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DYNAMIC APPLICATION MANAGEMENT
ACROSS MULTI-CLOUD COMPUTING
ENVIRONMENT

FIELD D

The field relates generally to information processing
systems, and more particularly to techniques for dynamic
application management in multi-cloud computing environ-

10
ments.

BACKGROUND

Enterprises are increasingly developing strategies to uti-
lize multiple cloud service providers for hosting their soit-
ware application programs (applications). For example, it 1s
becoming more common place for enterprises to gradually
move their applications to cloud platforms. In many cases,
an application may be composed of multiple jobs or func- ,,
tions (1.e., software components) that collectively form the
application. However, to move a large number of software
components associated with an application to a single cloud
platform requires a significant amount of manual engineer-
ing eflort in terms of refactoring, testing and release man- 25
agement. Also, since cloud infrastructures do not have

shared standards between them, attempting to move soft-
ware components of a given application between multiple
cloud platforms would demand the same significant amount

e

of manual effort. 30

15

SUMMARY

Embodiments of the invention provide techmiques for
dynamic application management 1n a multi-cloud comput- 35
ing environment.

For example, 1n one embodiment, an apparatus comprises
at least one processing platform comprising one or more
processing devices. The at least one processing platform 1s
configured to: execute a portion of an application program in 40
a first virtual computing element, wherein the application
program comprises at least one portion of marked code;
receive a request for execution of the portion of marked
code; determine, based at least 1n part on the portion of
marked code, one or more cloud platforms on which to 45
execute the portion of marked code; and cause the portion of
marked code 1dentified 1n the request to be executed on the
one or more cloud platforms.

Advantageously, illustrative embodiments enable devel-
opers to decompose an application to identify soltware 50
components with code-markers, and have these components
running on different clouds dynamically based on user-
defined policies. By defining and moditying these user-
defined policies, the scheduling of the software components
can be adjusted dynamically without re-deployment of the 55
application. Furthermore, as placing and adjusting code-
markers 1n code 1s relatively quick, developers can quickly
test out diflerent decomposition and orchestration settings,
making software development, refactoring and testing much
casier than the traditional process. While some embodiments 60
are well suited for implementation 1n PaaS/FaaS architec-
tures, alternative embodiments can be implemented 1n any
suitable computing environment that would benefit from one
or more dynamic application management functionalities.

These and other features and advantages of the invention 65
will become more readily apparent from the accompanying,
drawings and the following detailed description.

2
BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 depicts a computing environment with dynamic
application management with which one or more illustrative
embodiments can be implemented.

FIG. 2 depicts an example of a code-marker for dynamic
application management in a multi-cloud computing envi-
ronment according to an illustrative embodiment.

FIG. 3 illustrates dynamic application management con-
trollers and interceptors according to an illustrative embodi-
ment.

FIG. 4 depicts an example of code for use with dynamic
application management in a multi-cloud computing envi-
ronment according to an illustrative embodiment.

FIG. § illustrates a dynamic application management
controller and router according to an illustrative embodi-
ment.

FIG. 6 illustrates an example of a decomposed application
managed 1n a multi-cloud computing environment according
to an illustrative embodiment.

FIG. 7 depicts a processing platiorm used to implement
dynamic application management in a multi-cloud comput-
ing environment according to an illustrative embodiment.

DETAILED DESCRIPTION

Ilustrative embodiments will be described herein with
reference to exemplary information processing systems and
associated host devices, storage devices and other process-
ing devices. It 1s to be appreciated, however, that embodi-
ments are not necessarily restricted to use with the particular
illustrative system and device configurations shown.
Accordingly, the term “information processing system’™ as
used herein 1s mtended to be broadly construed, so as to
encompass, for example, processing systems comprising
cloud computing and storage systems, as well as other types
ol processing systems comprising various combinations of
physical and virtual computing resources. An mnformation
processing system may therefore comprise, for example, a
cloud infrastructure hosting multiple tenants that share cloud
computing resources. Such systems are considered examples
of what are more generally referred to herein as cloud
computing environments.

Furthermore, some cloud infrastructures are within the
exclusive control and management of a given enterprise, and
therefore are considered “private clouds.” The term “enter-
prise” as used herein 1s mtended to be broadly construed,
and may comprise, for example, one or more businesses, one
Oor more corporations or any other one or more entities,
groups, or organizations. An “entity” as illustratively used
herein may be a person or a computing system. On the other
hand, cloud infrastructures that are used by multiple enter-
prises, and not necessarily controlled or managed by any of
the multiple enterprises but rather are respectively controlled
and managed by third-party cloud providers, are typically
considered “public clouds.” Thus, enterprises can choose to
host their applications or services on private clouds, public
clouds, and/or a combination of private and public clouds
(hybrid cloud computing environment). A computing envi-
ronment that comprises multiple cloud platforms (private
clouds, public clouds, or a combination thereof) 1s referred
to as a “multi-cloud computing environment.”

Moreover, phrases “computing environment,” “cloud
environment,” “cloud computing platform,” *“cloud infra-
structure,” “data repository,” “data center,” “data processing
system,” “‘computing system,” “data storage system,”
“information processing system,” and the like as used herein

2 &k
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are mtended to be broadly construed, so as to encompass, for
example, any arrangement of one or more processing
devices.

[lustrative embodiments, as will be further explained,
provide dynamic application management comprising
decomposition, transformation and orchestration of an appli-
cation across a multi-cloud computing environment.

Decomposing an application nto jobs or functions (soft-
ware components) that execute 1n a computing environment
1s very time consuming and takes a lot of manual work. Such
computing environments may include cloud computing ser-
vices including Platform-as-a-Service (PaaS) or Function-
as-a-Service (FaaS). PaaS 1s a computing service imple-
mented m a cloud computing environment i which a
third-party provider (PaaS provider) provides hardware and
software tools (hosted on the PaaS provider infrastructure)
to enable a user to develop and manage an application. Thus,
the user develops and manages the application and the
service platform 1s managed by the PaaS provider. In con-
trast, FaaS 1s a computing service implemented 1n a cloud
computing environment i which a third-party provider
(FaaS provider) provides hardware and soitware tools
(hosted on the FaaS provider infrastructure) to enable a user
to develop and manage application functions without the
complexities of developing and deploying a monolithic
application. Thus, the user develops and manages the appli-
cation functions and the service platiorm 1s managed by the
FaaS provider. Many times, such computing services also
comprise Container-as-a-Service (CaaS) which 1s a service
that enables users to manage containers deployed to execute
application functions. As illustratively used herein, a “con-
tainer” 1s a processing component that includes logical
processing functionalities that enable an application (or a
subset of one or more functions) to execute in a seli-
contained manner. In comparison to another logical process-
ing component known as a “‘virtual machine” which 1s
managed by a hypervisor and utilizes virtual machine hard-
ware, a container system provides operating system services
from the underlying host and 1solates the application using
virtual-memory hardware. While embodiments are
described herein from the perspective of a container system,
it 1s to be appreciated that alternative embodiments can

employ other logical processing components such as but not
limited to virtual machines. Contamners and/or virtual
machines may also be referred to herein as examples of
“virtual computing elements.”

Thus, for example, decomposing an application involves
refactoring on both application code and the test suite, as
well as creating separate container 1mages and deployment
manifests 1f the functions service does not support raw code
compilation. After the application 1s refactored into jobs or
functions, it 1s still quite diflicult to maintain, as there could
be tens of jobs and hundreds of functions for a typical
application, making long-term maintenance diflicult and
cost heavy.

Furthermore, with container-orchestration serverless
architectures becoming more popular, owners of monolithic
style applications or microservices are seeking transforma-
tion mto the serverless or container world. “Serverless™
refers to a cloud computing model (PaaS/FaaS/CaaS) where
the customer does not pay for underutilized resources, rather
functions are taken as mput and resources are typically only
used to run them at execution time. As mentioned, this type
ol transition involves manual refactoring of existing mono-
lithic applications or microservices which requires large
amounts ol human resources and time.
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A solution has been proposed to enable a developer to
mark one or more software components (one or more
functions) of an application that they want to execute on a
separate container without fully refactoring the monolithic
application or microservice. For example, the solution
cnables a marked software component of an application
running i a main container to be executed 1n a separate
container via a container spawning process that utilizes a
function calling chain. A *“container spawn” refers to, for
example, a containerized piece of code which runs separate
from the main container or application. However, such a
solution does not propose a mechanism for performing this
function calling chain in a multi-cloud computing environ-
ment. There are a significant number of problems related to
even single cloud usage, such as compliance, cost and
security. Since every cloud’s interface and operation (e.g.,
specialties, pricing, compliance and security capabilities,
ctc.) 1s different, decomposing applications into a multi-
cloud computing environment requires a new type ol models
and Tunctionalities. Additionally, the problem of how to load
balance requests for different clouds and decide when to
spawn a function out to a separate container on a cloud has
to be addressed. Because of these and other 1ssues, 1t would
make 1t much more complicated and arduous for developers
to mark functions properly so that each function would be
run via its optimal cloud provider. These and other limita-
tions associated with the above-mentioned container spawn-
ing process will now be further described.

Decomposing an application and orchestrating software
components across multiple cloud providers. An application
may have multiple software components. Fach of these
components may have specific characteristics that would
more 1deally be executed in different cloud environments,
depending on the specialties (functionalities) of the cloud
oflerings. Currently, engineering teams would need to spend
a large amount of manual engineering eflort to decompose
an application into individual executable components and
orchestrate them across multiple cloud providers by manual
deployment or creating custom deployment scripts.

Although the industry has been somewhat united by the
open-container-mitiative, cloud service providers still have
different standards and application programming interfaces
(APIs) around configuration, function APIs, event triggers,
etc. Microservices and functions developed for one cloud
platform (e.g., Amazon Web Services (AWS) Lambda) do
not have a clear path of migration across clouds and data-
centers without a significant manual engineering el

ort.

Diflicult to orchestrate each software component on the
optimum cloud provider. Each monolithic application or
microservice 1s currently expected to be hosted on one single
cloud platform and duplicated across cloud platforms. How-
ever, 1t 1s realized that 1t takes a significant amount of
manual engineering eflort to break apart an application to be
executable across multiple cloud platforms, so that each
soltware component of the application can utilize the special
infrastructure and capabilities offered by specific cloud
providers (e.g., a realization that a given application resides
on a private cloud platiorm, but part of the application needs
to utilize a tensor processing unit (TPU) from Google Cloud
Platform (GCP)).

Different cloud providers have differences in compliance
or security. Most of today’s compames have terabytes of
data and they acquire more data as they grow. Because of the
type of the data, many companies rely on a private cloud
platform to keep that data secure. Government regulations
also play a role 1n how this data 1s managed. Companies
must follow government regulations relating to where this
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data can be stored, for example, the General Data Protection
Regulation (GDPR) which 1s a regulation in the European
Union (EU) specilying data protection and data privacy
requirements in the EU.

Furthermore, to access this data, companies typically keep
their software on this same private cloud platform. Keeping
the data and software 1n their own private cloud can start to
become expensive, with server management costs racking
up. To reduce cost, 1t may be appropriate for a company to
host 1ts software on a public cloud platform while accessing,
its’ data on the private cloud. However, dividing the sofit-
ware and data mto two different systems can bring 1ts own
cost. This would have to be done manually and can include
a significant amount of duplicate work in order to be able to
enable different portions of code to communicate with one
another. Such work can include hours of manual labor and
can be error prone. There 1s also always the possibility of
changed government regulations and/or new government
restrictions, which may mean placing old code on a new
cloud platform that meets the changed/new regulations.

Diflicult to trial-and-compare on application decomposi-
tion to optimize execution and cost. As cloud service pro-
viders typically charge based on consumption, 1t 1s dithcult
to determine which cloud service provider would provide
measurable cost and/or execution advantage for individual
soltware components. Furthermore, the computation and
memory consumption depend on how the software compo-
nents are split from the oniginal application.

Following traditional software engineering methodolo-
gies, developers would need to manually refactor the appli-
cation to separate out each software component, going
through the entire lifecycle of development, testing, pack-
aging, and deployment. Then, operators would need to have
multiple testing rounds by deploying each software compo-
nent on each cloud service provider to measure the hosting,
COst.

Each testing round will likely take weeks, and the cost of
software engineering and deployment would likely out-
welgh the hosting cost reduction. As a result, most applica-
tions are hosted sub-optimally, costing unnecessary hosting,
charges.

Data gravity problems with multi-cloud workload orches-
tration. Applications, microservices, and functions are typi-
cally hosted alongside their data and data services. As
enterprises are increasing their mvestments on hybrid and
multi-cloud strategies, this data gravity problem becomes
more complex, as data may now reside in multiple locations.
Transmitting a large amount of data back and forth across
cloud platforms 1s not eflicient 1n terms of network cost and
execution time.

Currently, when an application needs to access data from
multiple location, the architecture needs to be specially
design. Some architectures leverage virtual private networks
(VPNs) and remote data connections (which usually impact
performance), some duplicate data across multiple locations
(leading to unnecessary storage and network cost, while
running into data consistency issues), while others split up
the application to have software components executed
alongside the data.

Orchestrating software components across private and
public clouds. Currently, there are eflorts from large cloud
vendors trying to provide multi-cloud services; however, the
cllort usually leads the users to stick with a single vendor.
For instance, Kubernetes provides Kube federation which
allow users to connect clusters of Kubernetes in public and
private clouds. Additionally, Amazon Web Services has
public cloud serving and Amazon Outpost has private cloud
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serving. While eflforts of bridging public and private clouds
are being made, there 1s no solution on connecting across
public and private clouds (1.e., cross platforms). Usually, the
user would need to develop their application once and
deploy them on multiple cloud platforms in public and
private.

Ilustrative embodiments overcome the above and other
challenges by enabling developers to decompose an appli-
cation to identily software components with code-markers,
and have these components running on different clouds
dynamically based on user-defined policies. By defining and
moditying these user-defined policies, the scheduling of the
soltware components can be adjusted dynamically without
re-deployment of the application. Furthermore, as placing
and adjusting code-markers 1n code 1s relatively quick,
developers can quickly test out different decomposition and
orchestration settings, making software development, refac-
toring and testing much easier than the traditional process.
Thus, a “code-marker” refers to, for example, a piece of
code mnserted 1n or near a function and meant to mark the
function as being designated to execute on diflerent clouds
dynamically based on user-defined policies.

Referring now to FIG. 1, a multi-cloud computing envi-
ronment with dynamic application management 1s depicted.
More particularly, computing environment 100 comprises
dynamic application management system 110 operatively
coupled to a multi-cloud computing architecture 130. As
shown, dynamic application management system 110 com-
prises the following modules: a controller(s) 112, a code
marking library module 114, a code wrapper module 116 and
a code generation module 118, which will each be described
in further detail below. As will be evident from further
description below, there can be a plurality of controllers
(e.g., a controller cluster) in accordance with 1llustrative
embodiments. Note that multi-cloud computing architecture
130 represents a portion of a multi-cloud computing envi-
ronment (e.g., comprising multiple cloud platforms, one or
more of which may be configured with PaaS/FaaS/CaaS
services). As shown, multi-cloud computing architecture
130 comprises an application 132 and a multi-cloud runtime
environment 134. Note that while modules or other compo-
nents 1n dynamic application management system 110 are
depicted separately from multi-cloud computing architec-
ture 130, 1t 1s to be understood that, 1n illustrative embodi-
ments, one or more such modules or components, and/or
other components associated with or otherwise generated by
these modules or components (e.g., mterceptors, routers,
code-wrappers, code-generators, function registry, etc.), are
or can be implemented within multi-cloud computing archi-
tecture 130, as will be further explained below.

While other modules or components to be described
herein below may play a role in dynamic application man-
agement, three modules: controller 112, code-marking
library module 114 and code-wrapper module 116, play
main roles as will be further explained. Furthermore,
depending on the programming language that the application
1s written 1n, code generation module 118 may be utilized as
will be explained. The following description will explain
how dynamic application management according to illus-
trative embodiments works at different time-periods: (1)
development; (11) pre-compilation—code generation; (i11)
post-compilation; and (1v) runtime.

(1) Development Time-Period

In one or more illustrative embodiments, code-marking
library module 114 i1s embedded in application 132 and
serves two main purposes: (1) identifying the decomposed
software components of application 132 at development
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time; and (11) communicating with controller 112 at runtime
and route function 1nvocation according to decisions made
by controller 112.

Code-marking library module 114 provides developers
the ability to annotate their code to mark which software
component can be decomposed. Depending on the program-
ming language of the application 132, there are multiple
mechanism that can be used for implementation of code-
markers. By way of example only, a comment can be used
for the Go programming language or Golang (//go:generate
directive), a macro for C/C++, an annotation for Java, a
tfunction-wrapper for Nodeys, etc. A developer places these
code-markers at strategic locations in the application 132, as
execution from the method and further mnvocation chain can
be executed 1n 1solation.

(11) Pre-Compilation—Code Generation Time-Period

Generating interceptor and code-wrapper for each cloud
platform. I the programming language requires the use of a
code-generator (e.g., Go programming language), an addi-
tional step 1s performed prior to compiling application 132,
1.€., code generation via module 118. For other programming
languages that do not require the use of a code generator,
code generation can be skipped.

The code-marker 1n the application code annotates the
method (1.e., function) that needs to be decomposed, for
example, see the Go application code 200 mn FIG. 2. As
shown 1 FIG. 2, the code generator (“spawn” i this
example) 1s an executable binary that 1s invoked for each
annotated method. The code generator, by parsing the
abstract syntax tree of the application, evaluates the method.
The code generator also uses the label from the comment
(“write-large-temp-1ile” 1n this example) as an mput. Based
on the signature of the annotated method, the code generator
generates a method with the exact signature as the original
method. This method, however, embeds an 1nterceptor (de-
scribed 1n the Runtime section below). The code generator
1s template-based. The templates are 1dentified by the second
argument in the comment (“knative:aws™ 1n this example).
This argument 1dentifies the platforms that this method can
potentially execute on (1.e., Knative or AWS). Based on the
template (one for each distinct platform API), a code-
wrapper 1s also generated. This code-wrapper 1s responsible
for being invoked by the cloud platforms and bridging the
gap between the platform and the method by transforming
the mput and output of the method (described 1n the Runtime
section below). Also based on the template, the code gen-
erator can generate a deployment configuration (i.e., a yaml
manifest), so that controller (to be described further 1n FIG.
3) knows how to orchestrate these workloads at runtime. In
sum, the interceptor and code-wrapper are generated after
this step and they are ready for compilation.

Generating an mterceptor router. Likewise, an interceptor
router 1s generated for the controller to schedule the work-
load for different clouds. The router takes one or more
parameters that are passed to the function and transterred
along to the appropriate interceptors. This router receives
commands from the controller to know where to route the
function. These operations are illustrated and further
described below 1n the context of FIG. 3.

FIG. 3 illustrates an example 300 of dynamic application
management controllers and interceptors according to an
illustrative embodiment. More particularly, FIG. 3 shows a
call tflow for how a request to an application 1s handled with
the use of dynamic application management system 110.
Assume the request comes 1nto the local container 302, and
the main function which was requested 1s mvoked. Any
functions which were referenced are also invoked, assume
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here Functions 2, 3, 4 and 5. In the call flow, as shown, main
function calls Function 2 and Function 3, and Function 2
calls Function 4, while Function 3 calls Function 5. Assume
turther that Function 2 and Function 3 1n local container 302
are previously marked by the application developer with
code-markers identifying cloud platforms that each function
can potentially execute on. As further shown, the invocation
of Function 2 1s mtercepted by interceptor 304, while the
invocation of Function 3 1s intercepted by interceptor 306.
Each interceptor (304 and 306) communicates with control-
ler cluster 308 to coordinate which cloud platforms the
respective code-marked function will execute on. Controller
cluster 308 represents multiple controllers, for example, one
controller for each interceptor. Note that, as explained
above, a code-marking library module can be used to
identily the code-marked functions.

As further shown, controller cluster 308 communicates
through network device 310 with respective cloud intercep-
tors, Cloud 1 interceptor 312 and Cloud 2 interceptor 314.
Cloud 1 interceptor 312 is operatively coupled to Cloud 1
serverless container 320, while Cloud 2 interceptor 314 1s
operatively coupled to Cloud 2 serverless container 330. In
Cloud 1 serverless container 320, function registry 322
identifies the function to be invoked as specified through the
controller cluster 308, and invokes the function, e.g., 1n this
example, Function 3. Similarly, in Cloud 2 serverless con-
tainer 330, function registry 332 1dentifies the function to be
invoked as specified through the controller cluster 308, and
invokes the function, e.g., 1n this example, Function 2. Note
further that Function 5 m Cloud 1 serverless container 320
depends from Function 3 (as 1s the case 1n local container
302). Function 5 in container 320 can be code-marked to
cause interceptor 324 to communicate back to the local
container 302 through controller cluster 308. Similarly,
Function 4 1n Cloud 2 serverless container 330 depends from
Function 2 (as 1s the case 1n local container 302) and can be
code-marked to cause interceptor 334 to communicate back
to local container 302 through controller cluster 308. For
example, 1n this manner, responses from the cloud-executed,
spawned functions (Functions 2, 3, 4 and 5) are sent back
through the local container 302 so that the responses are
received by the original caller (requestor). Details of how
code-generators and code-wrappers enable the above-men-
tioned functions in FIG. 3 to be spawned 1n cloud-based
containers will be further explained below.

(111) Post-Compilation

It 1s to be appreciated that the code generator (spawn 1n
this example) 1s configured to create a different set of
deliverables or executables for different serverless cloud
platforms. For instance, 1f the developer specifies the code-
generator to generate a code-wrapper for Knative and AWS,
it will 1nitiate a set of Knative service deployment yaml files
and a zip file for AWS Lambda function. Those deliverables
are ready to be uploaded to both platforms. However, belore
uploading the software components, spawn requests the
platforms’ credentials in order to upload the code-wrapper.
To login to a platform, the system can run ‘spawn-admin
login knative” or ‘spawn-admin login aws’, then 1t will
prompt the system accordingly. After setting up the creden-
tials, the command to upload the deliverable 1s executed. For
example, for spawn in Golang, the command 1s: spawn-
admin upload knative:aws. Note that systems will not be
charged by having uploaded software component stored.
Most serverless cloud platforms charge customers on the
number of requests the endpoint recerves, so 1f there are no
or few requests coming 1n, the system will typically not be

billed.
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(1v) Runtime

FIG. 4 1llustrates example code 400 of a runtime work-
flow of the code generator spawn (see FIG. 2). The term
“system” as used 1n this example may refer to one or more
modules of the dynamic application management system
described herein.

1. Code-marking function to decompose into software
components. At the beginning, the function to be broken
down into separate software components 1s code-marked.
For example, as depicted 1n FIG. 2 1n Golang (Go program-
ming language), the following code-marking can be mserted
on top of the function:

//go-generate write-large-temp-file knative:aws

func WriteLargeTempFile(content string) string {

;

This means that the code generator will create a controller
interceptor and a code-wrapper for this function.

2. Generate the mterceptors and controller router for cloud
platforms. After the user marks each software component to
be separated, “go generate ./pkgname” 1s called. Then, the
system generates the interceptor packages as spawnpkg-
name (for Knative) and spawnpkgnameaws (for AWS).
These interceptors include the interceptor code for each
plattorm. In addition, a Makefile on how to build the
code-wrapper for the package 1s also generated. Further-
more, a controller router zip file named router-<random-
uid>.zip 1s generated to be uploaded to the controller later.

3. Generate the code-wrapper for cloud platiorms. After
generating the interceptors, the system generates the code-
wrapper to upload them to the platform. To do this, the
system runs ‘make all” and the command reads the generated
Maketfile to build the code-wrapper for each platiorm. As an
example, for Knative, the system creates a zip file containing
the container image; and for AWS, 1t creates a zip file for
AWS Lambda.

4. Upload 1t to the clouds. To upload the deliverables to
the clouds, the system uses another command that 1s delivers
with the spawn bundle. The clouds run ‘spawn-admin
upload aws:knative’ (assuming that they already entered
their AWS credentials, Knative credentials, and Docker
registry credentials to a previous prompt from the code-
generator). After that, the code-wrapper zip files are
uploaded to the clouds. Notes that the application developer
will not be charged for having its files stored idly in the
cloud but rather only if there are many requests coming 1n.

5. Register the router to the controller. As described 1n
step 2, a router-<random-wuid>.zip file 1s generated. This file
contains the mapping for the function name, cloud name,
and function parameters. The system uploads this file to the
controller using the command ‘spawn-admin upload router
router-<random-uid>.zip’ to upload the router logic. FIG. 5
illustrates an example 500 of how a router 504 looks up a
function uniform resource 1dentifier (URI) on diflerent cloud
platforms 1n response to function calls from controller 502.

Furthermore, dynamic application management also pro-
vides dynamic orchestration. For example, in accordance
with one or more 1illustrative embodiments, developers are
able to define characteristics and needs of software compo-
nents with code-markers (for example, “fast-execution,”
“need-gpu,” “top-secret,” etc.). The information technology
(IT) operators are responsible for defining policies to handle
those developer demands (for example, “top-secret software
components should be executed 1n underground datacenter
A”).

Based on the characteristics described with respect to the
code-markers by the developers and the policies defined by
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the operators, dynamic orchestration can be performed by
the controller (e.g., one of the controllers of controller
cluster 308 1n FIG. 3) to select a specific cloud that best fits
the needs of a specific software component. If the demands
and policies cannot evaluate to an environment, the control-
ler 1s configured to fall back to a catch-all policy. For
example, if no environment can satisly both demands of
“storage-optimized” and “gpu-enabled,” then a catch-all
policy (e.g., default policy) applies and selects an environ-
ment based on the priority specified in the code-markers.

The dimensions and functionalities of the policy defini-
tions are based on the use-case. At a minmimum, 1n some
embodiments, the controller 1s configured with a policy-
engine that maps abstractions from code-markers to the
execution environments of one or more clouds, enabling
dynamic orchestration across the multiple clouds.

With the abilities described above, the soitware compo-
nent can execute on different clouds. For each executing
soltware component, 1t 1s possible to retrieve or calculate the
information about 1t, such as how much time it took or how
much money 1t cost, etc. If the software component crashed
or was not able to start at all, failure logs are retrieved and
sent to the controller.

Furthermore, based on previous runtime telemetry (for
example, execution time and cost), when a software com-
ponent can be orchestrated to multiple environments based
on the code-marker and policies, the orchestrator (control-
ler) can also make a more optimized decision on where to
orchestrate the software component. This functionality can
be performed with a pre-defined priority list based on the
average of these runtime statistics.

Advantageously, as described herein, illustrative embodi-
ments provide code generation and function transiormation
to enable mobility across multiple cloud platforms. More
particularly, illustrative embodiments generate code-wrap-
pers, terceptors and mapping arguments to transform local
functions into serverless cloud platform deliverables (e.g.,
container images, vaml files, and zip files). Furthermore,
illustrative embodiments provide commands to upload these
deliverables to the platforms. Prior to this dynamic appli-
cation management for multi-cloud computing environ-
ments, the developers would read the API of each platform
and manually translate their applications’ functions accord-
ingly in order to upload the software components to the
cloud. Also, they would need to make sure that their argu-
ments and parameters were correctly translated and mapped.
Because such a conventional translation process takes a lot
of manual effort, once an application 1s successtully trans-
formed to execute on a cloud platiform, it 1s unlikely that the
developer would go through the process again for another
cloud platform. Since illustrative embodiments enable
developers to go through the process automatically on
multiple cloud platforms, users now have the choice of
moving their applications to different cloud platforms. This
capability can also be applied for functions to gain mobility.
For example, 1f a function 1s written against the cloudeven-
t.10 standard, according to illustrative embodiments, a func-
tion wrapper can be generated, so that the function can be
executed on AWS Lambda.

Further, as described herein, illustrative embodiments
provide for decomposing an application and orchestrating
individual components on targeted inirastructure 1in an opti-
mal cloud. More particularly, a spawn instruction 1s used to
decompose an application into software components to run
on multiple cloud providers. At the same time, spawn
provides a controller cluster to orchestrate calling chains of
these components. When a component 1s called, 1t sends the
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function parameters to the controller. Then, the controller
decides which cloud to spawn the function on and then sends
the function parameters accordingly. In addition, the con-
troller chooses the most optimal cloud to run the software
component.

Still further, as described herein, 1llustrative embodiments
provide for user-defined policies of multi-cloud software
component execution around compliance. More particularly,
illustrative embodiments introduce the concept of a policy-
based function execution system. The controller takes in
policy information in order to schedule which cloud to run
the function. There are many criteria to consider for a policy
such as, but not limited to, compliance, cost, utilization,
processing time, etc. For instance, when considering com-
pliance as one of the policy constraints, users would specily
which software component should be run 1n a private
datacenter for the data to stay local relative to the software
component. As the controller could schedule workload
based on compliance automatically, 1t will prevent leaking
data incidences that do not comply with the company or
government’s rules.

Additionally, as described herein, illustrative embodi-
ments provide for policy-based multi-cloud optimization.
More particularly, i1llustrative embodiments enable a user to
AB test their software components and bring the cost down
for doing so. As mentioned above, users would want to test
which cloud 1s best for them to host their software compo-
nents to optimize run time and bring down cost. However,
decomposing an application mnto software components and
testing them on multiple clouds manually 1s very dithcult
and costly. For each time the users refactor their code into
components to run on a different cloud, the users would go
through the entire development cycle again such as reading
cloud APIs, writing tests, coding cloud adaptors, etc. on the
cloud that they are refactoring and testing. This means that
many requests would be made during their testing process,
thus inducing significant development cost. In accordance
with illustrative embodiments, the user would not need to
worry about their cost of developing on a cloud. Rather, they
can compare the cost of running their software among
clouds and come up with the best options for their software
in terms of cost.

[lustrative embodiments also provide for orchestrating
soltware components to the cloud platform that 1s optimal
for data gravity. More particularly, 1llustrative embodiments
enable the user to move their software components to where
their data resides. There are many problems with moving,
data across clouds such as duplication of data, data incon-
sistency, data loss, or data unavailability. There 1s significant
cost associated with trying to resolve those issues with
conventional methods. Instead, illustrative embodiments
enable breaking the necessary components to reside the data
and process them. At the same time, i1t could split those less
data focused components, which aggregate the results of the
other heavy processing data components, mto other clouds
which would save cost. For example, if there are five data
sources 1n five different locations all around the world, the
application can be broken down into six pieces, with the
main piece hosted at the least cost-expensive location, while
the other five components can be hosted where the data
sources are located.

By way of further advantage, illustrative embodiments
provide automation to write once and deploy everywhere.
More particularly, i1llustrative embodiments enable a user to
focus on developing its application while deploying the
application to multiple cloud platforms on either public or
private clouds. Currently, each cloud provider 1s attempting,
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to enable both public and private clouds for their brand. For

instance, AWS ollers public AWS and private AWS Out-
posts. Kubernetes on GCP offers K8S federation. Dell EMC
has vSphere and Virtustream. The barnier 1s not only
between public and private clouds but also between each
platform and brand name. Illustrative embodiments bridge
all these gaps so that the user would only focus on devel-
oping their applications instead of focusing on brand name,
locality, compliance and cost.

Use-Case: Multi-Cloud Strategy and Workload Placement

Assume a hyper-scale soltware provider oflers a SaaS
application. It 1s spending a significant amount of money on
hosting costs for both data and workload with 1ts current
cloud service provider. The software provider decides that 1t
might be a good 1dea to move the data to another cloud
service. Looking at different cloud services, the provider
notices that 1t would still pay a prohibitive amount. Further
assume that while selecting a cloud service that works, the
soltware provider notices that many cloud services give
them resources such as storage that some parts of the code
need but others do not need. They notice that 11 they divide
the code 1nto sections, they might use less money so they do
research on it.

After research, the software provider has decided to host
theirr data and workload with the following multi-cloud
strategy:

1. Relational database—Cloud Service Provider A

2. Non-relational database—Cloud Service Provider B

3. Object Storage—Cloud Service Provider C

4. Sensitive Data—Private Datacenter with Dell hardware

5. AI/ML workload and Data warehousing—Cloud Ser-
vice Provider D

6. All other workloads—Cloud Service Provider E

The software prowder decides to divide their code, but
quickly notices that this 1s not an easy task. The first hurdle
encountered 1s dividing the code 1n a way that would still
allow the code work correctly. This process would take a
considerable number of man-hours to perform. Once this 1s
done, the second hurdle encountered 1s that not all the
soltware provider’s software 1s compatible with the optimal
cloud service. This code would have to be changed or an
adapter would have to be generated to be able to run the
code. Other costs would also have to be considered, e.g.,
management and regulations. Using the conventional pro-
cess with all i1ts hurdles, 1t 1s evident that it can be diflicult
to move code to a multi-cloud computing environment and
its can be expensive. However, 1n accordance with 1llustra-
tive embodiments, developers can distinguish code seg-
ments and the system automatically runs them in different
cloud systems. As 1llustrated 1n example 600 of FIG. 6, the
soltware prowder can distinguish parts to be run in different
cloud services, 1.e., code 602 runs on the cloud platform of
cloud service provider 604, code 606 runs on the cloud
platiorm of cloud service provider 608, code 610 runs on the
cloud platform of cloud service provider 612, and code 614
runs on the cloud platform of cloud service provider 616.
Advantageously, using the dynamic application manage-
ment techniques described herein whereby code-markers
display which code to run where, the application can be
divided 1n minutes, and run on different clouds.

FIG. 7 depicts a processing platform 700 used to imple-
ment dynamic application management i a multi-cloud
computing environment, according to an 1illustrative
embodiment. More particularly, processing platform 700 1s
a processing platform on which a computing environment
with functionalities described herein (e.g., FIGS. 1-6 and
otherwise described herein) can be implemented.
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The processing platform 700 1n this embodiment com-
prises a plurality of processing devices, denoted 702-1,
702-2, 702-3, . . . 702-N, which communicate with one
another over network(s) 704. It 1s to be appreciated that the
methodologies described herein may be executed in one
such processing device 702, or executed in a distributed
manner across two or more such processing devices 702. It
1s to be further appreciated that a server, a client device, a
computing device or any other processing platform element
may be viewed as an example ol what 1s more generally
referred to herein as a “processing device.” As 1llustrated in
FIG. 7, such a device generally comprises at least one
processor and an associated memory, and implements one or
more functional modules for instantiating and/or controlling,
features of systems and methodologies described herein.
Multiple elements or modules may be implemented by a
single processing device 1n a given embodiment. Note that
components described 1n the architectures depicted in the
figures can comprise one or more ol such processing devices
702 shown 1n FIG. 7. The network(s) 704 represent one or
more communications networks that enable components to
communicate and to transfer data therebetween, as well as to
perform other functionalities described herein.

The processing device 702-1 in the processing platform
700 comprises a processor 710 coupled to a memory 712.
The processor 710 may comprise a miCroprocessor, a micro-
controller, an application-specific imtegrated circuit (ASIC),
a field programmable gate array (FPGA) or other type of
processing circuitry, as well as portions or combinations of
such circuitry elements. Components of systems as dis-
closed herein can be implemented at least 1n part 1n the form
of one or more soltware programs stored in memory and
executed by a processor of a processing device such as
processor 710. Memory 712 (or other storage device) having,
such program code embodied therein 1s an example of what
1s more generally referred to herein as a processor-readable
storage medium. Articles of manufacture comprising such
processor-readable storage media are considered embodi-
ments of the mvention. A given such article of manufacture
may comprise, for example, a storage device such as a
storage disk, a storage array or an integrated circuit con-
taining memory. The term “article of manufacture™ as used
herein should be understood to exclude transitory, propa-
gating signals.

Furthermore, memory 712 may comprise electronic
memory such as random-access memory (RAM), read-only
memory (ROM) or other types of memory, 1n any combi-
nation. The one or more software programs when executed
by a processing device such as the processing device 702-1
causes the device to perform functions associated with one
or more of the components/steps of system/methodologies 1in
FIGS. 1-6. One skilled in the art would be readily able to
implement such software given the teachings provided
herein. Other examples of processor-readable storage media
embodying embodiments of the invention may include, for
example, optical or magnetic disks.

Processing device 702-1 also includes network interface
circuitry 714, which 1s used to interface the device with the
networks 704 and other system components. Such circuitry

may comprise conventional transceivers of a type well
known 1n the art.

The other processing devices 702 (702-2, 702-3, . . .
702-N) of the processing platform 700 are assumed to be
configured 1n a manner similar to that shown for computing
device 702-1 in the figure.

The processing plattorm 700 shown in FIG. 7 may
comprise additional known components such as batch pro-
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cessing systems, parallel processing systems, physical
machines, virtual machines, virtual switches, storage vol-
umes, etc. Again, the particular processing platform shown
in this figure 1s presented by way of example only, and the
system shown as 700 in FIG. 7 may include additional or
alternative processing platforms, as well as numerous dis-
tinct processing platforms in any combination.

Also, numerous other arrangements of servers, clients,
computers, storage devices or other components are possible
in processing platform 700. Such components can commu-
nicate with other elements of the processing platform 700
over any type of network, such as a wide area network
(WAN), a local area network (LAN), a satellite network, a
telephone or cable network, or various portions or combi-
nations of these and other types of networks.

Furthermore, it 1s to be appreciated that the processing
platform 700 of FIG. 7 can comprise virtual (logical) pro-
cessing elements implemented using a hypervisor. A hyper-
visor 1s an example of what 1s more generally referred to
herein as “virtualization infrastructure.” The hypervisor runs
on physical infrastructure. As such, the techniques 1llustra-
tively described herein can be provided in accordance with
one or more cloud services. The cloud services thus run on
respective ones of the virtual machines under the control of
the hypervisor. Processing platform 700 may also include
multiple hypervisors, each running on 1its own physical
infrastructure. Portions of that physical infrastructure might
be virtualized.

As 1s known, virtual machines are logical processing
clements that may be instantiated on one or more physical
processing elements (e.g., servers, computers, processing
devices). That 1s, a “virtual machine” generally refers to a
soltware implementation of a machine (i.e., a computer) that
executes programs like a physical machine. Thus, different
virtual machines can run different operating systems and
multiple applications on the same physical computer. Vir-
tualization 1s 1mplemented by the hypervisor which 1s
directly inserted on top of the computer hardware 1n order to
allocate hardware resources of the physical computer
dynamically and transparently. The hypervisor affords the
ability for multiple operating systems to run concurrently on
a single physical computer and share hardware resources
with each other.

It was noted above that portions of the computing envi-
ronment may be implemented using one or more processing
platforms. A given such processing platform comprises at
least one processing device comprising a processor coupled
to a memory, and the processing device may be implemented
at least 1n part utilizing one or more virtual machines,
containers or other virtualization infrastructure. By way of
example, such containers may be Docker containers or other
types of containers. As illustratively used herein, a container
1s considered a ‘“virtual computing element” (e.g., unit of
soltware) that packages application code and its dependen-
cies so that the application 1s executed quickly and reliably
from one computing environment to another. A Docker
container 1mage 1s a lightweight, standalone, executable
package of software that includes all components needed to
execute an application.

The particular processing operations and other system
functionality described 1n conjunction with FIGS. 1-7 are
presented by way of illustrative example only, and should
not be construed as limiting the scope of the disclosure in
any way. Alternative embodiments can use other types of
operations and protocols. For example, the ordering of the
steps may be varied 1n other embodiments, or certain steps
may be performed at least in part concurrently with one
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another rather than senally. Also, one or more of the steps
may be repeated periodically, or multiple instances of the
methods can be performed 1n parallel with one another.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many varnations may be made in the
particular arrangements shown. For example, although
described 1n the context of particular system and device
configurations, the techniques are applicable to a wide
variety of other types of data processing systems, processing,
devices and distributed virtual infrastructure arrangements.
In addition, any simplifying assumptions made above 1n the
course of describing the illustrative embodiments should
also be viewed as exemplary rather than as requirements or
limitations of the invention. Numerous other alternative
embodiments within the scope of the appended claims will
be readily apparent to those skilled in the art.

What 1s claimed 1s:

1. An apparatus comprising:

at least one processing platform comprising one or more

processing devices;

said at least one processing platiorm being configured to:

execute a portion of an application program 1n a {first
virtual computing element, wherein the application
program comprises at least one portion of marked
code;

receive a request for execution of the portion of marked
code;

determine, based at least in part on the portion of
marked code, one or more cloud platforms on which
to execute the portion of marked code; and

cause the portion of marked code identified i the
request to be executed on the one or more cloud
platforms;

wherein causing the portion of marked code 1dentified 1n

the request to be executed on the one or more cloud

platforms comprises, for a given one of the one or more

cloud platforms:

instantiating a second virtual computing element
remote from the virtual computing element at the
given cloud platiorm;

generating a code wrapper for the given cloud platiform,
the code wrapper being configured for transforming
input and output of the portion of marked code
between the first virtual computing element and the
second virtual computing element; and

providing the generated code wrapper to the given
cloud platform.

2. The apparatus of claim 1, wherein the processing
platform 1s further configured to determine the one or more
cloud platiforms on which to execute the portion of marked
code based on at least one policy.

3. The apparatus of claim 2, wherein the at least one
policy comprises determination criteria including one or
more ol compliance, cost, utilization, data gravity, and
processing time.

4. The apparatus of claim 1, wherein the processing
platiorm 1s further configured to determine an optimal cloud
platform among the one or more cloud platforms on which
to execute the portion of marked code.

5. The apparatus of claim 1, wherein the one or more
cloud platforms comprise at least one of one or more of
private cloud platforms and one or more public cloud
platforms.

6. The apparatus of claim 1, wherein the processing
platform 1s turther configured to cause the portion of marked
code 1dentified 1n the request to be executed by managing
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orchestration of the execution of the portion of the marked
code within a determined one of the one or more cloud
platforms.
7. The apparatus of claim 1, wherein the processing
platform 1s further configured to obtain credentials for a
determined one of the one or more cloud platforms.
8. The apparatus of claim 1, wheremn the portion of
marked code 1s marked by the code-wrapper.
9. The apparatus of claim 1, wheremn the portion of
marked code comprises at least one application function.
10. The apparatus of claim 1, wheremn the first virtual
computing element 1s a first container and the second virtual
computing element comprises a second container remote
from the first container.
11. The apparatus of claim 1, wherein the processing
platform comprises one or more of a controller, a code-
marking library module, and a code-wrapper module.
12. The apparatus of claim 11, wherein the processing
platform further comprises a code generation module.
13. A method comprising:
executing a portion of an application program in a first
virtual computing element, wherein the application
program comprises at least one portion of marked code;

recerving a request for execution of the portion of marked
code;

determiming, based at least in part on the portion of

marked code, one or more cloud platforms on which to
execute the portion of marked code; and

causing the portion of marked code identified 1n the

request to be executed on the one or more cloud
platforms;

wherein causing the portion of marked code identified 1n

the request to be executed on the one or more cloud

platforms comprises, for a given one of the one or more

cloud platforms:

instantiating a second virtual computing eclement
remote from the virtual computing element at the
given cloud platform;

generating a code wrapper for the given cloud platform,
the code wrapper being configured for transforming,
input and output of the portion of marked code
between the first virtual computing element and the
second virtual computing element; and

providing the generated code wrapper to the given
cloud platform;

wherein the steps are performed by at least one processing

platform comprising one or more processing devices.

14. The method of claim 13, wherein the step of deter-
mining the one or more cloud platforms on which to execute
the portion of marked code 1s based on at least one policy.

15. The method of claim 14, wherein the at least one
policy comprises determination criteria including one or
more ol compliance, cost, utilization, data gravity, and
processing time.

16. The method of claim 13, further comprising deter-
mining an optimal cloud platform among the one or more
cloud platforms on which to execute the portion of marked
code.

17. The method of claim 13, wherein the one or more
cloud platforms comprise at least one of one or more of
private cloud platforms and one or more public cloud
platforms.

18. The method of claim 13, wherein the first virtual
computing element 1s a first container and the second virtual
computing element 1s a second container remote from the
first container.
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19. An article of manufacture comprising a non-transitory platforms comprises, for a given one of the one or more
processor-readable storage medium having stored therein cloud plattorms:
program code of one or more software programs, wherein nstantiating a second virtual computing element
the program code when executed by at least one processing remote from the virtual computing element at the
device causes said at least one processing device to perform > SIVEll cloud platiorm: .
steps of: generating a code wrapper for the given cloud platform,

the code wrapper being configured for transforming,
input and output of the portion of marked code
between the first virtual computing element and the
second virtual computing element; and

providing the generated code wrapper to the given cloud

platform.

20. The article of claim 19, wherein the step of determin-
ing the one or more cloud platforms on which to execute the
portion ol marked code 1s based on at least one policy,
wherein the at least one policy comprises determination
criteria including one or more of compliance, cost, utiliza-
tion, data gravity, and processing time.

executing a portion of an application program 1n a first
virtual computing element, wherein the application
program comprises at least one portion of marked code;

receiving a request for execution of the portion of marked 1©
code;

determining, based at least in part on the portion of
marked code, one or more cloud platforms on which to
execute the portion of marked code; and

causing the portion of marked code identified in the 15
request to be executed on the one or more cloud
platiorms;

wherein causing the portion of marked code 1dentified 1n
the request to be executed on the one or more cloud S I T
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