United States Patent

US011343082B2

(12) (10) Patent No.: US 11,343,082 B2
Tsirkin et al. 45) Date of Patent: May 24, 2022
(54) RESOURCE SHARING FOR TRUSTED 2015/0244716 Al* 8/2015 Potlapally HO4L 63/12
EXECUTION ENVIRONMENTS . 7137155
2016/0105430 Al1* 4/2016 Smuth HO4L 67/10
: : 713/171
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 2016/0350534 Al 12/2016 Poornachandran et al.
_ 2018/0048643 Al* 2/2018 Sharaga HO4L 63/0869
(72) Inventors: Michael Tsirkin, Yokneam Illit (IL); 2018/0234403 Al* 82018 Casella HO04L 63/0807
Bursell, Famborough (GB) (Continued)
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Advance Micro Devices, Inc. “Secure Encrypted Virtualization
patent is extended or adjusted under 35 API”, Feb. 2018, 99 pages, http://developer.amd.com/wordpress/
U.S.C. 154(b) by 59 days media/2017/11/55766_SEV-KM-API_Sepecification.pdf.
o | (Continued)
21) Appl. No.: 17/035,008 ,
(21) Appl. No Primary Examiner — Maung | Lwin
(22) Filed: Sep. 28, 2020 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(65) Prior Publication Data (57) ABSTRACT
The technology disclosed herein enables resource sharing
US 2022/0103349 Al Mar. 31, 2022 for trusted execution environments. An example method can
include: establishing a first trusted execution environment
(1) Int. Cl. (TEE) 1n a first computing device; establlshmg, by the first
Goot 21/00 (2013.01) 1EE, a set of shell TEEs, where each shell TEE 1s configured
HO4L 9/06 (2006.01) in view of one or more conﬁguratlon parameters associated
(52) U.S. (L. with the set ot shell TEEs; receiving, by the first TEE, a
CPC oo, HO4L 9/083 (2013.01) request from a tenant computing device to establish a second
(58) Field of Classification Search TEE; determining, by the first TEE, whether the configura-
None tion parameters associated with the set of shell TEEs satisty
See application file for complete search history. one or more request parameters for the second TEE; and
responsive to determining that the configuration parameters
(56) References Cited associated with the set of shell TEEs satisfy the one or more

U.S. PATENT DOCUMENTS

9,674,182 B2 6/2017 Smuth

10,091,241 B2* 10/2018 Keysercccccee..... HO4L 63/062
10,200,367 B2 2/2019 Chastain et al.
9
0

10,389,709 B2 8/2019 Potlapally et al.
10,621,350 B2 4/2020 Novak et al.

request parameters for the second TEE, establishing, by the
first TEE, the second TEE to satisiy the request, wherein the

second TEE 1s selected from the set of shell TEFEs, and
TEE, the second TEE to communicate

with tenant computing device.

causing, by the first

20 Claims, 6 Drawing Sheets

y.

505

| W

Establish a first trusted execution envirenment (TEE) in a first computing device

¢ K:

Establish, by the first TEE, a set of shell TEEs, where each shel! TEE is configured in view of one or
more configuration parameters associated with the set of shell TEEs

l

Receive, by the first TEE, a request from a tenant compuiing device fo establish a second TEE,
where the request comprises one or more reguest parameters for the second TEE in the host
computing device

Determine whether configuration
parameters associated with an
additional set af shell TEES safisfy the
request parameters

Configuration parameters
associated with set of shell TEES satisfy request
parameters

520

—

510

5

925
~J

Establishing, by the first TEE, the
secong TEE to satisfy the request,
where the second TEE is selected from
the set of shell TEES

L

530

Cause the second TEE 1o communicate
with the tenant computing device

US 11,343,082 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0095879 Al1* 3/2019 Eval ...l G06Q 20/06
2019/0102555 Al1* 4/2019 Novak GOO6F 21/57
2019/0155728 Al 5/2019 Ferguson et al.
2020/0202038 Al1* 6/2020 Zhang G16H 50/30

OTHER PUBLICATIONS

Buhren, R. et al., “Insecure Unitl Proven Updated: Analyzing AMD
SEV’s Remote Attestation”, Technical University Berlin Security 1n
Telecommunications, Hasso Plattner Institute Potsdam, Sep. 2,

2019, 13 pages, hppts://arxiv.org/pd1/1908..11680.pd{.

Alder et al., “S-FaaS: Trustworthy and Accountable Function-as-a-
Service Using Intel SGX”, Oct. 14, 2018, 16 pages https://arxiv.
org/pdi/1810.06080 .pdf.

Zhao et al., “SecTEE: A Software-based Approach to Secure
Enclave Architecture Using TEE”, Nov. 11-15, 2019, 18 pages
https://dl.acm.org/do1/10.1145/3319535.3363205.

Jang et al., “SeCReT: Secure Channel between Rich Execution
Environment and Trusted Execution Environment”, Feb. §-11,
2015, 15 pages https://pdfs.semanticscholar.org/7b14/
10874dc4283051c5be29308616¢20874ecOb.pdf.

* cited by examiner

U.S. Patent

COMPUTING SYSTEM

100 K

ENCRYPTED
COMMUNICATION
CHANNEL

162

St&d B

COMPUTING DEVICE
(e.g., Untrusted Network Host Device)
1108

EXECUTION

129-A

EXECUTABLE CODE 134
.......................... (e'g’! ACCGSS COR{!‘OI LOH_g_EC)

SHELL TEE

May 24, 2022 Sheet 1 of 6

COMPUTING DEVICE
(e.g., Tehant Device)
110A

CRYPTOGRAPHIC KEY 136

NETWORK 160

TRUSTED
EXECUTION ENVIRONMENT

(e.g., Launcher TEE)
120

TRUSTED EXECUTION
RESOURCE MANAGER
125

US 11,343,082 B2

TRUSTED TRUSTED
ENVIRONMENT POOL EXECUTION ENVIRONMENT POOL

120 126

SHELL TEE ohELL TEE
o 125-A 126-A e

TRUSTED
EXECUTION ENVIRONMENT

(e.q., Tenant Intance)
130

DATA 132

EXECUTABLE CODE 134
(e.g., Access Control Logic)

CRYPTOGRAPHIC KEY 136

FIG. 1

SHELL TEE
126-A

U.S. Patent May 24, 2022 Sheet 2 of 6 US 11,343,082 B2

COMPUTING DEVICE
(€.9., Untrusted Network Host Device

110B
= TRUSTED . [trusTeD
EXECUTION | | EXECUTION |
ENVIRONMENT ENVIRONMENT
(Launcher Instance) l l (Shell Instance) l
OPERATING SYSTEM 1) I = |
(&.g., feme) COMPUTING | I compumne | COMPUTING
PROCESS || PRocess PROCESS
(e.9., Application, (e.g., Application, (e.g., Application,
VM) | VM) | VM)
225A | 2258 | 2250
| | TRUSTED
STORAGE DEVICE(s) | ATA | ATA STORAGE AREA
(e.g., Main Memory) | 3 l e.g., Encrypted Memory)
212 | 122 | 123 213
. e i
| o) TRUSTED I/0
L 215
' T TRUSTED
PROCESSOR(S) | | | PROCESSOR AREA
214 217
HARDWARE PLATFORM 210

NETWORK 160

U.S. Patent May 24, 2022 Sheet 3 of 6 US 11,343,082 B2

COMPUTING ENVIRONMENT
100

ENCRYPT WITH //

KEY

339 COMPUTING DEVICE

(e.g., Tenant Device)
110A
MEASURE/
ATTESTATION 320 REQUEST 315

TRUSTED
ECUTION ENVIRONMENT

(e.g., Launcher TEE)
120

MEASURE/
ATTESTATION
310

ESTABLISH
POOL 305

SELECT TEE
325

TEE POOL
125

SHELL TEE SHELL TEE
125-A T 125-A

PROVISION
TRUSTED 330
=XECUTION
ENVIRONMENT
{e.g., Tenant Instance)
130
DECRYPT WITH
KEY
340

FIG. 3

U.S. Patent May 24, 2022 Sheet 4 of 6 US 11,343,082 B2

/ 400

MEMORY 401

LAUNCHER TEE SHELL TEE
CONTENT CONTENT

402 403

PROCESSING DEVICE 40

TRUSTED EXECUTION RESOURCE MANAGER 41

TRUSTED TRUSTED
EXECUTION EXECUTION
ENVIRONMENT ENVIRONMENT
MODULE POOL MANAGER

411 412

TRUSTED
REQUEST EXECUTION
RECEIVER ENVIRONMENT

413 POOL DETERMINER
414

COMMUNICATION
MODULE
415

U.S. Patent May 24, 2022 Sheet 5 of 6 US 11,343,082 B2

500

/-

505
Establish a first trusted execution environment (TEE) in a first computing device
3
Establish, by the first TEE, a set of shell TEES, where each shell TEE is configured in view of one or
more configuration parameters associated with the set of shell TEES

515

Recelve, by the first TEE, a request from a tenant computing device to establish a second TEE,

where the request comprises one or more request parameters for the second TEE in the host

computing device
520
Configuration parameters
associated with set of shell TEES satisfy request
parameters
?

525

Establishing, by the first TEE, the
535 second TEE to satisfy the request,

where the second TEE is selected from

Determine whether configuration the set of shell TEEs

parameters associated with an

adaitional set of shell TEEs satisfy the
request parameters 530

Cause the second TEE to communicate

with the tenant computing device

FIG. 5

U.S. Patent May 24, 2022
............ 602
DEVICE /\
2 INSTRUCTIONS
P
| TRUSTED
EXECUTION
; RESOURCE | | _ 626 f
MANAGERij_Q |
|
VOLATILE MEMORY t
| INSTRUCTIONS
|
% TRUSTED
EXECUTION E -
| RESOURCE |
a MANAGER 410 |
N N 626
— 606 *
BUS_ 608
NON-VOLATILE
MEMORY [>
— 622
NETWORK
INTEREACE |la—— »
DEVICE
|
l
‘% 1
574 ’

Sheet 6 of 6

US 11,343,082 B2

~ 600
/f,.-‘

.

610

VIDEO DISPLAY
UNIT

612

ALPHA-NUMERIC
INPUT DEVICE

CURSOR
CONTROL
DEVICE

616

DATA STORAGE DEVICE

COMPUTER-READABLE

S TORAGE MEDIUM
N

INSTRUCTIONS

624

rarrrre.

~ TRUSTED
EXECUTION

 RESOURCE

~ MANAGER 410

626

SIGNAL —~ 620

GENERATION

DEVICE

US 11,343,082 B2

1

RESOURCE SHARING FOR TRUSTED
EXECUTION ENVIRONMENTS

TECHNICAL FIELD

The present disclosure generally relates to computer sys-

tems, and more particularly, to resource sharing for trusted
execution environments 1 computer systems.

BACKGROUND

A trusted execution environment (TEE) 1s a secure area of
a main processor that can guarantee code and data loaded
inside to be protected with respect to confidentiality and
integrity. A TEE as an 1solated execution environment can
provide security features such as 1solated execution, integ-
rity of applications executing with the TEE, along with
confidentiality of stored data. A TEE can provide an execu-
tion space with a higher level of security for trusted appli-
cations that run on computing devices that are not trusted by
the application owner.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

The present disclosure 1s 1llustrated by way of examples,
and not by way of limitation, and may be more fully
understood with references to the following detailed descrip-
tion when considered 1n connection with the figures, in
which:

FIG. 1 depicts a high-level block diagram of an example
computing environment that facilitates resource sharing for
trusted execution environments, in accordance with one or
more aspects of the present disclosure.

FIG. 2 depicts a block diagram of an example computing,
device that includes a launcher mstance of a trusted execu-
tion environment that can establish pools of trusted execu-
tion environments, 1n accordance with one or more aspects
of the present disclosure.

FIG. 3 depicts an illustration of a facilitating resource
sharing for trusted execution environments, 1n accordance
with one or more aspects of the present disclosure.

FI1G. 4 depicts a block diagram 1llustrating an example of
a trusted execution resource manager that {facilitates
resource sharing for trusted execution environments, in
accordance with one or more aspects of the present disclo-
sure.

FIG. 5 depicts a flow diagram of a method for facﬂltatlng
resource sharing for trusted execution environments, in
accordance with one or more aspects of the present disclo-
sure.

FIG. 6 depicts a block diagram of an 1llustrative computer
system operating 1n accordance with one or more aspects of
the present disclosure.

DETAILED DESCRIPTION

Described herein are methods and systems for eflicient
launching for trusted execution environments 1 computer
systems. Trusted Execution FEnvironments (TEEs) can
encrypt memory pages and subsequently only decrypt them
when they are being processed in the central processing unit
(CPU), graphics processing unit (GPU), network interface
card (NIC), or other processor component of an untrusted
host. TEEs can allow tenants of untrusted computing envi-
ronments to deploy applications securely in those environ-
ments. In such instances, TEEs can provide the ability to
enable private computing 1n cloud computing environments

10

15

20

25

30

35

40

45

50

55

60

65

2

and Internet of Things (Io1) implementations where the
computing devices to which applications are to be deployed
are untrusted and/or insecure. TEEs, however, present sev-
eral technological challenges. In some instances, TEE
implementations can involve increases in deployment
latency, since each TEE launched by a tenant involves
validation of the TEE by the tenant. When the tenant 1s
operating from a device outside the untrusted host network,
this can present significant performance delays as a result of
communication between the trusted network and untrusted
network since the validation steps between the tenant and
host should be performed for each TEE to be launched.

Additionally, TEEs can often be implemented 1n conven-
tional shared computing environments (e.g., such as cloud
computing environments) that are configured under the
premise of “overcommit”, where resources are provisioned
to be shared efliciently. TEEs 1n general, and encrypted
virtual machines (VMs) 1n particular, can cause problems
with resource overcommit since memory 1s oiten encrypted
and therefore may not be efliciently shared when the envi-
ronments are executing. Conventional 1mplementations
address this by starting up and shutting down TEEs on
demand. This, however, can result in additional increases in
latencies and decreases 1n overall system availability, since
application deployments often rely on the ability to start
environments as quickly as possible.

Aspects of the present disclosure address the above and
other deficiencies by implementing technology to facilitate
resource sharing for trusted execution environments. In
particular, a trusted execution resource manager can estab-
lish a launcher TEE 1nstance 1n an untrusted host computing
device. The launcher TEE instance can establish pools of
shell TEE instances, where each shell TEE instance in a
particular pool 1s configured with similar configuration
parameters (e.g., each shell TEE 1n a particular can be
configured with the same underlying operating system
(OS)). Notably, each shell TEE 1n a pool can be provisioned
with basic run-time capabilities (e.g., with an OS, but
without an executable payload) so that the main portion of
the TEE can be readily available to service a request from a
tenant. Subsequently, the trusted execution resource man-
ager can receive a request from a tenant device to establish
a TEE 1n an untrusted host computing device. The trusted
execution resource manager can use parameters received 1n
the request to 1dentity a pool of shell TEEs that are config-
ured sufliciently to satisiy the request parameters, select a
shell TEE from the identified pool, and provision the TEE
for the requesting tenant computing device. The trusted
execution resource manager can subsequently facilitate the
establishment of a secure communication channel between
the requesting tenant and the newly established TEE that
was selected from the TEE pool.

Aspects of the present disclosure present advantages over
conventional solutions to the i1ssues noted above. First,
utilizing a launcher TEE instance to provision pools of shell
TEESs can significantly improve resource management when
deploying TEEs. Since the launcher instance can configure
and establish basic run-time environments before a request
1s rece1ved, processing resources used in TEE provisioning
can be utilized more efliciently before tenant involvement.
Additionally, by drawing from a pool of pre-provisioned
TEE shell 1nstances, latency encountered during application
deployment can be significantly reduced. Since a tenant
request can be serviced with a shell TEE that has already
been provisioned with a basic run-time environment suitable
for the tenant request, the amount of time and processing

resources needed to establish a TEE can be significantly

US 11,343,082 B2

3

reduced. Moreover, by improving the efliciency of provi-
sioning individual TEEs, the efliciency of the overall launch
process 1s significantly improved 1f the tenant loses com-
munication with the untrusted host. This, 1n turn, can sig-
nificantly improve efliciency and decrease resource require-
ments mvolved in deployment across a cloud computing,
environment that includes multiple hosts computing devices.
FIG. 1 depicts an 1illustrative architecture of elements of
a computing environment 100, i accordance with an
example of the present disclosure. It should be noted that
other architectures for computing environment 100 are pos-
sible, and that the implementation of a computing environ-
ment utilizing embodiments of the disclosure are not nec-
essarily limited to the specific architecture depicted. In the
example shown 1n FIG. 1, computing environment 100 may
include a tenant computing devices 110A and one or more of
untrusted network host computing devices 110B that are
capable of supporting trusted execution environments.

Computing devices 110A-B may include any computing,
devices that are capable of storing or accessing data and may
include one or more servers, workstations, desktop comput-
ers, laptop computers, tablet computers, mobile phones,
palm-sized computing devices, personal digital assistants
(PDAs), smart watches, robotic devices (e.g., drones,
autonomous vehicles), data storage device (e.g., USB drive),
other device, or a combination thereof. Computing devices
110A-B may include one or more hardware processors based
on x86, PowerPC®, SPARC®, ARM®, other hardware, or
a combination thereof.

Computing device 110A may be referred to as a tenant
computing device. Computing device 110A may be a device
utilized by a tenant and may store executable code 134 and
cryptographic key data 136 that can be used by deployed
TEEs.

Executable code 134 may be loaded 1nto a trusted execu-
tion environment 130 and may control how computing
device 110B interacts with protected content. Executable
code 134 may include executable data, configuration data,
other data, or a combination thereof and may be stored and
executed 1n the trusted execution environment 130. Execut-
able code 134 may be stored 1n any format and may include
one or more file system objects (e.g., files, directories, links),
database objects (e.g., records, tables, field value pairs,
tuples), other storage objects, or a combination thereof.
Executable code 134 may implement logic for controlling
the distribution, retrieval, or use of protected content.

Executable code 134 may use one or more cryptographic
keys 136 to restrict access to protected content. Crypto-
graphic key 136 may include cryptographic key data with
one or more cryptographic bit sequences or other crypto-
graphic keying material for storing, generating, or deriving
a set of one or more cryptographic keys. Cryptographic key
data may be represented 1n a human readable form (e.g.,
passcode, password), a non-human readable form (e.g.,
digital token, digital signature, or digital certificate), other
form, or a combination thereof. Cryptographic key data may
be input for a cryptographic function, output of a crypto-
graphic function, or a combination thereof. Cryptographic
key data may include one or more encryption keys, decryp-
tion keys, session keys, transport keys, migration keys,
authentication keys, authorization keys, integrity keys, veri-
fication keys, digital tokens, license keys, certificates, sig-
natures, hashes, other data or data structure, or a combina-
tion thereof. The cryptographic key data may include any
number of cryptographic keys and may be used as part of a
cryptographic system that provides privacy, integrity,

10

15

20

25

30

35

40

45

50

55

60

65

4

authentication, authorization, non-repudiation, other fea-
tures, or a combination thereof.

Computing device 110B may be referred to as an
untrusted network host device. In some 1mplementations,
computing device 110B can be a standalone host computing
device that communicates directly with tenant computing
device 110A. In other implementations, computing device
110B can be a component of a cloud computing environment
that includes multiple additional computing devices. In such
instances, computing device 110B can include a cloud
controller component (not pictured) that can manage some
resources for the cloud computing environment. Alterna-
tively, computing device 110B can communicate with a
separate computing device that includes the cloud controller
component.

Computing device 110B may include a trusted execution
environment 120 (e.g., a “launcher” TEE) that can be
established by the cloud controller to manage the TEE pools
as described herein. TEE 120 can include a trusted execution
resource manager 125 that enables TEE 120 to establish and
manage the resources for one or more TEE pools 125, 126
on computing device 110B (or within a cloud computing
environment that includes computing device 110B). In vari-
ous implementations, trusted execution resource manager
125 can establish one or more TEE pools 125, 126 that are
cach provisioned using configuration parameters particular
to the TEE pool. In other words, trusted execution resource
manager 125 can provision TEE pool 125 with shell TEEs
125A-N, where each shell TEE 126 A-N 1s configured with
parameters associated with TEE pool 125. Similarly, trusted
execution resource manager 125 can provision TEE pool
126 with shell TEEs 126-A to 126-N, where each shell TEE
126 A-N 1s configured with parameters associated with TEE

pool 126.

As described i further detail below, each shell TEEs
125A-N, and 126 A-N can be provisioned as base run-time
environments (e.g., a basic operating system (OS), basic
container environment, basic secure enclave, etc.) into
which additional components can be later installed. As such,
cach shell TEE can be configured without an executable
application payload, which can be later provided by a
requesting tenant. It should be noted that for clarity of
illustration only two TEE pools have been depicted in FIG.
1. However, i other implementations, more or fewer TEE
pools can be established. Additionally, while the TEE pools
depicted 1n FIG. 1 are both 1n computing device 110B, 1n
other implementations that include multiple host computing
devices, TEE pools can be configured differently than
depicted 1 FIG. 1. For example, different pools may be
established on different host computing devices. Addition-
ally or alternatively, TEE pools can be configured such that
one portion of the shell TEE instances for a particular pool
are established on one host computing device while another
portion of the shell TEE instances for the same TEE pool 1s
established 1 a diflerent host computing device.

In various implementations, trusted execution resource
manager 125 can receive a request from tenant computing
device 110A to establish a trusted execution environment.
The request can include one or more conﬁguratlon param-
cters that specity the configuration of the TEE to be estab-
lished for the tenant. Responsive to the request, trusted
execution resource manager 125 can compare the param-
cters recerved 1n the request to the conﬁguration parameters
used to establish the various TEE pools 125, 126 to deter-
mine whether any of the established TEE pools are config-
ured sufliciently to satisty the request received from the

tenant computing device 110A.

US 11,343,082 B2

S

If trusted execution resource manager 125 determines that
one of TEE pools 1235, 126 includes shell TEEs to satisty the
request, trusted execution resource manager 125 can select
a shell TEE from the applicable TEE pool and provision the
selected shell TEE for the requesting tenant computing
device 110A. Trusted execution resource manager 125 can
establish TEE 130 using the selected shell TEE and facilitate
encrypted communication between the TEE 130 and tenant
computing device 110A (e.g., encrypted communication
channel 162). In various implementations, tenant computing
device 110A can provide the payload (e.g., executable code
134) and key information (e.g., cryptographic key 136) to be
provisioned into the newly estabhshed TEE 130 for the
tenant computing device 110A. Trusted execution resource
manager 1235 1s described in further detail below with
respect to FlG. 4.

Trusted execution environments 120, 130 may use
encryption to 1solate the data of a process (e.g., user space
process, VM, container) from other processes runming on the
same computing device. In one example, the data of a
process executing in the trusted execution environment may
be encrypted using cryptographic keys provided by the
tenant that are accessible to a hardware processor of the
computing device but are naccessible to all the processes
running on the computing device (e.g., hardware level
encryption). The hardware processor may encrypt or decrypt
the data of the process executing in the trusted execution
environment when the process stores or accesses the data.
This enables the trusted execution environment to isolate
data of a lower privileged process (e.g., application process
or virtual machine process) executing within the trusted
execution environment from being accessed by a higher
privileged processes (e.g., kernel or hypervisor) even though
the higher privileged processes may be responsible for
managing the lower privileged process. Trusted execution
environment may provide code execution, storage confiden-
tiality, and 1ntegrity protection, and may store, execute, and
1solate protected content from other processes executing on
the same computing device, as discussed in more detail in
regards to FIG. 2.

Trusted execution environments 120, 130 may be ephem-
eral execution environments that comprise non-persistent
storage of computing device 110B and may or may not
persistently store data on a persistent storage device (not
pictured). The non-persistent storage may include data stor-
age devices that lose data in response to an interruption and
may include volatile memory (e.g., main memory), proces-
sor registers (e.g., CPU or GPU registers), other non-
persistent cache, or a combination thereof. A persistent
storage device may be internal to computing device 110B
and accessible over a device bus or may be external to
computing device 110B and accessible over a network
connection (e.g., communication channel).

Network 160 may include one or more public networks
(c.g., the internet), private networks (e.g., a local area
network (LAN) or wide area network (WAN)), or a combi-
nation thereof. Network 160 may include a wired or a
wireless infrastructure, which may be provided by one or
more wireless communications systems, such as a wireless
fidelity (WiF1) hotspot connected with the networks 160
and/or a wireless carrier system that can be implemented
using various data processing equipment, communication
towers, etc. In one example, network 160A may include one
or more trusted networks. A trusted network may include
security enhanced features that restrict access and use of
network 160 to particular users and devices of an organiza-
tion (e.g., intranet of a business entity). An untrusted net-

10

15

20

25

30

35

40

45

50

55

60

65

6

work (e.g., mtranet) may not provide the same level of
security enhanced features as the trusted network and may
be available for public access and use.

Communication channel 162 may include any communi-
cation channel that i1s capable of communicating data
between computing devices and may include one or more
connections. The connections may be network connections,
computer-to-computer connections, peripheral connection,
other connections, or a combination thereof. The network
connections may be over the same network or different
networks and each of the network connections may be an
indirect connection that traverses one or more network
nodes (e.g., access points, switches, routers, or other net-
working infrastructure device) and may communicably
couple one of computing devices with one or more other
computing devices. A computer-to-computer connection
may be the same or similar to a peer-to-peer connection and
may be a direct connection between computing devices
(e.g., bluetooth connection, WiFi1 Direct, ad-hoc network
connection). A peripheral connection may be a connection
that uses a direct physical connection between an adapter of
the computer and an adapter of the portable data storage
device (e.g., Universal Serial Bus (USB) connection). The
peripheral connection may exist when one of the computing
devices 1s a computer and the other 1s a portable data storage
device (e.g., USB drive, key fob, secure card).

FIG. 2 depicts an example of a set of trusted execution
environments established in computing device 110B, 1n
accordance with an embodiment of the present disclosure.
Computing device 110B may be the same or similar to one
or more of computing devices 110A-B of FIG. 1 and may
include a hardware platform 210, trusted execution environ-
ments 120, 121, an operating system 220, one or more
computing processes 225A-C, and a network 160. It should
be noted that other architectures for computing device 110B
are possible, and that the implementations of the computing
device utilizing embodiments of the disclosure are not
necessarily limited to the specific architecture depicted.

Hardware platform 210 may include one or more hard-
ware devices that perform computing tasks for computing
device 110B. Hardware platform 210 may include one or
more data storage devices, computer processors, Basic Input
Output services (BIOS), code (e.g., firmware), other aspects,
or a combination thereof. One or more devices of the
hardware platform 210 may be combined or consolidated
into one or more physical devices or may partially or
completely emulated as a virtual device or virtual machine.
Hardware platform 210 may include one or more storage
devices 212 and processors 214.

Storage devices 212 may include any data storage device
that 1s capable of storing data and may include physical
memory devices. The physical memory devices may include
volatile memory devices (e.g., RAM, DRAM, SRAM),
non-volatile memory devices (e.g., NVRAM), other types of
memory devices, or a combination thereof. Storage devices
212 may also or alternatively include mass storage devices,
such as hard drives (e.g., Hard Disk Dnives (HDD)), solid-
state storage (e.g., Solid State Drives (SSD)), other persis-
tent data storage, or a combination thereof. Storage devices
212 may be capable of storing data 122, 123 associated with
one or more of the computing processes 225A-B. In one
example, data of computing process 225A may be received
from a device that 1s internal or external to computing device
110B. The data may be encrypted using a cryptographic key
that was provided (e.g., determined, derived, generated,

assigned) by computing device 110B or by a different
computing device. The received data may be decrypted

US 11,343,082 B2

7

using the same cryptographic key or a denivative of the
cryptographic key and the decrypted data may be loaded nto
the trusted execution environment 120 (as shown by data
122) before, during or after being re-encrypted.

Processors 214 may be communicably coupled to storage
devices 212 and be capable of executing mstructions encod-
ing arithmetic, logical, or I/O operations. Processors 214
may include one or more general processors, Central Pro-
cessing Units (CPUs), Graphical Processing Units (GPUs),
Application Specific Integrated Circuits (ASICs), secure
cryptoprocessors, Secure Elements (SE), Hardware Security
Module (HSM), other processing unit, or a combination
thereof. Processors 214 may be a single core processor,
which may be capable of executing one 1nstruction at a time
(e.g., single pipeline of 1nstructions) or a multi-core proces-
sor, which may simultaneously execute multiple nstruc-
tions. Processors 214 may interact with storage devices 212
and provide one or more features defined by or offered by
trusted systems, trusted computing, trusted computing base

(TCB), trusted platform module (TPM), hardware security
module (HSM), secure element (SE), other features, or a
combination thereof.

Processors 214 may establish a trusted execution envi-
ronment across multiple hardware devices of hardware
plattorm 210 (e.g., processor and storage devices) and may
include 1nstructions (e.g., opcodes) to 1nitiate, configure, and
maintain the trusted execution environment 120. In one
example, a trusted execution environment may be imple-
mented using Software Guard eXtensions® (SGX) provided
by Intel®, Memory Encryption Technology provided by
AMD® (e.g., Secure Encrypted Virtualization® (SEV),
Secure Memory Encryption (SME, SME-ES), TrustZone®
provided by ARM®, IBM PEF, RISC-V Sanctum, other
technology, or a combination thereof.

Trusted execution environments 120, 121 may be a secu-
rity enhanced area 1n computing device 110B that may guard
the data of a computing process from being accessed by
other computing processes on computing device 110B. A
trusted execution environment may enhance security by
enhancing confidentiality (e.g., reducing unauthorized
access), itegrity (e.g., reduce unauthorized modifications),
availability (e.g., enable authorized access), non-repudiation
(e.g., action association), other aspect of digital security or
data security, or a combination thereof. Trusted execution
environments 120, 121 may be the same or similar to a trust
domain, trust zone, other term, or a combination hereotf.
Trusted execution environment 120 may protect data 122
while data 122 1s 1n use (e.g., processed by processor 214),
1s 1n motion (e.g., transmitted over network 160), 1s at rest
(e.g., stored 1n storage device 212), or a combinational
thereol. Trusted execution environments 120, 121 may be a
set of one or more trusted execution environments and each
of the trusted execution environments may be referred to as
an 1nstance of a trusted execution environment (1.e., TEE1).
Each trusted execution environment 120 may 1solate data of
at least one process executed 1n trusted execution environ-
ment 120 from processes executing external to the trusted
execution environment. The at least one process may be a set
of one or more processes associated with an execution
construct being guarded by the trusted execution environ-
ment 120.

The execution construct may be a virtual machine, con-
tainer, computing process, thread, istruction stream, or a
combination thereof. In one example, trusted execution
environment 120, 121 may execute a particular virtual
machine (e.g. VM based TEE) and may guard data of the

virtual machine from a hypervisor managing the virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

machine. In this example, computing device 110B may
execute executable code 1n trusted execution environment
120, 121 as a virtual machine process and the executable
code 1n the trusted execution environment may be accessible
to the virtual machine process and 1naccessible to a hyper-
visor managing the virtual machine process. As such, the
trusted execution environment 120 of computing device may
host a virtual machine that executes the executable data and
all the data 1n the trusted execution environment may be
accessible to the virtual machine and inaccessible to a
hypervisor managing the virtual machine.

In another example, trusted execution environment 120,
121 may be associated with a particular computing process
(e.g., process based TEE) and may guard data of the par-
ticular computing process from being access by other
equally privileged, higher privileged, or lower privileged
computing processes (€.g., guard application process against
higher privileged Operating System (OS) process). In this
example, computing device 110 may execute the executable
code 1n trusted execution environment 120, 121 as one or
more application processes and the executable code 1n the
trusted execution environment 120, 121 may be accessible
to the one or more application processes and 1naccessible to
a kernel managing the one or more application processes. As
such, trusted execution environment 120, 121 of computing
device 110B may host one or more application processes
that execute the executable data and the data 1n the trusted
execution environment may be accessible to the one or more
application processes and be inaccessible to a kernel man-
aging the one or more application processes. In either
example, the data in the trusted execution environment 120,
121 may be guarded by storing the data 122 1n a trusted
storage area 213.

Trusted storage area 213 may be an area of one or more
storage devices 212 that stores data of a computing process.
Trusted storage area 213 may be a part of trusted execution
environment 120, 121 and may store data 122 of computing
process 225A 1n an encrypted form. Data 122 may be
encrypted and decrypted by hardware devices using cryp-
tographic input that includes one or more cryptographic
keys. In one example, the cryptographic keys may be
accessible to the hardware devices (e.g., processor 214) and
may be 1naccessible to operating system level processes
executed by the hardware device. In another example, the
cryptographic keys may be accessible to hardware devices
and one or more computing processes, such as, the comput-
ing process associated with the trusted execution environ-
ment. In either example, the encryption and decryption
performed by the hardware device may be referred to as
hardware based encryption, hardware level encryption,
hardware assisted encryption, hardware enforced encryp-
tion, process transparent encryption, other term, or a com-
bination thereol and may use cryptographic key data (e.g.,
encryption and decryption keys) that are accessible to the
processor and are 1naccessible to all processes executed
external to the trusted execution environment 120.

Trusted storage arca 213 may include a portion of
memory and may be referred to as an encrypted memory
area. An encrypted memory arca may be a contiguous or
non-contiguous portion of virtual memory, logical memory,
physical memory, other storage abstraction, or a combina-
tion thereof. The encrypted memory area may correspond to
or be mapped to a portion of primary memory (e.g., main
memory), auxiliary memory (e.g., solid state storage),
adapter memory (e.g., memory of graphics card, or network
interface cart), other persistent or non-persistent storage, or
a combination thereof. In one example, the encrypted

US 11,343,082 B2

9

memory area may be a portion of main memory associated
with a particular process and the processor may encrypt the
data when storing the data in the memory areca and may
decrypt the data when retrieving the data from the memory
area. The data 1n the memory area may be transformed (e.g.,
encrypted or decrypted) betfore, during, or after 1t 1s stored
in or retrieved from the memory area and may remain 1n an
encrypted form while 1n the encrypted memory area.

Trusted storage area 213 may store the data 1n one or more
storage units. The storage units may be logical or physical
units of data storage for managing the data (e.g., storing,
organizing, or accessing the data). A storage unit may
include a contiguous or non-contiguous sequence of bytes or
bits. In one example, a storage unit may be a virtual
representation of underlying physical storage units, which
may be referred to as physical storage blocks. Storage units
may have a unit size that 1s the same or different from a
physical block size provided by an underlying hardware
resource. The storage unit may include volatile or non-
volatile data storage. In one example, storage units may be
a memory segment and each memory segment may corre-
spond to an individual memory page, multiple memory
pages, or a portion of a memory page. In other examples,
cach of the storage units may correspond to a portion (e.g.,
block, sector) of a mass storage device (e.g., hard disk
storage, solid state storage). The data in the storage units of
trusted storage area 213 may be transmitted to other hard-
ware devices using trusted 10 2185.

Trusted 10 215 may enable the data of a computing
process to be transmitted between hardware devices in a
security enhanced manner. The data may be transmitted over
one or more system buses, networks, or other communica-
tion channel in an encrypted or partially encrypted form.
This may be advantageous because transmitting the data 1n
an encrypted form may limit the ability of the data to be
snooped while being transmitted between hardware devices.
As shown 1 FIG. 2, trusted 10 215 may enable the data of
computing process 2235A to be transmitted between trusted
storage area 213 and trusted processor area 217.

Trusted processor area 217 may be a portion of processor
214 that 1s associated with computing process 225A and
guards data of computing process 225 from being accessed
or modified by computing processes 2235B. Trusted proces-
sor area 217 may include a portion of processor 214 that
stores the data (e.g., CPU cache, processor memory or
registers) and a portion of processor 214 that executes the
data (e.g., processor core). Trusted processor area 217 may
store the data 1n an encrypted form or in a decrypted form
when it 1s present on the processor and 1n either example, the
data of the computing process may be protected from being
accessed or modified by other processes via the design of the
processor and encryption may not be required to ensure
isolation of the data when the data 1s within the processor
packaging (e.g., chip packaging).

Computing device 110B may use the same processor and
storage device to establish multiple instances of trusted
execution environment 120. Each instance of a trusted
execution environment (e.g., TEE instance, TEE1) may be
established for a particular set of one or more computing
processes and may be associated with a particular memory
encrypted area. The instances of a trusted execution envi-
ronment may be provided by the same hardware (e.g.,
processor and memory) but each 1nstance may be associated
with a diflerent memory encrypted area and a diflerent set of
one or more processes (e.g., set mcluding an individual
process or set of all processes of a VM). Each instance may
guard all data of a computing process or a portion of the data

10

15

20

25

30

35

40

45

50

55

60

65

10

of a computing process. For example, computing process
225A (e.g., application or VM) may be associated with both
a trusted execution environment and an untrusted execution
environment. In this situation, a first portion of the data of
computing process 225A may be stored and/or executed
within trusted execution environment 120 and a second
portion of the data of computing process 225A may be stored
and/or executed within an untrusted execution environment.
The second portion may be stored 1n the same storage device
as the first portion but the second portion may be stored 1n
a decrypted form and may be executed by processor 214 1n
a manner that enables another process (e.g., multiple higher
privileged processes) to access or modily the data. In either
example, trusted execution environment may be used to
execute one or more of the computing processes 225A-B.

Each of the computing processes 225A-B may include
one or more streams of execution for executing programmed
istructions. A stream of instructions may include a
sequence of instructions that can be executed by one or more
processors. Each of the computing processes may be man-
aged by an operating system 220 or may part of an operating
system (e.g., kernel, not shown). In one example, a com-
puting process may be an instance of a computer program
that 1s being executed and may contain program code (e.g.,
executable code, executable data) and a state of the current
activity. Multiple computing processes may be executed
concurrently by a processing device that supports multiple
processing units. The processing units may be provided by
multiple processors or from a single processor with multiple
cores or a combination thereof. A computing process may
include one or more computing threads, such as a system
thread, user thread, or fiber, or a combination thereof. A
computing process may include a thread control block, one
or more counters and a state (e.g., running, ready, waiting,
start, done).

Computing processes 225A-B may correspond to one or
more applications, containers, virtual machines, secure
enclaves, or a combination thereol. Applications may be
programs executing with user space privileges and may be
referred to as application processes, system processes, ser-
vices, background processes, or user space processes. A user
space process (e.g., user mode process, user privilege pro-
cess) may have lower level privileges that provide the user
space process access to a user space portion of data storage
without having access to a kernel space portion of data
storage. In contrast, a kernel process may have higher
privileges that provide the kernel process access to a kernel
space portion and to user space portions that are not guarded
by a trusted execution environment. In one example, the
privilege associated with a user space process may change
during execution and a computing process executing 1n user
space (e.g., user mode, user land) may be granted enhanced
privileges by an operating system and function in kernel
space (e.g., kernel mode, kernel land). This may enable a
user space process to perform an operation with enhanced
privileges. In another example, the privilege associated with
a user space process may remain constant during execution
and the user space process may request an operation be
performed by another computing process that has enhanced
privileges (e.g., operating in kernel space).

The privilege levels of a computing process may be the
same or similar to protection levels of processor 214 (e.g.,
processor protection rings) and may indicate an access level
ol a computing process to hardware resources (e.g., virtual
or physical resources). There may be multiple different
privilege levels assigned to the computing process. In one
example, the privilege levels may correspond generally to

US 11,343,082 B2

11

either a user space privilege level or a kernel privilege level.
The user space privilege level may enable a computing
process to access resources assigned to the computing
process but may restrict access to resources assigned to
another user space or kernel space computing process. The
kernel space privilege level may enable a computing process
to access resources assigned to other kernel space or user
space computing processes. In another example, there may
be a plurality of privilege levels, and the privilege levels
may 1include a first level (e.g., ring 0) associated with a
kernel, a second and third level (e.g., ring 1-2) associated
with device drnivers, and a fourth level (e.g., ring 3) that may
be associated with user applications.

Operating system 220 may include one or more programs
that are run to manage one or more of the computing
processes 225A-B. Operating system 220 may include a
kernel that execute as one or more kernel processes and may
manage access to physical or virtual resources provided by
hardware devices. A kernel process may be an example of a
computing process associated with a higher privilege level
(e.g., hypervisor privilege, kernel privilege, kernel mode,
kernel space, protection ring 0). In one example, operating,
system 220 may be a host operating system, guest operating
system, or a portion thereol and the computing processes
225A-C may be diflerent applications that are executing as
user space processes. In another example, operating system
220 may be a hypervisor that provides hardware virtualiza-
tion features and the computing processes 225A-B may be
different virtual machines. In yet another examples, operat-
ing system may include a container runtime (e.g., Docker,
Container Linux) that provides operating system level vir-
tualization and the computing processes 225A-B may be
different containers. In further examples, operating system
220 may provide a combination thereof (e.g., hardware
virtualization and operating system level virtualization).

The kernel of operating system 220 may segregate storage
devices 212 (e.g., main memory, hard disk) mto multiple
portions that are associated with different access privileges.
At least one of the multiple portions may be associated with
enhanced privileges and may be accessed by processes with
enhanced privileges (e.g., kernel mode, kernel privilege) and
another portion may be associated with diminished privi-
leges and may be accessed by processes with both dimin-
1shed privileges (e.g., user space mode, user space privilege)
and those with enhanced privileges. In one example, the
portion of storage devices 212 associated with the enhanced
privileges may be designated as kernel space and the portion
ol storage devices 212 associated with the diminished privi-
leges may be designated as user space. In other examples,
there may be more or less than two portions.

When the kernel provides features of a hypervisor it may
also be known as a virtual machine monitor (VMM) and
may provide virtual machines with access to one or more
features of the underlying hardware devices. A hypervisor
may run directly on the hardware of computing device 110B
(e.g., host machine) or may run on or within a host operating
system (not shown). The hypervisor may manage system
resources, including access to hardware devices. The hyper-
visor may be implemented as executable code and may
emulate and export a bare machine interface to higher-level
executable code 1n the form of virtual processors and guest
memory. Higher-level executable code may comprise a
standard or real-time operating system (OS), may be a
highly stripped down operating environment with limited
operating system functionality and may not include tradi-
tional OS facilities, etc.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 3 depicts an 1illustration of a facilitating resource
sharing for trusted execution environments. As shown 1n

FIG. 3, the launcher TEE 120 can establish TEE pool 125
that mCludes shell TEEs 125A-N (e.g., establish pool 305).
As described 1n further detail below with respect to FIG. 4,
the launcher TEE can perform measurement/attestation
operations to authenticate the shell TEEs 1n TEE pool 125
(e.g., measurement/attestation 310).

In various implementations measurement/attestation 310
can be performed to verily the integrity of the untrusted
computing device which will host any of the shell TEEs 1n
TEE pool 125 (e.g., host computing device 110B of FIG. 1).
Measurement/Attestation 310 can enable a program to check
the capabilities of computing device 110B and to detect
unauthornized changes to programs, hardware devices, other
portions ol computing device, or a combination thereof. The
unauthorized changes may be the result of malicious, defec-
tive, or accidental actions by a program or hardware device.
The attestation may involve performing local attestation,
remote attestation, or a combination thereof. Local attesta-
tion may involve enabling a program executed locally on
computing device 110B to verily the integrity of computing
device 110B. Remote attestation may involve enabling a
program executed remotely on a different computing device
(e.g., 110A) to venly the integrity ol computing device
110B. The remote attestation may be performed non-anony-
mously by disclosing data that uniquely 1dentifies comput-
ing device 110B or anonymously without uniquely 1denti-
tying computing device 110B (e.g., Direct Anonymous
Attestation (DAA)). In either example, one or more attes-
tation operations may be performed to determine attestation
data and may transmit attestation data to the programs
executing on the local or remote computing devices for
verification.

Attestation data may be based on the configuration of
computing device 110B and may represent the capabilities
of the hardware platform, trusted execution environment,
executable code, or a combination thereof. Attestation data
obtained or generated by the hardware platform (e.g., pro-
cessor, memory, firmware, BIOS) and be the same or similar
to integrity data (e.g., hash or signature of executable code),
identification data (e.g., processor model or istance), cryp-
tographic data (e.g., signature keys, endorsement keys, ses-
sion keys, encryption or decryption keys, authentication
keys), measurement data, report data, configuration data,
settings data, other data, or a combination thereof. In one
example, determining the attestation data may involve attes-
tation chaining in which attestation data of diflerent portions
of computing device 110B may be combined before, during,
or after being obtained. This may involve determining
attestation data for one or more layers of the computing
device 110B and the layers may correspond to hardware
device layer (e.g., hardware platform attestation data), pro-
gram layer (e.g., code attestation data), other layer, or a
combination thereof.

The program that receives the attestation data may use the
attestation data to venily the capabilities of computing
device 110B. The program may execute a verification func-
tion to verily the computing device 110B in view of the
attestation data. The verification function may take as mput
the attestation data and provide output that indicates whether
the computing device 110B 1s verified (e.g., trusted). In one
example, the attestation data may include integrity data (e.g.,
a message authentication code (MAC)) and the verification
function may analyze a portion of attestation data to gener-
ate validation data. The verification function may then
compare the recerved integrity data with the generated

US 11,343,082 B2

13

validation data to perform the attestation (e.
received MAC with generate MAC).

Once measurement/attestation 310 of the TEE pool 125
has completed, launcher TEE 120 can service requests from
tenant computing devices to establish TEEs. In various
implementations, launcher TEE 120 can additionally pre-
serve 1ts execution state for later use to validate (e.g.,
measurement/attestation) 1itself with a requesting tenant
computing device 110A.

As shown 1n FIG. 3, launcher TEE 120 can receive a
request to establish a TEE for tenant computing device 110A
(¢.g., request 315). In various implementations, tenant com-
puting device 110A can perform authentication operations
(c.g., measure/attestation 320) to authenticate the launcher
TEE 120. Notably, the authentication operations are per-
formed using the 1nitial state of the launcher TEE 120 that
was previously stored. This, 1 turn, can satisfy the authen-
tication for any shell TEE 125A-N that 1s provisioned for the
tenant computing device 110A.

As noted above, the request 315 can include configuration
parameters from the tenant computing device 110A that
specily how the requested TEE 1s to be configured. Launcher
TEE 120 then compares the configuration parameters
received 1n the request to the configuration parameters of
TEE pool 125 (or any other TEE pool configured by the host
computing device supported by launcher TEE 120).
Launcher TEE 120 can then determine if the configuration
parameters of the shell TEEs in TEE pool 125 are suilicient
to satisiy the request. I1 so, launcher TEE 120 can select one
of the shell TEEs 125A-N from TEE pool 125 to be
provisioned to service the request (e.g., select TEE 325).

As shown, shell TEE 125-A can be selected from the pool
and established as TEE 130 (e.g., provision 330). In various
implementations, the tenant computing device 110A can
provide an executable payload and/or cryptographic key
information that can be used to provision TEE 130. The
executable payload provided to TEE 130 can establish
secure communication with the tenant computing device
110A. In an 1illustrative example, tenant computing device
110A can encrypt data (depicted as “encrypt with key 3357)
and provide the encrypted data directly to TEE 130. TEE
130 can subsequently utilize the stored cryptographic key
data recerved from TEE 120 (which was provided to TEE
120 by the tenant) to decrypt the encrypted data (depicted as
“decrypt with key 340”). Additionally, data can be encrypted
by TEE 130 and provided to the tenant computing device
110A, which can decrypt the data using the corresponding
decryption key.

FI1G. 4 depicts a block diagram 1llustrating an example of
a trusted execution resource manager 410 for facilitating
resource sharing for trusted execution environments. In
some 1mplementations, trusted execution establishment
component 410 may correspond to trusted execution estab-
lishment component 112 of FIG. 1. As shown 1n FIG. 4,
trusted execution resource manager 410 may be a compo-
nent of a computing apparatus 400 that includes a processing
device 405, operatively coupled to a memory 401, to execute
trusted execution resource manager 410. In some 1implemen-
tations, processing device 405 and memory 401 may corre-
spond to processing device 602 and main memory 604
respectively as described below with respect to FIG. 6. In
various implementations, computing apparatus 400 can be a
standalone host computing device that communicates with
various tenant computing devices. Alternatively, computing,
apparatus 400 can be a component of a cloud computing
environment made up of multiple host computing devices,
an Internet of Things (IoT) edge device, or the like.

g., compare

10

15

20

25

30

35

40

45

50

55

60

65

14

Trusted execution resource manager 410 may include
trusted execution environment module 411, trusted execu-
tion environment pool manager 412, request receiver 413,
trusted execution environment pool determiner 414, and
communication module 415. Alternatively, the functionality
of one or more of trusted execution environment module
411, trusted execution environment pool manager 412,
request receiver 413, trusted execution environment pool
determiner 414, and communication module 415 may be
combined mto a single module or divided into multiple
sub-modules.

Trusted execution environment module 411 1s responsible
for establishing an imitial trusted execution environment
(TEE) instance (e.g., a HE instance) 1n com-

a “launcher” TEE
puting apparatus 400 (e.g., an untrusted host computing
device). In various implementations, computing apparatus
400 (e.g., the host computing device) can generate a shell
TEE and provision the shell with trusted execution resource
manager 410. Subsequently, trusted execution environment
module 411 can be invoked to configure the remaiming
components of the launcher TEE. As described 1n further
detail below, trusted execution environment module 411 can
additionally be mvoked to establish the shell TEEs for the
TEE pools, and also to further configure a shell TEE with
any additional parameters and or executable components
received from a requesting tenant computing device.

Trusted execution environment module 411 can perform
measurement and attestation for the launcher TEE instance
prior to establishing any subsequent sell TEE instances for
the TEE pools. In some implementations, trusted execution
environment module 411 can perform these operations uti-
lizing methods/operations that are specific to the hardware
platform and/or vendor. In an 1illustrative example, trusted
execution environment module 411 can perform measure-
ment of the launcher TEE instance by performing a hash
operation over the contents of the launcher TEE instance that
can be subsequently signed by the applicable mechanism
utilized by the platform and/or vendor.

Trusted execution environment module 411 can then
perform an attestation to verily the integrity of the host
apparatus 400 (e.g., integrity of the hardware platiorm,
operating system, and/or one or more of processing devices
405). As noted above, attestation can enable a program to
check the capabilities of the computing device (e.g., com-
puting device 110B, apparatus 400, etc.) and to detect
unauthorized changes to programs, hardware devices, other
portions of the computing device, or a combination thereof.
The unauthorized changes may be the result of malicious,
defective, or accidental actions by a program or hardware
device. The attestation may involve performing local attes-
tation, remote attestation, or a combination thereof. In either
instance, one or more attestation operations can be per-
formed to determine attestation data and may transmit the
attestation data to the programs executing on the local or
remote computing devices for verification.

Notably, trusted execution environment module 411 can
perform the measurement and attestation of the launcher
TEE 1instance and save the measurement in memory 401
(e.g., launcher tee content 402). In various implementations,
the saved measurement information can be used by request
receiver 413 when providing validation information to a
tenant that requests a TEE from one of the TEE pools. As
such, 1f the tenant validates the launcher TEE instance using
the measurement information, 1t can subsequently accept as
valid any TEE from the TEE pools provisioned by the
launcher TEF instance. In other words, because the tenant

knows 1t can trust the launcher TEE instance (using the

US 11,343,082 B2

15

measurement data stored by the launcher TEE instance), it
knows 1t can also trust anything from the TEE pools that 1s
created and validated by the launcher TEE instance.

Trusted execution environment pool manager 412 1s
responsible for establishing one or more pools of shell TEESs.
In various implementations, a shell TEE can represent the
basics of an operating system (OS), the basics of a shell
container environment, the basics of a secure enclave, or the
like. In other words, the shell TEE can be configured as a
base run-time environment without including a specific
executable payload or specific tenant configuration. Thus,
the shell TEE can provide the base run-time environment
into which additional components can be installed when
requested and/or provided by a tenant computing device.
The shell TEE can be provisioned such that it can support
any payload provided by the tenant that 1s suitable for the OS
or container type for a particular pool.

In various implementations, trusted execution environ-
ment pool manager 412 can configure a pool of shell TEEs
in view of one or more configuration parameters associated
with the set of shell TEEs. Accordingly, each of the shell
TEEs 1n a particular TEE pool can be configured with the
configuration parameters associated with the pool. In vari-
ous 1mplementations, a TEE pool can be configured 1n view
of parameters such as OS type (e.g., Red Hat™ Linux,
Suse™ [inux, Ubuntu™ [inux, Unix, Microsolt Win-
dows™, MacOS™, etc.), an OS executable component (e.g.,
a web server, a file transter protocol (FTP) server, a firewall
component, etc.), a memory parameter (e.g., an amount of
memory), a processor parameter (e.g., a number of CPUSs,
etc.) or other similar parameter for configuring the TEE. For
example, trusted execution environment pool manager 412

can establish a pool of shell TEEs that are configured to

execute the Red Hat™ Linux OS. Thus, each shell TEE 1n
that pool would be configured with the basic run-time
clements of the Red Hat™ Linux OS environment. Simi-
larly, trusted execution environment pool manager 412 can
establish a separate pool of shell TEEs that are configured to
execute the Ubuntu™ OS. Thus each shell TEE 1n that pool
would be configured with the basic run-time elements of the
Ubuntu™ OS environment.

In some 1mplementations, the shell TEE pools can be
established within apparatus 400 (e.g., a single host com-
puting device). Alternatively, the TEE pools can be estab-
lished across multiple different host computing devices. For
example, 1n cloud computing environments, the TEE pools
can be established across multiple computing devices within
the cloud computing environment. In this latter case, TEE
pools can be separated by type across diflerent host com-
puting devices. For example, a pool of Red Hat™ Linux
shell TEEs can be established on one host computing device,
and a pool of Ubuntu™ Linux shell TEEs can be established
on a different host computing device. Alternatively, the TEE
pools can be established such that each host computing
device includes a portion of each pool of TEEs. In other
words, one host computing device can be provisioned with
a portion of a pool of Red Hat™ Linux shell TEEs, a portion
of the pool of Ubuntu™ TEEs, etc. In this implementation,
trusted execution environment pool manager 412 can track
the overall pool sizes and the host computing devices that
include the shell TEEs associated with each pool.

Trusted execution environment pool manager 412 can
establish the TEE pools using configuration information that
indicates the types of TEE pools to provision as well as the
number of shell TEE instances to establish for each TEE
pool. In some 1mplementations, trusted execution environ-

ment pool manager 412 can receive this configuration infor-

10

15

20

25

30

35

40

45

50

55

60

65

16

mation from another component of apparatus 400. Alterna-
tively, trusted execution environment pool manager 412 can
determine the configuration information by analyzing sys-
tem usage information that tracks the types of TEEs utilized
by tenant computing devices. In such instances, trusted
execution environment pool manager 412 can analyze the

system usage history and determine the ratio of different

TEE types and configure the different TEE pools based on
this information. For example, 1f stored system usage infor-
mation indicates that tenants request Red Hat™ Linux TEEs
at double the rate of Ubuntu™ Linux TEFs, trusted execu-
tion environment pool manager 412 can configure a Red
Hat™ Linux TEE pool with twice the number of shell TEE
istances as an Ubuntu™ Linux TEE pool.

In some 1implementations, trusted execution environment
pool manager 412 can authenticate each shell TEE 1n the
established TEE pools. In such instances, trusted execution
environment pool manager 412 can perform measurement
and attestation operations on each shell TEE and store the
measurement mformation (e.g., shell TEE content 403) that
can be subsequently used when provisioning the shell TEEs
for a requesting tenant. For example, when provisioning a
Red Hat™ Linux TEE pool, trusted execution environment
pool manager 412 can validate that each shell TEE envi-
ronment uses the Red Hat™ Linux OS and store that
validated information 1n memory 401. In some implemen-
tations, trusted execution environment pool manager 412
can maintain an encrypted connection to each shell TEE 1n
the TEE pools. In such instances, trusted execution envi-
ronment pool manager 412 can establish the connection
using an imtial key exchange between the launcher TEE
instance and the TEE pools. Notably, when a shell TEE 1s
subsequently provisioned for a tenant computing device, the
tenant can establish a secure communication channel with its
assigned TEE by replacing the key information used by the
launcher with the tenants own cryptographic key informa-
tion.

Request recerver 413 1s responsible for recerving a request
from a tenant computing device to establish a TEE for the
tenant. In various implementations, the tenant can device
can be a trusted device that communicates with computing
apparatus 400 (e.g., an untrusted host device). Request
receiver 413 can receive the request from the tenant that
specifies the type of TEE to establish. In such istances, the
request can include one or more request parameters that
indicate the type of TEE (e.g., parameters similar to those
used by trusted execution environment pool manager 412
when configuring the TEE pools). For example, the request
can include an OS type, an OS executable component type,
a memory parameter, a processor parameter, or the like.

In some 1implementations, request receiver 413 can deter-
mine, using imformation included in the request, whether to
establish the TEE within computing apparatus 400 or any
additional hosts associated with computing apparatus 400.
For example, the tenant can specity i the request where to
establish the requested TEEs with which the tenant wishes
to communicate. Additionally, request receiver 413 can
determine whether to establish multiple TEEs for the tenant
based on the information received 1n the request.

Request receiver 413 can additionally facilitate validation
between the launcher TEE and the requesting tenant. In such
instances, request recerver 413 can perform measurement
and attestation operations using the measurement informa-
tion for the launcher TEE instance that was determined and
stored during the start up of the launcher TEE (e.g., launcher
TEE content 402). Thus, while the state of the launcher TEE

may have changed, the validation 1s based on the original

US 11,343,082 B2

17

state at start up. Since the trusted execution resource man-
ager 410 executes within a TEE 1tself (the launcher TEE), 1t
1s known to be 1n a validated state by the requesting tenant.
As noted above, because the tenant knows 1t can trust the
launcher TEE, 1t knows 1t can also trust anything created by
the launcher TEE. Thus, additional validation of the TEE
selected from the pool can be bypassed (since any TE.
selected from a pool was established by the wvalidated
launcher TEE).

Trusted execution environment pool determiner 414 1s
responsible determining whether any of the configured TEE
pools satisty the request recerved by request receiver 413. In
various 1mplementations, trusted execution environment
pool determiner 414 can make this determination by ana-
lyzing the request parameters received from the tenant
computing device and comparing them to the configuration
parameters for each of the established pools. Trusted execu-
tion environment pool determiner 414 can subsequently
determine whether any of the TEE pool configurations
satisty the parameters received in the request. In various
implementations, a TEE pool configuration can satisiy a
request by satisiying all parameters 1n the request. Alterna-
tively, a TEE pool configuration can satisiy a request based
on the priority of the parameters. In other words, 11 a TEE
pool does not satisty all of the parameters recerved 1n the
request, but satisfies any required parameters, trusted execu-

B

tion environment pool determiner 414 can select a shell TEE
from that TEE pool.

Responsive to determining that the configuration param-
cters of a particular TEE pool satisty the request parameters
of a request, trusted execution environment pool determiner
414 can invoke trusted execution environment module 411
to establish a TEE {for the tenant using a shell TEE from the
identified TEE pool. In various implementations, trusted
execution environment pool determiner 414 can select a
shell TEE from the identified pool by invoking trusted
execution environment pool manager to remove the shell
TEE from the pool (e.g., update the configuration informa-
tion associated with that particular pool to reduce the
number of shell TEE instances associated with that pool) and
provide information associated with the selected shell TEE
so that the shell TEE can be fully provisioned for the tenant.
Trusted execution environment module 411 can subse-
quently configure the selected shell TEE using the param-
cters received in the request that may be specific to the
requesting tenant.

Communication module 415 1s responsible for causing
the newly established TEE instance to communicate with the
requesting tenant computing device. In some 1mplementa-
tions, as noted above, the communication connection 1s
established after the measurement/attestation operations
have been conducted between the tenant and launcher TEE.
Subsequently, cryptographic key information can be
received from the tenant that can be used to establish the
secure communication channel between the tenant and the
new TEE instance. Once communication has been estab-
lished, the tenant can provide any executable code to the
assigned TEE mstance. Alternatively, the tenant can provide
any executable code to the launcher TEE prior to direct
communication with the assigned TEE instance. The
launcher TEE can provision the selected shell TEE instance
with the provided executable code and then facilitate the
communication connection between the tenant and the fully
provisioned TEE instance.

In some implementations, trusted execution environment
pool manager 412 can continually monitor the status of the

various TEE pools established 1n apparatus 400 (and/or the

o ™

10

15

20

25

30

35

40

45

50

55

60

65

18

other host computing devices with TEE pools that commu-
nicate with apparatus 400) to balance the shell TEE
instances in each pool. For example, trusted execution
environment pool manager 412 can determine the number of
shell TEEs 1n a particular pool. Subsequently, trusted execu-
tion environment pool manager 412 can determine whether
the number of shell TEE instances in the selected pool falls
below a mimimum threshold. If so, trusted execution envi-
ronment pool manager 412 can establish one or more
additional shell TEE instances conﬁgured for that pool until
the number of shell TEE instances in the pool satisfies the
minimum threshold. Similarly, 11 the number of shell TEE
instances remains at a particular level for a threshold period
of time without being accessed (e.g., no shell TEE instances
have been used from a particular TEE pool for a period of
time), trusted execution environment pool manager 412 can
remove one or more shell TEE instances from that TEE pool
to free up resources for another TEE pool or another process
executing 1n apparatus 400.

FIG. 5 depicts a flow diagram of an example method 500
for facilitating resource sharing for trusted execution envi-
ronments. The method may be performed by processing
logic that may comprise hardware (circuitry, dedicated logic,
etc.), computer readable instructions (run on a general
purpose computer system or a dedicated machine), or a
combination of both. In an 1llustrative example, method 500
may be performed by trusted resource manager 1235 i FIG.
1 or trusted execution resource manager 410 in FIG. 4.
Alternatively, some or all of method 500 might be performed
by another module or machine. It should be noted that
blocks depicted 1n FIG. 5 could be performed simultane-
ously or 1n a different order than that depicted.

At block 505, processing logic establishes, by a process-
ing device of a first computing device, a first trusted execu-
tion environment (TEE) in the first computing device. At
block 510, processing logic establishes, by the first TEE, a
set of shell TEEs, wherein each shell TEE 1s configured 1n
view of one or more configuration parameters associated
with the set of shell TEEs. At block 5135, processing logic
receives, by the first TEE, a request from a tenant computing
device to establish a second TEE, wherein the request
comprises one or more request parameters for the second
TEE 1n the host computmg device.

At block 520, processing logic determines, by the first
TEE, whether the confliguration parameters assoc:lated with
the set of shell TEEs satisty the one or more request
parameters for the second TEE. IT so, processing continues
to block 525. At block 525, processing logic establishes, by
the first TEE, the second TEE to satisty the request, Wherem

the second TEE 1s selected from the set of shell TEEs. At
block 330, processing logic causes, by the first TEE, the
second TEE to communicate with tenant computing device.

If at block 320 processing logic determines that the
configuration parameters associated with the set of shell
TEEs do not satisiy the one or more request parameters for
the second TEE, processing proceeds to block 535. At block
535, processing logic determines whether the configuration
information parameters associated with an additional set of
shell TEEs satisfy the request parameters. For example,
processing logic can examine the configuration parameters
of other TEE pools and determine whether any of the other
TEE pools are configured with shell TEEs that can satisty
the recerved request.

FIG. 6 depicts a block diagram of a computer system
operating 1n accordance with one or more aspects of the
present disclosure. In various illustrative examples, com-
puter system 600 may correspond to computing device

US 11,343,082 B2

19

110A-B of FIG. 1, and/or apparatus 400 1f FIG. 4. Computer
system 600 may be included within a data center that
supports virtualization. Virtualization within a data center
results 1n a physical system being virtualized using virtual
machines to consolidate the data center infrastructure and
increase operational efliciencies. A virtual machine (VM)
may be a program-based emulation of computer hardware.
For example, the VM may operate based on computer
architecture and functions of computer hardware resources
associated with hard disks or other such memory. The VM
may emulate a physical environment, but requests for a hard
disk or memory may be managed by a virtualization layer of
a computing device to translate these requests to the under-
lying physical computing hardware resources. This type of
virtualization results 1n multiple VMs sharing physical
resources.

In certain implementations, computer system 600 may be
connected (e.g., via a network, such as a Local Area Net-
work (LAN), an intranet, an extranet, or the Internet) to
other computer systems. Computer system 600 may operate
in the capacity ol a server or a client computer in a
client-server environment, or as a peer computer in a peer-
to-peer or distributed network environment. Computer sys-
tem 600 may be provided by a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, switch or bridge, or any device capable of
executing a set of mstructions (sequential or otherwise) that
specily actions to be taken by that device. Further, the term
“computer” shall include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
described herein.

In a further aspect, the computer system 600 may include
a processing device 602, a volatile memory 604 (e.g.,
random access memory (RAM)), a non-volatile memory 606
(e.g., read-only memory (ROM) or electrically-erasable
programmable ROM (EEPROM)), and a data storage device
616, which may communicate with each other via a bus 608.

Processing device 602 may be provided by one or more
processors such as a general purpose processor (such as, for
example, a complex mstruction set computing (CISC)
microprocessor, a reduced instruction set computing (RISC)
microprocessor, a very long instruction word (VLIW)
microprocessor, a microprocessor implementing other types
of instruction sets, or a microprocessor implementing a
combination of types of instruction sets) or a specialized
processor (such as, for example, an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), or a network
Processor).

Computer system 600 may further include a network
interface device 622. Computer system 600 also may
include a video display unit 610 (e.g., an LCD), an alpha-
numeric mput device 612 (e.g., a keyboard), a cursor control
device 614 (e.g., a mouse), and a signal generation device
620.

Data storage device 616 may include a non-transitory
computer-readable storage medium 624 on which may store
istructions 626 encoding any one or more of the methods
or functions described herein, including instructions for
implementing method 500, and for encoding components
410.

Instructions 626 may also reside, completely or partially,
within volatile memory 604 and/or within processing device
602 during execution thereof by computer system 600,

10

15

20

25

30

35

40

45

50

55

60

65

20

hence, volatile memory 604 and processing device 602 may
also constitute machine-readable storage media.

While computer-readable storage medium 624 1s shown
in the illustrative examples as a single medium, the term
“computer-readable storage medium™ shall include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of executable instructions. The term
“computer-readable storage medium” shall also include any
tangible medium that is capable of storing or encoding a set
of instructions for execution by a computer that cause the
computer to perform any one or more of the methods
described herein. The term “computer-readable storage
medium” shall include, but not be limited to, solid-state
memories, optical media, and magnetic media.

Other computer system designs and configurations may
also be suitable to implement the system and methods
described herein. The following examples illustrate various
implementations 1n accordance with one or more aspects of
the present disclosure.

The methods, components, and features described herein
may be implemented by discrete hardware components or
may be integrated in the functionality of other hardware
components such as ASICS, FPGAs, DSPs or similar
devices. In addition, the methods, components, and features
may be implemented by firmware modules or functional
circuitry within hardware devices. Further, the methods,
components, and features may be implemented 1in any com-
bination of hardware devices and computer program com-
ponents, or 1n computer programs.

Unless specifically stated otherwise, terms such as
“recerving,” “establishing,” “providing,” “causing,” “deter-
mining,” “terminating,” “performing,” “executing,” “con-
figuring,” “1dentitying,” “mitiating,” or the like, refer to
actions and processes performed or implemented by com-
puter systems that manipulates and transiforms data repre-
sented as physical (electronic) quantities within the com-
puter system registers and memories nto other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such mforma-
tion storage, transmission or display devices. Also, the terms
“first,” “second,” ““third,” “fourth,” etc. as used herein are
meant as labels to distinguish among different elements
(e.g., cardinal meaning) and may not have an ordinal mean-
ing according to their numerical designation.

Examples described herein also relate to an apparatus for
performing the methods described herein. This apparatus
may be specially constructed for performing the methods
described herein, or 1t may comprise a general purpose
computer system selectively programmed by a computer
program stored in the computer system. Such a computer
program may be stored in a computer-readable tangible
storage medium.

The methods and 1llustrative examples described herein
are not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used 1n
accordance with the teachings described herein, or it may
prove convenient to construct more specialized apparatus to
perform method 500 and/or each of 1ts individual functions,
routines, subroutines, or operations. Examples of the struc-
ture for a variety of these systems are set forth in the
description above.

The above description 1s mtended to be illustrative, and
not restrictive. Although the present disclosure has been
described with references to specific illustrative examples
and implementations, 1t will be recognized that the present
disclosure 1s not limited to the examples and implementa-

bl Y 4 bR Y 4

22

US 11,343,082 B2

21

tions described. The scope of the disclosure should be
determined with reference to the following claims, along
with the full scope of equivalents to which the claims are
entitled.

What 1s claimed 1s:

1. A method comprising:

establishing, by a processing device of a first computing
device, a first trusted execution environment (TEE) 1n
the first computing device;

establishing, by the first TEE, a set of shell TEEs, wherein
cach shell TEE 1s configured in view of one or more
configuration parameters associated with the set of
shell TEEs;

receiving, by the first TEE, a request from a second
computing device to establish a second TEE, wherein
the request comprises one or more request parameters

HE 1n the first computing device;

for the second TE.
determining, by the first TEE, whether the configuration

parameters associated with the set of shell TEEs satisty

the one or more request parameters for the second TEE;
and
responsive to determining that the configuration param-
eters associated with the set of shell TEEs satisty the
one or more request parameters for the second TEE,
establishing, by the first TEE, the second TEE to satisty
the request, wherein the second TEE 1s selected from
the set of shell TEEs; and
causing, by the first T JE, the second TEE to commu-
nicate with the second computing device.

2. The method of claim 1, wherein the one or more
configuration parameters comprise at least one of an oper-
ating system (OS) type, an OS executable component, a
memory parameter, or a processor parameter.

3. The method of claim 1, wherein the set of shell TEEs
1s established in the first computing device.

4. The method of claim 1, wherein establishing the second
TEE to satisty the request comprises:

selectmg a first shell TEE from the set of shell TEESs;

removing the first shell TEE from the set of shell TEESs;

configuring the first shell TEE 1 view of the request
parameters; and

establishing the second TEE using the first shell TEE.

5. The method of claim 1, wherein the second computing
device communicates with a cloud computing environment
that comprises the first computing device and a third com-
puting device.

6. The method of claim 5, wherein a first portion of the set
of shell TEESs 1s established 1n the first computing device and
a second portion of the set of shell TEEs 1s established 1n the
second computing device.

7. The method of claim 1, further comprising;:

establishing, by the first TEE an additional set of shell
TEEs, wherein each additional shell TEE of the addi-
tional set of shell TEEs 1s configured 1n view of one or
more additional configuration parameters associated
with the additional set of shell TEEs.

8. The method of claim 7, further comprising;:

responsive to determining that the configuration param-
cters associated with the set of shell TEEs does not

satisly the one or more request parameters for the

second TEE,

determining, by the first TEE, whether the additional
configuration parameters associated with the addi-
tional set of shell TEEs satisty the one or more

request parameters for the second TEE; and

[T]

10

15

20

25

30

35

40

45

50

55

60

65

22

responsive to determining that the additional configu-
ration parameters associated with the additional set
of shell TEEs satisiy the one or more request param-
eters for the second TEE,
establishing, by the ﬁrst TEE, the second TEE to
satisly the request, wherein the second TEE 1s
selected from the additional set of shell TEEs; and
causing, by the first TEE, the second TEE to com-
municate with the second computing device.
9. The method of claim 1, further comprising:
determining a number of shell TEEs 1n the set of shell
TEEs;
responsive to determining that the number of shell TEEs
satisfies a low threshold, estabhshmgj by the first TEE,
an additional shell TEE for the set of shell TEEs,
wherein the additional shell TEE 1s configured 1n view
of the one or more configuration parameters associated
with the set of shell TEEs.
10. A system comprising;:
a memory; and
a processing device operatively coupled to the memory,
the processing device to:
establish a first trusted execution environment (TEE) 1n

a first computing device;
establish, by the first TEE, a set of shell TEEs, wherein
cach shell TEE 1s configured in view of one or more
configuration parameters associated with the set of
shell TEEs:

receive, by the first TEE, a request from a tenant
computing device to establish a second TEE,
wherein the request comprises one or more request
parameters for the second TEE 1n the first computing
device;
determine, by the first TEE, whether the configuration
parameters associated with the set of shell TEEs
satisty the one or more request parameters for the
second TEE; and
responsive to determiming that the configuration param-
eters associated with the set of shell TEEs satisty the
one or more request parameters for the second TEE,
select a shell TEE from the set of shell TEEs to
satisty the request;
establish the second TEE
TEE; and
cause, by the first TEE, the second TEE to commu-
nicate with the tenant computing device.

11. The system of claim 10, wherein the tenant computing
device communicates with a cloud computing environment
that comprises the first computing device and a second
computing device.

12. The system of claim 11, wherein a first portion of the
set of shell TEEs 1s established 1n the first computing device
and a second portion of the set of shell TEEs 1s established
in the second computing device.

13. The system of claim 10, wherein the processing device
1s further to:

establish, by the first TEE, an additional set of shell TEESs,

wherein each additional shell TEE of the additional set
of shell TEEs 1s configured in view of one or more
additional configuration parameters associated with the
additional set of shell TEEs.

14. The system of claim 13, wherein the processing device
1s further to:

responsive to determining that the configuration param-

cters associated with the set of shell TEEs does not
satisfy the one or more request parameters for the

1]

second TE.

L]

1n view of the selected shell

s

3

US 11,343,082 B2

23

determine, by the first TEE, whether the additional
configuration parameters associated with the addi-
tional set of shell TEEs satisty the one or more
request parameters for the second TEE; and
responsive to determining that the additional configu-
ration parameters associated with the additional set
of shell TEEs satisiy the one or more request param-
eters for the second TEE,
establish, by the first TEE, the second TEE to satisiy
the request, wherein the second TEE 1s selected
from the additional set of shell TEEs; and
cause, by the first TEE, the second TEE to commu-
nicate with the tenant computing device.

15. The system of claim 10, wherein the processing device
1s further to:

determine a number of shell TEFEs 1n the set of shell TEFEs:

responsive to determining that the number of shell TEEs

satisfies a low threshold, establish, by the first TEE, an
additional shell TEE for the set of shell TEFEs, wherein
the additional shell TEE i1s configured in view of the
one or more configuration parameters associated with
the set of shell TEEs.

16. A non-transitory computer readable medium storing
istructions which, when executed by a processing device,
cause the processing device to:

establish a first trusted execution environment (TEE) 1n a

first computing device;

establish, by the first TEE, a set of shell TEEs, wherein

cach shell TEE 1s configured 1n view of one or more
configuration parameters associated with the set of
shell TEEs;
receive, by the first TEE, a request from a tenant com-
puting device to establish a second TEE, wherein the
request comprises one or more request parameters for
the second TEE 1n the first computing device;

determine, by the first TEE, whether the configuration
parameters associated with the set of shell TEEs satisty
the one or more request parameters for the second TEE;
and

responsive to determining that the configuration param-

cters associated with the set of shell TEEs satis: y the
one or more request parameters for the second TEE,
select a shell TEE from the set of shell TEEs to satlsfy
the request;
establish the second TEE
TEE; and

in view of the selected shell

10

15

20

25

30

35

40

45

24

cause, by the first TEE, the second TEE to communi-
cate with the tenant computing device.

17. The non-transitory computer readable medium of
claim 16, wherein the tenant computing device communi-
cates with a cloud computing environment that comprises
the first computing device and a second computing device,
and wherein a first portion of the set of shell TEEs is
established 1n the first computing device and a second
portion of the set of shell TEEs 1s established 1n the second
computing device.

18. The non-transitory computer readable medium of
claim 16, wherein the processing device 1s further to:

establish, by the first TEE, an additional set of shell TEES,

wherein each additional shell TEE of the additional set
of shell TEEs 1s configured in view of one or more
additional configuration parameters associated with the
additional set of shell TEEs.

19. The non-transitory computer readable medium of
claim 18, wherein the processing device 1s further to:

responsive to determining that the configuration param-

cters associated with the set of shell TEEs does not
satisfy the one or more request parameters for the
second TEE,
determine, by the first TEE, whether the additional con-
figuration parameters assoc1ated with the additional set
of shell TEEs satisly the one or more request param-
eters for the second TEE; and
responsive to determining that the additional configura-
tion parameters associated with the additional set of
shell TEEs satisiy the one or more request parameters
for the second TEE,
establish, by the ﬁrst TEE, the second TEE to satisty
the request, wherein the second TEE 1s selected from
the additional set of shell TEEs; and

cause, by the first TEE, the second TEE to communicate

with the tenant computing device.

20. The non-transitory computer readable medium of
claim 16, wherein the processing device 1s further to:

determme a number of shell TEEs 1n the set of shell TEESs;

responsive to determining that the number of shell TEEs
satisfies a low threshold, establish, by the first TEE, an
additional shell TEE for the set of shell TEEs, wherein
the additional shell TEE 1s configured in view of the
one or more configuration parameters associated with

the set of shell TEEs.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

