |                                                                            | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | 0      | NH       |
| 60<br>61           | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             |                                 | 0      | NH       |
| 61<br>62           | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             |                                 | 0      | NH<br>NH |
| 62<br>63           | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _               | isobutyl<br>isobutyl     | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub> | O<br>O | NH<br>NH |
| 64                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             |                                 | Ö      | NH       |
| 65                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | 5                               | Ö      | NH       |
| 66                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | Ŏ      | NH       |
| 67                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | , ,                             | O      | NH       |
| 68                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | 4-F                             | O      | NH       |
| 69                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | isobutyl                 | isobutyl             | 2,4-2F                          | O      | NH       |
| 70                 | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>           | O      | NH       |
| 71                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 5                               | O      | NH       |
| 72                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 5                               | 0      | NH       |
| 73                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | •                    | 2,4-2CH <sub>3</sub>            | 0      | NH       |
| 74<br>75           | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH       |
| 75<br>76           | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                 | O<br>O | NH<br>NH |
| 77                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | O      | NH       |
| 78                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 2                               | Ö      | NH       |
| 79                 | 5-tetrazolyl                                                               | CH <sub>3</sub> | isobutyl                 | isobutyl             | 5                               | Ö      | NH       |
| 80                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | O      | NH       |
| 81                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 2-F                             | Ο      | NH       |
| 82                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 4-F                             | O      | NH       |
| 83                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | ,                               | O      | NH       |
| 84                 | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | O      | NH       |
| 85                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl               | isobutyl             | 5                               | 0      | NH       |
| 86<br>87           | COOCH CH                                                                   | $CH_3$          | cyclohexyl               | isobutyl             | 4-CH <sub>3</sub>               | 0      | NH       |
| 87<br>88           | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CH_3$          | cyclohexyl<br>cyclohexyl |                      | , ,                             | O<br>O | NH<br>NH |
| 89                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | cyclohexyl               | •                    |                                 | 0      | NH       |
| 90                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl               | •                    |                                 | Ö      | NH       |
| 91                 | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          |                          |                      | 2-F-4-CH <sub>3</sub>           | Ö      | NH       |
| 92                 | СООН                                                                       | $CH_3$          | cyclohexyl               | •                    |                                 | O      | NH       |
| 93                 | COOH                                                                       | $CH_3$          | cyclohexyl               | isobutyl             | 4-CH <sub>3</sub>               | Ο      | NH       |
| 94                 | COOH                                                                       | $CH_3$          | cyclohexyl               | isobutyl             | $2,4-2CH_3$                     | O      | NH       |
| 95                 | COOH                                                                       | $CH_3$          | cyclohexyl               | •                    |                                 | О      | NH       |
| 96                 | СООН                                                                       | $CH_3$          | cyclohexyl               |                      |                                 | O      | NH       |
| 97                 | СООН                                                                       | $CH_3$          | cyclohexyl               | •                    | ŕ                               | 0      | NH       |
| 98                 | COOH                                                                       | $CH_3$          |                          | •                    | 2-F-4-CH <sub>3</sub>           | 0      | NH       |
| 99<br>100          | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CH_3$          | cyclohexyl               |                      | 5                               | 0      | NH       |
| 100<br>101         | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _               | cyclohexyl<br>cyclohexyl |                      | 5                               | O<br>O | NH<br>NH |
| 101                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               |                      | , ,                             | 0      | NH       |
| 103                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               |                      |                                 | Ö      | NH       |
| 104                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               | •                    |                                 | Ö      | NH       |
| 105                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | ,                        |                      | 2-F-4-CH <sub>3</sub>           | Ö      | NH       |
| 106                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | cyclohexyl               |                      | 5                               | Ο      | NH       |
| 107                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | cyclohexyl               | isobutyl             | 4-CH <sub>3</sub>               | Ο      | NH       |
| 108                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                      | , ,                             | O      | NH       |
| 109                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                      |                                 | O      | NH       |
| 110                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                      |                                 | 0      | NH       |
| 111                | CONHISO CE                                                                 | $CH_3$          | cyclohexyl               |                      | •                               | 0      | NH       |
| 112                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               |                          |                      | 2-F-4-CH <sub>3</sub>           | 0      | NH<br>NU |
| 113                | 5-tetrazolyl                                                               | CH <sub>3</sub> | cyclohexyl               | isobutyl             | 2-СП3                           | О      | NH       |

23
TABLE 5-continued

|                    |                                                                            | IAB              | LE 5-con                 | tinued               |                                              |        |          |
|--------------------|----------------------------------------------------------------------------|------------------|--------------------------|----------------------|----------------------------------------------|--------|----------|
| Compound<br>Number | $R^1$                                                                      | $R^3$            | $R^7$                    | R <sup>8</sup>       | R                                            | Y      | X        |
| 114                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               |                      | <i>-</i>                                     | O      | NH       |
| 115                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               | •                    |                                              | O      | NH       |
| 116                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               | •                    |                                              | 0      | NH       |
| 117<br>118         | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub>  | cyclohexyl<br>cyclohexyl | -                    |                                              | O<br>O | NH<br>NH |
| 118                | 5-tetrazolyl                                                               | $CH_3$           |                          | •                    | 2,4-21 <sup>r</sup><br>2-F-4-CH <sub>3</sub> | 0      | NH       |
| 120                | 5-tetrazolyl                                                               | CH <sub>3</sub>  | cyclohexyl               | •                    |                                              | Ö      | NH       |
| 121                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               | •                    |                                              | O      | NH       |
| 122                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               | •                    | , ,                                          | O      | NH       |
| 123                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               | •                    |                                              | O      | NH       |
| 124                | 5-tetrazolyl                                                               | $CH_3$           | cyclohexyl               |                      | 4-F                                          | 0      | NH       |
| 125<br>126         | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub>  | cyclohexyl cyclohexyl    |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub>              | O<br>O | NH<br>NH |
| 127                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                            | Ö      | NH       |
| 128                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                            | O      | NH       |
| 129                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | n-butyl                  | n-butyl              | $2,4-2CH_{3}$                                | О      | NH       |
| 130                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | n-butyl                  | n-butyl              | 2-F                                          | О      | NH       |
| 131                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | n-butyl                  | n-butyl              | 4-F                                          | 0      | NH       |
| 132                | COOCH CH                                                                   | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                       | 0      | NH       |
| 133<br>134         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOH                                 | $CF_3$<br>$CF_3$ | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub>   | O<br>O | NH<br>NH |
| 135                | COOH                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                            | Ö      | NH       |
| 136                | СООН                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 5                                            | Ŏ      | NH       |
| 137                | COOH                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 2-F                                          | O      | NH       |
| 138                | COOH                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 4-F                                          | O      | NH       |
| 139                | СООН                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                       | O      | NH       |
| 140                | COOH                                                                       | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                        | 0      | NH       |
| 141<br>142         | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$           | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                            | 0      | NH<br>NH |
| 142                | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _                | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 4-CH <sub>3</sub><br>2,4-2CH <sub>3</sub>    | O<br>O | NH<br>NH |
| 144                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | n-butyl                  | n-butyl              | 2, † 20113<br>2-F                            | Ö      | NH       |
| 145                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | n-butyl                  | n-butyl              | 4-F                                          | О      | NH       |
| 146                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | n-butyl                  | n-butyl              | 2,4-2F                                       | Ο      | NH       |
| 147                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                        | O      | NH       |
| 148                | CONHISO CE                                                                 | $CF_3$           | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                            | 0      | NH       |
| 149<br>150         | CONHSO <sub>2</sub> CF <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | $CF_3$ $CF_3$    | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 4-CH <sub>3</sub><br>2,4-2CH <sub>3</sub>    | O<br>O | NH<br>NH |
| 150                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub><br>2-F                  | 0      | NH       |
| 152                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 4-F                                          | Ö      | NH       |
| 153                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                       | O      | NH       |
| 154                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                        | O      | NH       |
| 155                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                            | 0      | NH       |
| 156<br>157         | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                            | 0      | NH       |
| 157<br>158         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$    | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2,4-2CH <sub>3</sub><br>2-F                  | O<br>O | NH<br>NH |
| 159                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 4-F                                          | Ö      | NH       |
| 160                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                       | Ō      | NH       |
| 161                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                        | Ο      | NH       |
| 162                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | $2\text{-CH}_3$                              | O      | NH       |
| 163                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                            | 0      | NH       |
| 164<br>165         | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                         | 0      | NH       |
| 165<br>166         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$    | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2-F<br>4-F                                   | O<br>O | NH<br>NH |
| 167                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                       | Ö      | NH       |
| 168                | 5-tetrazolyl                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                        | Ö      | NH       |
| 169                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             | 2-CH <sub>3</sub>                            | O      | NH       |
| 170                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                            | Ο      | NH       |
| 171                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | •                    | $2,4-2CH_3$                                  | O      | NH       |
| 172                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             |                                              | 0      | NH       |
| 173<br>174         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$           | isobutyl                 |                      | 4-F                                          | O<br>O | NH<br>NH |
| 174                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$<br>$CF_3$ | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 2,4-2F<br>2-F-4-CH <sub>3</sub>              | 0      | NH<br>NH |
| 176                | COOH                                                                       | $CF_3$           | isobutyl                 | isobutyl             |                                              | ŏ      | NH       |
| 177                | СООН                                                                       | $CF_3$           | isobutyl                 | isobutyl             | 5                                            | O      | NH       |
| 178                | COOH                                                                       | $CF_3$           | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                         | Ο      | NH       |
| 179                | СООН                                                                       | $CF_3$           | isobutyl                 | isobutyl             |                                              | O      | NH       |
| 180                | COOH                                                                       | $CF_3$           | isobutyl                 | isobutyl             |                                              | 0      | NH       |
| 181                | COOH                                                                       | $CF_3$           | isobutyl                 | isobutyl             | ,                                            | 0      | NH       |
| 182<br>183         | COOH<br>CONHSO <sub>2</sub> CH <sub>3</sub>                                | $CF_3$<br>$CF_3$ | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 2-F-4-CH <sub>3</sub>                        | O<br>O | NH<br>NH |
| 183<br>184         | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | isobutyl                 | isobutyl             | 2                                            | 0      | NH<br>NH |
| 185                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                         | Ö      | NH       |
| 186                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 | isobutyl             | , ,                                          | Ö      | NH       |
| 187                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$           | isobutyl                 | isobutyl             |                                              | Ο      | NH       |
| 188                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 | isobutyl             | ,                                            | O      | NH       |
| 189                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 | •                    | 2-F-4-CH <sub>3</sub>                        | 0      | NH       |
| 190                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | CF <sub>3</sub>  | ısobutyl                 | isobutyl             | 2-CH <sub>3</sub>                            | U      | NH       |
|                    |                                                                            |                  |                          |                      |                                              |        |          |

25
TABLE 5-continued

|                    | TABLE 5-continued                                                          |                 |                          |                      |                                 |        |                                    |
|--------------------|----------------------------------------------------------------------------|-----------------|--------------------------|----------------------|---------------------------------|--------|------------------------------------|
| Compound<br>Number | $R^1$                                                                      | $R^3$           | $R^7$                    | R <sup>8</sup>       | R                               | Y      | X                                  |
| 191                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>               | O      | NH                                 |
| 192                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | isobutyl                 | isobutyl             | $2,4-2CH_{3}$                   | O      | NH                                 |
| 193                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             | 2-F                             | O      | NH                                 |
| 194                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             |                                 | 0      | NH                                 |
| 195                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | isobutyl                 | isobutyl             | ,                               | 0      | NH                                 |
| 196<br>197         | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | 0      | NH<br>NH                           |
| 197                | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$   | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | <i>-</i>                        | 0      | NH<br>NH                           |
| 199                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | Ö      | NH                                 |
| 200                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             | , ,                             | Ö      | NH                                 |
| 201                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             |                                 | Ο      | NH                                 |
| 202                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             | 2,4-2F                          | O      | NH                                 |
| 203                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | O      | NH                                 |
| 204                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH                                 |
| 205                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH                                 |
| 206<br>207         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$   | isobutyl<br>isobutyl     | isobutyl             | 2,4-2CH <sub>3</sub>            | O<br>O | NH<br>NH                           |
| 207                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             |                                 | 0      | NH                                 |
| 209                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 | isobutyl             |                                 | Ö      | NH                                 |
| 210                | 5-tetrazolyl                                                               | $CF_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | O      | NH                                 |
| 211                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | cyclohexyl               | isobutyl             | 2-CH <sub>3</sub>               | Ο      | NH                                 |
| 212                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | cyclohexyl               |                      |                                 | Ο      | NH                                 |
| 213                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | cyclohexyl               | •                    | ,                               | 0      | NH                                 |
| 214                | COOCH CH                                                                   | $CF_3$          | cyclohexyl               |                      |                                 | 0      | NH                                 |
| 215<br>216         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$ $CF_3$   | cyclohexyl<br>cyclohexyl | •                    |                                 | O<br>O | NH<br>NH                           |
| 217                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          |                          | •                    | 2,4-21<br>2-F-4-CH <sub>3</sub> | Ö      | NH                                 |
| 218                | COOH                                                                       | CF <sub>3</sub> | cyclohexyl               |                      | 2                               | Ŏ      | NH                                 |
| 219                | СООН                                                                       | $CF_3$          | cyclohexyl               |                      | 2                               | O      | NH                                 |
| 220                | COOH                                                                       | $CF_3$          | cyclohexyl               | isobutyl             | $2,4-2CH_{3}$                   | O      | NH                                 |
| 221                | COOH                                                                       | $CF_3$          | cyclohexyl               | •                    |                                 | 0      | NH                                 |
| 222                | COOH                                                                       | $CF_3$          | cyclohexyl               |                      |                                 | 0      | NH                                 |
| 223<br>224         | COOH<br>COOH                                                               | $CF_3$ $CF_3$   | cyclohexyl               |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub> | O<br>O | NH<br>NH                           |
| 225                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               | •                    |                                 | O      | NH                                 |
| 226                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               |                      |                                 | Ŏ      | NH                                 |
| 227                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$          | cyclohexyl               | isobutyl             | $2,4-2CH_{3}$                   | O      | NH                                 |
| 228                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               | isobutyl             | 2-F                             | Ο      | NH                                 |
| 229                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               |                      |                                 | 0      | NH                                 |
| 230                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               |                      | ,                               | 0      | NH                                 |
| 231<br>232         | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | _               | cyclohexyl               |                      | 2-F-4-CH <sub>3</sub>           | 0      | NH<br>NH                           |
| 233                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | cyclohexyl               |                      | <i>-</i>                        | Ö      | NH                                 |
| 234                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | cyclohexyl               |                      | 2                               | O      | NH                                 |
| 235                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | cyclohexyl               | isobutyl             | 2-F                             | Ο      | NH                                 |
| 236                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                      |                                 | O      | NH                                 |
| 237                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          | cyclohexyl               |                      | ,                               | 0      | NH                                 |
| 238                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$          |                          | •                    | 2-F-4-CH <sub>3</sub>           | 0      | NH<br>NH                           |
| 239<br>240         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$          | cyclohexyl cyclohexyl    |                      |                                 | 0      | NH<br>NH                           |
| 241                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               | •                    |                                 | Ö      | NH                                 |
| 242                | 5-tetrazolyl                                                               | CF <sub>3</sub> | cyclohexyl               |                      | , ,                             | Ö      | NH                                 |
| 243                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               | •                    |                                 | O      | NH                                 |
| 244                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               |                      | ,                               | Ο      | NH                                 |
| 245                | 5-tetrazolyl                                                               | $CF_3$          |                          | •                    | 2-F-4-CH <sub>3</sub>           | 0      | NH                                 |
| 246                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               |                      | <i>-</i>                        | 0      | NH                                 |
| 247<br>248         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$   | cyclohexyl cyclohexyl    | •                    |                                 | O<br>O | NH<br>NH                           |
| 249                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               |                      | , ,                             | Ö      | NH                                 |
| 250                | 5-tetrazolyl                                                               | CF <sub>3</sub> | cyclohexyl               |                      |                                 | Ö      | NH                                 |
| 251                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               |                      |                                 | O      | NH                                 |
| 252                | 5-tetrazolyl                                                               | $CF_3$          | cyclohexyl               | isobutyl             | 2-F-4-CH <sub>3</sub>           | O      | NH                                 |
| 253                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>               | 0      | $CH_2$                             |
| 254<br>255         | COOCH CH                                                                   | $CH_3$          | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>               | 0      | $\mathrm{CH}_2$                    |
| 255<br>256         | COOCH CH                                                                   | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub><br>2-F     | 0      | CH <sub>2</sub>                    |
| 250<br>257         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | CH <sub>3</sub> | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | ∠-г<br>4-F                      | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 258                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2F                          | Ö      | $CH_2$                             |
| 259                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>           | Ŏ      | $CH_2$                             |
| 260                | COOH                                                                       | $CH_3$          | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>               | O      | $CH_2^2$                           |
| 261                | СООН                                                                       | $CH_3$          | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>               | O      | $CH_2$                             |
| 262                | COOH                                                                       | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>            | 0      | $CH_2$                             |
| 263<br>264         | COOH                                                                       | $CH_3$          | n-butyl                  | n-butyl              | 2-F                             | 0      | $CH_2$                             |
| 264<br>265         | COOH<br>COOH                                                               | CH <sub>3</sub> | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 4-F<br>2,4-2F                   | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 266                | COOH                                                                       | $CH_3$          | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>           | Ö      | $CH_2$                             |
| 267                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | 5               |                          |                      | 5                               |        | $CH_2$                             |
|                    | _ 5                                                                        | J               | •                        | •                    | _                               |        | _                                  |

27
TABLE 5-continued

|                    |                                                                          | IAB             | LE 5-con                 | tinued               |                                            |        |                                    |
|--------------------|--------------------------------------------------------------------------|-----------------|--------------------------|----------------------|--------------------------------------------|--------|------------------------------------|
| Compound<br>Number | $R^1$                                                                    | $R^3$           | $R^7$                    | R <sup>8</sup>       | R                                          | Y      | X                                  |
| 268                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | $CH_3$          | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | Ο      | $CH_2$                             |
| 269                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | $CH_3$          | n-butyl                  | n-butyl              | $2,4-2CH_{3}$                              | O      | $CH_2$                             |
| 270                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | $CH_3$          | n-butyl                  | n-butyl              | 2-F                                        | О      | $CH_2$                             |
| 271                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | $CH_3$          | n-butyl                  | n-butyl              | 4-F                                        | Ο      | $CH_2$                             |
| 272                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      |                 | n-butyl                  | n-butyl              | 2,4-2F                                     | О      | $CH_2$                             |
| 273                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                      | O      | $CH_2$                             |
| 274                | CONHISO CE                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                          | 0      | $CH_2$                             |
| 275<br>276         | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 4-CH <sub>3</sub><br>2,4-2CH3              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 277                | 2 3                                                                      | 5               | n-butyl                  | n-butyl              | 2,4-2C113<br>2-F                           | 0      | $CH_2$                             |
| 278                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | CH <sub>3</sub> | n-butyl                  | n-butyl              | 4-F                                        | Ö      | $CH_2$                             |
| 279                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | CH <sub>3</sub> | n-butyl                  | n-butyl              | 2,4-2F                                     | Ö      | $CH_2$                             |
| 280                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                      | O      | $CH_2^2$                           |
| 281                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                          | Ο      | $CH_2$                             |
| 282                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | Ο      | $CH_2$                             |
| 283                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | $2,4-2CH_3$                                | O      | $CH_2$                             |
| 284                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2-F                                        | O      | $CH_2$                             |
| 285                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 4-F                                        | 0      | $CH_2$                             |
| 286<br>287         | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2F                                     | 0      | $CH_2$                             |
| 288                | 5-tetrazolyl<br>5-tetrazolyl                                             | CH <sub>3</sub> | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub> | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 289                | 5-tetrazolyl                                                             | CH <sub>3</sub> | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | Ö      | $CH_2$                             |
| 290                | 5-tetrazolyl                                                             | CH <sub>3</sub> | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                       | Ö      | $CH_2$                             |
| 291                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2-F                                        | Ö      | $CH_2$                             |
| 292                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 4-F                                        | O      | $CH_2$                             |
| 293                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2F                                     | Ο      | $CH_2$                             |
| 294                | 5-tetrazolyl                                                             | $CH_3$          | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                      | O      | $CH_2$                             |
| 295                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | O      | $CH_2$                             |
| 296                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                          | 0      | $CH_2$                             |
| 297                | COOCH CH                                                                 | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | 0      | $CH_2$                             |
| 298<br>299         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                            | O<br>O | CH <sub>2</sub>                    |
| 300                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | isobutyl                 | isobutyl             |                                            | Ö      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 301                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | Ö      | $CH_2$                             |
| 302                | COOH                                                                     | $CH_3$          | isobutyl                 | isobutyl             | 2                                          | Ŏ      | $CH_2$                             |
| 303                | СООН                                                                     | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | O      | $CH_2^2$                           |
| 304                | COOH                                                                     | $CH_3$          | isobutyl                 | isobutyl             | $2,4-2CH_{3}$                              | Ο      | $CH_2$                             |
| 305                | COOH                                                                     | $CH_3$          | isobutyl                 | isobutyl             | 2-F                                        | O      | $CH_2$                             |
| 306                | СООН                                                                     | $CH_3$          | isobutyl                 | isobutyl             |                                            | O      | $CH_2$                             |
| 307                | СООН                                                                     | $CH_3$          | isobutyl                 | isobutyl             | ,                                          | 0      | $CH_2$                             |
| 308                | COONINGO CH                                                              | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | 0      | $CH_2$                             |
| 309<br>310         | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 5                                          | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 311                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      |                 | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | Ö      | $CH_2$                             |
| 312                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | isobutyl                 | isobutyl             | , ,                                        | Ö      | $CH_2$                             |
| 313                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | isobutyl                 | isobutyl             |                                            | Ö      | $CH_2$                             |
| 314                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _               | isobutyl                 | isobutyl             |                                            | O      | $CH_2$                             |
| 315                | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | $CH_3$          | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>                      | Ο      | $CH_2$                             |
| 316                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | _               | isobutyl                 | isobutyl             | 5                                          | O      | $CH_2$                             |
| 317                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | _               | isobutyl                 | isobutyl             | 5                                          | O      | $CH_2$                             |
| 318                | CONHISO CE                                                               |                 | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | 0      | $CH_2$                             |
| 319<br>320         | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$          | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                            | O<br>O | $CH_2$                             |
| 320                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | CH <sub>3</sub> | isobutyl                 | isobutyl             |                                            | O      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 322                | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | CH <sub>3</sub> | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | Ö      | $CH_2$                             |
| 323                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | O      | $CH_2$                             |
| 324                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | О      | $CH_2^2$                           |
| 325                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | $2,4-2CH_{3}$                              | Ο      | $CH_2$                             |
| 326                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | 2-F                                        | Ο      | $CH_2$                             |
| 327                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             |                                            | O      | $CH_2$                             |
| 328                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | ,                                          | 0      | $CH_2$                             |
| 329                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | 0      | $CH_2$                             |
| 330<br>331         | 5-tetrazolyl<br>5-tetrazolyl                                             | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 5                                          | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 332                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | Ö      | $CH_2$                             |
| 333                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             | , ,                                        | Ö      | $CH_2$                             |
| 334                | 5-tetrazolyl                                                             | CH <sub>3</sub> | isobutyl                 | isobutyl             |                                            | Ö      | $CH_2$                             |
| 335                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 | isobutyl             |                                            | O      | $CH_2$                             |
| 336                | 5-tetrazolyl                                                             | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | Ο      | $CH_2^2$                           |
| 337                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | cyclohexyl               |                      | 5                                          | Ο      | $CH_2$                             |
| 338                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | cyclohexyl               |                      | 5                                          | O      | $CH_2$                             |
| 339                | COOCH CH                                                                 | $CH_3$          | cyclohexyl               |                      | , ,                                        | 0      | $CH_2$                             |
| 340<br>341         | COOCH CH                                                                 | $CH_3$          | cyclohexyl               |                      |                                            | 0      | $CH_2$                             |
| 341<br>342         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | cyclohexyl<br>cyclohexyl |                      |                                            | O<br>O | CH <sub>2</sub>                    |
| 342                | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CH_3$          | ,                        |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 344                | 2 3                                                                      |                 | cyclohexyl               | •                    | 2-CH <sub>2</sub>                          | 0      | $CH_2$                             |
| JIT                | J J J J I                                                                | -113            | J OTOHONYI               | 1000 aty 1           |                                            | J      | 2112                               |

29
TABLE 5-continued

|                    |                                                                            | IAB                                                                         | LE 5-con                 | tinued             |                                              |        |                                    |
|--------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------|----------------------------------------------|--------|------------------------------------|
| Compound<br>Number | $R^1$                                                                      | $R^3$                                                                       | $R^7$                    | R <sup>8</sup>     | R                                            | Y      | X                                  |
| 345                | СООН                                                                       | $CH_3$                                                                      | cyclohexyl               | isobutyl           | 4-CH <sub>3</sub>                            | O      | $CH_2$                             |
| 346                | СООН                                                                       | $CH_3$                                                                      | cyclohexyl               | •                  |                                              | O      | $CH_2$                             |
| 347                | COOH                                                                       | $CH_3$                                                                      | cyclohexyl               | •                  |                                              | 0      | CH <sub>2</sub>                    |
| 348<br>349         | COOH<br>COOH                                                               | CH <sub>3</sub>                                                             | cyclohexyl<br>cyclohexyl | •                  |                                              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 350                | COOH                                                                       | $CH_3$                                                                      |                          | •                  | 2,4-21 <sup>r</sup><br>2-F-4-CH <sub>3</sub> | 0      | $CH_2$                             |
| 351                |                                                                            |                                                                             | cyclohexyl               |                    |                                              | Ŏ      | $CH_2$                             |
| 352                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | cyclohexyl               |                    |                                              | Ο      | $CH_2$                             |
| 353                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | 3                                                                           | cyclohexyl               |                    | , ,                                          | O      | $CH_2$                             |
| 354<br>255         | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | cyclohexyl               | -                  |                                              | 0      | $CH_2$                             |
| 355<br>356         | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _                                                                           | cyclohexyl<br>cyclohexyl | •                  |                                              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 357                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | ,                        |                    | 2-F-4-CH <sub>3</sub>                        | ŏ      | $CH_2$                             |
| 358                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                                                                             | cyclohexyl               | •                  | ,                                            | Ο      | $CH_2^2$                           |
| 359                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                                                                             | cyclohexyl               |                    |                                              | O      | $CH_2$                             |
| 360                | CONHISO CE                                                                 |                                                                             | cyclohexyl               | •                  | ,                                            | 0      | $CH_2$                             |
| 361<br>362         | CONHSO <sub>2</sub> CF <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$                                                                      | cyclohexyl<br>cyclohexyl |                    |                                              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 363                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$                                                                      | cyclohexyl               | •                  |                                              | 0      | $CH_2$                             |
| 364                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$                                                                      | ,                        |                    | 2-F-4-CH <sub>3</sub>                        | O      | $CH_2$                             |
| 365                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               | isobutyl           | 2-CH <sub>3</sub>                            | Ο      | $CH_2$                             |
| 366                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               |                    | 5                                            | O      | $CH_2$                             |
| 367<br>368         | 5-tetrazolyl                                                               |                                                                             | cyclohexyl               |                    | , ,                                          | 0      | $CH_2$                             |
| 368<br>369         | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub>                                                             | cyclohexyl cyclohexyl    |                    |                                              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 370                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               |                    |                                              | Ö      | $CH_2$                             |
| 371                | 5-tetrazolyl                                                               | $CH_3$                                                                      |                          | •                  | 2-F-4-CH <sub>3</sub>                        | O      | $CH_2^2$                           |
| 372                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               |                    | ,                                            | Ο      | $CH_2$                             |
| 373                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               |                    |                                              | 0      | CH <sub>2</sub>                    |
| 374<br>375         | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub>                                                             | cyclohexyl<br>cyclohexyl |                    | , ,                                          | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 376                | 5-tetrazolyl                                                               | CH <sub>3</sub>                                                             | cyclohexyl               |                    |                                              | 0      | $CH_2$                             |
| 377                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               |                    |                                              | O      | $CH_2$                             |
| 378                | 5-tetrazolyl                                                               | $CH_3$                                                                      | cyclohexyl               | isobutyl           | 2-F-4-CH <sub>3</sub>                        | O      | $CH_2^-$                           |
| 379                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                            | O      | $CH_2$                             |
| 380<br>381         | COOCH CH                                                                   | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                            | O<br>O | CH <sub>2</sub>                    |
| 382                | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $ \begin{array}{c} \operatorname{CF_3} \\ \operatorname{CF_3} \end{array} $ | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2,4-2CH <sub>3</sub><br>2-F                  | 0      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 383                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-F                                          | Ö      | $CH_2$                             |
| 384                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2F                                       | Ο      | $CH_2$                             |
| 385                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                        | 0      | CH <sub>2</sub>                    |
| 386<br>387         | COOH<br>COOH                                                               | $CF_3$ $CF_3$                                                               | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2-CH <sub>3</sub> 4-CH <sub>3</sub>          | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 388                | СООН                                                                       | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2CH <sub>3</sub>                         | Ö      | $CH_2$                             |
| 389                | СООН                                                                       | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F                                          | O      | $CH_2^2$                           |
| 390                | COOH                                                                       | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-F                                          | O      | $CH_2$                             |
| 391                | COOH                                                                       | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2F                                       | 0      | CH <sub>2</sub>                    |
| 392<br>393         | COOH<br>CONHSO <sub>2</sub> CH <sub>3</sub>                                | $CF_3$ $CF_3$                                                               | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub>   | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 394                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                                                                             | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                            | 0      | $CH_2$                             |
| 395                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | n-butyl                  | n-butyl            | $2,4-2CH_3$                                  | O      | $CH_2$                             |
| 396                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | n-butyl                  | n-butyl            | 2-F                                          | O      | $CH_2$                             |
| 397                | CONHISO CH                                                                 | _                                                                           | n-butyl                  | n-butyl            | 4-F                                          | 0      | CH <sub>2</sub>                    |
| 398<br>399         | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _                                                                           | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2,4-2F<br>2-F-4-CH <sub>3</sub>              | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 400                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _                                                                           | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                            | Ŏ      | $CH_2$                             |
| 401                |                                                                            | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                            | Ο      | $CH_2^2$                           |
| 402                | 2 3                                                                        | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2CH3                                     | O      | $CH_2$                             |
| 403                | Z 3                                                                        | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F                                          | 0      | $CH_2$                             |
| 404<br>405         | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$ $CF_3$                                                               | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 4-F<br>2,4-2F                                | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 406                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                        | ŏ      | $CH_2$                             |
| 407                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                            | Ο      | $CH_2^2$                           |
| 408                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                            | O      | $CH_2$                             |
| 409                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2CH <sub>3</sub>                         | 0      | $CH_2$                             |
| 410<br>411         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$                                                               | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2-F<br>4-F                                   | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 412                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2F                                       | Ö      | $CH_2$                             |
| 413                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                        | O      | $CH_2$                             |
| 414                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                            | 0      | $CH_2$                             |
| 415                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                            | 0      | $CH_2$                             |
| 416<br>417         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$                                                               | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2,4-2CH <sub>3</sub><br>2-F                  | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 418                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F<br>4-F                                   | 0      | $CH_2$                             |
| 419                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2,4-2F                                       | Ö      | $CH_2$                             |
| 420                | 5-tetrazolyl                                                               | $CF_3$                                                                      | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                        | Ο      | $CH_2$                             |
| 421                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | isobutyl                 | isobutyl           | 2-CH <sub>3</sub>                            | O      | $CH_2$                             |
|                    |                                                                            |                                                                             |                          |                    |                                              |        |                                    |

31
TABLE 5-continued

|                    |                                                                            | IAB              | LE 5-con                 | tinued               |                                 |        |                                    |
|--------------------|----------------------------------------------------------------------------|------------------|--------------------------|----------------------|---------------------------------|--------|------------------------------------|
| Compound<br>Number | $R^1$                                                                      | $R^3$            | $R^7$                    | R <sup>8</sup>       | R                               | Y      | X                                  |
| 422                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>               | Ο      | $CH_2$                             |
| 423                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | •                    | $2,4-2CH_3$                     | Ο      | $CH_2$                             |
| 424                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             |                                 | O      | $CH_2$                             |
| 425                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             |                                 | O      | $CH_2$                             |
| 426                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             | ,                               | 0      | CH <sub>2</sub>                    |
| 427                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | •                    | 2-F-4-CH <sub>3</sub>           | 0      | $CH_2$                             |
| 428                | COOH<br>COOH                                                               | $CF_3$           | isobutyl                 | isobutyl             | 5                               | 0      | $CH_2$                             |
| 429<br>430         | СООН                                                                       | $CF_3$ $CF_3$    | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 5                               | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 431                | COOH                                                                       | $CF_3$           | isobutyl                 | isobutyl             | , 3                             | Ö      | $CH_2$                             |
| 432                | СООН                                                                       | $CF_3$           | isobutyl                 | isobutyl             |                                 | Ö      | $CH_2$                             |
| 433                | СООН                                                                       | $CF_3$           | isobutyl                 | isobutyl             |                                 | Ō      | $CH_2$                             |
| 434                | COOH                                                                       | $CF_3$           | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>           | O      | $CH_2$                             |
| 435                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$           | isobutyl                 | isobutyl             | 2-CH <sub>3</sub>               | O      | $CH_2$                             |
| 436                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 | isobutyl             | 5                               | О      | $CH_2$                             |
| 437                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 |                      | $2,4-2CH_3$                     | O      | $CH_2$                             |
| 438                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | isobutyl                 | isobutyl             |                                 | 0      | $CH_2$                             |
| 439                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | isobutyl                 | isobutyl             |                                 | 0      | $CH_2$                             |
| <b>44</b> 0        | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | isobutyl                 | isobutyl             | ·                               | 0      | $CH_2$                             |
| 441<br>442         | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | _                | isobutyl<br>isobutyl     | isobutyl             | 2-F-4-CH <sub>3</sub>           | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 443                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _                | isobutyl                 | isobutyl             | 5                               | O      | $CH_2$                             |
| 444                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _                | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | Ö      | $CH_2$                             |
| 445                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | CF <sub>3</sub>  | isobutyl                 | isobutyl             | ,                               | Ö      | $CH_2$                             |
| 446                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | isobutyl                 | isobutyl             |                                 | O      | $CH_2^2$                           |
| 447                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | isobutyl                 | isobutyl             | 2,4-2F                          | O      | $CH_2$                             |
| 448                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>           | O      | $CH_2$                             |
| 449                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             | 5                               | O      | $CH_2$                             |
| 450                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             | 5                               | 0      | $CH_2$                             |
| 451                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | 0      | $CH_2$                             |
| 452<br>453         | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             |                                 | 0      | $CH_2$                             |
| 453<br>454         | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             |                                 | O<br>O | CH <sub>2</sub>                    |
| 454<br>455         | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$    | isobutyl<br>isobutyl     | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub> | 0      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 456                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             |                                 | Ö      | $CH_2$                             |
| 457                | 5-tetrazolyl                                                               | CF <sub>3</sub>  | isobutyl                 | isobutyl             | 5                               | Ö      | $CH_2$                             |
| 458                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 |                      | 2,4-2CH <sub>3</sub>            | O      | $CH_2$                             |
| 459                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             | , ,                             | O      | $CH_2^2$                           |
| <b>4</b> 60        | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             | 4-F                             | Ο      | $CH_2^-$                           |
| 461                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 | isobutyl             | 2,4-2F                          | O      | $CH_2$                             |
| 462                | 5-tetrazolyl                                                               | $CF_3$           | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>           | O      | $CH_2$                             |
| 463                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | isobutyl                 | isobutyl             | 5                               | 0      | CH <sub>2</sub>                    |
| 464                | COOCH CH                                                                   | $CF_3$           | cyclohexyl               |                      | 5                               | 0      | $CH_2$                             |
| 465<br>466         | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$<br>$CF_3$ | cyclohexyl<br>cyclohexyl | •                    | , ,                             | O<br>O | CH <sub>2</sub>                    |
| 467                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | cyclohexyl               |                      |                                 | 0      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 468                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | cyclohexyl               |                      |                                 | Ö      | $CH_2$                             |
| 469                | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$           | ,                        |                      | 2-F-4-CH <sub>3</sub>           | Ö      | $CH_2$                             |
| <b>47</b> 0        | COOH                                                                       | $CF_3$           | cyclohexyl               | •                    | 5                               | O      | $CH_2^2$                           |
| 471                | COOH                                                                       | $CF_3$           | cyclohexyl               | isobutyl             | $4-CH_3$                        | O      | $CH_2$                             |
| 472                | COOH                                                                       | $CF_3$           | cyclohexyl               | isobutyl             | $2,4-2CH_3$                     | O      | $CH_2$                             |
| 473                | COOH                                                                       | $CF_3$           | cyclohexyl               | •                    |                                 | O      | $CH_2$                             |
| 474                | COOH                                                                       | $CF_3$           | cyclohexyl               |                      |                                 | O      | $CH_2$                             |
| 475                | COOH                                                                       | $CF_3$           | cyclohexyl               |                      | ,                               | 0      | $CH_2$                             |
| 476<br>477         | CONTISO CIT                                                                | $CF_3$           | · ·                      |                      | 2-F-4-CH <sub>3</sub>           | 0      | $CH_2$                             |
| 477<br>478         | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | cyclohexyl<br>cyclohexyl |                      | 5                               | O<br>O | CH <sub>2</sub><br>CH <sub>2</sub> |
| 478<br>479         | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | cyclohexyl               |                      | 5                               | 0      | $CH_2$                             |
| 480                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                  | cyclohexyl               |                      | , 5                             | Ö      | $CH_2$                             |
| 481                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | cyclohexyl               | •                    |                                 | Ö      | $CH_2$                             |
| 482                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                | cyclohexyl               |                      |                                 | O      | $CH_2^2$                           |
| 483                | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$           | cyclohexyl               | isobutyl             | 2-F-4-CH <sub>3</sub>           | Ο      | $CH_2$                             |
| 484                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | 5                | cyclohexyl               |                      | 5                               | O      | $CH_2$                             |
| 485                | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | cyclohexyl               |                      | 5                               | O      | $CH_2$                             |
| 486<br>487         | CONHISO CE                                                                 | $CF_3$           | cyclohexyl               |                      | , ,                             | 0      | $CH_2$                             |
| 487<br>488         | CONHSO CE                                                                  | $CF_3$           | cyclohexyl               |                      |                                 | 0      | CH <sub>2</sub>                    |
| 488<br>489         | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$           | cyclohexyl cyclohexyl    | •                    |                                 | O<br>O | CH <sub>2</sub>                    |
| 489<br>490         | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$ $CF_3$    | ,                        |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub> | 0      | CH <sub>2</sub><br>CH <sub>2</sub> |
| 491                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               |                      | 5                               | 0      | $CH_2$                             |
| 492                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               |                      | 5                               | Ö      | $CH_2$                             |
| 493                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               | •                    | 5                               | Ö      | $CH_2$                             |
| 494                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               |                      | , 5                             | O      | $CH_2$                             |
| 495                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               |                      |                                 | Ο      | $CH_2$                             |
| 496                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               | •                    | ·                               | О      | $CH_2$                             |
| 497                | 5-tetrazolyl                                                               | CF <sub>3</sub>  |                          | •                    | 2-F-4-CH <sub>3</sub>           | O      | $CH_2$                             |
| 498                | 5-tetrazolyl                                                               | $CF_3$           | cyclohexyl               | isobutyl             | $2\text{-CH}_3$                 | Ο      | $CH_2$                             |
|                    |                                                                            |                  |                          |                      |                                 |        |                                    |

| Compound<br>Number | $R^1$                              | $R^3$           | $R^7$      | R <sup>8</sup> | R                       | Y | X               |
|--------------------|------------------------------------|-----------------|------------|----------------|-------------------------|---|-----------------|
| 499                | 5-tetrazolyl                       | CF <sub>3</sub> | cyclohexyl | isobutyl       | 4-CH <sub>3</sub>       | О | CH <sub>2</sub> |
| 500                | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2,4-2CH <sub>3</sub>    | O | $CH_2$          |
| 501                | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2-F                     | O | $CH_2$          |
| 502                | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | •              |                         | O | $CH_2$          |
| 503                | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | •              |                         | O | $CH_2$          |
| 504                | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2-F-4-CH <sub>3</sub>   | O | $CH_2$          |
| 505                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 2-Cl                    | O | NH              |
| 506                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-Cl                    | O | NH              |
| 507                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 4-Cl                    | Ο | NH              |
| 508                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-CF <sub>3</sub> -4-Cl | O | NH              |
| 509                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | Н                       | S | NH              |
| 510                | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-CH <sub>3</sub>       | Ο | NH              |
| 511                | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 2-C1                    | Ο | NH              |
| 512                | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 3-Cl                    | O | NH              |
| 513                | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 4-Cl                    | Ο | NH              |
| 514                | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 3-CF <sub>3</sub> -4-Cl | Ο | NH              |
| 515                | COOH                               | $CH_3$          | n-butyl    | n-butyl        | Н                       | S | NH              |
| 516                | СООН                               | $CH_3$          | n-butyl    | n-butyl        | 3-CH <sub>3</sub>       | Ο | NH              |

In the present invention, the specific compound in formula I which inhibits the activity of the IDO enzyme is shown as formula III, The specific compound listed in table 6, but the present invention is not limited by these compounds.

$$R^3$$
 $R^3$ 
 $R^4$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 
 $R^8$ 

TABLE 6

| Compound Number | $\mathbb{R}^2$                      | $R^1$           | $\mathbb{R}^7$ | R <sup>8</sup> | R                     | Y | X  |
|-----------------|-------------------------------------|-----------------|----------------|----------------|-----------------------|---|----|
| 517             | COOCH <sub>2</sub> CH <sub>3</sub>  | CH <sub>3</sub> | n-butyl        | n-butyl        | 2-CH <sub>3</sub>     | О | NH |
| 518             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | 4-CH <sub>3</sub>     | Ο | NH |
| 519             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | $2,4-2CH_3$           | Ο | NH |
| 520             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | 2-F                   | Ο | NH |
| 521             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | 4-F                   | Ο | NH |
| 522             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | 2,4-2F                | Ο | NH |
| 523             | COOCH <sub>2</sub> CH <sub>3</sub>  | $CH_3$          | n-butyl        | n-butyl        | 2-F-4-CH <sub>3</sub> | Ο | NH |
| 524             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | 2-CH <sub>3</sub>     | Ο | NH |
| 525             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | $4-CH_3$              | Ο | NH |
| 526             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | $2,4-2CH_3$           | Ο | NH |
| 527             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | 2-F                   | Ο | NH |
| 528             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | 4-F                   | Ο | NH |
| 529             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | 2,4-2F                | Ο | NH |
| 530             | COOH                                | $CH_3$          | n-butyl        | n-butyl        | 2-F-4-CH <sub>3</sub> | Ο | NH |
| 531             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2-CH <sub>3</sub>     | Ο | NH |
| 532             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 4-CH <sub>3</sub>     | Ο | NH |
| 533             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | $2,4-2CH_3$           | Ο | NH |
| 534             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2-F                   | Ο | NH |
| 535             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 4-F                   | Ο | NH |
| 536             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2,4-2F                | Ο | NH |
| 537             | CONHSO <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2-F-4-CH <sub>3</sub> | Ο | NH |
| 538             | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | $2\text{-CH}_3$       | Ο | NH |
| 539             | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 4-CH <sub>3</sub>     | Ο | NH |
| <b>54</b> 0     | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | $2,4-2CH_3$           | Ο | NH |
| 541             | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2-F                   | Ο | NH |
| 542             | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 4-F                   | Ο | NH |
| 543             | CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl        | n-butyl        | 2,4-2F                | Ο | NH |
| 544             | CONHSO <sub>2</sub> CF <sub>3</sub> |                 | n-butyl        | n-butyl        | 2-F-4-CH <sub>3</sub> | О | NH |
| 545             | 5-tetrazolyl                        | $CH_3$          | n-butyl        | n-butyl        | 5                     | О | NH |

**34** 

35
TABLE 6-continued

| Compound Number        | 2                                                                          | $R^1$           | R <sup>7</sup>           | R <sup>8</sup>       | R                                          | Y | X        |
|------------------------|----------------------------------------------------------------------------|-----------------|--------------------------|----------------------|--------------------------------------------|---|----------|
| 546                    | 5-tetrazolyl                                                               | CH <sub>3</sub> | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | 0 | NH       |
| 547                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                       | Ŏ | NH       |
| 548                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2-F                                        | Ο | NH       |
| 549                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 4-F                                        | 0 | NH       |
| 550<br>551             | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | n-butyl<br>n-butyl       | n-butyl              | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | NH<br>NH |
| 552                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl<br>n-butyl   | 2-r-4-Cn <sub>3</sub><br>2-CH <sub>3</sub> | 0 | NH       |
| 553                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | Ŏ | NH       |
| 554                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | $2,4-2CH_{3}$                              | Ο | NH       |
| 555                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl                  | n-butyl              | 2-F                                        | 0 | NH       |
| 556<br>557             | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 4-F<br>2,4-2F                              | 0 | NH<br>NH |
| 558                    | 5-tetrazolyl                                                               | CH <sub>3</sub> | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                      |   | NH       |
| 559                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 | isobutyl             | 2                                          | O | NH       |
| 560                    | $COOCH_2CH_3$                                                              | $CH_3$          | isobutyl                 | isobutyl             |                                            | Ο | NH       |
| 561<br>563             | COOCH CH                                                                   | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | 0 | NH       |
| 562<br>563             | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                            | 0 | NH<br>NH |
| 564                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | isobutyl                 | isobutyl             |                                            | Ö | NH       |
| 565                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | Ο | NH       |
| 566                    | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 2                                          | O | NH       |
| 567<br>568             | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | 0 | NH       |
| 568<br>569             | COOH<br>COOH                                                               | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl             | 2,4-2CH <sub>3</sub><br>2-F                | 0 | NH<br>NH |
| <b>57</b> 0            | СООН                                                                       | CH <sub>3</sub> | isobutyl                 | isobutyl             |                                            | Ö | NH       |
| 571                    | COOH                                                                       | $CH_3$          | isobutyl                 | isobutyl             | 2,4-2F                                     | Ο | NH       |
| 572                    | COOH                                                                       | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | _ | NH       |
| 573<br>574             | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | isobutyl                 | isobutyl             |                                            | 0 | NH<br>NH |
| 57 <del>4</del><br>575 | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> |                 | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 2,4-2CH <sub>3</sub>                       | 0 | NH       |
| 576                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | , ,                                        | Ö | NH       |
| 577                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | 4-F                                        | Ο | NH       |
| 578                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl                 | isobutyl             | ,                                          | 0 | NH       |
| 579<br>580             | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> |                 | isobutyl                 | isobutyl<br>isobutyl | 2-F-4-CH <sub>3</sub>                      | 0 | NH<br>NH |
| 581                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl<br>isobutyl     | isobutyl             |                                            | 0 | NH       |
| 582                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | Ö | NH       |
| 583                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | isobutyl                 | isobutyl             |                                            | Ο | NH       |
| 584<br>585             | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | isobutyl                 | isobutyl             |                                            | 0 | NH       |
| 585<br>586             | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | NH<br>NH |
| 587                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 5                                          | Ö | NH       |
| 588                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 2                                          | Ο | NH       |
| 589                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | O | NH       |
| 590<br>591             | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             |                                            | 0 | NH<br>NH |
| 592                    | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                            | 0 | NH<br>NH |
| 593                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      | Ŏ | NH       |
| 594                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 2-CH <sub>3</sub>                          | Ο | NH       |
| 595                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             |                                            | 0 | NH       |
| 596<br>597             | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 2,4-2CH <sub>3</sub>                       | 0 | NH<br>NH |
| 598                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             |                                            | 0 | NH       |
| 599                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             |                                            | Ö | NH       |
| 600                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl                 | isobutyl             | 2-F-4-CH <sub>3</sub>                      | _ | NH       |
| 601                    | COOCH CH                                                                   | $CH_3$          | cyclohexyl               |                      |                                            | 0 | NH       |
| 602<br>603             | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | cyclohexyl cyclohexyl    |                      |                                            | 0 | NH<br>NH |
| 604                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl               | •                    | , ,                                        | 0 | NH<br>NH |
| 605                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl               |                      |                                            | Ŏ | NH       |
| 606                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl               |                      | ,                                          | O | NH       |
| 607                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | ,                        |                      | 2-F-4-CH <sub>3</sub>                      | _ | NH       |
| 608<br>609             | COOH<br>COOH                                                               | CH <sub>3</sub> | cyclohexyl cyclohexyl    |                      |                                            | 0 | NH<br>NH |
| 610                    | СООН                                                                       | $CH_3$          | cyclohexyl               |                      | 5                                          | 0 | NH       |
| 611                    | СООН                                                                       | $CH_3$          | cyclohexyl               | •                    |                                            | Ö | NH       |
| 612                    | COOH                                                                       | $CH_3$          | cyclohexyl               | isobutyl             | 4-F                                        | 0 | NH       |
| 613                    | COOH                                                                       | $CH_3$          | cyclohexyl               | -                    | •                                          | 0 | NH       |
| 614<br>615             | COOH<br>CONHSO <sub>2</sub> CH <sub>3</sub>                                | CH <sub>3</sub> | cyclohexyl cyclohexyl    | -                    | 2-F-4-CH <sub>3</sub>                      | 0 | NH<br>NH |
| 616                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               | •                    | _                                          | 0 | NH<br>NH |
| 617                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               | -                    |                                            | Ŏ | NH       |
| 618                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CH_3$          | cyclohexyl               |                      |                                            | O | NH       |
| 619<br>620             | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               | •                    |                                            | 0 | NH       |
| 620<br>621             | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _               | cyclohexyl<br>cyclohexyl | •                    | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | NH<br>NH |
| 622                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               | -                    | 2                                          | 0 | NH       |
|                        | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               |                          | •                    |                                            |   |          |
|                        |                                                                            | _               | -                        | -                    |                                            |   |          |

37
TABLE 6-continued

| Compound Number   | $R^2$                                                                    | $R^1$            | $R^7$                    | R <sup>8</sup>       | R                                         | Y | X        |
|-------------------|--------------------------------------------------------------------------|------------------|--------------------------|----------------------|-------------------------------------------|---|----------|
| 624               | 2 3                                                                      | CH <sub>3</sub>  | cyclohexyl               |                      | , ,                                       | О | NH       |
| 625               | Z 3                                                                      | $CH_3$           | cyclohexyl               | •                    |                                           | O | NH       |
| 626               | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CH_3$           | cyclohexyl               | •                    |                                           | 0 | NH       |
| 627               | CONHISO CE                                                               | $CH_3$           | cyclohexyl               | •                    | •                                         | 0 | NH       |
| 628<br>629        | CONHSO <sub>2</sub> CF <sub>3</sub><br>5-tetrazolyl                      | CH <sub>3</sub>  | cyclohexyl               | •                    | 2-F-4-CH <sub>3</sub>                     | 0 | NH<br>NH |
| 630               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | •                    | 5                                         | 0 | NH       |
| 631               | 5-tetrazolyl                                                             | CH <sub>3</sub>  | cyclohexyl               | •                    |                                           | Ŏ | NH       |
| 632               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               |                      | , ,                                       | Ο | NH       |
| 633               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | isobutyl             | 4-F                                       | Ο | NH       |
| 634               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | •                    | ,                                         | O | NH       |
| 635               | 5-tetrazolyl                                                             | $CH_3$           |                          |                      | 2-F-4-CH <sub>3</sub>                     | _ | NH       |
| 636<br>637        | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               |                      |                                           | 0 | NH       |
| 637<br>638        | 5-tetrazolyl<br>5-tetrazolyl                                             | CH <sub>3</sub>  | cyclohexyl<br>cyclohexyl | •                    |                                           | 0 | NH<br>NH |
| 639               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | •                    |                                           | Ö | NH       |
| 640               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | •                    |                                           | Ŏ | NH       |
| 641               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | •                    |                                           | Ο | NH       |
| 642               | 5-tetrazolyl                                                             | $CH_3$           | cyclohexyl               | isobutyl             | 2-F-4-CH <sub>3</sub>                     | Ο | NH       |
| 643               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                         | Ο | NH       |
| 644               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | n-butyl                  | n-butyl              | $4-CH_3$                                  | O | NH       |
| 645               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | CF <sub>3</sub>  | n-butyl                  |                      | 2,4-2CH <sub>3</sub>                      | 0 | NH       |
| 646<br>647        | COOCH CH                                                                 | $CF_3$           | n-butyl                  | n-butyl              | 2-F                                       | 0 | NH       |
| 647<br>648        | COOCH CH                                                                 | $CF_3$           | n-butyl                  | n-butyl              |                                           | 0 | NH<br>NH |
| 649               | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub> | $CF_3$ $CF_3$    | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2,4-2F<br>2-F-4-CH <sub>3</sub>           | 0 | NH       |
| 6 <b>5</b> 0      | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | n-butyl                  | n-butyl              | 2-17-4-C11 <sub>3</sub> 2-CH <sub>3</sub> | 0 | NH       |
| 651               | COOH                                                                     | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                         | Ö | NH       |
| 652               | СООН                                                                     | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                      | Ŏ | NH       |
| 653               | COOH                                                                     | $CF_3$           | n-butyl                  | n-butyl              | 2-F                                       | Ο | NH       |
| 654               | COOH                                                                     | $CF_3$           | n-butyl                  | n-butyl              | 4-F                                       | Ο | NH       |
| 655               | COOH                                                                     | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                    | Ο | NH       |
| 656               | COOH                                                                     | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                     | О | NH       |
| 657               | CONHSO <sub>2</sub> CH <sub>3</sub>                                      |                  | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                         | O | NH       |
| 658               | CONHISO CH                                                               | _                | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                         | 0 | NH       |
| 659<br>660        | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _                | n-butyl<br>n-butyl       | n-butyl              | 2,4-2CH <sub>3</sub><br>2-F               | 0 | NH<br>NH |
| 661               | CONHSO <sub>2</sub> CH <sub>3</sub>                                      |                  | n-butyl                  | n-butyl<br>n-butyl   | 4-F                                       | 0 | NH       |
| 662               | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _                | n-butyl                  | n-butyl              | 2,4-2F                                    | Ö | NH       |
| 663               | CONHSO <sub>2</sub> CH <sub>3</sub>                                      | _                | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                     |   | NH       |
| 664               | CONHSO <sub>2</sub> CF <sub>3</sub>                                      |                  | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                         | Ο | NH       |
| 665               | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                         | Ο | NH       |
| 666               | Z 3                                                                      | $CF_3$           | n-butyl                  | n-butyl              | $2,4-2CH_{3}$                             | Ο | NH       |
| 667               | 2 3                                                                      | $CF_3$           | n-butyl                  | n-butyl              | 2-F                                       | O | NH       |
| 668               | CONHSO <sub>2</sub> CF <sub>3</sub>                                      | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 4-F                                       | 0 | NH       |
| 669<br>670        | CONHISO CE                                                               | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                    | 0 | NH       |
| 670<br>671        | CONHSO <sub>2</sub> CF <sub>3</sub><br>5-tetrazolyl                      | $CF_3$ $CF_3$    | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2-F-4-CH <sub>3</sub> 2-CH <sub>3</sub>   | 0 | NH<br>NH |
| 672               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                         | O | NH       |
| 673               | 5-tetrazolyl                                                             | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                      | ŏ | NH       |
| 674               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | , ,                                       | Ŏ | NH       |
| 675               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 4-F                                       | O | NH       |
| 676               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                    | Ο | NH       |
| 677               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                     | O | NH       |
| 678               | 5-tetrazolyl                                                             | CF <sub>3</sub>  | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                         | 0 | NH       |
| 679<br>680        | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                         | 0 | NH       |
| 680<br>681        | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub><br>2-F               | 0 | NH<br>NH |
| 682               | 5-tetrazolyl<br>5-tetrazolyl                                             | $CF_3$<br>$CF_3$ | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | 2-г<br>4-F                                | 0 | NH       |
| 683               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 2,4-2F                                    | 0 | NH       |
| 684               | 5-tetrazolyl                                                             | $CF_3$           | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                     |   | NH       |
| 685               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | isobutyl                 | isobutyl             | 2-CH <sub>3</sub>                         | Ŏ | NH       |
| 686               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                         | Ο | NH       |
| 687               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | isobutyl                 | isobutyl             | 2,4-2CH <sub>3</sub>                      | Ο | NH       |
| 688               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | CF <sub>3</sub>  | isobutyl                 | isobutyl             |                                           | 0 | NH       |
| 689               | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | isobutyl                 | isobutyl             |                                           | 0 | NH       |
| 690<br>601        | COOCH CH                                                                 | $CF_3$           | isobutyl                 | isobutyl             | ,                                         | 0 | NH       |
| 691<br>692        | COOCH <sub>2</sub> CH <sub>3</sub>                                       | $CF_3$           | isobutyl<br>isobutyl     | •                    | 2-F-4-CH <sub>3</sub>                     | _ | NH<br>NH |
| 692<br>693        | COOH<br>COOH                                                             | $CF_3$<br>$CF_3$ | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 5                                         | 0 | NH<br>NH |
| 694               | COOH                                                                     | $CF_3$           | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                      | 0 | NH       |
| 695               | COOH                                                                     | $CF_3$           | isobutyl                 | isobutyl             | , ,                                       | Ö | NH       |
| 696               | СООН                                                                     | $CF_3$           | isobutyl                 | isobutyl             |                                           | Ö | NH       |
| 697               | СООН                                                                     | $CF_3$           | isobutyl                 | isobutyl             |                                           | O | NH       |
| 077               | 00011                                                                    | CF <sub>3</sub>  | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                     | Ο | NH       |
| 698               | COOH                                                                     | $Cr_3$           | 100001                   | •                    | _                                         |   |          |
|                   | $CONHSO_2CH_3$                                                           | $CF_3$           | isobutyl                 | isobutyl             | 2-CH <sub>3</sub>                         | Ο | NH       |
| 698<br>699<br>700 |                                                                          | $CF_3$ $CF_3$    | isobutyl<br>isobutyl     | isobutyl             | 4-CH <sub>3</sub>                         | Ο | NH       |

TABLE 6-continued

| O                 |                                                     |                                                                                                          | 5-continue               | _                    | D                                          | 37 | 37                                                    |
|-------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------------|----|-------------------------------------------------------|
| Compound Number   | R <sup>2</sup>                                      | R <sup>1</sup>                                                                                           | R'                       | R <sup>8</sup>       | R                                          | Y  | X                                                     |
| 702               | CONHISO CH                                          |                                                                                                          | isobutyl                 | isobutyl             |                                            | 0  | NH                                                    |
| 703<br>704        | CONHSO <sub>2</sub> CH <sub>3</sub>                 | _                                                                                                        | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                            | 0  | NH<br>NH                                              |
| 704               | CONHSO <sub>2</sub> CH <sub>3</sub>                 |                                                                                                          | isobutyl                 |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | _  | NH                                                    |
| 706               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | isobutyl                 | isobutyl             | 5                                          | 0  | NH                                                    |
| 707               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | isobutyl                 | isobutyl             |                                            | Ö  | NH                                                    |
| 708               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | isobutyl                 | isobutyl             | $2,4-2CH_{3}$                              | Ο  | NH                                                    |
| 709               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | isobutyl                 | isobutyl             |                                            | Ο  | NH                                                    |
| 710               | CONHSO <sub>2</sub> CF <sub>3</sub>                 |                                                                                                          | isobutyl                 | isobutyl             |                                            | 0  | NH                                                    |
| 711               | CONHISO CE                                          | _                                                                                                        | isobutyl                 | isobutyl             | •                                          | 0  | NH                                                    |
| 712<br>713        | CONHSO <sub>2</sub> CF <sub>3</sub><br>5-tetrazolyl | $CF_3$ $CF_3$                                                                                            | isobutyl<br>isobutyl     | isobutyl             | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub> | 0  | NH<br>NH                                              |
| 714               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                          | 0  | NH                                                    |
| 715               | 5-tetrazolyl                                        | CF <sub>3</sub>                                                                                          | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                       | Ŏ  | NH                                                    |
| 716               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             |                                            | О  | NH                                                    |
| 717               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             | 4-F                                        | Ο  | NH                                                    |
| 718               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             | ,                                          | Ο  | NH                                                    |
| 719               | 5-tetrazolyl                                        | CF <sub>3</sub>                                                                                          | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      |    | NH                                                    |
| 720               | 5-tetrazolyl                                        | CF <sub>3</sub>                                                                                          | isobutyl                 | isobutyl             | 5                                          | 0  | NH                                                    |
| 721               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                          | 0  | NH                                                    |
| 722<br>723        | 5-tetrazolyl<br>5-tetrazolyl                        | $CF_3$<br>$CF_3$                                                                                         | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | , ,                                        | 0  | NH<br>NH                                              |
| 723               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             | 2-1 <sup>-</sup><br>4-F                    | 0  | NH                                                    |
| 725               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 | isobutyl             |                                            | Ö  | NH                                                    |
| 726               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                      |    | NH                                                    |
| 727               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CF_3$                                                                                                   | cyclohexyl               |                      |                                            | Ο  | NH                                                    |
| 728               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CF_3$                                                                                                   | cyclohexyl               | isobutyl             | $4-CH_3$                                   | Ο  | NH                                                    |
| 729               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CF_3$                                                                                                   | cyclohexyl               | isobutyl             | $2,4-2CH_{3}$                              | Ο  | NH                                                    |
| 730               | $COOCH_2CH_3$                                       | $CF_3$                                                                                                   | cyclohexyl               | •                    |                                            | O  | NH                                                    |
| 731               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CF_3$                                                                                                   | cyclohexyl               | •                    |                                            | O  | NH                                                    |
| 732               | COOCH CH                                            | CF <sub>3</sub>                                                                                          | cyclohexyl               |                      | ,                                          | 0  | NH                                                    |
| 733<br>734        | COOCH <sub>2</sub> CH <sub>3</sub><br>COOH          | $CF_3$ $CF_3$                                                                                            | cyclohexyl               |                      | 2-F-4-CH <sub>3</sub>                      | 0  | NH<br>NH                                              |
| 734               | COOH                                                | $CF_3$                                                                                                   | cyclohexyl               |                      | 5                                          | 0  | NH                                                    |
| 736               | СООН                                                | $CF_3$                                                                                                   | cyclohexyl               | •                    | _                                          | Ö  | NH                                                    |
| 737               | СООН                                                | CF <sub>3</sub>                                                                                          | cyclohexyl               |                      | , ,                                        | ŏ  | NH                                                    |
| 738               | COOH                                                | $CF_3$                                                                                                   | cyclohexyl               |                      |                                            | О  | NH                                                    |
| 739               | COOH                                                | $CF_3$                                                                                                   | cyclohexyl               | _                    |                                            | Ο  | NH                                                    |
| 740               | COOH                                                | $CF_3$                                                                                                   | cyclohexyl               | isobutyl             | 2-F-4-CH <sub>3</sub>                      | Ο  | NH                                                    |
| 741               | CONHSO <sub>2</sub> CH <sub>3</sub>                 | _                                                                                                        | cyclohexyl               | •                    | _                                          | Ο  | NH                                                    |
| 742               | CONHSO <sub>2</sub> CH <sub>3</sub>                 | _                                                                                                        | cyclohexyl               | -                    |                                            | O  | NH                                                    |
| 743               | CONHSO <sub>2</sub> CH <sub>3</sub>                 | _                                                                                                        | cyclohexyl               | •                    |                                            | 0  | NH                                                    |
| 744<br>745        | CONHSO <sub>2</sub> CH <sub>3</sub>                 |                                                                                                          | cyclohexyl               | •                    |                                            | 0  | NH<br>NH                                              |
| 743<br>746        | CONHSO <sub>2</sub> CH <sub>3</sub>                 |                                                                                                          | cyclohexyl<br>cyclohexyl | •                    |                                            | 0  | NH                                                    |
| 747               | CONHSO <sub>2</sub> CH <sub>3</sub>                 |                                                                                                          |                          |                      | 2-F-4-CH <sub>3</sub>                      |    | NH                                                    |
| 748               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | cyclohexyl               |                      |                                            | ŏ  | NH                                                    |
| 749               | CONHSO <sub>2</sub> CF <sub>3</sub>                 | _                                                                                                        | cyclohexyl               |                      |                                            | O  | NH                                                    |
| 750               | CONHSO <sub>2</sub> CF <sub>3</sub>                 |                                                                                                          | cyclohexyl               | isobutyl             | $2,4-2CH_{3}$                              | Ο  | NH                                                    |
| 751               | CONHSO <sub>2</sub> CF <sub>3</sub>                 |                                                                                                          | cyclohexyl               | •                    |                                            | Ο  | NH                                                    |
| 752               | CONHSO <sub>2</sub> CF <sub>3</sub>                 |                                                                                                          | cyclohexyl               | •                    |                                            | 0  | NH                                                    |
| 753<br>754        | CONHISO CE                                          | $CF_3$                                                                                                   | cyclohexyl               |                      | ,                                          | 0  | NH                                                    |
| 754<br>755        | CONHSO <sub>2</sub> CF <sub>3</sub>                 | $CF_3$                                                                                                   |                          |                      | 2-F-4-CH <sub>3</sub>                      | _  | NH                                                    |
| 755<br>756        | 5-tetrazolyl<br>5-tetrazolyl                        | $CF_3$                                                                                                   | cyclohexyl<br>cyclohexyl |                      |                                            | 0  | NH<br>NH                                              |
| 750<br>757        | 5-tetrazolyl                                        | $CF_3$ $CF_3$                                                                                            | cyclohexyl               |                      |                                            | 0  | NH                                                    |
| 758               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               | •                    | , ,                                        | 0  | NH                                                    |
| 759               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               | •                    |                                            | Ö  | NH                                                    |
| 760               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               |                      |                                            | O  | NH                                                    |
| 761               | 5-tetrazolyl                                        | $CF_3$                                                                                                   |                          |                      | 2-F-4-CH <sub>3</sub>                      | Ο  | NH                                                    |
| 762               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               | •                    |                                            | Ο  | NH                                                    |
| 763               | 5-tetrazolyl                                        | CF <sub>3</sub>                                                                                          | cyclohexyl               |                      | 5                                          | O  | NH                                                    |
| 764<br>765        | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               |                      | , ,                                        | 0  | NH                                                    |
| 765<br>766        | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               |                      |                                            | 0  | NH                                                    |
| 766<br>767        | 5-tetrazolyl<br>5-tetrazolyl                        | $CF_3$ $CF_3$                                                                                            | cyclohexyl<br>cyclohexyl | •                    |                                            | 0  | NH<br>NH                                              |
| 768               | 5-tetrazolyl                                        | $CF_3$                                                                                                   | cyclohexyl               |                      | ,                                          |    | NH                                                    |
| 769               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 2-T-4-CH <sub>3</sub> 2-CH <sub>3</sub>    | 0  | $CH_2$                                                |
| 770               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 4-CH <sub>3</sub>                          | Ö  | $CH_2$                                                |
| 771               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 2,4-2CH <sub>3</sub>                       | Ö  | $CH_2$                                                |
| 772               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 2-F                                        | Ŏ  | $CH_2$                                                |
| 773               | COOCH <sub>2</sub> CH <sub>3</sub>                  | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 4-F                                        | Ο  | $CH_2$                                                |
|                   | $COOCH_2CH_3$                                       | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 2,4-2F                                     | Ο  | $CH_2$                                                |
| 774               |                                                     | OII                                                                                                      | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                      | Ο  | $CH_2$                                                |
| 775               | $COOCH_2CH_3$                                       | $CH_3$                                                                                                   |                          |                      | _                                          |    |                                                       |
| 775<br>776        | COOH                                                | $CH_3$                                                                                                   | n-butyl                  | n-butyl              | 2-CH <sub>3</sub>                          | O  |                                                       |
| 775<br>776<br>777 | COOH<br>COOH                                        | CH <sub>3</sub><br>CH <sub>3</sub>                                                                       | n-butyl<br>n-butyl       | n-butyl<br>n-butyl   | $4-CH_3$                                   | O  | $CH_2$                                                |
| 775<br>776        | COOH                                                | $ \begin{array}{c} \operatorname{CH}_{3} \\ \operatorname{CH}_{3} \\ \operatorname{CH}_{3} \end{array} $ | n-butyl                  | n-butyl              | 4-CH <sub>3</sub><br>2,4-2CH <sub>3</sub>  | _  | CH <sub>2</sub><br>CH <sub>2</sub><br>CH <sub>2</sub> |

TABLE 6-continued

| TABLE 6-continued      |                                                                            |                 |                      |                      |                                            |   |                                    |
|------------------------|----------------------------------------------------------------------------|-----------------|----------------------|----------------------|--------------------------------------------|---|------------------------------------|
| Compound Number        | $R^2$                                                                      | $R^1$           | $R^7$                | R <sup>8</sup>       | R                                          | Y | X                                  |
| 780                    | СООН                                                                       | CH <sub>3</sub> | n-butyl              | n-butyl              | 4-F                                        | O | CH <sub>2</sub>                    |
| 781<br>782             | COOH                                                                       | $CH_3$          | n-butyl              | n-butyl              | 2,4-2F                                     | 0 | $CH_2$                             |
| 782<br>783             | COOH<br>CONHSO <sub>2</sub> CH <sub>3</sub>                                | $CH_3$          | n-butyl<br>n-butyl   | n-butyl<br>n-butyl   | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub> | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 783<br>784             | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | 4-CH <sub>3</sub>                          | 0 | $CH_2$                             |
| 785                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | 2,4-2CH <sub>3</sub>                       | Ο | $CH_2$                             |
| 786                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | 2-F                                        | O | $CH_2$                             |
| 787                    | CONHISO CH                                                                 | _               | n-butyl              | n-butyl              | 4-F                                        | 0 | $CH_2$                             |
| 788<br>789             | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _               | n-butyl<br>n-butyl   | n-butyl<br>n-butyl   | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 790                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | 2-CH <sub>3</sub>                          | Ö | $CH_2$                             |
| 791                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | $4-CH_3$                                   | Ο | $CH_2$                             |
| 792                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | n-butyl              | n-butyl              | 2,4-2CH <sub>3</sub>                       | 0 | $CH_2$                             |
| 793<br>794             | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | n-butyl              | n-butyl              | 2-F                                        | 0 | $CH_2$                             |
| 79 <del>4</del><br>795 | CONHSO <sub>2</sub> CF <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | $CH_3$          | n-butyl<br>n-butyl   | n-butyl<br>n-butyl   | 4-F<br>2,4-2F                              | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 796                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | n-butyl              | n-butyl              | 2-F-4-CH <sub>3</sub>                      |   | $CH_2$                             |
| 797                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2-CH <sub>3</sub>                          | Ο | $CH_2$                             |
| 798                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 4-CH <sub>3</sub>                          | O | $CH_2$                             |
| 799                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2,4-2CH <sub>3</sub>                       | 0 | $CH_2$                             |
| 800<br>801             | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | n-butyl<br>n-butyl   | n-butyl<br>n-butyl   | 2-F<br>4-F                                 | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 802                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2,4-2F                                     | 0 | $CH_2$                             |
| 803                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2-F-4-CH <sub>3</sub>                      |   | $CH_2$                             |
| 804                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2-CH <sub>3</sub>                          | Ο | $CH_2$                             |
| 805                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 4-CH <sub>3</sub>                          | O | $CH_2$                             |
| 806                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2,4-2CH <sub>3</sub>                       | 0 | $CH_2$                             |
| 807<br>808             | 5-tetrazolyl<br>5-tetrazolyl                                               | $CH_3$ $CH_3$   | n-butyl<br>n-butyl   | n-butyl<br>n-butyl   | 2-F<br>4-F                                 | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 809                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2,4-2F                                     | ŏ | $CH_2$                             |
| 810                    | 5-tetrazolyl                                                               | $CH_3$          | n-butyl              | n-butyl              | 2-F-4-CH <sub>3</sub>                      | Ο | $CH_2^2$                           |
| 811                    | $COOCH_2CH_3$                                                              | $CH_3$          | isobutyl             | isobutyl             | $2-CH_3$                                   | Ο | $CH_2$                             |
| 812                    | COOCH CH                                                                   | $CH_3$          | isobutyl             | isobutyl             |                                            | 0 | CH <sub>2</sub>                    |
| 813<br>814             | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | CH <sub>3</sub> | isobutyl<br>isobutyl | isobutyl             | 2,4-2CH <sub>3</sub>                       | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 815                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl             | isobutyl             |                                            | Ö | $CH_2$                             |
| 816                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl             |                      |                                            | Ο | $CH_2^2$                           |
| 817                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | isobutyl             |                      | 2-F-4-CH <sub>3</sub>                      | Ο | $CH_2$                             |
| 818                    | COOH                                                                       | $CH_3$          | isobutyl             | isobutyl             | 2                                          | 0 | $CH_2$                             |
| 819<br>820             | COOH<br>COOH                                                               | $CH_3$ $CH_3$   | isobutyl<br>isobutyl | isobutyl             | 4-CH <sub>3</sub><br>2,4-2CH <sub>3</sub>  | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 821                    | COOH                                                                       | $CH_3$          | isobutyl             | isobutyl             |                                            | 0 | $CH_2$                             |
| 822                    | СООН                                                                       | $CH_3$          | isobutyl             | isobutyl             |                                            | Ö | $CH_2$                             |
| 823                    | COOH                                                                       | $CH_3$          | isobutyl             | isobutyl             | 2,4-2F                                     | Ο | $CH_2$                             |
| 824                    | COOH                                                                       | $CH_3$          | isobutyl             | •                    | 2-F-4-CH <sub>3</sub>                      | _ | CH <sub>2</sub>                    |
| 825<br>826             | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> |                 | isobutyl<br>isobutyl | isobutyl<br>isobutyl |                                            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 827                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl             |                      | 2,4-2CH <sub>3</sub>                       | 0 | $CH_2$                             |
| 828                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | isobutyl             | isobutyl             | , ,                                        | Ŏ | $CH_2$                             |
| 829                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl             | isobutyl             |                                            | Ο | $CH_2$                             |
| 830                    | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | isobutyl             | isobutyl             | •                                          | O | $CH_2$                             |
| 831                    | CONHISO CE                                                                 | _               | isobutyl             |                      | 2-F-4-CH <sub>3</sub>                      | _ | $CH_2$                             |
| 832<br>833             | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl<br>isobutyl | isobutyl<br>isobutyl | 5                                          | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 834                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | isobutyl             |                      | 2,4-2CH <sub>3</sub>                       | Ö | $CH_2$                             |
| 835                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CH_3$          | isobutyl             | isobutyl             | , ,                                        | O | $CH_2$                             |
| 836                    | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               | isobutyl             | isobutyl             |                                            | O | $CH_2$                             |
| 837                    | CONHISO CE                                                                 | $CH_3$          | isobutyl             | isobutyl             | *                                          | 0 | $CH_2$                             |
| 838<br>839             | CONHSO <sub>2</sub> CF <sub>3</sub><br>5-tetrazolyl                        | CH <sub>3</sub> | isobutyl<br>isobutyl | isobutyl             | 2-F-4-CH <sub>3</sub>                      | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 840                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             | 5                                          | 0 | $CH_2$                             |
| 841                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             |                      | 2,4-2CH <sub>3</sub>                       | Ö | $CH_2$                             |
| 842                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             |                                            | O | $CH_2$                             |
| 843                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             |                                            | 0 | $CH_2$                             |
| 844<br>845             | 5-tetrazolyl<br>5-tetrazolyl                                               | $CH_3$          | isobutyl<br>isobutyl | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | CH <sub>2</sub>                    |
| 843<br>846             | 5-tetrazolyl                                                               | $CH_3$ $CH_3$   | isobutyl<br>isobutyl | isobutyl             | 5                                          | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 847                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             |                                            | Ö | $CH_2$                             |
| 848                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | •                    | 2,4-2CH <sub>3</sub>                       | Ο | $CH_2^2$                           |
| 849                    | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             |                                            | 0 | $CH_2$                             |
| 850<br>851             | 5-tetrazolyl                                                               | $CH_3$          | isobutyl             | isobutyl             |                                            | 0 | $CH_2$                             |
| 851<br>852             | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | isobutyl<br>isobutyl | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 852<br>853             | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl           |                      | 5                                          | 0 | $CH_2$                             |
| 854                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl           |                      |                                            | Ö | $CH_2$                             |
| 855                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl           |                      |                                            | Ο | $CH_2^2$                           |
| 856                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | cyclohexyl           |                      |                                            | O | CH <sub>2</sub>                    |
| 857                    | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          | cyclohexyl           | ısobutyl             | 4-F                                        | O | $CH_2$                             |
|                        |                                                                            |                 |                      |                      |                                            |   |                                    |

44

TABLE 6-continued

|                   | TAI                                                                        | BLE 6           | 6-continue               | d                  |                                            |   |                                    |
|-------------------|----------------------------------------------------------------------------|-----------------|--------------------------|--------------------|--------------------------------------------|---|------------------------------------|
| Compound Number   | $R^2$                                                                      | $R^1$           | $R^7$                    | R <sup>8</sup>     | R                                          | Y | X                                  |
| 858               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CH <sub>3</sub> | cyclohexyl               |                    | •                                          | О | CH <sub>2</sub>                    |
| 859               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CH_3$          |                          |                    | 2-F-4-CH <sub>3</sub>                      | 0 | $CH_2$                             |
| 860<br>861        | COOH<br>COOH                                                               | $CH_3$          | cyclohexyl               | •                  |                                            | 0 | CH <sub>2</sub>                    |
| 862               | СООН                                                                       | CH <sub>3</sub> | cyclohexyl<br>cyclohexyl | •                  |                                            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 863               | COOH                                                                       | $CH_3$          | cyclohexyl               | •                  |                                            | Ö | $CH_2$                             |
| 864               | СООН                                                                       | $CH_3$          | cyclohexyl               | •                  |                                            | Ō | $CH_2$                             |
| 865               | COOH                                                                       | $CH_3$          | cyclohexyl               |                    |                                            | Ο | $CH_2$                             |
| 866               | COOH                                                                       | $CH_3$          |                          |                    | 2-F-4-CH <sub>3</sub>                      | Ο | $CH_2$                             |
| 867               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl               | -                  |                                            | 0 | $CH_2$                             |
| 868<br>869        | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | cyclohexyl<br>cyclohexyl |                    |                                            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 870               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               | •                  | ,                                          | 0 | $CH_2$                             |
| 871               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | cyclohexyl               |                    |                                            | Ö | $CH_2$                             |
| 872               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CH_3$          | cyclohexyl               | isobutyl           | 2,4-2F                                     | Ο | $CH_2$                             |
| 873               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               |                          |                    | 2-F-4-CH <sub>3</sub>                      | O | $CH_2$                             |
| 874               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                    |                                            | 0 | CH <sub>2</sub>                    |
| 875<br>876        | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | ,               | cyclohexyl               |                    | 5                                          | 0 | $CH_2$                             |
| 876<br>877        | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl<br>cyclohexyl | •                  | ,                                          | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 878               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                    |                                            | Ö | $CH_2$                             |
| 879               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        |                 | cyclohexyl               |                    |                                            | Ö | $CH_2$                             |
| 880               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | _               |                          |                    | 2-F-4-CH <sub>3</sub>                      |   | $CH_2^2$                           |
| 881               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               |                    |                                            | O | $CH_2$                             |
| 882               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               |                    |                                            | 0 | $CH_2$                             |
| 883               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               | •                  |                                            | 0 | $CH_2$                             |
| 884<br>885        | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | cyclohexyl<br>cyclohexyl |                    |                                            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 886               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               |                    |                                            | 0 | $CH_2$                             |
| 887               | 5-tetrazolyl                                                               | CH <sub>3</sub> | ,                        |                    | 2-F-4-CH <sub>3</sub>                      | Ō | $CH_2$                             |
| 888               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               | isobutyl           | 2-CH <sub>3</sub>                          | Ο | $CH_2$                             |
| 889               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               |                    |                                            | Ο | $CH_2$                             |
| 890               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               | •                  |                                            | 0 | CH <sub>2</sub>                    |
| 891               | 5-tetrazolyl                                                               | $CH_3$          | cyclohexyl               |                    |                                            | 0 | $CH_2$                             |
| 892<br>893        | 5-tetrazolyl<br>5-tetrazolyl                                               | CH <sub>3</sub> | cyclohexyl<br>cyclohexyl |                    |                                            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 894               | 5-tetrazolyl                                                               | $CH_3$          |                          |                    | 2-F-4-CH <sub>3</sub>                      |   | $CH_2$                             |
| 895               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                          | Ο | $CH_2^2$                           |
| 896               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | n-butyl                  | n-butyl            | $4-CH_3$                                   | Ο | $CH_2$                             |
| 897               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CF <sub>3</sub> | n-butyl                  | n-butyl            | $2,4-2CH_3$                                | O | $CH_2$                             |
| 898               | COOCH CH                                                                   | $CF_3$          | n-butyl                  | n-butyl            | 2-F                                        | 0 | $CH_2$                             |
| <b>899</b><br>900 | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$ $CF_3$   | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 4-F<br>2,4-2F                              | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 901               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$          | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                      | 0 | $CH_2$                             |
| 902               | COOH                                                                       | CF <sub>3</sub> | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                          | Ŏ | $CH_2$                             |
| 903               | COOH                                                                       | $CF_3$          | n-butyl                  | n-butyl            | $4-CH_3$                                   | Ο | $CH_2$                             |
| 904               | COOH                                                                       | $CF_3$          | n-butyl                  | n-butyl            | $2,4-2CH_3$                                | Ο | $CH_2$                             |
| 905               | COOH                                                                       | CF <sub>3</sub> | n-butyl                  | n-butyl            | 2-F                                        | 0 | CH <sub>2</sub>                    |
| 906               | COOH                                                                       | $CF_3$          | n-butyl                  | n-butyl            | 4-F                                        | 0 | $CH_2$                             |
| 907<br>908        | COOH<br>COOH                                                               | $CF_3$ $CF_3$   | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2,4-2F<br>2-F-4-CH <sub>3</sub>            | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 908               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | n-butyl                  | n-butyl            | 2-r-4-Cn <sub>3</sub><br>2-CH <sub>3</sub> | 0 | $CH_2$                             |
| 910               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                          | Ö | $CH_2$                             |
| 911               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$          | n-butyl                  | n-butyl            | 2,4-2CH <sub>3</sub>                       | Ο | $CH_2^2$                           |
| 912               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl                  | n-butyl            | 2-F                                        | O | $CH_2$                             |
| 913               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | n-butyl                  | n-butyl            | 4-F                                        | 0 | $CH_2$                             |
| 914<br>015        | CONHSO CH                                                                  | _               | n-butyl                  | n-butyl            | 2,4-2F                                     | 0 | CH <sub>2</sub>                    |
| 915<br>916        | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> |                 | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2-F-4-CH <sub>3</sub><br>2-CH <sub>3</sub> | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 917               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl                  | n-butyl            | 4-CH <sub>3</sub>                          | O | $CH_2$                             |
| 918               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                 | n-butyl                  | n-butyl            | 2,4-2CH3                                   | Ŏ | $CH_2$                             |
| 919               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$          | n-butyl                  | n-butyl            | 2-F                                        | Ο | $CH_2^2$                           |
| 920               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl                  | n-butyl            | 4-F                                        | O | $CH_2$                             |
| 921               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _               | n-butyl                  | n-butyl            | 2,4-2F                                     | 0 | $CH_2$                             |
| 922               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | $CF_3$          | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                      | 0 | $CH_2$                             |
| 923<br>924        | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$   | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2-CH <sub>3</sub><br>4-CH <sub>3</sub>     | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 924               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 2,4-2CH <sub>3</sub>                       | 0 | $CH_2$                             |
| 926               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 2, F 20113<br>2-F                          | Ö | $CH_2$                             |
| 927               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 4-F                                        | O | $CH_2$                             |
| 928               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 2,4-2F                                     | Ο | $CH_2$                             |
| 929               | 5-tetrazolyl                                                               | CF <sub>3</sub> | n-butyl                  | n-butyl            | 2-F-4-CH <sub>3</sub>                      | O | $CH_2$                             |
| 930               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 2-CH <sub>3</sub>                          | 0 | $CH_2$                             |
| 931<br>932        | 5-tetrazolyl                                                               | $CF_3$          | n-butyl<br>n-butyl       | n-butyl            | 4-CH <sub>3</sub>                          | 0 | CH <sub>2</sub>                    |
| 932<br>933        | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$ $CF_3$   | n-butyl<br>n-butyl       | n-butyl<br>n-butyl | 2,4-2CH <sub>3</sub><br>2-F                | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 934               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  | n-butyl            | 4-F                                        | O | $CH_2$                             |
| 935               | 5-tetrazolyl                                                               | $CF_3$          | n-butyl                  |                    | 2,4-2F                                     | O | $CH_2$                             |
|                   | -                                                                          | _               | -                        | -                  |                                            |   | _                                  |

**46** 

TABLE 6-continued

| TABLE 6-continued |                                                                            |                                                                             |                          |                      |                                           |   |                                    |
|-------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|----------------------|-------------------------------------------|---|------------------------------------|
| Compound Number   | $R^2$                                                                      | $R^1$                                                                       | $R^7$                    | R <sup>8</sup>       | R                                         | Y | X                                  |
| 936               | 5-tetrazolyl                                                               | CF <sub>3</sub>                                                             | n-butyl                  | n-butyl              | 2-F-4-CH <sub>3</sub>                     | О | $CH_2$                             |
| 937               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | isobutyl                 | isobutyl             | 5                                         | 0 | $CH_2$                             |
| 938<br>939        | COOCH CH                                                                   | $CF_3$                                                                      | isobutyl                 | isobutyl             | 5                                         | 0 | $CH_2$                             |
| 939<br>940        | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$<br>$CF_3$                                                            | isobutyl<br>isobutyl     | isobutyl             | 2,4-2CH <sub>3</sub>                      | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 941               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | Ö | $CH_2$                             |
| 942               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | Ο | $CH_2^2$                           |
| 943               | $COOCH_2CH_3$                                                              | $CF_3$                                                                      | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                     | Ο | $CH_2$                             |
| 944               | COOH                                                                       | $CF_3$                                                                      | isobutyl                 | isobutyl             | 5                                         | 0 | $CH_2$                             |
| 945<br>946        | COOH<br>COOH                                                               | $CF_3$<br>$CF_3$                                                            | isobutyl<br>isobutyl     | isobutyl             | 4-CH <sub>3</sub><br>2,4-2CH <sub>3</sub> | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 947               | COOH                                                                       | $CF_3$                                                                      | isobutyl                 | isobutyl             | , 5                                       | Ö | $CH_2$                             |
| 948               | COOH                                                                       | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | Ο | $CH_2^2$                           |
| 949               | СООН                                                                       | $CF_3$                                                                      | isobutyl                 | isobutyl             | •                                         | O | $CH_2$                             |
| 950<br>051        | CONTIGO CH                                                                 | $CF_3$                                                                      | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                     | _ | $CH_2$                             |
| 951<br>952        | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> | _                                                                           | isobutyl<br>isobutyl     | isobutyl<br>isobutyl | 2                                         | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 953               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                      | Ö | $CH_2$                             |
| 954               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | isobutyl                 | isobutyl             | , 5                                       | Ο | $CH_2^2$                           |
| 955               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                                                                             | isobutyl                 | isobutyl             |                                           | Ο | $CH_2$                             |
| 956<br>057        | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | isobutyl                 | isobutyl             | *                                         | 0 | $CH_2$                             |
| 957<br>958        | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> |                                                                             | isobutyl<br>isobutyl     | isobutyl             | 2-F-4-CH <sub>3</sub>                     | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 959               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | isobutyl                 | isobutyl             | 4-CH <sub>3</sub>                         | 0 | $CH_2$                             |
| 960               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | isobutyl                 |                      | 2,4-2CH <sub>3</sub>                      | Ō | $CH_2$                             |
| 961               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | isobutyl                 | isobutyl             | 2-F                                       | Ο | $CH_2$                             |
| 962               | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | 0 | $CH_2$                             |
| 963<br>964        | CONHSO <sub>2</sub> CF <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | $CF_3$ $CF_3$                                                               | isobutyl<br>isobutyl     | isobutyl             | 2,4-2F<br>2-F-4-CH <sub>3</sub>           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 965               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 | isobutyl             | 5                                         | Ö | $CH_2$                             |
| 966               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 | isobutyl             | 5                                         | O | $CH_2$                             |
| 967               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 | isobutyl             | , ,                                       | Ο | $CH_2$                             |
| 968               | 5-tetrazolyl                                                               | CF <sub>3</sub>                                                             | isobutyl                 | isobutyl             |                                           | 0 | CH <sub>2</sub>                    |
| 969<br>970        | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$<br>$CF_3$                                                            | isobutyl<br>isobutyl     | isobutyl<br>isobutyl |                                           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 971               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                     |   | $CH_2$                             |
| 972               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | Ο | $CH_2$                             |
| 973               | 5-tetrazolyl                                                               | CF <sub>3</sub>                                                             | isobutyl                 | isobutyl             | 5                                         | 0 | $CH_2$                             |
| 974<br>975        | 5-tetrazolyl<br>5-tetrazolyl                                               | $CF_3$                                                                      | isobutyl<br>isobutyl     |                      | 2,4-2CH <sub>3</sub>                      | 0 | $CH_2$                             |
| 975<br>976        | 5-tetrazolyl                                                               | $CF_3$ $CF_3$                                                               | isobutyl                 | isobutyl<br>isobutyl |                                           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 977               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 | isobutyl             |                                           | O | $CH_2^2$                           |
| 978               | 5-tetrazolyl                                                               | $CF_3$                                                                      | isobutyl                 |                      | 2-F-4-CH <sub>3</sub>                     | O | $CH_2$                             |
| 979               | COOCH CH                                                                   | $CF_3$                                                                      | cyclohexyl               |                      | 5                                         | 0 | $CH_2$                             |
| 980<br>981        | COOCH <sub>2</sub> CH <sub>3</sub><br>COOCH <sub>2</sub> CH <sub>3</sub>   | $CF_3$ $CF_3$                                                               | cyclohexyl<br>cyclohexyl |                      | 5                                         | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 982               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | cyclohexyl               |                      | , ,                                       | Ö | $CH_2$                             |
| 983               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      | cyclohexyl               | •                    |                                           | Ο | $CH_2$                             |
| 984               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | CF <sub>3</sub>                                                             | cyclohexyl               |                      | ,                                         | O | $CH_2$                             |
| 985               | COOCH <sub>2</sub> CH <sub>3</sub>                                         | $CF_3$                                                                      |                          |                      | 2-F-4-CH <sub>3</sub>                     | _ | $CH_2$                             |
| 986<br>987        | COOH<br>COOH                                                               | $CF_3$<br>$CF_3$                                                            | cyclohexyl<br>cyclohexyl | •                    |                                           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 988               | СООН                                                                       | $CF_3$                                                                      | cyclohexyl               |                      | 5                                         | Ŏ | $CH_2$                             |
| 989               | COOH                                                                       | $CF_3$                                                                      | cyclohexyl               | isobutyl             | 2-F                                       | Ο | $CH_2$                             |
| 990               | COOH                                                                       | $CF_3$                                                                      | cyclohexyl               |                      |                                           | 0 | $CH_2$                             |
| 991<br>992        | COOH<br>COOH                                                               | $CF_3$<br>$CF_3$                                                            | cyclohexyl               |                      | 2,4-2F<br>2-F-4-CH <sub>3</sub>           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 993               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                                                                             | cyclohexyl               |                      |                                           | 0 | $CH_2$                             |
| 994               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | cyclohexyl               | -                    |                                           | Ö | $CH_2$                             |
| 995               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        |                                                                             | cyclohexyl               | •                    |                                           | O | $CH_2$                             |
| 996               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           | cyclohexyl               | •                    |                                           | 0 | $CH_2$                             |
| 997<br>998        | CONHSO <sub>2</sub> CH <sub>3</sub><br>CONHSO <sub>2</sub> CH <sub>3</sub> |                                                                             | cyclohexyl<br>cyclohexyl | •                    |                                           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 999               | CONHSO <sub>2</sub> CH <sub>3</sub>                                        | _                                                                           |                          |                      | 2-F-4-CH <sub>3</sub>                     |   | $CH_2$                             |
| 1000              | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | cyclohexyl               | _                    | _                                         | O | $CH_2$                             |
| 1001              |                                                                            | _                                                                           | cyclohexyl               |                      | 5                                         | O | $CH_2$                             |
| 1002              | CONHSO CE                                                                  | _                                                                           | cyclohexyl               |                      | , ,                                       | 0 | $CH_2$                             |
| 1003<br>1004      | CONHSO <sub>2</sub> CF <sub>3</sub><br>CONHSO <sub>2</sub> CF <sub>3</sub> | _                                                                           | cyclohexyl<br>cyclohexyl |                      |                                           | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 1004              | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      | cyclohexyl               | •                    |                                           | Ö | $CH_2$                             |
| 1006              | CONHSO <sub>2</sub> CF <sub>3</sub>                                        | $CF_3$                                                                      |                          |                      | 2-F-4-CH <sub>3</sub>                     | O | $CH_2$                             |
| 1007              | 5-tetrazolyl                                                               | CF <sub>3</sub>                                                             | cyclohexyl               | •                    |                                           | O | $CH_2$                             |
| 1008              | 5-tetrazolyl                                                               | $CF_3$                                                                      | cyclohexyl               | •                    |                                           | 0 | $CH_2$                             |
| 1009<br>1010      | 5-tetrazolyl<br>5-tetrazolyl                                               | $ \begin{array}{c} \operatorname{CF_3} \\ \operatorname{CF_3} \end{array} $ | cyclohexyl<br>cyclohexyl |                      | , ,                                       | 0 | CH <sub>2</sub><br>CH <sub>2</sub> |
| 1010              | 5-tetrazolyl                                                               | $CF_3$                                                                      | cyclohexyl               |                      |                                           | Ö | $CH_2$                             |
| 1012              | 5-tetrazolyl                                                               | $CF_3$                                                                      | cyclohexyl               |                      |                                           | Ο | $CH_2^2$                           |
| 1013              | 5-tetrazolyl                                                               | CF <sub>3</sub>                                                             | cyclohexyl               | isobutyl             | 2-F-4-CH <sub>3</sub>                     | Ο | $CH_2$                             |
|                   |                                                                            |                                                                             |                          |                      |                                           |   |                                    |

TABLE 6-continued

| Compound Number | $R^2$                              | $R^1$           | $R^7$      | R <sup>8</sup> | R                      | Y            | X               |
|-----------------|------------------------------------|-----------------|------------|----------------|------------------------|--------------|-----------------|
| 1014            | 5-tetrazolyl                       | CF <sub>3</sub> | cyclohexyl | isobutyl       | 2-CH <sub>3</sub>      | О            | CH <sub>2</sub> |
| 1015            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | $4-CH_3$               | Ο            | $CH_2$          |
| 1016            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2,4-2CH <sub>3</sub>   | Ο            | $CH_2$          |
| 1017            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2-F                    | Ο            | $CH_2^-$        |
| 1018            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 4-F                    | Ο            | $CH_2^-$        |
| 1019            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2,4-2F                 | Ο            | $CH_2$          |
| 1020            | 5-tetrazolyl                       | $CF_3$          | cyclohexyl | isobutyl       | 2-F-4CH <sub>3</sub>   | Ο            | $CH_2$          |
| 1021            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 2-C1                   | Ο            | NH              |
| 1022            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-C1                   | Ο            | NH              |
| 1023            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 4-Cl                   | Ο            | NH              |
| 1024            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-CF <sub>3</sub> 4-Cl | Ο            | NH              |
| 1025            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | Н                      | $\mathbf{S}$ | NH              |
| 1026            | COOCH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | n-butyl    | n-butyl        | 3-CH <sub>3</sub>      | Ο            | NH              |
| 1027            | СООН                               | $CH_3$          | n-butyl    | n-butyl        | 2-C1                   | Ο            | NH              |
| 1028            | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 3-C1                   | Ο            | NH              |
| 1029            | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 4-Cl                   | Ο            | NH              |
| 1030            | COOH                               | $CH_3$          | n-butyl    | n-butyl        | 3-CF <sub>3</sub> 4-Cl | Ο            | NH              |
| 1031            | COOH                               | $CH_3$          | n-butyl    | n-butyl        | Н                      | S            | NH              |
| 1032            | СООН                               | $CH_3$          | n-butyl    | n-butyl        | 3-CH <sub>3</sub>      | Ο            | NH              |

The formula I compound of the invention can be prepared according to the following methods:

$$R^3$$
 $R^4$ 
 $NO_2$ 
 $R^9$ 
 $Base$ 
 $R^6$ 
 $R^7$ 
 $R^8$ 

$$\begin{array}{c|c}
R^{2} & R^{3} & R^{4} \\
\hline
R^{2} & NO_{2} & Reducer
\end{array}$$

$$\begin{array}{c|c}
Reducer & R^{8} & R^{7} & R^{6} & R^{7}
\end{array}$$

$$R^{2}$$
 $R^{3}$ 
 $R^{4}$ 
 $NH_{2}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{6}$ 
 $R^{7}$ 

In the above reaction formula, the commercial halo nitroaromatic ketone compound 1 reacts with the substituted amino compound 2 to form the substituted amino nitroaromatic ketone compound 3 under the alkaline condition. Compound 3 reacts with wittingene reagent to form aromatic ethylene compound 4 under the alkaline condition. Compound 4 is reduced to amino compound 5 under the condition of reducing agent. Compound 5 reacts with compound 6 (isocyanate, isothiocyanate and chloroformate) to form formula I compound.

In the scheme:

L is selected from halogen, where L=F, Cl, Br and I; the definitions of the other groups are the same as before.

Base is selected from KOH, NaOH, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, NaHCO<sub>3</sub>, Et<sub>3</sub>N, pyridine, MeONa, EtONa, NaH, potassium tert-butoxide or sodium tert-butoxide and so on.

The reaction is carried out in a suitable solvent, solvent is selected from THF, MeCN, PhMe, Xylene, Benzene, DMF, DMSO, acetone or methyl ethyl ketone and so on.

The reaction temperature may be between room temperature and the boiling point of the solvent, usually from 20 to 100° C.

The reaction time is from 30 minutes to 20 hours, usually from 1 to 10 hours.

The invention includes a formulation prepared by using the compound contained in the formula I as an active ingredient and other preparations. The preparation method of the formulation is as follows: dissolving the compound of the invention into a water-soluble organic solvent, a non-ionic surfactant, a water-soluble lipid, various cyclodextrins, a fatty acid, a fatty acid ester, a phospholipid or their combined solvents to prepare a preparation solution; adding normal saline to get 1-20% carbohydrates. The organic

solvent includes one or a combination of polyethylene glycol (PEG), ethanol, propylene glycol and the like.

The compound shown in formula I of the present invention, its stereoisomer, cis-trans isomer, tautomer and pharmaceutically acceptable salt thereof, or a combination 5 thereof, in the preparation of an inhibitor for inhibiting the activity of IDO-1 enzyme.

The compound shown in formula I of the present invention, its stereoisomer, cis-trans isomer, tautomer and pharmaceutically acceptable salt thereof, or a combination 10 thereof, in the preparation of an anti-cancer drug, a viral infectious agent, a depressant, an organ transplant rejection agent or an autoimmune enhancer.

The cancer referred to is colon cancer, liver cancer, lymphoma, lung cancer, esophageal cancer, breast cancer, 15 central nervous system tumor, melanoma, ovarian cancer, cervical cancer, renal cancer, leukemia, prostate cancer, pancreatic cancer or gastric cancer.

A pharmaceutical composition, any one or more compounds of formula I, its stereoisomer, cis-trans isomer, 20 tautomer, pharmaceutically acceptable salts thereof and pharmaceutically acceptable carriers or diluents.

The compound of the present invention can be used as an active ingredient of an antitumor drug, and can be used alone or in combination with other antitumor drugs. The combination therapy referred to herein includes the use of at least one compound of the invention and a reactive derivative thereof in combination with one or more other anti-tumor agents to increase overall efficacy. The dose and time of administration in combination should be determined according to the most reasonable therapeutic effect obtained under different conditions.

The pharmaceutical agents contemplated include an effective dose of a compound of formula I. By "effective amount" herein is meant the amount of the compound required to 35 produce a therapeutic effect for the subject being treated. The effective dose or dose can be varied by an experienced person depending on the recommendations of the situation. For example, the type of tumor treated is different, the usage of the drug is different; whether it is shared with other 40 treatment methods such as other anti-tumor drugs, the dosage can be changed. Any application formulation form that can be made. If some of them have a basic or acidic compound and can form a non-toxic acid or salt, the form of the salt of the compound can be used. The carboxylic acid 45 compound may form a usable salt with an alkali metal or an alkaline earth metal.

The compounds encompassed by the formula I in the invention are generally soluble in organic solvents, watersoluble solvents, organic solvents or a mixed solvent of a 50 water-soluble solvent and water. The water-soluble solvent is preferably alcohol, polyethylene glycol, N-methyl-2-pyrrolidinone, DMA, DMF, DMSO, acetonitrile and their combination. The alcohol is preferably methanol, ethanol, isopropanol, glycerol or ethylene glycol. The compound of the 55 present invention can be formulated into a preparation by mixing with usual formulation carriers. The compound is dissolved in a water-soluble organic solvent, an aprotic solvent, a water-soluble lipid, a cyclodextrin, a fatty acid, a phospholipid or a mixed solvent of these solvents to prepare 60 a drug solution; and then adding physiological saline to obtain 1-20% carbohydrates, such as an aqueous solution of glucose. The formulations thus prepared are stable and are used in animals and clinical trials.

The product drug prepared by using the compound of the 65 formula I as an active ingredient can be administered by oral or parenteral route, or can be administered by a drug pump

**50** 

in vivo and other methods. The non-intestinal route refers to subcutaneous intradermal, intramuscular, intravenous, intraarterial, intraatrial, synovial, sternal, intrathecal, traumatic site, intracranial injection or drip technology and so on. Professional person uses a conventional method to mix and mix and finally become the desired pharmaceutical dosage form. It may be a tablet, a capsule, an emulsion, a powder, a small needle for intravenous administration, a large infusion, a lyophilized powder, a dropping pill, a milk suspension, an aqueous suspension solution, an aqueous solution, a colloid, a colloidal solution, a sustained release preparation, a nano preparation or other forms of the dosage form are for animal or clinical use.

The compound of formula I of the invention is useful for the treatment or amelioration of cancer drugs for a certain tissue or organ. The cancers referred to include, but are not limited to, colon cancer, liver cancer, lymphoma, lung cancer, esophageal cancer, breast cancer, central nervous system tumor, melanoma, ovarian cancer, renal cancer, leukemia, prostate cancer or pancreatic cancer.

The invention has the advantages of having IDO-1 enzyme inhibitory activity and is expected to provide a novel therapeutic method and scheme for the related diseases caused by the IDO enzyme.

## THE DETAILED DESCRIPTION OF THE INVENTION

The following examples are provided to assist in a comprehensive understanding of the claims and their equivalents, and are not intended to limit the present invention.

#### Example 1

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

To a 250 mL flask, 10.0 g of 3'-nitro-4'-chlorocetophenone and 100 mL of di-n-butylamine were added, and the mixture was heated at 100° C. for 20 hours. After reaction was completed by TLC monitoring, the reaction mixture was evaporated to dryness, and the residue was dissolved in ethyl acetate (300 mL) and washed with water (100 mL×3), and the organic phase was dried over anhydrous sodium sulfate for 12 hr. The solvent was removed in vacuo. purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.),

the volume ratio is 1:6)) to obtain the compound 1-(4-(dibutylamino)-3-nitrophenyl)ethan-1-one, 11.3 g yellow solid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.89 (t, J=7.5 Hz, 6H), 1.23-1.35 (m, 4H), 1.52-1.62 (m, 4H), 2.51 (s, 3H), 3.23 (t, J=7.2 Hz, 4H), 7.08 (dd, J=14.4, 3.9 Hz, 1H), 7.96 (dd, J=9.0, 2.1 Hz, 1H), 8.31 (dd, J=2.1 Hz, 1H).

#### Example 2

$$\bigcap_{N} \bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N$$

To a 250 mL flask, 9.9 g of sodium t-butoxide and 150 mL of tetrahydrofuran were added, and 23.0 g of ethyl 2-(di- 45 ethoxyphosphoryl)acetate was added dropwise with stirring at a temperature of 0 to 5° C. After the dropwise addition completely, the mixture was stirred at room temperature for 0.5 hour, and the compound 1-(4-(dibutylamino)-3-nitrophenyl)ethan-1-one dissolved in 50 mL of tetrahydrofuran <sup>50</sup> was added dropwise with stirring at a temperature of 20-30° C. After the dropwise addition completely, the mixture was stirred at room temperature for 12 hours. After reaction was completed by TLC monitoring, the reaction mixture was washed with a saturated aqueous solution of ammonium chloride (100 mL×3), and the organic phase was dried over anhydrous sodium sulfate for 12 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.), volume ratio 1:10) to obtain the compound ethyl (E)-3-(4-(dibutylamino)-3-nitrophenyl)but-2-enoate, 6.3 g yellow solid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.87 (t, J=7.5 Hz, 6H), 1.17-1.34 (m, 7H), 1.48-1.62 (m, 4H), 2.51 (s, 3H), 65 3.16 (t, J=7.2 Hz, 4H), 4.18 (q, J=7.2 Hz, 2H), 6.14 (d, J=1.2 Hz, 1H), 7.53-7.54 (m, 2H), 7.87 (d, J=2.1 Hz, 1H).

Example 3

To a 250 mL flask, 2.7 g of compound ethyl (E)-3-(4-(dibutylamino)-3-nitrophenyl)but-2-enoate, 4.0 g of ammonium chloride, zinc powder 4.9 g, 100 mL of ethanol and 20 mL of water were added, the mixture was stirred at room temperature for 2 hours. After reaction was completed by TLC monitoring, the reaction mixture was filtered, and the solvent of filtrate was removed in vacuo. Purification of residues by silica gel column chromatography (eluent ethyl acetate and petroleum ether (boiling range: 60-90° C.), volume ratio: 1:10) to obtain the compound ethyl (E)-3-(3-amino-4-(dibutylamino)phenyl)but-2-enoate, 0.3 g reddish brown viscous liquid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.87 (t, J=6.9 Hz, 6H), 1.10 (t, J=6.9 Hz, 3H), 1.23-1.30 (m, 4H), 1.33-1.43 (m, 4H), 2.16 (d, J=1.5 Hz, 3H), 2.86 (t, J=7.5 Mz, 4H), 4.03 (q, J=6.9 Hz, 2H), 6.08 (d, J=0.9 Hz, 1H), 6.56-6.60 (m, 2H), 6.96 (d, J=7.5 Hz, 1H).

## Example 4

30

To a 100 mL flask, 0.3 g of compound ethyl (E)-3-(3-amino-4-(dibutylamino)phenyl)but-2-enoate and acetonitrile 50 mL were added, irradiated with UV light (wavelength: 365 nM) for 48 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.), volume ratio 1:10) to obtain the compound ethyl (Z)-3-(3-amino-4-(dibutylamino)phenyl) but-2-enoate, 0.11 g reddish brown viscous liquid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.87 (t, J=-6.9 Hz, 6H), 1.09 (t, J=6.9 Hz, 3H), 1.22-1.30 (m, 4H), 1.33-1.42 (m, 4H), 2.15 (d, J=1.5 Hz, 3H), 2.86 (t, J=7.5 Mz, 4H), 4.01 25 (q, J=6.9 Hz, 2H), 5.82 (d, J=0.9 Hz, 1H), 6.56-6.60 (m, 2H), 6.97 (d, J=7.5 Hz, 1H).

## Example 5

To a 100 mL flask, 0.4 g of the compound ethyl (E)-3-(3-amino-4-(dibutylamino)phenyl)but-2-enoate, 0.16 g of p-toluene isocyanate and 30 mL of tetrahydrofuran were added. The mixture was stirred at room temperature for 8 hours. After reaction was completed by TLC monitoring, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range: 60-90° C.), volume ratio: 1:5) to obtain the compound ethyl (E)-3-(4-(dibutylamino)-3-(3-(p-tolyl)ureido)phenyl)but-2-enoate (Compound 518), 0.12 g white solid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.81 (t, J=6.9 Hz, 6H), 1.12-1.16 (m, 81), 1.30 (t, J=6.9 Hz, 3H), 2.35 (s, 3H),

2.72 (t, J=6.9 Hz, 4H), 4.18 (q, J=6.9 Hz, 2H), 6.18 (s, 1H), 6.45 (s, 1H), 7.08-7.26 (m, 5H), 8.22 (s, 1H), 8.45 (s, 1H).

Example 6

To a 100 mL flask, 0.3 g of the compound ethyl (E)-3-(4-(dibutylamino)-3-(3-(p-tolyl)ureido)phenyl)but-2-enoate and acetonitrile 50 mL were added, irradiated with UV light (wavelength: 365 nM) for 48 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.), volume ratio 1:6) to obtain the compound ethyl (Z)-3-(4-(dibutylamino)-3-(3-(p-tolyl)ureido)phenyl)but-2-enoate (Compound 2), 0.10 g white solid.

## Example 7

45

To a 100 mL flask, 100 g of compound ethyl (E)-3-(4-(dibutylamino)-3-(3-(p-tolyl)ureido) phenyl)but-2-enoate, ethanol 50 mL and 3.0 g of sodium hydroxide were added. The mixture was stirred at room temperature for 12 hours. After reaction was completed by TLC monitoring, the 20 solvent was removed in vacuo, and the residue was dissolved in ethyl acetate (300 mL) and water (100 mL), and the mixture was adjusted to pH=3 with concentrated hydrochloric acid, and the organic phase was dried over anhydrous sodium sulfate for 12 hours, the solvent was removed in 25 vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.) in a volume ratio of 1:2) to obtain the compound (E)-3-(4-(dibutylamino)-3-(3-(p-tolyl)ureido) phenyl)but-2-enoic acid (Compound 525), 0.11 g white 30 solid.

<sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ (ppm): 0.81 (t. J=6.9 Hz, 6H), 1.13-1.17 (m, 8H), 2.35 (s, 31-H), 2.73 (t, J=6.9 Hz, 4H), 6.17 (s, 1H), 6.46 (s, 1H), 7.07-7.25 (m, 5H), 8.23 (s, 35 1H), 8.46 (s, 1H), 12.05 (s, 1H). MS (ESI), m/z (%): 438.32 [M+H]<sup>+</sup>.

### Example 8

To a 100 mL flask, 0.3 g of compound (E)-3-(4-(dibuty-lamino)-3-(3-(p-tolyl)ureido)phenyl)but-2-enoic acid and 50 mL of acetonitrile were added, irradiated with UV light (wavelength: 365 nM) for 48 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petro-leum ether (boiling range 60-90° C.), volume ratio 1:2) to obtain compound (Z)-3-(4-(dibutylamino)-3-(3-(p-tolyl) ureido)phenyl)but-2-enoic acid (Compound 9), 0.16 g white solid.

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.19-1.31 (m, 8H), 2.26 (s, 3H), 2.50 (s, 3H), 2.83-2.88 (m, 4H), 5.81 (s, 1H), 7.03-7.12 (m, 3H), 7.33-7.37 (m, 2H), 8.04 (s, 1H), 8.82-8.36 (m, 1H), 8.36 (s, 1H), 9.35 (s, 1H). MS (ESI), m/z (%): 438.32 [M+H]<sup>+</sup>.

## Example 9

To a 100 mL flask, 0.5 g of the compound ethyl (E)-3-(3-amino-4-(diisobutylamino)phenyl)but-2-enoate (preparation method is the same as in Example 1, Example 2 and Example 3), 3 g of 2,4-difluorophenyl isocyanate and 30 mL of tetrahydrofuran were added. The mixture was stirred at room temperature for 4 hours. After reaction was completed by TLC monitoring, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range: 60-90° C.), volume ratio: 1:5) to obtain the compound ethyl (E)-3-(3-(3-(2,4-difluorophenyl)ureido)-4-(diisobutylamino)phenyl) but-2-enoate (Compound 564), 0.16 g white solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.83 (d, J=6.0 Hz, 12H), 1.24 (t, J=6.0 Hz, 3H), 1.69-1.72 (m, 2H), 2.49 (s, 3H), 2.79 (d, J=12.0 Hz, 4H), 4.13 (q, J=6.0 Hz, 2H), 6.09 (s, 1H), 7.03-7.05 (m, 1H), 7.19-7.23 (m, 2H), 7.29-7.31 (t, J=6 Hz, 1H), 7.98-8.01 (m, 1H), 8.05 (d, J=6.0 Hz, 1H), 8.09 (s, 1H), 9.33 (s, 1H). MS (ESI), m/z (%): 488.32[M+H]<sup>+</sup>.

50

55

60

NaOH

To a 100 mL flask, 0.3 g of the compound ethyl (E)-3-(3-(3-(2,4-difluorophenyl)ureido)-4-(diisobutylamino)phenyl) but-2-enoate, ethanol 50 mL and sodium hydroxide 3.0 30 g were added. The mixture was stirred at room temperature for 12 hours. After reaction was completed by TLC monitoring, the solvent was removed in vacuo, and the residue was dissolved in ethyl acetate (300 mL) and water (100 mL), and the mixture was adjusted to pH=3 with concentrated 35 hydrochloric acid, and the organic phase was dried over anhydrous sodium sulfate for 12 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.), volume ratio 1:2) to 40 obtain the compound (E)-3-(3-(3-(2,4-difluorophenyl) ureido)-4-(diisobutylamino)phenyl)but-2-enoic acid (Compound 571), 0.15 g white solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 9.31 (s, 1H), 8.08 (s, 1H), 8.05 (d, J=6.0 Hz, 1H), 7.98-8.03 (m, 1H), <sup>45</sup> 7.29-7.31 (t, J=6 Hz, 1H), 7.19-7.24 (m, 2H), 7.01-7.06 (m, 1H), 6.05 (s, 1H), 2.86-2.90 (m, 4H), 2.48 (s, 3H), 1.69-1.72 (m, 2H), 0.82 (d, J=6.0 Hz, 12H). MS (ESI), m/z (%): 460.27[M+H]<sup>+</sup>.

## Example 11

$$HO$$
 $NH$ 
 $F$ 
 $hv$ 

To a 100 mL flask, 0.1 g of compound (E)-3-(3-(3-(2,4-difluorophenyl))ureido)-4-(diisobutylamino)phenyl)but-2-enoic acid and 50 mL of acetonitrile, irradiated with UV light (wavelength: 365 nM) for 48 hours, the solvent was removed in vacuo. Purification of residues by silica gel column chromatography (eluents are ethyl acetate and petroleum ether (boiling range 60-90° C.), volume ratio 1:2) to obtain the compound (Z)-3-(3-(3-(2,4-difluorophenyl) ureido)-4-(diisobutylamino)phenyl)but-2-enoic acid (Compound 55), 0.03 g white solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 11.88 (s, 1H), 9.28 (s, 1H), 8.05 (s, 1H), 7.94 (td, J=9.1, 6.5 Hz, 1H), 7.78 (d, J=1.7 Hz, 1H), 7.34-7.24 (m, 1H), 7.13 (d, J=8.3 Hz, 1H), 7.04 (t, J=8.0 Hz, 1H), 6.87 (dd, J=8.2, 1.6 Hz, 1H), 5.84 (s, 1H), 2.70 (d, J=6.8 Hz, 4H), 2.09 (s, 3H), 1.71-1.66 (m, 2H), 0.85 (d, J=6.0 Hz, 12H). MS (ESI), m/z (%): 460.28[M+H]<sup>+</sup>.

Partial Compound Nuclear Magnetic Resonance Data:

Compound 13

$$O \longrightarrow H \longrightarrow F$$

$$O \longrightarrow N \longrightarrow F$$

$$O \longrightarrow N \longrightarrow F$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.45-1.17 (m, 8H), 2.50 (s, 3H), 2.87 (m, 4H), 5.86 (s, 1H), 6.85-7.32 (m, 4H), 8.05-8.00 (m, 1H), 8.25-8.32 (m, 1H), 8.66 (s, 1H), 9.40 (s, 1H). MS (ESI), m/z (%): 460.29 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 0.85 (t, J=6.0 Hz, 6H), 1.17-1.37 (m, 8H), 2.27 (s, 3H), 2.50 (s, 3H), 2.86-2.90 (m, 4H), 5.85 (s, 1H), 6.83 (d, J=0.6 Hz, 1H), 6.95 1.2 Hz, 1H), 7.88-7.94 (m, 1H), 8.33 (s, 1H), 8.63 (s, 1H), 9.28 (s, 1H). MS (ESI), m/z (%): 456.32[M+H]<sup>+</sup>. White solid.

Compound 51

30

35

60

$$O \longrightarrow H \\ NH$$
 
$$CH_3$$

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  12.21 (s, 1H), 9.22 (s, 1H), 8.06 (s, 1H), 8.00 (s, 1H), 7.86 (t, J=8.5 Hz, 1H), 7.45 (d, J=15.8 Hz, 1H), 7.28 (d, J=9.6 Hz, 1H), 7.16 (d, J=8.4 Hz, 1H), 7.05 (d, J=12.2 Hz, 1H), 6.92 (d, J=8.0 Hz, 1H), 5.89 (s, 1H), 2.80 (d, J=6.9 Hz, 4H), 2.45 (d, J=0.7 Hz, 3H), 2.21 (s, 3H), 1.71 (dt, J=13.3, 6.7 Hz, 2H), 0.82 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 438.30[M+H]<sup>+</sup>. White solid.

Compound 55

$$\begin{array}{c|c}
O & H \\
\hline
NH & F
\end{array}$$

$$\begin{array}{c|c}
F \\
\hline
O & OH
\end{array}$$

$$\begin{array}{c|c}
F \\
\hline
S55
\end{array}$$

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  11.88 (s, OH), 9.28 (s, OH), 8.05 (s, 1H), 7.94 (td, J=9.1, 6.5 Hz, 1H), 7.78 (d, J=1.7 Hz, 1H), 7.34-7.24 (m, 1H), 7.13 (d, J=8.3 Hz, 1H), 7.04 (t, J=8.0 Hz, 1H), 6.87 (dd, J=8.2, 1.6 Hz, 1H), 5.84 (s, 1H), 2.70 (d, J=6.8 Hz, 4H), 2.09 (s, 3H), 1.71-1.66 (m, 2H), 65 0.85 (t, J=8.0 Hz, 12H). MS (ESI), m/z (%):  $460.28[M+H]^{+}$ . White solid.

Compound 56

$$CH_3$$
 $O$ 
 $NH$ 
 $CH_3$ 
 $CH_3$ 

<sup>1</sup>H-NMR (300 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 9.28 (s, 1H), 8.63 (s, 1H), 8.33 (s, 1H), 7.88-7.94 (m, 1H), 7.16 (dd, J=4.2, 1.2 Hz, 1H), 7.06 (d, J=1.2 Hz, 1H), 6.95 (d, J=0.6 (d, J=0.6 Hz, 1H), 7.06 (d, J=1.2 Hz, 1H), 7.16 (dd, J=4.2, 20 Hz, 1H), 6.83 (d, J=0.6 Hz, 1H), 5.85 (s, 1H), 2.86-2.90 (m, 1H), 2.86-2.90 (m, 2H), 2.86-2.90 (m, 2H),4H), 2.48 (s, 3H), 2.10 (s, 3H), 1.63-1.71 (m, 2H), 0.82 (d, J=6.0 Hz, 12H). MS (ESI), m/z (%): 456.29[M+H]<sup>+</sup>. White solid.

Compound 396

<sup>1</sup>H-NMR (300 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 0.85 (t, J=-6.9) Hz, 6H), 1.27-1.30 (m, 11H), 2.53 (s, 3H), 2.87-2.89 (m, 4H), 4.13 (q, J=6.9 Hz, 2H), 6.08 (s, 1H), 7.13-7.17 (m, 2H), 7.50 (d, J=9.3 Hz, 1H), 7.70 (d, J=9.3 Hz, 1H), 8.01 (s, 1H), 8.35 (s, 1H), 8.39 (s, 1H), 9.88 (s, 1H). MS (ESI), m/z (%):  $488.55[M+H]^+$ . White solid.

Compound 397

$$\bigcap_{N} \bigoplus_{N \in \mathbb{N}} \bigoplus_{N \in \mathbb{N$$

<sup>1</sup>H-NMR (300 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 0.84 (t, J=6.9) Hz, 6H), 1.20-1.30 (m, 11H), 2.30 (s, 3H), 2.52 (s, 3H), 2.86-2.88 (m, 4H), 4.12 (q, J=6.9 Hz, 2H), 6.07 (s, 1H), 6.87-6.96 (m, 3H), 7.09 (s, 1H), 7.95-8.01 (m, 1H), 8.35 (s, 1H), 8.61 (s, 111), 9.21 (s, 1H). MS (ESI), m/z (%): 484.36[M+H]<sup>+</sup>. White solid.

3H), 2.79 (d, J=12.0 Hz, 4H), 4.13 (q, J=6.0 Hz, 2H), 6.09 (s, 1H), 7.03-7.05 (m, 1H), 7.19-7.23 (m, 2H), 7.29-7.31 (t, =6 Hz, 1H), 7.98-8.01 (m, 1H), 8.05 (d, J=6.0 Hz, 1H), 8.09 (s, 1H), 9.33 (s, 1H). MS (ESI), m/z (%): 488.32[M+5 H]<sup>+</sup>. White solid.

Compound 403

$$HO$$
 $O$ 
 $NH$ 
 $F$ 
 $IO$ 
 $IO$ 
 $IO$ 
 $IO$ 
 $IO$ 

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.19-1.34 (m, 8H), 2.49 (s, 3H), 2.86-2.91 (m, 4H), 6.05 (s, 1H), 6.91 (t, J=8.7 Hz, 3H), 7.00-7.12 (m, 3H), 8.10-8.19 (m, 1H), 8.32 (s, 1H), 8.26 (s, 1H), 8.63 (s, 1H), 9.32 (s, 1H). MS (ESI), m/z (%): 460.29[M+H]<sup>+</sup>. White <sup>25</sup> solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 9.31 (s, 1H), 8.08 (s, 1H), 8.05 (d, J=6.0 Hz, 1H), 7.98-8.03 (m, 1H), 7.29-7.31 (t, J=6 Hz, 1H), 7.19-7.24 (m, 2H), 7.01-7.06 (m, 1H), 6.05 (s, 1H), 2.86-2.90 (m, 4H), 2.48 (s, 3H), 1.69-1.72 (m, 2H), 0.82 (d, J=6.0 Hz, 12H). MS (ESI), m/z (%): 460.27[M+H]<sup>+</sup>. White solid.

Compound 404

$$HO$$
 $O$ 
 $H$ 
 $O$ 
 $NH$ 
 $CH_3$ 
 $35$ 
 $40$ 

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.20-1.30 (m, 8H), 1.80 (s, 3H), 2.43 (s, 3H), 45 2.84-2.89 (m, 4H), 6.05 (s, 1H), 6.86-6.94 (m, 2H), 7.03-7.11 (m, 2H), 7.95-8.00 (m, 1H), 8.29 (s, 1H), 8.59 (s, 1H), 9.19 (s, 1H). MS (ESI), m/z (%): 456.32 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 12.11 (s, 1H), 9.23 (s, 1H), 8.07 (s, 1H), 8.02 (s, 11-), 7.86 (t, J=8.5 Hz, 1H), 7.19 (s, 2H), 7.06 (d, J=12.2 Hz, 1H), 6.95 (d, J=8.2 Hz, 1H), 6.06 (d, J=1.1 Hz, 11H), 2.77 (d, J=6.9 Hz, 4H), 2.46 (d, J=0.7 Hz, 3H), 2.27 (s, 3H), 1.70 (dt, J=13.4, 6.7 Hz, 2H), 0.83 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 456.30[M+H]<sup>+</sup>. White solid.

Compound 564

50

$$\begin{array}{c|c}
 & F \\
 & \downarrow \\$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.83 (d, J=6.0 Hz, 12H), 1.24 (t, J=6.0 Hz, 3H), 1.69-1.72 (m, 2H), 2.49 (s,

Compound 772

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 0.80 (t, J=6.0 Hz, 6H), 1.14-1.25 (m, 11H), 2.48 (s, 3H), 2.73 (t, J=6.0 Hz, 4H), 3.83 (s, 2H), 4.13 (q, J=6.0 Hz, 2H), 6.08 (s, 1H), 7.22-7.25 (m, 4H), 7.37-7.40 (m, 1H), 7.46-7.48 (m, 1H), 8.40 (s, 1H), 8.90 (s, 1H). MS (ESI), m/z (%): 469.34 5 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.59 (s, 1H), 8.07 (d, J=1.9 Hz, 1H), 7.74 (s, 1H), 7.28 (d, J=8.0 Hz, 1H), 7.13 (dt, J=8.5, 5.3 Hz, 2H), 6.98 (s, 1H), 6.93 (d, J 8.4 Hz, 1H), 6.00 (s, 1H), 2.64 (d, J=6.9 Hz, 4H), 2.42 (s, 3H), 2.21 (s, 3H), 2.15 (s, 3H), 1.60 (dd, J=13.0, 6.4 Hz, 2H), 0.78 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 452.32 [M+H]<sup>+</sup>. White solid.

Hz, 6H), 1.13-1.23 (m, 8H), 2.45 (s, 3H), 2.71 (t, J=6.0 Hz, 4H), 3.83 (s, 2H), 6.05 (s, 1H), 7.22-7.27 (m, 4H), 7.37-7.40 (m, 1H), 7.46-7.48 (m, 1H), 8.39 (s, 1H), 8.89 (s, 1H), 12.18 (s, 1H). MS (ESI), m/z (%): 441.15[M+H]<sup>+</sup>. White solid.

Compound 821 ŇH.

<sup>1</sup>H-NMR (500 MHz, DMSO- $d_6$ )  $\delta$  12.17 (s, 1H), 8.80 (d,  $^{1}$ H-NMR (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm): 0.80 (t, J=6.0  $_{25}$  J=15.8 Hz,  $^{1}$ H), 8.33 (s, 1H), 7.43 (t, J=7.4 I-Hz, 1H), 7.36 (dd, J=13.4, 6.2 Hz, 1H), 7.28 (s, 2H), 7.20 (dd, J=12.6, 5.3 Hz, 2H), 6.05 (s, 1H), 3.85-3.77 (m, 2H), 2.61 (t, J=12.7 Hz, 4H), 2.45 (s, 3H), 1.62 (dt, J=12.0, 6.0 Hz, 2H), 0.79 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 441.27 [M+H]<sup>+</sup>. White 30 solid.

Compound 818

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.13 (s, 1H), 8.44 (s, 1H), 8.36 (s, 1H), 7.27-7.12 (m, 6H), 6.00 (s, 1H), 3.74 (s, 2H), 2.50 (s, 2H), 2.48 (s, 2H), 2.41 (s, 3H), 2.22 (s, 31-), 1.51 (dt, J=13.1, 6.4 Hz, 2H), 0.69 (d, J=6.5 Hz, 12H). MS (ESI), m/z (%): 437.31 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  12.16 (s, 1H), 8.72 (d, J=21.6 Hz, 1H), 8.30 (s, 1H), 7.38 (s, 2H), 7.31-7.13 (m, 4H), 6.04 (s, 1H), 3.74 (d, J=18.0 Hz, 2H), 2.59 (t, J=13.6 Hz, 4H), 2.45 (s, 3H), 1.59 (d, J=5.8 Hz, 2H), 0.77 (d, J=5.9 <sup>50</sup> Hz, 12H). MS (ESI), m/z (%): 441.27 [M+H]<sup>+</sup>. White solid.

Compound 820

Compound 861

<sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>) δ 12.12 (s, 1H), 9.42 (s, 1H), 8.20 (d, J=2.1 Hz, 1H), 7.86 (s, 1H), 7.33 (d, J=8.4 Hz, 2H), 7.13 (dt, J=8.4, 5.3 Hz, 2H), 7.06 (d, J=8.3 Hz, 2H), 6.03 (d, J=1.2 Hz, 11H), 2.77 (d, J=5.3 Hz, 2H), 2.53 (t, J=10.7 Hz, 1H), 2.44 (d, J=1.0 Hz, 3H), 2.21 (s, 3H), 1.89-1.79 (m, 2H), 1.64 (d, J=11.7 Hz, 2H), 1.46 (d, J=10.7 Hz, 1H), 1.31 (ddd, J=22.4, 14.4, 7.9 Hz, 2H), 1.14 (ddd, J=30.5, 21.7, 12.0 Hz, 4H), 0.78 (d, J=6.6 Hz, 6H). MS (ESI), m/z (%): 464.33 [M+H]<sup>+</sup>. White solid.

Compound 1021

15

25

40

55

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.86 (t, J=6.9 30 Hz, 61H), 1.19-1.37 (m, 11H), 2.53 (s, 3H), 2.89 (t, J=6.6 Hz, 4H), 4.14 (q, J=6.9 Hz, 2H), 6.09 (d, J=1.2 Hz, 1H), 6.90-6.94 (m, 1H), 7.07-7.15 (m, 2H), 7.19-7.28 (m, 2H), 7.72 (d, J=1.8 Hz, 1H), 8.33 (s, 1H), 8.37 (d, J=1.5 Hz, 1H), 9.57 (s, 1H). MS (ESI), m/z (%): 487.30[M+H]<sup>-</sup>. White solid.

Compound 1022

Compound 1022: R<sup>2</sup> is an ethyl ester group, and the olefinic bond is trans, and the specific structure is as follows:

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 60 Hz, 6H), 1.25-1.35 (m, 11H), 2.50 (s, 3H), 2.89 (m, 4H), 4.09-4.16 (m, 2H), 6.06 (s, 1H), 6.98-7.03 (m, 3H), 7.22-7.27 (m, 1H), 7.35-7.37 (m, 1H), 8.00 (d, J=8.1 Hz, 1H), 8.26 (s, 1H), 8.68 (s, 1H), 8.96 (s, 1H). MS (ESI), m/z (%): 487.29[M+H]<sup>+</sup>. White solid.

Compound 1023

<sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.18-1.33 (m, 11H), 2.53 (s, 3H), 2.86-2.92 (m, 4H), 4.13 (q, J=6.9 Hz, 2H), 7.07-7.15 (m, 2H), 7.23 (d, J=-9.0 Hz, 2H), 7.50 (d, J=9.0 Hz, 2H), 8.32 (s, 1H), 8.38 (s, 1H), 9.53 (s, 1H). MS (ESI), m/z (%): 487.29[M+H]<sup>+</sup>. White solid.

Compound 1024

Compound 1024:  $R^2$  is an ethyl ester group, and the olefinic bond is trans, and the specific structure is as follows:  $^1\text{H-NMR}$  (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.18-1.32 (m, 11H), 2.51 (s, 3H), 2.87-2.89 (m, 4H), 4.12 (q, J=6.9 Hz, 2H), 6.07 (s, 1H), 6.91-6.93 (m, 1H), 7.07-7.17 (m, 311), 8.12-8.14 (m, 1H), 8.33 (s, 1H), 8.36 (s, 1H), 9.31 (s, 1H). MS (ESI), m/z (%): 555.34[M+H]<sup>+</sup>. White solid.

Compound 1025

25

30

R<sup>2</sup> is an ethyl ester group, and the olefinic bond is trans, and the specific structure is as follows:

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.79 (t, J=6.0 Hz, 6H), 1.15 (q, J=6.0 Hz, 4H), 1.23-1.27 (m, 7H), 2.50 (s, 3H), 2.82 (t, J=6.0 Hz, 4H), 3.83 (s, 2H), 4.14 (q, J=6.0, 2H), 6.08 (s, 1H), 7.16 (d, J=12 Hz, 1H), 7.22 (t, J=12 Hz, 1H), 7.34 (d, J=6.0 Hz, 1H), 7.39 (dd, J=12.0, 6.0 Hz, 2H), 7.48 <sub>10</sub> (d, J=6.0 Hz, 2H), 8.45 (s, 1H), 8.97 (s, 1H), 10.37 (s, 1H). MS (ESI), m/z (%): 468.31 [M+H]<sup>+</sup>. White solid.

R<sup>2</sup> is an ethyl ester group, and the olefinic bond is trans, and the specific structure is as follows:

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.81 (t, J=6.0 Hz, 6H), 1.21-1.29 (m, 11H), 2.29 (s, 3H), 2.51 (s, 3H), 2.90 <sup>35</sup> (t, J=6.0 Hz, 41-), 4.15 (q, J=6.0 Hz, 4H), 6.11 (s, 1H), 6.80 (d, J=6.0 Hz, 1H), 7.15-7.25 (m, 4H), 7.36 (s, 1H), 8.35 (s, 1H), 8.39 (d, J=6.0 Hz 1H), 9.49 (s, 1H). MS (ESI), m/z (%): 466.36[M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.83 (t, J=6.0 60 Hz, 6H), 1.13-1.33 (m, 8H), 2.50 (s, 3H), 2.86-2.92 (m, 4H), 6.10 (s, 1H), 7.07-7.09 (m, 1H), 7.13-7.22 (m, 1H), 7.29-7.32 (m, 2H), 7.47 (d, J=12 Hz, 1H), 7.97 (s, 1H), 8.21 (s, 1H), 8.75 (s, 1H), 9.18 (s, 1H). MS (ESI), m/z (%): 459.27 [M+H]<sup>+</sup>. White solid.

Compound 1028

$$\begin{array}{c} O \\ \\ HO \end{array}$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.0 Hz, 6H), 1.21-1.31 (m, 8H), 2.50 (s, 3H), 2.92 (m, 4H), 4.09-4.16 (m, 2H), 6.10 (s, 1H), 7.02-7.03 (m, 1H), 7.27-7.33 (m, 3H), 7.76 (m, 1H), 8.01 (d, J=7.8 Hz, 1H), 8.32 (s, 1H), 8.47 (s, 1H), 9.84 (s, 1H). MS (ESI), m/z (%): 459.29 [M+H]<sup>+</sup>. White solid.

 $^{1}$ H-NMR (300 MHz, DMSO-d<sub>6</sub>) δ (ppm): 0.85 (t, J=6.9 Hz, 6H), 1.24-1.30 (m, 8H), 2.56 (s, 3H), 2.87-2.90 (m, 4H), 6.05 (s, 1H), 7.12-7.16 (m, 2H), 7.46-7.50 (m, 1H), 7.71 (d, J=8.1 Hz, 1H), 8.35-8.38 (m, 2H), 9.85 (s, 1H). MS (ESI), m/z (%): 527.29[M+H]<sup>+</sup>. White solid.

The olefinic bond is trans, Y is S substituted, and R is hydrogen. The specific structure is as follows:

2H), 8.46 (s, 1H), 8.97 (s, 1H), 8.97 (s, 1H), 10.37 (s, 1H), 12.03 (s, 1H). MS (ESI), m/z (%): 440.27[M+H]+. White solid.

7.13 (dd, J=8.3, 1.8 Hz, 1H), 6.67 (s, 1H), 5.65 (s, 1H), 2.63 (d, J=7.2 Hz, 4H), 2.46 (s, 2H), 1.75 (dd, J=13.4, 6.7 Hz, 2H), 0.91 (d, J=6.5 Hz, 12H). MS (ESI), m/z (%): 473.23  $[M+H]^+$ . White solid.

Compound 1033

 $^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.37 (d, J=1.8 Hz, 1H), 8.13 (s, 1H), 7.60 (d, J=2.4 Hz, 1H), 7.38 (d, J=8.7 Hz, 1H), 7.27 (dd, J=9.5, 3.1 Hz, 1H), 7.18 (d, J=8.4 Hz, 1H), 7.12 (dd, J=8.3, 2.0 Hz, 1H), 6.48 (s, 1H), 5.64 (s, 1H), 2.62 (d, J=7.2 Hz, 4H), 2.46 (s, 3H), 1.73 (dp, J=13.4, 6.7 Hz, 25 2H), 0.90 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 474.31 [M+H]<sup>+</sup>. White solid.

Compound 1036

<sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm): 8.43 (s, 1H), 8.03 (s, 1H), 7.29-7.17 (m, 2H), 7.14 (d, J=8.5 Hz, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.97 (d, J=7.5 Hz, 1H), 6.40 (s, 1H), 5.64 (s, 1H), 2.57 (d, J=7.2 Hz, 4H), 2.46 (s, 3H), 2.35 (s, 3H), 1.68 (m, 2H), 0.83 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%):  $419.35[M+H]^+$ . White solid.

Compound 1034 30

<sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.39 (d, J=1.8 Hz, 1H), 8.15 (s, 1H), 7.66 (d, J=9.8 Hz, 2H), 7.46 (t, J=7.8 Hz, 1H), 7.36 (d, J=7.7 Hz, 1H), 7.19 (d, J=8.3 Hz, 1H), 7.12 (dd, J=8.3, 2.0 Hz, 1H), 6.54 (s, 1H), 5.65 (s, 1H), 2.62 (d, J=7.2 Hz, 4H), 2.46 (s, 3H), 1.83-1.65 (m, 2H), 0.90 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 473.29[M+H]<sup>+</sup>. White solid.

Compound 1037

<sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.39 (d, J=1.8 Hz, 1H), 8.12 (s, 1H), 7.46 (s, 1H), 7.27 (d, J=5.6 Hz, 2H), 7.17 45 (d, J=8.3 Hz, 1H), 7.11 (d, J=7.8 Hz, 2H), 6.41 (s, 1H), 5.64 (s, 1H), 2.60 (d, J=7.2 Hz, 4H), 2.46 (s, 3H), 1.72 (m, 2H),  $0.88 (d, J=6.6 Hz, 12H). MS (ESI), m/z (\%): 440.27[M+H]^+.$ White solid.

Compound 1035

50

 $^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.38 (d, J=1.7 Hz, 1H), 8.17 (s, 1H), 7.66-7.48 (m, 4H), 7.19 (d, J 8.4 Hz, 1H), Compound 1038

<sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm): 8.39 (s, 1H), 8.09 (s, 1H), 7.32 (dd, J=25.8, 8.0 Hz, 4H), 7.17 (d, J=8.3 Hz, 1H), 7.11 (d, J=8.3 Hz, 1H), 6.40 (s, 1H), 5.64 (s, 1H), 2.59

(d, J=6.9 Hz, 4H), 2.46 (s, 3H), 1.81-1.64 (m, 2H), 0.88 (d, J=6.3 Hz, 12H). MS (ESI), m/z (%): 440.27[M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ (ppm): 12.13 (s, 1H), <sub>20</sub> 9.42 (s, 1H), 8.16 (d, J=1.9 Hz, 1H), 7.80 (s, 1H), 7.35 (s, 1H), 7.21 (ddd, J=22.3, 20.0, 7.9 Hz, 4H), 6.80 (d, J=7.4 Hz, 1H), 6.07 (s, 1H), 2.74 (d, J=6.9 Hz, 4H), 2.48 (s, 3H), 2.29 (s, 3H), 1.68 m, 2H), 0.90-0.78 (m, 12H). MS (ESI), m/z (%):  $438.30[M+H]^+$ . White solid.

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.66 (s, 1H), 8.24 (s, 1H), 7.33 (dd, J=8.3, 5.7 Hz, 2H), 7.24-7.18 (m, 2H), 7.13 (t, J=8.9 Hz, 2H), 5.91 (d, J=1.1 Hz, 1H), 3.71 (s, 2H), 2.54 (t, J=10.5 Hz, 4H), 2.39 (d, J=0.9 Hz, 3H), 1.55 (dt, J=13.2, 6.4 Hz, 2H), 1.42 (s, 9H), 0.73 (t, J=6.6 Hz, 12H). MS (ESI), 45 m/z (%): 497.39 [M+H]<sup>+</sup>. White solid.

 $^{1}$ H-NMR (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.71 (d, J=34.7 Hz, 1H), 8.31 (s, 1H), 7.38-7.31 (m, 4H), 7.28 (t, J=6.4 Hz, 1H), 7.24 (d, J=8.3 Hz, 2H), 5.95 (d, J=1.2 Hz, 1H), 3.73 (d, J=22.4 Hz, 2H), 2.64-2.53 (m, 4H), 2.43 (d, J=1.0 Hz, 3H), 65 1H), 3.73 (d, J=19.9 Hz, 2H), 2.56 (dd, J=29.0, 6.8 Hz, 4H), 1.58 (dt, J=13.3, 6.5 Hz, 2H), 1.46 (s, 9H), 0.76 (d, J=6.6 Hz, 1.58 (dt, J=13.3, 6.5 Hz, 2H), 1.46 (s, 9H), 0.76 (d, J=6.6 Hz, 1.58 (dt, J=13.3, 6.5 Hz, 2H), 1.46 (s, 9H), 0.76 (d, J=6.6 Hz, 1.58 (dt, J=12H). MS (ESI), m/z (%): 479.37 [M+H]<sup>+</sup>. White solid.

Compound 1042

 $^{1}$ H-NMR (600 MHz, DMSO- $d_{6}$ ) 8.79 (d, J=17.0 Hz, 1H), 8.30 (s, 1H), 7.43 (t, J=7.5 Hz, 1H), 7.35 (dd, J=13.8, 7.1 Hz,1H), 7.27 (s, 2H), 7.20 (dd, J=12.8, 5.9 Hz, 2H), 5.95 (d, J=1.2 Hz, 1H), 3.78 (d, J=25.1 Hz, 2H), 2.59 (dd, J=35.8, 6.6 Hz, 4H), 2.44 (d, J=1.1 Hz, 3H), 1.65-1.56 (nm, 2H), 1.46 (s, 9H), 0.80 (t, J=6.2 Hz, 12H). MS (ESI), m/z (%): 497.39  $[M+H]^+$ . White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  8.48 (s, 1H), 8.38 (s, 1H), 7.32-7.08 (m, 6H), 5.96 (s, 1H), 3.76 (d, J=21.2 Hz, 2H), 2.53 (t, J=9.0 Hz, 4H), 2.44 (s, 3H), 2.25 (d, J=12.5 Hz, 3H), 1.56 (td, J=13.1, 6.5 Hz, 2H), 1.46 (s, 9H), 0.73 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 493.41 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.14 (s, 1H), 8.71 (d, J=28.8 Hz, 1H), 8.33 (s, 1H), 7.39-7.18 (m, 7H), 6.04 (s, 2.45 (s, 3H), 1.67-1.48 (m, 2H), 0.77 (t, J=9.6 Hz, 12H). MS (ESI), m/z (%):  $423.28 [M+H]^+$ . White solid.

Compound 1045

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.69 (s, 1H), 8.06 (d, J=1.7 Hz, 1H), 7.82 (s, 1H), 7.48 (d, J=12.0 Hz, 1H), 7.28 (dd, J=15.2, 8.1 Hz, 1H), 7.15 (ddd, J=16.2, 14.1, 8.2 Hz, 3H), 6.80-6.72 (m, 1H), 5.94 (s, 1H), 2.69 (t, J=10.2 Hz, 4H), 2.42 (s, 3H), 1.64 (dt, J=13.2, 6.5 Hz, 2H), 1.43 (s, 9H), <sup>20</sup> 0.80 (d, J=6.6 Hz, 12H). MS (ESI), m/z (%): 498.37 [M+H]<sup>+</sup>. White solid.

Compound 1046 25

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.57 (d, J=22.5 Hz, 40 1H), 8.06 (d, J=2.0 Hz, 1H), 7.72 (d, J=18.3 Hz, 1H), 7.31 (dd, J=28.4, 9.0 Hz, 1H), 7.12 (dt, J=8.4, 5.3 Hz, 2H), 6.98 (s, 1H), 6.93 (d, J=8.1 Hz, 1H), 5.92 (d, J=1.2 Hz, 1H), 2.70-2.56 (m, 4H), 2.43-2.34 (m, 3H), 2.20 (d, J=8.3 Hz, 3H), 2.16 (d, J=8.7 Hz, 3H), 1.60 (td, J=13.2, 6.5 Hz, 2H), 45 1.47-1.33 (m, 9H), 0.85-0.71 (m, 12H). MS (ESI), m/z (%): 508.41 [M+H]<sup>+</sup>. White solid.

Compound 1047 50

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.72 (s, 1H), 8.08 (d, 7.29-7.24 (m, 1H), 7.21-7.15 (m, 2H), 7.11 (d, J=7.9 Hz, 1H), 6.77-6.72 (m, 1H), 6.03 (d, J=1.1 Hz, 1H), 2.71 (d,

**74** 

J=6.9 Hz, 4H), 2.43 (s, 3H), 1.64 (dd, J=11.9, 5.4 Hz, 2H), 0.81 (t, J=6.2 Hz, 12H). MS (ESI), m/z (%): 442.29 [M+H]<sup>+</sup>. White solid.

Compound 1048

<sup>1</sup>H-NMR (500 MHz, DMSO- $d_6$ )  $\delta$  9.45 (s, 1H), 8.22 (d, J=2.2 Hz, 1H), 7.91 (s, 1H), 7.36 (dd, J=10.7, 5.5 Hz, 2H), 7.19 (d, J=8.4 Hz, 1H), 7.15 (dd, J=8.3, 2.2 Hz, 1H), 7.10 (d, J=8.3 Hz, 2H), 5.99 (d, J=1.2 Hz, 1H), 2.81 (d, J=5.0 Hz, 2H), 2.58 (dd, =23.5, 11.8 Hz, 1H), 2.47 (d, J=1.0 Hz, 3H), 2.25 (s, 3H), 1.87 (d, J=11.1 Hz, 2H), 1.69 (d, J=12.5 Hz, 2H), 1.51 (d, J=8.4 Hz, 1H), 1.48 (s, 9H), 1.33 (ddd, J=25.1, 12.5, 5.5 Hz, 2H), 1.29-1.21 (m, 4H), 0.83 (d, J=6.6 Hz, 6H). MS (ESI), m/z (%): 520.40 [M+H]<sup>+</sup>. White solid.

Compound 1049

<sup>1</sup>H-NMR (500 MHz, DMSO- $d_6$ )  $\delta$  8.89 (s, 2H), 8.04 (td, J=9.1, 6.3 Hz, 1H), 7.68 (d, J=2.2 Hz, 1H), 7.36-7.19 (m, 2H), 7.02 (dd, J=11.4, 4.8 Hz, 1H), 6.87 (d, J=8.5 Hz, 1H), 5.95 (s, 1H), 3.19 (q, J=7.1 Hz, 2H), 2.43 (s, 3H), 1.44 (s, 9H), 1.22 (dd, J=9.1, 5.1 Hz, 3H). MS (ESI), m/z (%): 432.22 [M+H]<sup>+</sup>. White solid.

Compound 1050

$$\bigcap_{NH} \bigcap_{NH} F$$

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  9.40 (s, 1H), 8.71 (s, 11H), 8.53 (s, 1H), 8.20-8.07 (m, 1H), 7.46 (dd, J=15.3, 8.8 J=2.0 Hz, 1H), 7.84 (s, 1H), 7.49 (d, J=12.0 Hz, 1H), 65 Hz, 1H), 7.27 (s, 1H), 7.08-6.96 (m, 2H), 6.05 (s, 1H), 3.28 (d, J=57.3 Hz, 2H), 2.50 (s, 3H), 1.48 (s, 9H), 1.04 (t, J=6.9 Hz, 3H) MS (ESI), m/z (%): 432.23 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 11.88 (s, 1H), 8.63 (s, 1H), 8.21-8.03 (m, 2H), 7.61 (s, 1H), 7.38-7.22 (m, 2H), 7.00 (dt, J=10.3, 5.5 Hz, 1H), 6.66 (d, J=8.6 Hz, 1H), 6.01 (s, 1H), 3.14 (t, J=12.4 Hz, 2H), 2.46 (s, 3H), 1.22 (t, J=7.1 Hz, 3H). MS (ESI), m/z (%): 376.16 [M+H]<sup>+</sup>. White solid. <sup>20</sup>

Compound 1052

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.26 (s, 1H), 9.40 (s, 1H), 8.72 (s, 1H), 8.57 (s, 1H), 8.21-8.10 (m, 1H), 7.54 (d, J=16.3 Hz, 1H), 7.46 (dd, J=15.6, 7.7 Hz, 1H), 7.25-7.17 (m, 1H), 7.01 (ddd, J=22.5, 16.5, 9.2 Hz, 2H), 6.14 (s, 1H), 3.93 (s, 1H), 3.23 (s, 1H), 2.53-2.51 (m, 3H), 1.05 (t, J=7.1 Hz, 3H). MS (ESI), m/z (%): 376.16 [M+H]<sup>+</sup>. White solid.

Compound 1053

50

55

<sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>) δ 9.37 (s, 1H), 8.66 (s, 1H), 8.49 (d, J=1.6 Hz, 1H), 8.11 (dd, J=9.2, 3.1 Hz, 1H), 60 7.50 (s, 1H), 7.40 (dd, J=9.0, 2.7 Hz, 1H), 7.23 (d, J=1.4 Hz, 1H), 7.03 (d, J=9.1 Hz, 1H), 6.95 (d, J=7.7 Hz, 1H), 6.00 (d, J=1.2 Hz, 1H), 3.81 (s, 2H), 3.04 (s, 2H), 2.46 (s, 3H), 1.44 (s, 9H), 0.79 (t, J=7.4 Hz, 3H). MS (ESI), m/z (%): 446.23 [M+H]<sup>+</sup>. White solid.

Compound 1054

$$\bigcap_{NH} \bigcap_{NH} F$$

<sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>) δ 9.33 (s, 1H), 8.72 (s, 1H), 8.47 (d, J=2.0 Hz, 1H), 8.12 (td, J=9.3, 6.1 Hz, 11H), 7.69 (s, 1H), 7.27 (s, 1H), 7.03 (d, J=9.2 Hz, 1H), 6.95 (d, J=9.0 Hz, 1H), 6.00 (d, J=1.2 Hz, 1H), 3.07 (s, 3H), 2.45 (d, J=1.1 Hz, 3H), 1.44 (s, 9H). MS (ESI), m/z (%): 418.22 [M+H]<sup>+</sup>. White solid.

Compound 1055

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.63-11.42 (m, 1H), 9.24 (s, 1H), 8.83-8.55 (m, 2H), 8.36-8.14 (m, 1H), 7.98 (s, 1H), 7.25 (dd, J=33.2, 25.4 Hz, 2H), 6.88-6.81 (m, 2H), 6.21 (s, 1H), 4.02 (s, 1H), 3.20 (s, 1H), 2.65-2.59 (m, 3H), 1.64 (s, 2H), 0.92 (dd, J=14.9, 7.4 Hz, 3H). MS (ESI), m/z (%): 390.21 [M+H]<sup>+</sup>. White solid.

Compound 1056

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 9.17-9.02 (m, 1H), 8.70 (d, J=46.5 Hz, 2H), 8.22 (dd, J=15.1, 9.1 Hz, 1H), 7.96 (s, 1H), 7.30 (s, 2H), 6.86-6.80 (m, 2H), 6.21 (s, 1H), 3.27 (d, J=5.4 Hz, 3H), 2.58 (s, 3H). MS (ESI), m/z (%): 362.26 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 8.45 (s, 1H), 7.96 (s, 1H), 7.63 (d, J=16.0 Hz, 1H), 7.21 (s, 1H), 7.14 (s, 1H), 7.11 (s, 3H), 6.41 (d, J=16.0 Hz, 1H), 4.22 (q, J=7.1 Hz, 2H), 2.53 (d, J=7.2 Hz, 4H), 2.32 (s, 3H), 1.65 (dt, J=13.5, 6.7 Hz, 2H),1.31 (t, J=7.1 Hz, 3H), 0.79 (d, J=6.6 Hz, 12H). MS(ESI), <sub>20</sub> m/z (%): 452.34 [M+H]<sup>+</sup>. White solid.

Compound 1058

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 8.41 (s, 1H), 8.18 (s, 1H), 7.99 (td, J=9.2, 6.0 Hz, 1H), 7.63 (d, J=16.0 Hz, 1H), 7.14 (s, 2H), 6.90-6.81 (m, 2H), 6.39 (s, 1H), 4.23 (q, J=7.1 Hz, 40 2H), 2.59 (d, J=7.3 Hz, 4H), 1.72 (dt, J=13.5, 6.8 Hz, 2H), 1.31 (t, J=7.1 Hz, 3H), 0.88 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 474.33 [M+H]<sup>+</sup>. White solid.

Compound 1059

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 8.14 (s, 1H), 7.86 (t, J=8.4 Hz, 1H), 7.63 (d, J=16.0 Hz, 1H), 7.13 (s, 2H), 6.91 (dd, J=13.5, 10.4 Hz, 2H), 6.42 (d, J=16.0 Hz, 1H), 4.22 (q, J=7.1 Hz, 2H), 2.58 (d, J=7.2 Hz, 4H), 2.30 (s, 3H), 1.71 (dt, J=13.5, 6.8 Hz, 2H), 1.31 (t, J=7.1 Hz, 3H), 0.87 (d, 65 1H), 3.91 (s, 2H), 2.61 (d, J=7.1 Hz, 4H), 2.44 (s, 3H), 1.60 J=6.6 Hz, 12H). MS(ESI), m/z (%): 470.31 [M+H]<sup>+</sup>. White solid.

Compound 1060

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  12.28 (s, 1H), 9.33 (s, 1H), 8.05 (d, J=15.7 Hz, 3H), 7.49 (d, J=15.8 Hz, 1H), 7.30 (d, J=8.3 Hz, 2H), 7.20 (s, 1H), 7.05 (s, 1H), 6.34-6.26 (m, 1H), 2.81 (d, J=6.3 Hz, 4H), 1.77-1.65 (m, 2H), 0.83 (d, J=6.1 Hz, 12H). MS(ESI), m/z (%): 446.23 [M+H]<sup>+</sup>. White solid.

Compound 1061

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  12.30 (s, 1H), 9.22 (s, 1H), 8.06 (s, 1H), 8.01 (s, 11H), 7.88 (t, J=8.5 Hz, 1H), 7.47 (d, J=15.8 Hz, 1H), 7.28 (d, J=9.6 Hz, 1H), 7.18 (d, J=8.4 Hz, 1H), 7.07 (d, J=12.2 Hz, 1H), 6.95 (d, J=8.0 Hz, 1H), 6.30 (d, J=15.9 Hz, 1H), 2.80 (d, J=6.9 Hz, 4H), 2.27 (s, 3H),45 1.71 (dt, J=13.3, 6.7 Hz, 2H), 0.82 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 442.25 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO- $d_6$ )  $\delta$  8.81 (s, 1H), 8.24 (s, 1H), 7.73 (s, 1H), 7.66 (s, 1H), 7.59 (s, 1H), 7.56 (s, 1H), 7.51 (s, 11H), 7.26 (d, J=2.1 Hz, 1H), 7.24 (s, 1H), 5.97 (s, (dd, J=13.4, 6.7 Hz, 2H), 1.46 (s, 9H), 0.77 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 547.38 [M+H]<sup>+</sup>. White solid.

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 8.77 (s, 1H), 8.24 (s, <sup>15</sup> 1H), 7.73 (d, J=1.5 Hz, 1H), 7.66 (s, 2H), 7.51 (d, J=2.7 Hz, 1H), 7.42 (s, 2H), 5.95 (s, 1H), 3.89 (s, 2H), 2.60 (d, J=7.1 Hz, 4H), 2.44 (s, 3H), 1.59 (dd, J=13.3, 6.6 Hz, 2H), 1.46 (s, 9H), 0.76 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 547.38 <sup>20</sup> [M+H]<sup>+</sup>. White solid.

 $^{1}$ H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.04 (s, 1H), 8.73 (s, 1H), 8.27 (s, 1H), 7.44 (s, 1H), 7.38 (s, 1H), 7.36 (s, 1H), 7.27 (d, J=1.9 Hz, 1H), 7.25 (s, 1H), 6.04 (s, 1H), 3.79 (s,  $^{40}$  2H), 2.61 (d, J=7.1 Hz, 4H), 2.45 (s, 3H), 1.60 (dd, J=12.4, 5.8 Hz, 2H), 0.77 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 457.26 [M+H]<sup>+</sup>. White solid.

50

<sup>1</sup>H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.06 (s, 1H), 8.73 (s, 1H), 8.33 (s, 1H), 7.64 (s, 1H), 7.52 (d, J=8.5 Hz, 1H), 7.46 (s, 1H), 7.28 (s, 2H), 6.04 (s, 1H), 3.92 (s, 2H), 2.64 (d, J=7.1 Hz, 4H), 2.45 (s, 3H), 1.64-1.61 (m, 2H), 0.81 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 491.22 [M+H]<sup>+</sup>. White solid.

 $^{1}$ H-NMR (600 MHz, DMSO-d<sub>6</sub>) δ 12.02 (s, 1H), 8.80 (s, 1H), 8.23 (s, 1H), 7.73 (d, J=3.1 Hz, 1H), 7.68-7.66 (m, 1H), 7.27 (d, J=2.0 Hz, 1H), 7.25 (s, 1H), 7.21 (d, J=8.3 Hz, 1H), 6.93 (d, J=6.7 Hz, 1H), 6.04 (s, 1H), 3.90 (s, 2H), 2.62 (d, J=7.0 Hz, 4H), 2.45 (s, 3H), 1.59 (d, J=4.2 Hz, 2H), 0.76 (d, J=6.6 Hz, 12H). MS(ESI), m/z (%): 491.21 [M+H]<sup>+</sup>. White solid.

Test Method and Results of Inhibition Rate of IDO1 Enzyme in Hela Cells:

Human cervical cancer cell line Hela (obtained from Chinese academy of sciences cell bank) was cultured in logarithmic growth phase and counted after routine digestion. RPMI 1640 complete medium (Corning, USA, containing 10% FBS) was used to adjust the concentration to Ix 10'/ml, inoculated into 96-well plates, 100 ul/well, incubated for 24 hours.

Stimulant solution configuration: Human recombinant IFN-γ(Shanghai Sangon Biotech) was subpacked according to the instructions, the concentration was adjusted twice as high as the final concentration by RPMI1640 complete medium, that is 100 ng/ml.

Compounds solution configuration: DMSO was used to dissolve the drug, and then RPMI 1640 was used to dilute the drug to twice the detection concentration.

The old culture medium were discarded from 96-well plates, and added 100 ul stimulation solution and 100 ul compounds solution to each hole; set up interferon growth control group, each group had three multiple holes; incubated 48 hours.

180 uL medium from 96-well plate were collected and mixed with 45  $\mu$ L of 30% (W/V) trichloroacetic acid. Plate was centrifuged for 5 min at 8000 rpm. The supernatant was added with fresh 4-dimethylaminobenzaldehyde (2%, W/V). After full shock, measured at 480 nm using a ElISA reader.

TABLE 7

|    | Inhibition rate of compounds | on IDO1 activity enzy | yme in Hela cells |  |  |  |
|----|------------------------------|-----------------------|-------------------|--|--|--|
|    |                              | Inhibition rate (%)   |                   |  |  |  |
| 55 | Compound Number              | 10 μmol               | 100 nmol          |  |  |  |
|    | Compound 9                   | 100                   | 100               |  |  |  |
|    | Compound 13                  | 100                   | 100               |  |  |  |
|    | Compound 14                  | 100                   | 100               |  |  |  |
| 60 | Compound 396                 | 100                   | 69.2              |  |  |  |
| 60 | Compound 397                 | 100                   | 75.5              |  |  |  |
|    | Compound 403                 | 100                   | 76.4              |  |  |  |
|    | Compound 404                 | 100                   | 73.2              |  |  |  |
|    | Compound 518                 | 100                   | 76.8              |  |  |  |
|    | Compound 525                 | 100                   | 75.1              |  |  |  |
|    | Compound 564                 | 100                   | 72.2              |  |  |  |
| 65 | Compound 772                 | 100                   | 74.2              |  |  |  |
|    | Compound 779                 | 100                   | 77.1              |  |  |  |

Inhibition rate of compounds on IDO1 activity enzyme in Hela cells

|                 | Inhibition rate (%) |          | _  |
|-----------------|---------------------|----------|----|
| Compound Number | 10 μmol             | 100 nmol |    |
| Compound 1021   | 100                 | 42.1     | 10 |
| Compound 1022   | 53.7                | 21.2     |    |
| Compound 1023   | 100                 | 35.1     |    |
| Compound 1024   | 58.2                | 29.5     |    |
| Compound 1025   | 68.8                | 24.6     | 15 |
| Compound 1026   | 54.3                | 21.0     |    |
| Compound 1027   | 100                 | 71.1     |    |
| Compound 1028   | 100                 | 41.5     |    |
| Compound 1030   | 100                 | 23.8     | 20 |
| Compound 1031   | 72.7                | 29.6     |    |

The compounds described in the above table have certain 25 inhibitory effects, Compounds 9, 13 and 14 can inhibit IDO-1 activity 100% at 100 nmol concentration.

TABLE 8

| IC <sub>50</sub> Value (nmol/L) of compounds on IDO1<br>enzyme activity in Hela cells |                                                 |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Compound Number                                                                       | Inhibition rate<br>IC <sub>50</sub><br>(nmol/L) |  |
| Compound 13                                                                           | 3.69                                            |  |
| Compound 14                                                                           | 0.18                                            |  |
| Compound 51                                                                           | 3.69                                            |  |
| Compound 55                                                                           | 0.09                                            |  |
| Compound 56                                                                           | 0.13                                            |  |
| Compound 525                                                                          | 1.36                                            |  |
| Compound 530                                                                          | 8.26                                            |  |
| INCB024360                                                                            | 3.78                                            |  |
| IN-4                                                                                  | 1.56                                            |  |

As shown in the table above, the  $IC_{50}$  of the compounds is lower than 100 nmol/L, and the activities of the compounds 525, 13, 14, 56, 55 and 51 can reach or exceed those of the positive control drugs INCB024360 and IN-4, indicating that these compounds have good IDO1 enzyme inhibitory activities.

As shown in Table 7 and Table 8 above, these compounds have potential therapeutic effects on colorectal cancer, pancreatic cancer, breast cancer, prostate cancer, lung cancer, 55 ovarian cancer, cervical cancer, renal cancer, head and neck cancer, lymphoma, leukemia or melanoma with high expression of IDO1. It has potential therapeutic effects on other diseases such as viral infection, depression, organ transplant IDO1.

INCB024360 control sample was purchased from Beijing Innochem Technology Co., Ltd. with batch number WG0292821-160526001. IN-4 was purchased from Med- 65 chem Express Biotechnology Company, USA, with batch number Lot #19346.

**82** 

Pharmacokinetic Test and Results of Compound 55:

12 Male Sprague-Dawley rats were grouped random. The final concentration of compound 55 was 1.5 mg/ml. The drug was dissolved in a solvent system of 10% DMSO, 10% hydrogenated castor oil and 90% normal saline (compounds were dissolved by DMSO, hydrogenated castor oil and saline in turn by vortex or ultrasound), and the drug solution was given orally (30 mg/kg). The rats were fasted overnight but had free access to water, feeding resumed 4 hours after administration. Blood samples (0.3-0.4 mL) were collected into heparinized tubes by Retinal vein plexus at 0, 0.17, 0.33, 0.67, 1, 2, 4, 7, 10 and 24 hours after administration orally. Tubes were anticoagulated with heparin sodium (5% heparin sodium solution filled EP tube, poured out, dried). 100 uL plasma was obtained by centrifugation (10000 rpm, 3 min) and stored at -20° C. before analysis.

TABLE 9

| Oral pharmacokinetic data of compound 55 |              |                 |
|------------------------------------------|--------------|-----------------|
| Testing Compound                         | Unit         | Compound 55     |
| Dosage                                   | mg/kg        | 30 mg/kg        |
| AUC<br>T1/2                              | ng·h/mL<br>h | 43655.98<br>5.0 |
| Cmax                                     | ng/mL        | 16760.13        |

The results showed that compound 55 had good pharmacokinetic parameters.

Pharmacodynamics of Some Compounds In Vivo (Intraperitoneal Injection):

The anti-colon cancer CT26 activity of these compounds rejection or autoimmunity caused by high expression of 60 was tested in vivo. 1×10<sup>6</sup> CT26 cells were inoculated subcutaneously in the right axillary of BALB/c mice by cell suspension inoculation. When the growth of tumors were clearly observed, 42 moderately tumor size animals were selected and randomly divided into test group, solvent control group and positive drug group, with 6 animals in each group. The positive drug group was given 1-methyl-D-tryptophan 300 mg/kg daily by oral, and the INCB024360

group was given compound INCB024360 50 mg/kg daily by intraperitoneal injection. The compound groups were intraperitoneally injected with 50 mg/kg of the compound every day, while the solvent control group was given the same dosage with the same volume of mixed solvent. The weight of the mice and the length and short diameter of the transplanted tumors were measured three times a week during the administration. The tumor volume (VT), relative volume (RVT) and tumor proliferation rate (T/C %) were calculated. After two weeks of administration, nude mice bearing tumors in each experimental group were executed by neck-lifting method. Solid tumour tissues were completely dissected. The weight of tumors in each experimental group was measured and the growth inhibition rate (%) was calculated.

TABLE 10

Statistical table of tumor weight and inhibition rate

| of tumor weight |                       |                         |                           |  |  |
|-----------------|-----------------------|-------------------------|---------------------------|--|--|
| Group           | Number of animals (n) | Tumor<br>weight<br>(mg) | Inhibition<br>rate<br>(%) |  |  |
| Vehicle         | 6                     | 3368.00 ± 557.96        | 0.0                       |  |  |
| 1-MT            | 6                     | 2509.17 ± 352.16        | 25.5                      |  |  |
| INCB024360      | 6                     | $3026.17 \pm 409.75$    | 10.23                     |  |  |
| Compound 14     | 6                     | $2727.33 \pm 404.42$    | 19.02                     |  |  |
| Compound 55     | 6                     | 2121.17 ± 343.15        | 37.02                     |  |  |

At the end of the experiment, the I-MT activity of the 35 positive drug was better than that of INCB024360, and compound 55 was equivalent to that of 1-MT, which was better than that of INCB024360.

Pharmacodynamic of Some Compounds In Vivo (Oral Administration):

The anti-colon cancer CT26 activity of these compounds was tested in vivo.  $1 \times 10^6$  CT26 cells were inoculated subcutaneously in the right axillary of BALB/c mice by cell suspension inoculation. When the growth of tumors were 45 clearly observed, 56 moderately tumor size animals were selected and randomly divided into test group, solvent control group and positive drug group, with 8 animals in each group. In the positive drug group, INCB024360 was given 50 mg/kg each time, compound 14 was given 50 50 mg/kg each time, compound 55 low dose group, compound 55 middle dose group and compound 55 high dose group were given 20 mg/kg, 50 mg/kg and 100 mg/kg respectively, compound 55 intraperitoneal injection group was given 50 mg/kg each time. The solvent control group was given the same volume of mixed solvents by oral. The above groups were administered twice a day. The weight of the mice and the length and short diameter of the transplanted tumors were measured three times a week during the administration. 60 The tumor volume (VT), relative volume (RVT) and tumor proliferation rate (T/C %) were calculated. After two weeks of administration, nude mice bearing tumors in each experimental group were executed by neck-lifting method. Solid tumour tissues were completely dissected. The weight of 65 tumors in each experimental group was measured and the growth inhibition rate (%) was calculated.

TABLE 11

| Statis                                                                                                   | _                                    | umor weight<br>tumor weig  | t and inhibition rate<br>tht                                                                                                        | <b>;</b>                                           |
|----------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Group                                                                                                    | Dose<br>(mg/kg)                      | Number of animals (n)      | Tumor<br>weight<br>(mg)                                                                                                             | Inhibition<br>rate<br>(%)                          |
| Solvent control INCB024360 O Compound 55 Compound 55 Compound 55 Compound 14 Compound 55 (Incompound 55) | 50<br>20<br>50<br>100<br>50<br>P) 50 | 8<br>8<br>8<br>8<br>8<br>8 | 1267.13 ± 331.64<br>840.63 ± 144.34<br>1109.75 ± 191.47<br>924.25 ± 150.35<br>847.00 ± 305.01<br>793.38 ± 246.34<br>824.00 ± 161.64 | 33.66<br>12.42<br>27.06<br>33.16<br>37.39<br>34.97 |

At the end of the experiment, the activity of compound 55, high dose group and compound 14 was similar to that of positive drug INCB024360.

Combining with the previous intraperitoneal injection in vivo pharmacodynamics experiments, compound 55 has better pharmacodynamics than INCB024360 under the condition of single administration per day, and is equivalent to INCB024360 under the condition of twice administration per day. The T1/2 data of INCB024360 reported in the literature were 2.3 hours and that of compound 55 was 5.0 hours. Combining animal pharmacodynamics experiment and pharmacokinetics experiment data, compound 55 has better pharmacokinetic properties than INCB024360, and can achieve considerable pharmacodynamics with fewer times of administration.

#### We claim:

1. A vinylarene derivative having formula I, its stereoisomer, cis-trans isomer, tautomer and pharmaceutically acceptable salt thereof where formula I includes:

and wherein

$$R^2$$
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $R^5$ 
 $R^6$ 
 $R^5$ 
 $R^6$ 
 $R^8$ 
 $R^8$ 

W is NH;
X is NH or CH<sub>2</sub>;
Y is O;
J is C;

K is C;

M is C;

R<sup>1</sup> and R<sup>2</sup> is selected from COOH,

or COOCH<sub>2</sub>CH<sub>3</sub>;

R<sup>3</sup> is selected from CH<sub>3</sub>;

R<sup>4</sup> is selected from H;

R<sup>5</sup> is selected from H;

R<sup>6</sup> is selected from H;

86

R<sup>7</sup> and R<sup>8</sup> are the same or different and selected from n-butyl or isobutyl;

R<sup>9</sup> is selected from 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,4-difluorophenyl, 2-fluoro-4-methylphenyl, 3-trifluoromethyl-4-chlorophenyl, phenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2-fluorophenyl, 4-fluorophenyl, 3-fluorophenyl or 5-methylisoxazolyl.

2. A treatment method comprising administering to a subject with a cancer selected from colon cancer, pancreatic cancer, breast cancer, prostate cancer, lung cancer, ovarian cancer, cervical cancer, kidney cancer, head and neck cancer, lymphoma, leukemia or melanoma an effective amount of the vinylarene derivative described in claim 1.

3. A pharmaceutical composition comprising an effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.

\* \* \* \* \*