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HDR IMAGE REPRESENTATIONS USING
NEURAL NETWORK MAPPINGS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of prionty to U.S.
Provisional Patent Application No. 62/654,614, filed Apr. 9,

2018, and to European Patent Application No. 18166320.4,
filed Apr. 9, 2018, both of which are hereby 1incorporated by

reference in their entirety.

TECHNOLOGY

The present invention relates generally to images. More
particularly, an embodiment of the present invention relates
to mapping high dynamic range 1mages from one represen-
tation to another using neural network mappings.

BACKGROUND

As used herein, the term ‘dynamic range’ (DR) may relate
to a capability of the human visual system (HVS) to perceive
a range of intensity (e.g., luminance, luma) in an 1image, e.g.,
from darkest grays (blacks) to brightest whites (highlights).
In this sense, DR relates to a ‘scene-referred’ intensity. DR
may also relate to the ability of a display device to
adequately or approximately render an intensity range of a
particular breadth. In this sense, DR relates to a ‘display-
referred’ intensity. Unless a particular sense 1s explicitly
specified to have particular significance at any point in the
description herein, 1t should be inferred that the term may be
used 1n either sense, e¢.g. mterchangeably.

As used herein, the term high dynamic range (HDR)
relates to a DR breadth that spans the 14-15 orders of
magnitude of the human visual system (HVS). In practice,
the DR over which a human may simultaneously perceive an
extensive breadth in intensity range may be somewhat
truncated, i1n relation to HDR. As used herein, the term
visual dynamic range (VDR) may individually or inter-
changeably relate to the DR that 1s perceivable within a
scene or i1mage by a human visual system (HVS) that
includes eye movements, allowing for some light adaptation
changes across the scene or image. As used herein, VDR
may relate to a DR that spans 5 to 6 orders ol magnitude.
Thus, while perhaps somewhat narrower 1n relation to true
scene referred HDR, VDR nonetheless represents a wide DR
breadth and may also be referred to as HDR.

In practice, 1mages comprise one or more color compo-
nents (e.g., luma Y and chroma Cb and Cr) wherein each
color component 1s represented by a precision of n-bits per
pixel (e.g., n=8). Using linear luminance coding, images
where n=8 (e.g., color 24-bit JPEG images) are considered
images of standard dynamic range, while 1mages where n>8
may be considered images of enhanced dynamic range.
HDR 1mages may also be stored and distributed using
high-precision (e.g., 16-bit) floating-point formats, such as
the OpenEXR file format developed by Industrial Light and
Magic.

Most consumer desktop displays currently support lumi-
nance of 200 to 300 ¢d/m” or nits. Most consumer HDTV's
range from 300 to 500 nits with new models reaching 1000
nits (cd/m?). Such conventional displays thus typify a lower
dynamic range (LDR), also referred to as a standard
dynamic range (SDR), 1n relation to HDR. As the availabil-
ity of HDR content grows due to advances 1n both capture
equipment (e.g., cameras) and HDR displays (e.g., the
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2

PRM-4200 professional reference monitor from Dolby
Laboratories), HDR content may be color graded and dis-
played on HDR displays that support higher dynamic ranges
(e.g., from 1,000 nits to 5,000 nits or more).

As discussed 1n U.S. Pat. No. 8,811,490, “Multiple color
channel, multiple regression predictor,” by G-M Su et al.,
image prediction techniques play a significant role in the
ellicient coding and distribution of HDR content using both
single-layer and multi-layer coding techniques. Image pre-
diction can be considered a special case of 1mage mapping,
where an 1mage in a first representation (say, 1 terms of
dynamic range and/or color gamut, ¢.g., an SDR 1mage) 1s
mapped to an 1mage of a second representation (e.g., an
HDR 1mage).

In artificial neural networks, according to the “universal
approximation theorem,” given appropriate parameters, a
wide range of functions could be represented by a variety of
simple neural networks (NNs). As appreciated by the mnven-
tors here, improved techniques for image mapping between
HDR 1mages and/or derivative HDR or SDR 1mages using
simple neural networks are desired.

US 2010246940 A1 describes a method of generating a high
dynamic range 1mage and an electronic device using the
same. The method includes loading a brightness adjustment
model created by a neural network algorithm; obtaining an
original 1mage; acquiring a pixel characteristic value, a first
characteristic value 1n a first direction, and a second char-
acteristic value 1n a second direction of the original image;
and generating an HDR 1mage through the brightness adjust-
ment model according to the pixel characteristic value, the
first characteristic value, and the second characteristic value
of the oniginal image. The electronic device includes a
brightness adjustment model, a characteristic value acqui-
sition unit, and a brightness adjustment procedure. The
clectronic device acquires a pixel characteristic value, a first
characteristic value, and a second characteristic value of an
original 1image through the characteristic value acquisition
unit, and generates an HDR image from the original image
through the brightness adjustment model.

WO02018064591 (Al) describes methods for generating
video Iframes using neural networks. One of the methods
includes processing a sequence of video frames using an
encoder neural network to generate an encoded representa-
tion; and generating a predicted next frame pixel by pixel
according to a pixel order and a channel order, comprising:
for each color channel of each pixel, providing as iput to a
decoder neural network (1) the encoded representation, (11)
color values for any pixels before the pixel 1n the pixel order,
and (111) color values for the pixel for any color channels
betore the color channel in the channel order, wherein the
decoder neural network 1s configured to generate an output
defining a score distribution over a plurality of possible
color values, and determining the color value for the color
channel of the pixel by sampling from the score distribution.
In Fahd Bouzaraa “CNN Based Non-Local Color Mapping”,
2016 IEEE International Symposium on Multimedia ISM,
11 Dec. 2016, pages 313-316, color mapping for transfernng
the colors of an 1mage to a reference distribution 1s dis-
cussed. In this way, it 1s possible to simulate diflerent camera
exposures using a single image, e.g., by transforming a dark
image to a brighter 1mage showing the same scene. Most
approaches for color mapping are local in the sense that they
just apply a pixel-wise (local) mapping to generate the color
mapped 1image. In the presented approach, however, a non-
local mapping 1s proposed which 1s based on learned fea-
tures directly from the image-texture, using a convolutional
neural network.
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The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therelore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section quality as prior
art merely by virtue of their inclusion in this section.
Similarly, i1ssues i1dentified with respect to one or more
approaches should not assume to have been recognized 1n
any prior art on the basis of this section, unless otherwise
indicated.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the present invention is illustrated by
way ol example, and not in way by limitation, 1n the figures
of the accompanying drawings and in which like reference
numerals refer to similar elements and 1n which:

FIG. 1 depicts an example data flow for coding and
transmitting HDR data;

FIG. 2A depicts an example HDR encoding system:;

FIG. 2B depicts an example HDR decoding system:;

FIG. 3A depicts an example system for generating a
global mapping using neural networks, according to an
embodiment of the present ivention;

FIG. 3B depicts an example system for generating a local
mapping using neural networks, according to an embodi-
ment of the present mnvention;

FIG. 3C depicts an example system for generating a
global mapping with multiple grades using neural networks,
according to an embodiment of the present invention;

FIG. 3D depicts an example system for generating a
global mapping using a single YCbCr network according to
an embodiment of the present invention;

FIG. 3E depicts an example system for a predictor using
a single YCbCr neural network mapping according to an
embodiment of the present invention;

FIG. 3F depicts an example system for a predictor using
a global-mapping neural network according to an embodi-
ment of the present invention;

FIG. 4 depicts an example system for generating global
mapping using neural networks and 3D Mapping Tables,
according to an embodiment of the present invention;

FIG. 5 depicts an example process for deriving image-
mapping functions using neural networks according to an
embodiment of the present invention; and

FIG. 6 depicts an example neural network with two
hidden layers.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Deriving image-mapping functions based on neural-net-
works 1s described herein. Given a set of corresponding
images, that 1s, images that represent the same scene but at
different levels of dynamic range, this section describes
methods that allow an encoder to approximate one of the
images 1n terms ol another using a neural-networks-based
mapping. In the following description, for the purposes of
explanation, numerous specific details are set forth 1n order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are not
described 1in exhaustive detail, in order to avoid unneces-
sarily occluding, obscuring, or obfuscating the present
invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

Overview
Example embodiments described herein relate to deriving,

image-mapping functions using neural networks. In a first
embodiment, an encoder has access to one or more neural
network (NN) models, each adapted to approximate an
image having a first dynamic range 1n terms of an image
having a second dynamic range. The encoder recerves a first
image 1n the first dynamic range and a second 1image 1n the
second dynamic range, wherein the two 1images represent the
same scene. The encoder selects a neural network model
from the variety of NN models to determine an output image
which approximates the second image based on the first
image and the second image. Next, 1t determines at least
some values of the parameters of the selected NN model
according to an optimizing criterion, the first image, and the
second 1mage, wherein the parameters comprise node
welghts and/or node biases to be used with an activation
function for at least some of the nodes 1n at least one layer
of the selected NN model. At this, 1t should be mentioned
that some node weights and/or node biases may be pre-
determined and, thus, 1t may not be necessary to determine
all values of the parameters of the selected NN model
according to the optimizing criterion. The generated output
image may be compressed, and the NN parameters charac-
terizing the mapping may be coded as metadata to be passed
to a decoder.

In a second embodiment, a decoder receives a compressed
bitstream comprising an encoded image 1n a first dynamic
range and 1mage metadata, wherein the image metadata
comprise parameters for a neural network (NN) model to
map the encoded image to an output image 1n a second
dynamic range. For one or more color components of the
encoded i1mage, the 1mage metadata may comprise: the
number of neural-net layers in the NN, the number of neural
nodes for at least one layer, and weights and offsets to be
used with an activation function in some nodes of the at least
one layer. After decoding the encoded image, the decoder
generates an output 1mage in the second dynamic range
based on the encoded 1image and the parameters of the NN
model.

Example HDR-SDR System

FIG. 1 depicts an example data flow in a HDR-SDR
system (100), according to an embodiment of the present
invention. An HDR image or video sequence 1s captured
using an HDR camera (110). Following capture, the cap-
tured 1mage or video 1s processed by a mastering process
(120) to create a target HDR 1mage (1235). The mastering
process may incorporate a variety of processing steps, such
as: editing, primary and secondary color correction, color
transformation, and noise filtering. The HDR output (125) of
this process represents the director’s mntend on how the
captured 1mage will be displayed on a target HDR display
(e.g., HDR display 160).

The mastering process may also output a corresponding,
SDR 1mage (145), representing the director’s intend on how
the captured image will be displayed on a legacy SDR
display (165). The SDR output (e.g., 145-1 or 145-2) may be
provided directly from mastering circuit 120, it may be
generated with a separate HDR-to-SDR converter 140, or 1t
may be generated with the help of a colorst.

As used herein, the term “trim-pass” denotes a phase 1n
content production wherein a video stream created on a first
target display (say, a proiessional monitor at 4,000 nits) 1s
remapped into a second stream for second target display
with a different dynamic range and/or color gamut (say, for
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an SDR TV at 300 nits). A trim-pass may be further adjusted
by a colorist to generate a “‘color-grade™ of the original video
stream. A studio may create multiple “trims™ and/or “color

grades,” say, for releases m: SDR movie theaters (e.g., 48
nits), HDR movie theaters (e.g., 100 nits), SDR TVs (e.g.,

300 nits), HDR TVs (e.g., 1,000 nits), and the like. Two
trims may also have the same dynamic range, but diflerent
color gamut. As used herein, the term “derivative picture”
denotes any such trimmed or color-graded picture that was
derived from a master HDR or SDR picture.

In this example embodiment, the HDR 125 and SDR 145
signals are 1nput into an encoder 130. Purpose of encoder
130 1s to create a coded bitstream that reduces the bandwidth
required to transmit the HDR and SDR signals, but also
allows a corresponding decoder 150 to decode and render
either the SDR or HDR signals. In an example implemen-
tation, encoder 130 may be a single-layer or a multi-layer
encoder, such as one of those defined by the MPEG-2 and
H.264 coding standards, which represents i1ts output as a
base layer, optional one or more enhancement layers, and
metadata. As used herein, the term “metadata” relates to any
auxiliary information that 1s transmitted as part of the coded
bitstream and assists a decoder to render a decoded 1mage.
Such metadata may include, but are not limited to, such data
as: color space or gamut information, dynamic range infor-
mation, tone mapping information, or NN node parameters,
such as those described herein.

On the receiver, a decoder (150), uses the received coded
bitstreams and metadata to render either an SDR image
(157) or a HDR 1mage (155), according to the capabilities of
the target display. For example, an SDR display (165) may
use only the base layer and the metadata to render an SDR
image. In contrast, an HDR display (160) may use informa-
tion from all mput layers and the metadata to render the
HDR signal.

In some embodiments, system (100) may apply “reshap-
ing”” of the mput video content (not shown) to better match
the capabilities of the video encoder 1n 130. As used herein,
the term “forward reshaping” denotes a process of sample-
to-sample or codeword-to-codeword mapping of a digital
image irom 1ts original bit depth and original codewords
distribution or representation (e.g., gamma, PQ, or HLG,
and the like) to an 1mage of the same or different bit depth
and a different codewords distribution or representation.
Reshaping allows for improved compressibility or improved
image quality at a fixed bit rate. For example, without
limitation, reshaping may be applied to 10-bit or 12-bat
PQ-coded HDR wvideo to improve coding efliciency i a
10-bit video coding architecture. In a recerver, after decom-
pressing the reshaped signal, the receiver may apply an
“inverse reshaping function” to restore the signal to its
original codeword distribution. An example of image
reshaping can be found in PCT Application PCT/US2016/
0235082, In-Loop Block-Based Image Reshaping in High
Dynamic Range Video Coding, by G-M. Su, filed on Mar. 30,
2016, also published as WO 2016/164235.

FIG. 2A shows 1n more detail an example implementation

of encoder 130 incorporating the methods of this invention.
In FIG. 2A, SDR' (207) denotes an enhanced SDR signal.

SDR video today 1s 8-10 bits, 4:2:0, ITU Rec. 709 data.
SDR' may have the same color space (primaries and white
point) as SDR, but may use high precision, say 12-bits per
pixel, with all color components at full spatial resolution
(e.g.,4:4:4 RGB). From FIG. 2A, SDR can easily be derived
from an SDR' signal using a set of forward transforms that
may include quantization (or forward reshaping) from say
12 bits per pixel to 10 bits per pixel, color transformation,
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6

say from RGB to YUYV, and color subsampling, say from
4:4:4 to 4:2:0. The SDR output of converter 210 1s applied
to compression system 220. Depending on the application,
compression system 220 can be either lossy, such as H.264,
MPEG-2, and the like, or lossless. The output of the com-
pression system 220 may be transmitted as a base layer 225.
To reduce drift between the encoded and decoded signals, 1t
1s not uncommon for encoder 130 to follow compression
process 220 with a corresponding decompression process
230 and mverse transiforms 240, corresponding to the for-
ward transforms of 210. Thus, predictor (250F) may have
the following inputs: HDR mput 205 and either SDR signal
245, which corresponds to the SDR' signal as 1t will be
received by a corresponding decoder, or input SDR' 207.
Predictor 250E, using input HDR and SDR data will gen-
crate signal 257 which represents an approximation or
estimate of mput HDR 205. In layered systems, adder 260,
subtracts the predicted HDR 257 from the original HDR 205

to form output residual signal 265. Subsequently (not
shown), residual 265 may also be coded by another lossy or
lossless encoder, and may be transmitted to the decoder as
an enhancement layer.

Predictor 250E may also provide the prediction param-
cters being used in the prediction process as metadata (255).
Since prediction parameters may change during the encod-
ing process, for example, on a frame by frame basis, or on
a scene by scene basis, these metadata may be transmitted to
the decoder as part of the data that also include the base layer
and the enhancement layer.

Since both HDR 125 and SDR 145 represent the same
scene, but are targeting different displays with different
characteristics, such as dynamic range and color gamut, it 1s
expected that there 1s a very close correlation between these
two signals. In example embodiments of this invention,
novel mapping functions are developed which allow the
input reference signals to be mapped to approximate repre-
sentations using a neural network mapping. While, examples
are provided for HDR to SDR mappings, the same tech-
niques can be used for image mapping between two diflerent
HDR grades, two different SDR grades, or between SDR and

HDR grades.

Embodiments of the present invention may be imple-
mented either on an 1mage encoder or an 1mage decoder.
FIG. 2B shows an example implementation of decoder 150
according to an embodiment of this invention. Decoding
system 150 recerves a coded bitstream (270), e.g., one
generated from encoder 200-E, which may combine a base
layer (e.g., 245), an optional enhancement layer (or residual)
(e.g., 265), and metadata (255), which are extracted follow-
ing decompression (230) and miscellaneous inverse trans-
tforms (240). For example, in a HDR-SDR system, the base
layer (245) may represent the SDR representation of the
coded HDR signal and the metadata 255 may include
information about the neural network mapping (NNM) that
was used 1n the encoder predictor 250E and the correspond-
ing NNM parameters. In one example implementation, when
the encoder uses NN mapping according to the methods of
this invention, metadata may include the identification of the
model being used (for example, global mapping, local
mapping, and the like) and all parameters associated with
that specific model. Given base layer 245 and the NINM-
related parameters extracted from the metadata 2355, predic-
tor 250D can compute predicted HDR (257). 11 there 1s no
residual, or the residual 1s negligible, the predicted signal
257 can be outputted directly as the final HDR 1mage.
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Otherwise, 1n adder 260, the output (257) of the predictor
(250D) 1s added to the residual 265 to output HDR signal
290.

Example Neural Network Mappings

Background

Without limitation, let v=[v> v.°” v.“']* denote a 3-color
value (e.g., RGB or YCbCr, and the like) of the 1-th pixel
from a first image, such as an HDR 1mage (125). Denote the
corresponding 1-th pixel in the second image (e.g., SDR
image 145) as s=[s; s, 5.°']*. Denote the total number of
pixels 1n each image as P and assume that all pixel values are
normalized between [0 1]. One would like to find the
mapping function, M( ), mapping pixel values from the first
image to corresponding pixel values in the second image (or

vice versa), 1.e.:

s~M(V), (1a)

or

Ve M(s;). (1b)

In an embodiment, 1n a multi-layer neural network, the

1-th layer may be expressed as a non-linear function of
welghts and biases applied to each of 1ts mputs:

X=@;(x; )W +5)), j=0,1,2, .. . L, (2)

where W, 1s a weighting matrix, b, 1s a bias vector, £( ) 1s an
activation function, x, , 1s the input (from previous layer’s
output), and X, 1s the current layer’s output. For example, x;
may be represented as

]T

p

X=x0%0 -

. xﬁ?
where N, denotes the number of nodes at the j-th level of the
neural network. Note that the number of nodes at the j-th
level may be different than the number of nodes in another
level. Given a NN with L layers, it may be denoted as a [N,
N, ... N, ;] NN. For example, an [8 4 4] NN denotes a
neural network with three layers, with 8 nodes in the first
layer and 4 nodes in each of the other two layers.

There are several commonly used activation functions,

f.( ). In an embodiment, () 1s a sigmoid function:

2 (3)

fi) = 1.

] + 2t

For the first layer (e.g., 1=0), the input will be the original
iput pixel values, 1.e., assuming the mapping of equation
(1a), then x_,=v..

Note: 1n the rest of this description, input and output
parameters of a NN may be expressed in terms of the
mapping in equation (la); however, methods described
herein may be easily extended to represent the mapping of
equation (1b) by simply switching the SDR and HDR 1nputs.

An L-hidden-layer network will have

§7D(DPr ;. . . D(v;)),
or

S~ (W . .. fiW fo(WovAbo)+b ) . . . +Dp). (4)

FIG. 6 depicts an example neural network with an input
layer (605) two hidden layers (610 and 615) and one output
layer (620). The mput nodes (605-1 to 605-N_,) represent
our mput pixels (e.g., v,), the output nodes (620-1 to 620-N,)
represent our mapping values (e.g., s,), and the nodes in the
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hidden first layer (610-1 to 610-No) and second layer (615-1
to 615-N, ) represent X,=®,(v,) and x,=®D, (X,) respectively.

The goal is to find the parameters {W,, b;}, j=0, 1, . . .,
L, 1n all (L+1) layers, to minimize the total minimum square
error (MSE) for all P pixels:

()

P—1

2

E= Z ls; = 5|
i—0

The problem can be formally formulated as:

P—1

arg min Z |s; —Eilz.
(Wb i

(6)

In an embodiment, a solution to equation (6) can be found
using “back propagation.” Note that instead of having a
single NN, one may also employ three or more neural
networks, one for each one of the color components 1n the
input signals.

Input Normalization

In an embodiment, performance can be improved by
renormalizing the input signals to the range [-1 1]. In such
an 1implementation, the neural network needs to include

a pre-scaling stage (normalization), where each channel 1n
the mput signal 1s scaled to [-1 1]

a post-scaling stage (de-normalization), where each chan-
nel in the output signal, which 1s 1 [-1 1], 1s scaled
back to the original range

Denote the minimum and maximum values for each input
color channel (denoted as vy, c0O, and cl) as

Vowr =max{vy}, v, Y=min{v/}

FHROX

v 0

RN

:mﬂx{"’fcg}: menCD:miﬂ{VfCD}

v, o mmax{vt v cl=min{vs1]

FHROX

The gain to perform normalization to a new dynamic range
[n_.“n__~|(.e., [-1 1] 1 our example) can be derived as

FrIIFE

Y 7 (7)
il — J1
Iax in
G’ =
Vinae — V2
FRCX mMin
cl? cl)
il —F_ -
Gﬂ[) _ PIAX min
ycd el
PIAX RN
cl cl
Gﬂl _ Rax — Mmin
B cl cl
Vax Vinin

The normalization 1s performed as

X7 =G (VP Vi )it

FRIN

0

xicD:GcD_ (VI-CD—V .:':D)_l_nmmc .

in

xicl:Gcl_(vI_cl_v

in

Cl)+nmz'ncl (8)

The denormalization can be computed as:

()
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-continued

An L-layer neural-network based mapping can be repre-
sented using the following parameters, which can be com-
municated to a recerver as metadata.

the normalization parameters for each mput component

(e.g., gain, min, and max) {G,n_. n__ |
the L-layer neural parameters; e.g., in the j-th layer, {Wj,,
b,},j=0,2,...,L
Next, three different example embodiments are described in
detail.
Image Mapping Using a Global Mapping NN

FIG. 3A depicts an example system for generating an
HDR-to-SDR mapping according to an embodiment of
global mapping, where the same pixel mapping 1s performed
on the whole image, regardless of the pixel’s location. As an
example, without loss of generality, 1t 1s assumed that the
inputs are in YCbCr 4:2:0 format; however, similar archi-
tectures are applicable regardless of the color format being

used (e.g., YCbCr 4:2:2 or 4:4:4, RGB, ICtCp, and the like).
Given reference HDR (125) and SDR (145) frames, three
neural networks (305) are used to map Y, Cb, and Cr.
Because of the input 4:2:0 format, 1n an embodiment,
down-scaler 310 and up-scaler 315 may be used so that all
inputs to the NN units (305) have the same spatial resolu-
tion. These upscaling and downscaling functions can be
climinated if the mput 1s in a 4:4:4 format. As depicted 1n
FIG. 3A:
Y-NNM (305-Y) has inputs v*, v<**<” (up-sampled), and
s”, and outputs mapped SDR §* and metadata
Cb-NNM (305-Cb) has inputs v(down-sampled), v<?:<7,
and s“”, and outputs mapped SDR §“” and metadata
Cr-NNM (305-Cr) has inputs v (down-sampled), v<*<,
and s“” and outputs mapped SDR §” and metadata
Each NNM 305 may comprise a single layer (e.g., one
layer with 16 nodes, denoted as [16]), or multiple layers
(c.g.,a [8 4 4] NN). Implementation examples for NNM may
be found 1n M. T. Hagan, et al., “Neural Network Design”
(2nd Edition), 2014, or 1in S. O. Havkin, “Neural Networks
and Learning Machines,” (3rd Edition), Pearson, 2008. The
MATLAB functions fitnet and train in Matlab’s Neural
Network'Toolbox may also be used.
Image Mapping Using Local Mapping NN
FIG. 3B depicts an example system for generating an
HDR-to-SDR mapping according to an embodiment where
pixel mapping 1s performed at the local level (local map-
ping). To model this spatial domain variance, the neural
network mapping (NNM) units (305) include an additional
input 307 representing positional pixel information. Let (x,
y.) denote the normalized coordinates for the 1-th pixel, 1.e.
x.E[0,1] and y&[0,1]. These normalized values can be
computed by dividing the original coordinates by the cor-
responding dimensions (e.g., width and height) of the image.
Then, the mnput HDR vector may be represented as

LT . y.,c0 ¢l i
v =iy v x]

As depicted 1n FIG. 3B:

Y-NNM (305-Y) has inputs v*, v<”<” (up-sampled), s,
and (x*, y¥), and outputs mapped SDR §“” and meta-
data
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10
Cb-NNM (305-Cb) has inputs v* (down-sampled), v<><7,
s“? and (x“?,y“?) and outputs mapped SDR sc and

metadata

Cr-NNM (305-Cr) has inputs v*(down-sampled), v<*<,
s, and (x*”, y*"), and outputs mapped SDR 5" and

metadata

Given that the mputs are in YCbCr 4:2:0 format, the luma
and chroma components require different processing. For
luma, Y-NNM (305-Y), in mput 307-Y, it uses the full
resolution (X, v,); however, for chroma, Cb-NNM (305-Cb)
and Cr-NNM (305 Cr), in mputs 307-Cb and 307-Cr, they
use scaled versions of the original resolution (X, y,) (e.g. X./2,
y./2). Note that both coordinates need to be in the normal-
ized [0,1] domain. The only diflerence 1s that the location 1s
normalized by diflerent image sizes.

Image Mapping Using Multiple Grades

In an embodiment, as discussed earlier, 1t 1s possible that
an encoder may have access to multiple SDR or HDR
“orades” or “trims.” Then, as shown 1n FIG. 3C, the neural
network mapping networks may take advantage of the
multiple trims to further improve the mapping from one
representation to another.

Denote as s, ~=[s; ; skﬂfﬂ skﬂfl]T the three-color values of
the 1-th pixel in the reference 1mage for the k-th grade. In an
embodiment, all grades may be concatenated together as a
vector

MG_
Si S0 14 -

; (11)

: 3}{-1,:']-

Then, for each NNM, the iput vector needs to include the
normalized target brightness value (e.g. in mts), t,&[0,1] and
becomes a 4-mput vector.

0. el i

Vi VvV ], (12a)

MG
Vi _[v{},,z'vl,z" . Vk-l,z']-

(13b)

For example, for the 100 nits trim, t,=0.1, and for the 600
nits, t,=0.6. These grade IDs can be fed using ports (307).
Again, the mapping problem can be expressed as solving for
the mapping function M( ), where

S fMG""M (VfMG) - (14)

As depicted 1 FIG. 3C:

Y-NNM (305-Y) has inputs v, v<><" (up-sampled), s”,
and available grade IDs (say, t,, t;, and t,), and outputs
mapped SDR §* and metadata

Cb-NNM (305-Cb) has inputs v¥(down-sampled), v<?:<7,
s“? and (x“?, y©*) and available grade IDs (say, t,, t,.

and t,), and outputs mapped SDR sc and metadata

Cr-NNM (305-Cr) has inputs v?(down-sampled), v<?:<7,
s“”, and available grade IDs (say, t,, t,, and t,), and
outputs mapped SDR §“” and metadata

A person skilled 1n the art can appreciate that multiple
other variations may be used to generate HDR-to-SDR or
SDR-to-HDR mapping functions. For example, the NNMs
in FIG. 3C may also use pixel location information as in
FIG. 3B. Alternatively, all NNMs may take mto consider-
ation HDR and SDR frames from multiple time instances.
Other 1image attributes that can be considered 1n a neural
network may include image contrast, image saturation, and
edge strength. For example, edge detections may be used to
improve local tone-mappings.
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Improving Computational Efliciency Using 3D Mapping
Tables
As used herein, the term “3D Mapping Table (3D-MT or

3DMT)” refers to a 3D look-up table representing the mput
image data and being used for more eflicient image process-
ing. 3D Mapping Tables were first introduced 1n U.S. patent
application Ser. No. 15/725,101, “Inverse Luma/Chroma
Mappings with Histogram Transfer and Approximation,”
filed on Oct. 4, 2017, by B. Wen et al., which 1s incorporated
herein by reference. A 3D Mapping Table was derived as an
extension of 2D Mapping, where an 1image 1n a first dynamic
range was mapped 1nto another dynamic range based on the
constraint that the cumulative density functions (CDF) of
both 1images should match.

A3D-MT table reduces pixel-based computations and can
yield mappings that generate output images with improved
color accuracy. In an embodiment, a 3D-MT to be used 1n
neural-networks-based mapping may be constructed as fol-
lows.

In a mapping using as references a first image and a

second image, denote as v,=[v/” v.”” v,°']* the three-color
value of the 1-th pixel from the first image (e.g., an HDR
image), and denote as s =[s"s,“° s “']? the corresponding i-th
pixel 1in the second 1image (e.g., an SDR i1mage). First, one
quantizes the first image with three channel values (e.g., Y,
Co and C,) using a fixed number of bins Q,, Qr, Q, for

cach component. Note that the number of bins 1n one color

component may be different than the number of bins 1n the
other color components. These bins will be used to compute
its (Q,xQ xQ ) 3D histogram. Denote the 3D histogram as
QLY where Q=1Q,.Q¢,Q¢ |- Thus, QLY contains a total of

Q, Q¢ Q¢ bins, and each 3D bin specified by bin index g

(9,59¢,,9c¢,) represents the number of pixels having those
3-channel quantized values. For each 3D bin, one also
computes the sum of each color component 1n the second
image. Let ‘PyQ’S, ‘PCGQ’S and W, < be the mapped luma and
chroma values 1n the second image domain such that each
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bin of these contains the sum of all HDR luma and two
chroma (C, and C,, respectively) pixel values where the
corresponding pixel value lies 1n that bin. These operations
can be summarized 1n pseudo-code as described 1n Tables 1
to 3.

TABLE 1

Generating a 3D Mapping Table-Part A

/i STEP 1: mitialization

QQQJ = 0 where q = (qy: qCﬂ: qu) and Uer = 0: =ty Qr:h o 1:
for each ch = {Y, Cq, C,}

W, O = 0 where q = (q Qe ) and @y = 0, . .., Quy = 1.
for each ch = {Y, Cg, C,}

W, ,2° = 0 where q = (q,, qcy dep) and q, = 0, .. ., Qg — 1,
for each ch = {Y, C,, C,}

lIJCl,gQ?S = 0 where q= (qy: qC}_]: qu) and Uer, = 0: R Q.:?h o 1:

for each ch = {Y, C,, C,}

// STEP 2: scan each pixel in input image; compute histogram
and sum for (i = 0; i <P i ++){// P~ denotes the total number
of bins across all colors

y
gy = lQ_IJ, // first image's luma quantized value
y

Co
Vi . _
qcy = O ; // first image's chroma 0 quantized value
| =0
G
qcy = é_(:‘ ; // first image's chroma 1 quantized value
Rt B
Q{EQ’"‘” ++; /3D histogram of first image

s _ (),s ».
qjygq 0 o qu?q Q+ S
5 __ .S ().
TC{)H - lanH T 5%
11] s — lIJ .5 + SI-CI;

// Mapped second 1mage’s y values
// Mapped second image’s C, values

// Mapped second image’s C, values

Cl.q Cl.qg

Let (s, »®),s s <1&)) represent the center of the g-th
bin 1n the second 1mage. These values are fixed for all frames
and can be precomputed:

TABL.

T
.

Generating a 3D Mapping Table-Part B

// Recall that the bin index q = (q,. qc,; 9c):
for (g, = 05 g, < Q,; q, ++)
for (qCﬂ = 0: qCﬂ < QCQ; QC[) ++)

fDI' (QCI = 0: q(:‘l = QCI; QCI ++){

B) _ (gy + 0.5)

Vg

1AB) (QCI + 0.5)

/{ normalized bin- value luma component 1n first image

Oy

FCD=(B) B (QCD +05)

= // normalized bin- value CO component in first image

QCD

/{ normalized bin- value C1 component in first image

QCI
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The next step 1s to 1dentify the 3D histogram bins that have
non-zero number of pixels and discard those bins that do not
have any pixels. Let q,, g4, . . . 4;.;, b€ k such bins for which,
2, 2v2(. Compute the averages of W, Q 7, We QQ’S, and
IPCI QQ *,

TABLE 3

Generating a 3D Mapping Table-Part C

// The non-zero bin index q; = (q,, 9y 9cp)-
for (i=0; i < Xk; i++) {

s
‘Pg; = 2.y Average 3D-Mapping second 1image y values
i S)(%v
P
‘Pg; g = ng; // Average 3D-Mapping second image C, values
i Qq;'ﬁ'
¥Ee
_Q,S C]. "q! a .
qije 0 : // Average 3D-Mapping second image C; values
Gi
h
Denote

(B)_r4, ¥(B), C0.(B),, Cl.(BNT
Vg [ve Vg Vg ]

and

a7 s g ST ST avi
lng _[[ij?gQ qjCﬂ?qQ lpCpﬁ‘Q I (15)

Then, the original set of v, and s, values 1s replaced with the

pair v Q(B ) and T{IQ’S as defined above for valid q values.
FIG. 4 depicts an example architecture (400) for gener-

ating an HDR to SDR mapping using 3D mapping tables and

neural networks according to an embodiment. As depicted in
FIG. 4, the system utilizes two 3D-MTs: a luma 3D-MT

(405) and a chroma 3D-MT (410). To generate these
3D-MTs, one may apply the steps in Tables 1 to 3 for the
following inputs:

For the Luma 3D-MT: Inputs are: HDR Y 1n original
resolution, HDR Cb/Cr up-sampled, SDR Y in original
resolution, and SDR Cb/Cr up-sampled; the outputs can
be denoted as a mapping of

[v y(ﬁ‘)v Co. (B)?g Cl, (B)] (407) into [TyﬁqQﬁﬁcﬂ?qQas
IPCH a ] (409)

For the Chroma 3DMT: Inputs are HDR 'Y down-sampled,
HDR Cb/Cr 1n original resolution, SDR Y down-

sampled, and SDR Cb/Cr in original resolution; the
outputs can be denoted as a mapping of

[v y(B)y, C0.(8),, Cl. (B)]

(412) into [P
T,

¥4

QJ@CGHQ,.S
(41 4) .

In system 400, the three neural-network mappings (415),
(for luma and chroma) are generated based on the outputs of
the two 3D-MTs. For example, in an embodiment, for:

the Y NNM, the nputs are [v " () QC” () qcl ® N7 (407)
and W Q * (409-Y) from the first 3DMT, and the
output wﬂl be the parameters of the Y-NNM network

the Cb NNM, the nputs are [v VA5 QC“ By Cl BT (412)
and W Q * (414-Cb) from the second BDMT and the
output wﬂl be the parameters of the Cb-NNM network

the Cr NNM, the inputs are [v, @y @y N (412)
and IIJC QQ *(414-Cr) from the seeend 3DMT and the
output will be the parameters of the Cr-NNM network

Using 3DMTs provides the following advantages: a) One

can exercise the neural networks using far fewer points,
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since the number of bins 1s much smaller than the number of
pixels. This allows for faster convergence, which 1s very
important in real-time applications. b) Generating the
3D-MTs 1n effect consolidates pixels into bins of “important
pixels,” thus reducing the effects of biasing the NN decisions
by multiple pixels of lower value 1n terms of 1mage quality.

The (400) system 1s equivalent to the one described 1n
FIG. 3A. It can be easily extended to support the architec-
tures 1n FIG. 3B and FI1G. 3C by extending the concept o1 3D
mapping tables to higher dimensions, e.g. by using a SD-MT
for local mapping (FIG. 3B).

In another embodiment, the three neural networks (415)
Y-NNM, Ch-NNM, and Cr-NNM, could be combined into a
single YCbCr-NNM, generating directly both luma and
chroma values. Such an implementation would require
tewer NN parameters to represent the HDR to SDR map-
ping. As an example, FIG. 3D depicts a system to generate
a global mapping between two color grades using a single
YCbCr NNM (350). Given the NNM parameters (372)
generated by the system in FIG. 3D, FIG. 3E depicts an
example predictor (e.g., 250D) which applies the mapping
function (as characterized by the parameters of the NN, that
1s, metadata (372) to reconstruct the original data using
YCbCr NNM 370. For example, if signal 360 (source grade)
represents SDR data, then the mapped YCbCr data represent
the predicted HDR data, and if signal 360 represents input
HDR data, then, the mapped YCbCr data represent the
predicted SDR data. The two YCbCr NNs (370-1, 370-2) are
identical, but each one handles the input data slightly
differently. For luma (Y), NNM 370-1 requires input chroma
data to be up-sampled to full resolution (same as the
resolution o1 Y). The Ch/Cr output o1 370-1 1s discarded. For
chroma, NNM 370-2 requires the mput luma data to be
down-sampled to match the resolution of the chroma com-
ponents. The luma output of NNM 370-2 may be discarded.
In another embodiment, NNM 370 may be a single, time-
shared, NN network.

The architecture depicted 1n FIG. 3E can easily be adapted
for any of the other neural network mapping designs
described earlier in FIGS. 3A-3C. For example, FIG. 3F
depicts a predictor based on the global mapping of FIG. 3A.
NNMs (370) 1n FIG. 3E are now replaced with three distinct
NNs, one for Y (380-Y), one for Cb (380-Cb), and one for
Cr (380-Cr), each one receiving its own distinct metadata
(382-Y/Cb/Cr). As i FIG. 3E, for 4:2:0 data, luma and
chroma mputs to each of these NNs are up-sampled or
down-sampled appropriately As depicted in FIG. 3F, assum-
ing a v (360) to s mapping;

Y-NNM (380-Y) has inputs v', v<**“” (up-sumpled), and

metadata 382-Y, and outputs mapped §*

Cb-NNM (380-Cb) has inputs v’ (down-sampled), v<?<",

and metadata 382-Cb, and eutputs mapped s¢*

Cr-NNM (380-Cr) has inputs v*(down-sampled), v<*<",

and metadata 382-Cb, and outputs mapped "

In other embodiments, computational complexity 1n all
systems may be decreased by employing pixel subsampling
both spatially and temporally. For example, in video
sequences, the neural networks may be solved using sub-
sampled frames and/or the results may be used for multiple
consecutive frames. Furthermore, at the NN level, for each
frame, 1mitialization values may be a simple copy of the
solutions from the previous frame.

Bitstream Syntax for Metadata Transmission

As described earlier, NNM metadata include the nput
normalization parameters and the neural-network param-
cters. These values are typically floating-point numbers 1n
single or double precision. Metadata overhead can be
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reduced by applying known 1n the art lossy or lossless data
compression schemes to reduce the amount of metadata
overhead data without affecting the efliciency of the map-
ping.

Table 4 depicts an example of bitstream syntax to com-
municate NNM metadata from an encoder (130) to a
decoder (150) according to an embodiment.

TABLE 4

Example bitstream syntax to support NNM metadata

else if( mapping _ide [ v ][ x ][ cmp ] == MAPPING__NNM ) {
// normalization
nnm_ norm_ gamn_mmt[ v ][ X ][ cmp |
nnm__norm__gain_ coef] v |[ X ][ cmp |
nnm_ norm_ nmn_ mmt[ y |[ X ][ cmp ]
nnm__norm_ nmin__coef] v |[ x ][ cmp ]
nnm_ norm_ vimun_ mmt[ y [ X ][ cmp ]
nnm__norm_ vmin__coef] v |[ x ][ cmp ]
nnm_ num_ layer[ y |[ x | [ cmp ]
// neural layers

for(i=0;1i<nnm_num_layer[ y ][ X ][ cmp ]; i ++ ) { //for each layer

nnm_ num_ neuron| v |[ x ][ cmp ][i]
for( ) =0; ) <(nnm_num_newon|[ v |[x][1-1]+1)F
nnm_num_neuron[ v [ x J[i];] ++) {

// fully connected weights ; constant/bias i1s included in weight

nnm__ weight it v ][ x ][ cmp [[1][J]
nnm__ weight_ coef] v |[ x ][ cmp [[1][]]

h
h

// last layer; linear combining all neurons in previous layer

16

[cmp|=(nnm_norm_gain_int [v][x][cmp]
coellicient_log 2_denom)+nnm_norm_gain_coef [V]
[X][empl].

If coetlicient_data_type 1s equal to 1, the value of the gain

coeflicient 1s equal to nnm_norm_gain_coel [y][X]
lcmp].

o Y o Y oo oo [ ot T ol [ ol
=3
-
s

-
!
"
o~
-
e

for( } = 0; | <nnm_ num__neuron[ v |[ X ][ nnm__num__layer[ v |[ X ][ cmp ]-1 ];

J++) 4

nnm_ weight int[ v |[ X |[ cmp |[ nnm_ num_ layer[ v ][ X |[ cmp ]][j] 0

Ilx ][ emp ]JI0] O

]
nnm_ weight coef] v |[ x ][ cmp ][ nnm__num__layer| y

In Table 4, the descriptors se(v), u(v), and ue(v), may be
defined as 1 known-in the art specifications for video
decoding, such as ITU-T1.265, “High Efficiency Coding.”
The value of “cmp” denotes the color component, e.g., 0 for
Y, 1 for Cb, and 2 for Cr. Additional variables may be

defined as follows:

nnm_num_neuron|y][x][cmp] specifies the mapping
types, lfor example: nnm_num_neuron|y][x][-1]=3 {for
global mapping, nnm_num_neuron|y][x][-1]=5 for local
mapping, and nnm_num_neuron|[y]|[x][-1]=4 for multi-
grade mapping.

nnm_norm_gain_int[y][x][cmp] specifies the integer por-
tion of fp_nnm_norm_gain_coel]yv][x][cmp] when coetli-
cient_data_type 1s equal to 0. If coeflicient_data_type 1is
equal to 1, nnm_norm_gain_int [y][x][cmp] 1s not present.
Note—1p_nnm_norm_gain_coel]y][x][cmp] 1s used to
derive the value of the gain coeflicient in the normalization
associated with mapping_idc[y][x][cmp] when
coellicient_data_type 1s equal to O.

nnm_norm_gain_coel]y]|[x][cmp] specifies the fractional
portion of fp_nnm_norm_gain_coel]y][x][cmp] when coel-
ficient_data_type 1s equal to 0. If coeflicient_data_type 1s
equal to 1, nnm_norm_gain_coef [v][x][cmp] 1s used to
derive the value of the gain coeflicients associated with
mapping_idc[y][x][cmp]. If coellicient_data_type 1s equal to
0, the length of the nnm_norm_gain_coet [y][x][cmp] syn-
tax element 1s coethicient log 2 _denom  bits. IT
coellicient_data_type 1s equal to 1, the length of the
nnm_norm_gain_coel [y][x][cmp] syntax element 15 32 bits.
The value of the gain coetlicient 1n the normalization asso-
ciated with mapping_idc[y][x][cmp] 1s derived as follows:

If coellicient_data_type 1s equal to 0, the value of the gain

coellicient 1s equal to ip_nnm_norm_gain_coel]y][X]
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nnm_norm_nmin_int[y][x][cmp] specifies the integer
portion of fp_nnm_norm_nmin_coel]y][x][cmp] when coel-
ficient_data_type 1s equal to O. If coeflicient_data_type 1s
equal to 1, nnm_norm_nmin_int [y][x][cmp] 1s not present.
Note—Ip_nnm_norm_nmin_coel]y][x][cmp] 15 used to
derive the value of the minimum value 1n the normalization
domain associated with mapping_1dc[y][x][cmp] when
coellicient_data_type 1s equal to O.

nnm_norm_nmin_coel] v][x][cmp] specifies the fractional
portion of fp_nnm_norm_nmin_coel]y][x][cmp] when coel-
ficient_data_type 1s equal to O. If coethcient_data_type 1s
equal to 1, nnm_norm_nmin_coef [y][x][cmp] 15 used to
derive the value of the gain coellicients associated with
mapping_idc[y][x][cmp]. If coethicient_data_type 1s equal to
0, the length of the nnm_norm_nmin_coef [v][x][cmp]
syntax element 1s coellicient_log 2_denom bits. If coefli-
cient_data_type 1s equal to 1, the length of the nnm_norm_n-
min_coel [v][x][cmp] syntax element 1s 32 bits. The value of
the gain coeflicient 1n the normalization associated with
mapping_idc[y][x][cmp] 1s derived as follows:

If coetlicient_data_type 1s equal to O, the value of the gain
coellicient 1s equal to Ip_nnm_norm_nmin_coel]y][X]
[cmp|=(nnm_norm_nmin_1int [v][x][cmp]
coellicient_log 2_denom)+nnm_norm_nmin_coel [V]
[x][cmpl.

If coeflicient_data_type 1s equal to 1, the value of the gain
coellicient 1s equal to nnm_norm_nmin_coel [y][X]
[cmp].

nnm_norm_vmin_int[y][x][cmp] specifies the integer

portion of fp_nnm_norm_vmin_coel]y][x][cmp] when coel-
ficient_data_type 1s equal to O. If coeflicient_data_type 1s
equal to 1, nnm_norm_nmin_int [y][x][cmp] 1s not present.
Note—1ip_nnm_norm_vmin_coel]y][x][cmp] 15 used to
derive the value of the mimimum value 1n the de-normal-
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ization domain associated with mapping idc|y][x][cmp]
when coellicient_data_type 1s equal to 0.

nnm_norm_vmin_coel]y][x][cmp] specifies the fractional
portion of fp_nnm_norm_vmin_coel]y][x][cmp] when coel-
ficient_data_type 1s equal to 0. If coeflicient_data_type 1s
equal to 1, nnm_norm_vmin_coetl [v][X][cmp] 15 used to
derive the value of the gain coeflicients associated with
mapping_idc[y][x][cmp]. If coetlicient_data_type 1s equal to
0, the length of the nnm_norm_vmin_coef [y][x][cmp]
syntax element 1s coeflicient_log 2_denom bits. If coefli-
cient_data_type 1s equal to 1, the length of the
nnm_norm_vmin_coel [y][x][cmp] syntax element 15 32
bits. The value of the gain coeflicient 1n the normalization
associated with mapping 1dc|y][x]|[cmp] 1s derived as fol-
lows:
If coeflicient_data_type 1s equal to O, the value of the gain
coellicient 1s equal to fp_nnm_norm_vmin_coel]y][X]
[cmp|=(nnm_norm_vmin_int [v][x][cmp]
coellicient_log 2_denom)+nnm_norm_vmin_coel [V]
[x][cmp].
If coellicient_data_type 1s equal to 1, the value of the gain
coellicient 1s equal to nnm_norm_vmin_coel [y][X]
[cmp].
nnm_num_layer signals the number of layers associated
with mapping_1dc|y][x][cmp].

nnm_weight_int[y][x][cmp][1][;] specifies the integer
portion of Ip_nnm_weight_coel]y][x][cmp][1][1] when coel-
ficient_data_type 1s equal to 0. If coeflicient_data_type 1s
equal to 1, nnm_weight_int [y][x][cmp][1][1] 1s not present.
Note—1p_nnm_weight_coel]v][x][cmp][1][1] 15 used to
derive the weighting coeflicients for node 1 at layer j
associated with mapping_idc[y][x][cmp][1]][1] when coetli-
cient_data_type 1s equal to O.

nnm_weight_coel]y][x][cmp][1][7] specifies the fractional
portion of fp_nnm_weight_coel]y][x][cmp][1][]] when coel-
ficient_data_type 1s equal to 0. If coeflicient_data_type 1s
equal to 1, nnm_weight_coet [v][x][cmp][1][1] 15 used to
derive the value of the gain coefhicients associated with
mapping_idc[y][x][cmp]. If coellicient_data_type 1s equal to
0, the length of the nnm_weight_coet [v][x][cmp][1]]1] syn-
tax element 1s coeflicient log 2 _denom  bits.
coellicient_data_type 1s equal to 1, the length of the
nnm_weight_coet [v][x][cmp][1][]] syntax element 1s 32
bits. The value of the gain coeflicient 1n the normalization
associated with mapping_1dc[y][x][cmp] 1s dertved as fol-
lows:

If coellicient_data_type 1s equal to 0, the value of the gain
coellicient 1s equal to fp_nnm_weight_coel]yv][x][cmp]
[i][j]~(nnm_weight_int [yl[x][cmp][i][j]<<
coellicient_log 2_denom)+nnm_weight coef [y][X]
[emp][i][j]

If coellicient_data_type 1s equal to 1, the value of the gain
coellicient 1s equal to nnm_weight_coef [y][x][cmp][1]
il

FIG. 5 shows an example process (500) for deriving an

image-mapping function between two 1mages representing
the same scene but at different dynamic ranges and/or color
gamut. The process starts 1n step 505, wherein a mapping
processor, such as predictor 250EF, receives two or more
images representing the same scene, but at diflerent dynamic
ranges, say, a relerence mput HDR image and one or more
derivative grades of an SDR or alternative HDR represen-
tations of the same 1mage. Given these mnputs, in step 510,
the mapping processor decides on which neural network
(NN) model to select. As described before, the mapping
processor may select among a variety of NN models, includ-
ing (but not necessarily limited to): a global mapping model,
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a local mapping model, a mapping using multiple grades, or
a combination of the above. Furthermore, each of these

models may be characterized by a different number of levels
and nodes within each level.

The selection of the NN model can be done using a variety
of methods that take into considerations a number of criteria,
including: prior knowledge on the SDR and HDR inputs,
available computational and memory resources, and target
coding efliciency. For example, 1n an embodiment, the NN
model may be selected based on whether the value of the
residual MSE between the target output and the reference
grade 1t tries to approximate (see equation (6)) satisfies a
predetermined threshold. Given an NN model and two or
more input images, the NN parameters (e.g., the node
welghts and biases) are derived 1n step 315 according to an
optimization criterion. Finally, in step 520, the mapping
processor outputs the parameters of the NN model. Option-
ally, the mapping processor may also output the generated
mapped (output) 1mage.

This mapping process 300 may be repeated at a variety of
intervals as deemed necessary to maintain coding efliciency
while using available computing resources. For example,
when coding video signals, process 500 can be repeated on
a per predefined video slice size basis, for each frame, a
group of Iframes, or whenever the prediction residual
exceeds a particular threshold.

Mapping process 500 may use all available input pixels or
a sub-sample of those pixels. In one example implementa-
tion, one may use pixels only from every k-th pixel row and
every k-th pixel column of the mput data, where k 1s an
integer equal or higher than two. In another example 1mple-
mentation one may decide to skip input pixels that are below
a certain clipping threshold (for example, very close to zero)
or pixels that are above a certain saturation threshold (for
example, for n-bit data, pixel values that are very close to
2"—1.) In yet another implementation, one may use a com-
bination of such subsampling and thresholding techniques to
reduce the pixel sample size and accommodate the compu-
tational constrains of a particular implementation.

Example Computer System Implementation

Embodiments of the present invention may be imple-
mented with a computer system, systems configured in
clectronic circuitry and components, an integrated circuit
(IC) device such as a microcontroller, a field programmable
gate array (FPGA), or another configurable or program-
mable logic device (PLD), a discrete time or digital signal
processor (DSP), an application specific IC (ASIC), and/or
apparatus that includes one or more of such systems, devices
or components. The computer and/or IC may perform,
control or execute mstructions relating to NNM-based map-
ping, such as those described herein. The computer and/or
IC may compute, any of a variety of parameters or values
that relate to the NNM-based mapping as described herein.
The image and video dynamic range extension embodiments
may be implemented 1n hardware, software, firmware and
various combinations thereof.

Certain 1mplementations of the imnvention comprise com-
puter processors which execute software instructions which
cause the processors to perform a method of the invention.
For example, one or more processors 1n a display, an
encoder, a set top box, a transcoder or the like may 1mple-
ment NNM-based mapping methods as described above by
executing software instructions in a program memory acces-
sible to the processors. The invention may also be provided
in the form of a program product. The program product may
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comprise any medium which carries a set ol computer-
readable signals comprising instructions which, when
executed by a data processor, cause the data processor to
execute a method of the invention. Program products
according to the invention may be 1n any of a wide variety
of forms. The program product may comprise, for example,
physical media such as magnetic data storage media includ-
ing floppy diskettes, hard disk drives, optical data storage
media mcluding CD ROMs, DVDs, electronic data storage
media including ROMs, flash RAM, or the like. The com-
puter-readable signals on the program product may option-
ally be compressed or encrypted.

Where a component (e.g. a software module, processor,
assembly, device, circuit, etc.) 1s referred to above, unless
otherwise indicated, reference to that component (including
a reference to a “means”) should be interpreted as including
as equivalents of that component any component which
performs the function of the described component (e.g., that
1s Tunctionally equivalent), including components which are
not structurally equivalent to the disclosed structure which
performs the function i1n the illustrated example embodi-
ments of the invention.

Equivalents, Extensions, Alternatives and
Miscellaneous

Example embodiments that relate to applying neural
networks 1 mapping HDR and SDR images are thus
described. In the foregoing specification, embodiments of
the present invention have been described with reference to
numerous specific details that may vary from implementa-
tion to implementation. Thus, the sole and exclusive 1ndi-
cator of what 1s the invention, and 1s intended by the
applicants to be the invention, 1s the set of claims that 1ssue
from this application, in the specific form 1n which such
claims 1ssue, including any subsequent correction. Any
definitions expressly set forth herein for terms contained 1n
such claims shall govern the meaning of such terms as used
in the claims. Hence, no limitation, element, property, fea-
ture, advantage or attribute that 1s not expressly recited 1n a
claim should limit the scope of such claim 1n any way. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.

Enumerated Example Embodiments

Enumerated example embodiments (“EEEs”) of the pres-
ent 1nvention have been described above in relation to
methods and devices for recovering saturated pixel values in
raw pixel data. Thus, an embodiment of the present inven-
tion may relate to one or more of the examples, enumerated
below:
EEE 1. In an encoder, a method for mapping images from a
first dynamic range to a second dynamic range, the method
comprising:

providing one or more neural network (NN) models, each
adapted to approximate an image having a first dynamic
range 1n terms of an 1image having a second dynamic range;
receiving a lirst 1image 1n the first dynamic range and a
second 1mage 1n the second dynamic range, wherein the two
images represent the same scene;

selecting a neural network model from the variety of NN
models to determine an output 1image which approximates
the second 1mage based on the first image and the second
1mage;

determining values of the parameters of the selected NN
model according to an optimizing criterion, the first image
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and the second image, wherein the parameters comprise
node weights and node biases for each of the nodes 1n each
layer of the selected NN model; and outputting the param-
eters of the selected NN model.
EEFE 2. The method of EEE 1, wherein the one or more NN
models comprise a global-mapping NN model, a local-
mapping NN model, and a global-mapping using multiple
color-grades NN model.
EEE 3. The method of any preceding EEE, wherein the one
or more NN models comprise a global mapping NN model,
and the global mapping NN model comprises three neural
networks, one for each of the color components of the first
and the second 1mage, and each of the three neural networks
receives mputs based on pixel values of all three color
components of the first image and the second 1mage.
EEE 4. The method of any preceding EEE, wherein the one
or more NN models comprise a local-mapping model, and
the local-mapping NN model comprises three neural net-
works, one for each of the color components of the first and
the second 1mage, and each of the three neural networks
receives mputs based on pixel values of all three color
components of the first image and the second image and an
input indicating the pixel coordinates of the mput pixel
values.
EEE 5. The method of any preceding EEE, further compris-
ing receiving a third image i a third dynamic range,
wherein the third image represents the same scene as the first
and the second 1mage,
wherein the one or more NN models comprise a global-
mapping using multiple color-grades model which com-
prises three neural networks, one for each of the color
components of the three 1images, and each of the three neural
networks receives inputs based on pixel values of all three
color components of the three 1images and an 1nput indicat-
ing the color grades of the mput pixel values.
EEE 6. The method of EEE 5, wherein the input indicating
the color grades of the mput grades of the input pixels
comprises a normalized vector of the normalized peak
brightness of each color grade.
EEE 7. The method of any one of EEEs 3-35, wherein 1nput
pixel values to each of the three neural networks are nor-
malized between -1 and 1.
EEE 8. The method of EEE 7, wherein the parameters of the
selected NN model further comprise a gain factor, a mini-
mum value, and a maximum value for each color component
of the normalized mput pixel values.
EEE 9. The method of any one of EEEs 3-35, wherein all
input 1mages are 1 a 4:2:0 YCbCr color format and further
comprising;
an 1image down-sampler to down-sample the Y component
of the first image to the resolution of the Cb or Cr
components of the first image before it 1s inputted 1n the
neural networks of the second (Cb) and third (Cr) color
components;
an 1mage up-sampler to up-sample the Cb and Cr com-
ponents of the second 1mage to the resolution of the Y
component of the first image before they are inputted 1n
the neural network of the first (Y) color component.
EEE 10. The method of EEE 4 or any preceding EEE when
dependent on EEE 4, wherein the pixel coordinates com-
prise an (X,y) location pair and values in the location pair are
normalized to be between 0 and 1.
EEE 11. The method of any preceding EEE, wherein the
optimizing criterion comprises minimizing the mean square
error between the output 1mage and the second input 1mage.
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EEE 12. The method of EEE 3 or any preceding EEE when
dependent on EEE 3, wherein all input images are 1n a 4:2:0
YCbCr color format, further comprising:

generating a first 3D Mapping Table (3DMT) representing,
input luma (Y) and chroma (Cb or Cr) pixel values from the
first and the second 1images as a mapping of first normalized
luma and chroma sampled points in the first image into first
average luma and chroma 3D mappings into the second
image, wherein the input chroma pixel values are up-
sampled to match the spatial resolution of the mput luma
pixel values;

generating a second 3DMT representing input luma pixel
values and chroma pixel values from the first and the second
images as a mapping of second normalized luma and chroma
sample points in the first image into second average luma
and chroma 3D mappings 1nto the second image, wherein
the mput luma pixel values are down-sampled to match the
spatial resolution of the input chroma pixel values;

generating the parameters of the neural network of the Y
output component by feeding it as input the first normalized
luma and chroma sample points 1n the first image and the
first average luma 3D mapping 1nto the second 1mage;

generating the parameters of the neural network of the Cb
output component by feeding 1t as input the second normal-
ized luma and chroma sample points in the first image and

the second average Cb 3D mapping into the second 1mage;
and

generating the parameters of the neural network of the Cr
output component by feeding 1t as input the second normal-
1zed luma and chroma sample points 1n the first image and
the second average Cr 3D mapping 1nto the second image.
EEE 13. The method of any preceding EEE, wherein the first
dynamic range 1s equal to the second dynamic range or
higher than the second dynamic range.
EEE 14. The method of any preceding EEE, wherein the first
dynamic range 1s lower than the first dynamic range.
EEE 13. The method of any preceding EEE, further com-
prising:

generating the output 1mage;

compressing the output image to generate an encoded
image; and

combining the encoded image and the parameters of the
selected NN model to generate an output bitstream.
EEE 16. In a decoder, a method for mapping an image from
a first dynamic range to a second dynamic range, the method
comprising;

receiving a compressed bitstream comprising an encoded
image 1n a first dynamic range and i1mage metadata, wherein
the 1mage metadata comprise parameters for a neural net-
work (NN) model to map the encoded image to an output
image, wherein the 1image metadata comprise for one or
more color components of the encoded 1image a number of
neural-net layers in the NN, a number of neural nodes for
cach layer, and a weight and an ofiset to be used with an
activation function of each node; and

generating an output 1image based on the encoded image
and the parameters of the NN model.
EEE 17. The method of EEE 16, wherein the image meta-
data further comprise scaling metadata, wherein for each
color component of the encoded 1image the scaling metadata
comprise a gain, a minimum, and a maximum value, and the
method further comprises generating a de-normalizing out-
put 1image based on the scaling metadata and the output
image.
EEFE 18. The method of EEE 16 or 17, wherein the activation
function comprises a sigmoid function.
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EEE 19. A non-transitory computer-readable storage
medium having stored thereon computer-executable 1nstruc-
tions for executing with one or more processors a method in
accordance with EEEs 1-18.

EEE 20. An apparatus comprising a processor and config-

[ 1

ured to perform any one of the methods recited in EEEs
1-18.

What 1s claimed 1s:

1. A method for mapping images from a first dynamic
range to a second dynamic range, wherein the first dynamic
range 1s different from the second dynamic range, the
method comprising:

providing one or more neural network (NN) models, each

adapted to approximate an 1mage having a first
dynamic range 1n terms of an 1image having a second
dynamic range;

recerving a first image in the first dynamic range and a

second 1mage in the second dynamic range, wherein the
two 1mages represent the same scene;

selecting a neural network model from the one or more

NN models to determine an output image which
approximates the second image based on the first image
and the second 1mage;

determining values of parameters of the selected NN

model according to an optimizing criterion, the first
image and the second 1mage, wherein the parameters
comprise node weights and/or node biases for nodes of
the layers of the selected NN model; and

outputting the parameters of the selected NN model,

wherein the method further comprises receiving a third

image i a third dynamic range, wherein the third
image represents the same scene as the first and the
second 1mage, and

wherein the one or more NN models comprise a global-

mapping using multiple color-grades model which
comprises three neural networks, one for each of the
color components of the first image, the second 1mage,
and the third image, and each of the three neural
networks receives mputs based on pixel values of all
three color components of the first image, the second
image, and the third 1mage and an input indicating the
color grades of the input pixel values, and wherein the
one or more NN models comprise a local-mapping
model, and the local-mapping NN model comprises
three neural networks, one for each of the color com-
ponents of the first and the second 1mage, and each of
the three neural networks recerves iputs based on pixel
values of all three color components of the first image
and the second 1image and an 1nput 1indicating the pixel
coordinates of the mput pixel values.

2. The method of claim 1, wherein the one or more NN
models comprise a global mapping NN model, and the
global mapping NN model comprises three neural networks,
one for each of the color components of the first and the
second 1mage, and each of the three neural networks
receives 1nputs based on pixel values of all three color
components of the first image and the second 1mage.

3. The method of claim 2, wherein mnput pixel values to
cach of the three neural networks are normalized between -1
and 1.

4. The method of claim 3, wherein the parameters of the
selected NN model further comprise a gain factor, a mini-
mum value, and a maximum value for each color component
of the normalized mput pixel values.

5. The method of claim 2, wherein all input 1images are 1n
a 4:2:0 YCbCr color format and further comprising:
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down-sampling the Y component of the first image to the
resolution of the Cb or Cr components of the first image
before 1t 1s inputted 1n the neural networks of the
second (Cb) and third (Cr) color components; and

up-sampling the Cb and Cr components of the second
image to the resolution of the Y component of the first
image before they are inputted in the neural network of
the first (Y) color component.

6. The method of claim 1, wherein the mput indicating the
color grades of the input grades of the mput pixels comprises
a normalized vector of the normalized peak brightness of
cach color grade.

7. The method of claim 1, wherein the pixel coordinates
comprise an (X,y) location pair and values 1n the location

pair are normalized to be between 0 and 1.

8. The method of claim 1, wherein the optimizing crite-
rion comprises minimizing the mean square error between
the output 1image and the second 1mput 1image.

9. The method of claim 1, wherein all input images are in
a 4:2:0 YCbCr color format, further comprising:

generating a first 3D Mapping Table (3DMT) representing,

mput luma (Y) and chroma (Cb or Cr) pixel values

from the first and the second 1mages as a mapping of

first normalized luma and chroma sample points in the

first 1mage 1nto first average luma and chroma 3D
mappings into the second image, wherein the input
chroma pixel values are up-sampled to match the
spatial resolution of the mput luma pixel values;

generating a second 3DMT representing input luma pixel
values and chroma pixel values from the first and the
second 1mages as a mapping ol second normalized
luma and chroma sample points in the first image into
second average luma and chroma 3D mappings into the
second 1mage, wherein the input luma pixel values are
down-sampled to match the spatial resolution of the
input chroma pixel values;

generating the parameters of the neural network of the Y
output component by feeding it as input the first
normalized luma and chroma sample points 1n the first
image and the first average luma 3D mapping into the
second 1mage;

generating the parameters of the neural network of the Cb
output component by feeding 1t as mput the second
normalized luma and chroma sample points 1n the first
image and the second average Cb 3D mapping into the
second 1mage; and
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generating the parameters of the neural network of the Cr
output component by feeding 1t as mput the second
normalized luma and chroma sample points 1n the first
image and the second average Cr 3D mapping into the
second 1mage.

10. The method of claim 1, wherein the first dynamic
range 1s equal to, lower than, or higher than the second
dynamic range.

11. The method of claim 1, further comprising:

generating the output 1image;

compressing the output image to generate an encoded

image; and

combining the encoded image and the parameters of the

selected NN model to generate an output bitstream.

12. A method for mapping an 1mage from a first dynamic
range to a second dynamic range, wherein the first dynamic
range 1s different from the second dynamic range, the
method comprising:

recerving a compressed bitstream comprising an encoded

image 1 a first dynamic range and image metadata,
wherein the image metadata comprise parameters for a
neural network (NN) model to map the encoded 1mage
to an output 1image, wherein the 1mage metadata com-
prise for one or more color components of the encoded
image a number ol neural-net layers in the NN, a
number of neural nodes for at least one layer, and a
weight and an offset to be used with an activation
function of a node of the at least one layer, wherein the
image metadata further comprise scaling metadata,
wherein for each color component of the encoded
image the scaling metadata comprise a gain, a mini-
mum, and a maximum value, and the method further
comprises generating a de-normalizing output image
based on the scaling metadata and the output image;
and

generating an output 1mage based on the encoded image

and the parameters of the NN model,

wherein the NN model comprise a global-mapping using

multiple color-grades model which comprises three
neural networks, one for each of the color components
of three images, the three 1images represent the same
scene and have respective dynamic ranges, and each of
the three neural networks receives iputs based on pixel
values of all three color components of the three images
and an input indicating the color grades of the input
pixel values.
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