12 United States Patent

Beuch et al.

US011341006B1

US 11,341,006 B1
May 24, 2022

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC REPLACEMENT OF DEGRADING (56) References Cited
PROCESSING ELEMENTS IN STREAMING .
APPLICATIONS U.S. PATENT DOCUMENTS
_ 8,369,207 B2* 2/2013 Takahashi GO6F 11/2097
(71) Applicant: International Business Machines 370/216
Corporation, Armonk, NY (US) 9,459,757 B1* 10/2016 Barsness GO6F 9/5027
10,127,086 B2 11/2018 Ghare
(72) Inventors: Daniel Beuch, Rochester, MN (US); 10,346,272 B2 72019 Johnson et al.
Michael J. Branson, Rochester, MN (Continued)
(US); Adam Thomas Stallman, . .
Rochester, MN (US): Ryan K. FOREIGN PATENT DOCUMENTS
Cradick, Oronoco, MN (US) CN 107623639 A 1/2018
CN 108009111 A 5/2018
(73) Assignee: INTERNATIONAL BUSINESS (Continued)
MACHINES CORPORATION,
Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Kwon et al., Fault-tolerant Stream Processing using a Distributed,
patent 1s extended or adjusted under 35 Replicated File System, VLDB ’08, Aug. 24-30, 2008, Auckland,
U.S.C. 154(b) by 0 days. New Zealand.
(Continued)
(21) Appl. No.: 17/084,974 _ _ _
Primary Examiner — Yolanda L Wilson
(22) Filed: Oct. 30, 2020 (74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; Nathan Rau
(51) Int. CL | (57) ABSTRACT
GOOF 11720 (2006'0j‘) An embodiment includes momitoring a distributed comput-
GO6I 11/36 (2006'03‘) ing application at runtime for occurrence of a condition,
G06Q 30/04 (2012.01) where the condition includes occurrence of a degradation
(52) US. ClL condition on a processing element (PE). The embodiment
CPC ... GO6F 11/2028 (2013.01); GO6F 11/3612 also includes starting a provisional PE on a second node at
(2013.01); GO60Q 30/04 (2013.01); GO6F runtime while maintaining runtime operation of the PE. The
2201/85 (2013.01) embodiment compares operation of the PE to operation of
(58) Field of Classification Search the provisional PE based on a performance metric associated

CPC GO6F 11/2028; GO6F 11/2035; GO6F
11/302; GO6F 11/3612; GO6F 11/3466;

GO6F 11/1438; GO6F 2201/85; G06Q)

30/04

See application file for complete search history.

with the computing resource. The embodiment connects the
provisional PE to replace the stream of tuples from the PE
to a downstream PE with a stream of tuples from the
provisional PE to the downstream PE.

20 Claims, 12 Drawing Sheets

DETERMINE LOCATION
FOR PROVISIONAL
PROCESSING ELEMENTS

1102

START MULTIPLE PROVISIONAL

PROCESSING ELEMENTS
1104

END

SWITCHOVER TO BEST
PEREORMING PROVISIONAL PE

1110

NG

ARE

COMPARE PERFORMANCE OF
DEGRADED AND PROVISIONAL
PROCESSING ELEMENTS

11086

ANY PROVISIONAL
PEs PERFORMING
BETTER THAN

DEGRADED PEY

1108

YES

US 11,341,006 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2003/0135474 Al1* 7/2003 Circenls G06Q) 30/0283
705/400
2006/0230174 A1 10/2006 Hoche et al.
2011/0083046 Al* 4/2011 Andrade GO6F 11/0793
714/47.1
2013/0054538 Al 2/2013 Cradick et al.
2014/0365478 Al 12/2014 Enok et al.
2015/0134626 Al1* 5/2015 Themmer GO6F 11/3055
707/693
2019/0102266 Al 4/2019 Park et al.
2020/0026605 Al1* 1/2020 Barsness HO041L. 67/10
FOREIGN PATENT DOCUMENTS
CN 110362600 A 10/2019
EP 1647890 A2 4/2006
OTHER PUBLICATIONS

International Searching Authority, PCT/CN2021/123310, dated Jan.

19, 2022.

* cited by examiner

US 11,341,006 B1

Sheet 1 of 12

May 24, 2022

U.S. Patent

PIT LN3ITO

|
50T

NOILYOITddY | \

iz Va0l
AJOWIN NOILVOIlddV

ccl
d05S53004dd

WALSAS DNISST00dHd

I "OIAd

60}
345VvVav.ivd

80|
4OVdHOLS

VI0¢C
AHOMLEN

g10¢ W3LSAS 31OW3Y

US 11,341,006 B1

cle
H3.1dvav
_ 0cc s ST MHOMLAN
Ve | cee | H31dvav S39IATg | S1HOd _
~ WOHY WIAoW | [3SNOW aNV I /19 JH1O | _ 0te
\ w -
— AHVYOgAIN ANV 9sn | NOH-aD
= m
gl
~
s
s
_—
s gce sng
gl
g
S 372
M., wmm H31dvav m
olany — _ 0re
5 _ E%.%m NIVIA ‘ xowwwmz ‘ HO5530084
> - SOIHAVHD
~
=
2 502 “
o~ LINN DNISSAO0H |
=5 __
. 0¢
/)
- Z "DIA

US 11,341,006 B1

Sheet 3 of 12

May 24, 2022

U.S. Patent

(0j75
45VvVav.ivd

GIE
WA1SAS 45VEV1VA

V1S
(S)HOLvH3dO

ARS
(S)LNINWI 1T HNISSIDOH

dole
JAON 3LNdNOD

O0LE
400N 4LNdINOD

ddOVNVIN NVIHLS

cee
HdVHD H0O1vdddO

G0¢
NIWIDVNVIN

d0}¢
JAON 4LNdINOD

VOIS
400N 41LNdWNOO

US 11,341,006 B1

Sheet 4 of 12

May 24, 2022

U.S. Patent

447
d4-440N4

iy
49VdOLS

80¥

FAOVAHALNI AHOMLAN

AHOMLAEN
SNOILVOINAWINOD
Ol

0ct

dOLINOW dONVINHOAd Ad |

— _ 8y
HOLVHALO

Ol¥
(SNg) LOANNODHA LN

0%
A0VAHEALNIE FDIAIA Ol

o0v

Sd0IAIA O/

oy

SLINAWATH DNISSH004Hd

cH

AHOWIN

JA0ON d41NdINOD

v OId

US 11,341,006 B1

Sheet 5 of 12

May 24, 2022

U.S. Patent

74
d41NA4HO0S

0c%
dOLINOW dONVINHOAd 4d

g1g

4 TNAOW SISATVNY
3d 1VNOISIAOH

¢S 91g
HdVdO HO1vVd3d0O d4DVNVIN INV3IHLS

v1S cls
4OVHOLS AJOWEN

001G
(SNE) LOANNODHA LN

305 505 | <=
OVAHILINI MHOMLIN 39V443LNI IDIAIA O/ dO
00%
NILSAS LNIWIDOVNYI
MHOMLIN —
mzoiw._,_,,m:_zzoo A O

S OId

US 11,341,006 B1

Sheet 6 of 12

May 24, 2022

U.S. Patent

819
A0V4dddLNI 35N

V.1vVd dONVINHO4ddd

919

(S)3d TYNOISIAOHJ

v19
d31vVAdnN WALSAS

ci9
dOLIdVdINOD dONVINHO4dddd

019
dOLVddNTD dd TVNOISIAOHJ

909
dd4100HS31dN0OHL dd TVNOISIAOHJ

09
F1NAOW SISATVYNY TVILINI

c09
INOWW JONVINJOdd3d

009
F1NAON SISATVYNY dd TVNOISIAOHJ

9 Ol

vV.1vVd dONVINJO4dddd

809

dd JONVINHO4dddd
d3davdodd

V.1vVd d0NVINJO4dddd

U.S. Patent May 24, 2022 Sheet 7 of 12 US 11,341,006 B1

FIG. 7

SOURCE
710

US 11,341,006 B1

Sheet 8 of 12

May 24, 2022

U.S. Patent

§ OIA

US 11,341,006 B1

Sheet 9 of 12

May 24, 2022

U.S. Patent

906
(SAINFNG TS

clb 806

. . ONISSIDOH
i ALIDVAYD HVAN ; FHNSSIHIMOVE 4O
S39YNOSIY YILSNTD ON HOLYOIANI NV JY3HL S3A ANV 1v 04.03130 ON
i o IONVIANHOSH I
a3avynaa
_ Si
ST STA
oTE 706
IONVYIWHOSHId a3avHD3Ia HO-
AQIN3H d3H10 SINIWITI ONISSTDOHd HOLINOW
Y16
ONILOOHSI1ENOYL
3d TYNOISIAOH
016 206
a3ddOLS NOILYDI1ddY SINVIHLS NOILYDITddY SIWVIHLS LHYLS
S\E UV 1S
006

6 DIA

8001
¢(dd d3dvdoOdd
NVHL d41149
ONIWHO4ddd 3d
TVNOISIAOH

US 11,341,006 B1

SdA

ON

Sheet 10 of 12

010}

3d TVNOISIAOH
Ol H4AOHOLIMS

May 24, 2022

aN4d

01 OId

U.S. Patent

900}
SLININFTE DNISSI00dd
TVNOISIAOHd ANV dddvdo3dd
40 dONVINHO4ddd 3dVdNOD

P00 |
INAWNFTT DNISS3I00dHd
TVNOISINOHd LdV1S

c00}

INAWNFTd DNISS300dd
TVNOISIANOHd 04

NOILVOOT ANING G130

801t
(dd d3dvdo4dd
NVHL d41149
ONIWHO4ddd S3d
TVNOISIANOdd ANV

SdA

US 11,341,006 B1

ON

Sheet 11 of 12

OLEL

dd TVNOISIAOHd DONINHO4ddd
1549 OL ddAOHOLIMS

May 24, 2022

aN4d

Il "OIA

U.S. Patent

901}
SLININFTE DNISSI00dd
TVNOISIAOHd ANV dddvdo3dd
40 dONVINHO4ddd 3dVdNOD

POl
SLININFTE DNISS3004dd
1VNOISIAOAG A1dILTNIN 1dV1S

cObl
SLININFTE DNISS3004dd
TVNOISIANOHd 04
NOILVOOT ANING G130

US 11,341,006 B1

Sheet 12 of 12

May 24, 2022

U.S. Patent

Olcl

dd TVNOISIAOH

OL d4AOHO

80¢} SOTT

SdA OMMID._.MIDM.M_.“_._WMD SLINFNTTE DNISSID04dd
ONIWHO4H I S3d TVNOISIAOdd ANV ddavdo4dd

TYNOISIAOHY 40 dONVINHO4dddd dVdNOD

14014
INFNFTT DNISS3T00Hd
1VNOISIANOdd 1dV1S

clel
(AdHOVY dd
ANOdd HO4 531d1
XVIN cOcl
INFNFTT DNISS3004dd
TVNOISIANOHd HO4
NOILVOOT ANING G130

IMS

cl "OIA

US 11,341,006 Bl

1

DYNAMIC REPLACEMENT OF DEGRADING
PROCESSING ELEMENTS IN STREAMING
APPLICATIONS

BACKGROUND

The present invention relates generally to a method,
system, and computer program product for stream comput-
ing. More particularly, the present invention relates to a
method, system, and computer program product for dynamic
replacement of processing elements 1n streaming applica-
tions.

Database systems are typically configured to separate the
process of storing data from accessing, manipulating, or
using data stored 1n a database. In traditional, static database
systems, data 1s first stored and indexed 1n memory before
subsequent querying and analysis. In general, such static
database systems are not always well-suited for performing
real-time processing and analyzing streaming data. For
example, static database systems are sometimes unable to
store, index, and analyze large amounts of streaming data
ciliciently or 1n real time.

Streams-based computing and streams-based database
computing have emerged in recent years as developing
technologies for database systems. In a streams application,
nodes connected to one another across a network allow data
to flow from one node to the next. Such data flows encap-
sulate blocks of data 1n a “tuple.” A tuple 1s a block of data
of one or a variety of different data types, such as integer,
float, Boolean, or string data. Groups of tuples are transmiut-
ted 1n sequences referred to as a “stream” or “data stream.”
In particular, it may occur that data arrives essentially
continuously, as a stream of data points corresponding to an
ongoing or continuous event.

For example, data representing the price of a particular
stock may generally fluctuate over the course of a day, and
a data stream management system may continuously receive
updated stock prices, e.g., at equal time intervals or as the
price changes. Other examples of such data streams include
temperature or other environmental data collected by sen-
sors, computer network analytics, patient health data col-
lected at a hospital, or data describing a manufacturing
process or other business process(es).

SUMMARY

The 1llustrative embodiments provide for dynamic
replacement of degrading processing elements 1in streaming,
applications. An embodiment includes monitoring a distrib-
uted computing application at runtime for occurrence of a
condition, where the distributed computing application com-
prises a first node that includes a processing element (PE)
receiving a first stream of tuples from an upstream PE,
performing a defined process on the first stream of tuples
resulting 1n a second stream of tuples, and transmitting the
second stream of tuples to a downstream PE, where the
condition includes occurrence of a degradation condition on
the PE. The embodiment also includes starting a first pro-
visional PE on a second node at runtime while maintaining
runtime operation of the PE, where the first provisional PE
receives the first stream of tuples from the upstream PE and
performs the defined process on the first stream of tuples.
The embodiment also includes comparing operation of the
PE to operation of the first provisional PE based on a
performance metric associated with the computing resource.
The embodiment also includes connecting the first provi-
sional PE to replace the second stream of tuples from the PE

10

15

20

25

30

35

40

45

50

55

60

65

2

to the downstream PE with a third stream of tuples from the
first provisional PE to the downstream PE. Other embodi-
ments of this aspect include corresponding computer sys-
tems, apparatus, and computer programs recorded on one or
more computer storage devices, each configured to perform
the actions of the embodiment.

An embodiment includes a computer usable program
product. The computer usable program product includes a
computer-readable storage medium, and program instruc-
tions stored on the storage medium.

An embodiment includes a computer system. The com-
puter system includes a processor, a computer-readable
memory, and a computer-readable storage medium, and
program 1nstructions stored on the storage medium for
execution by the processor via the memory.

BRIEF DESCRIPTION OF THE

DRAWINGS

The novel features believed characteristic of the invention
are set forth 1 the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
tives and advantages thereof, will best be understood by
reference to the following detailed description of the 1llus-
trative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented;

FIG. 2 depicts a block diagram of a data processing
system 1n which illustrative embodiments may be imple-
mented;

FIG. 3 depicts a block diagram of an example streams
application environment 1 accordance with an illustrative
embodiment;

FIG. 4 depicts a block diagram of an example compute
node 1n accordance with an illustrative embodiment;

FIG. § depicts a block diagram of an example manage-
ment system 1n accordance with an 1llustrative embodiment;

FIG. 6 depicts a block diagram of an example provisional
PE (PE) analysis module 1n accordance with an illustrative
embodiment;

FIG. 7 depicts a block diagram of an operator graph for
a stream computing application in accordance with an
illustrative embodiment;

FIG. 8 depicts a block diagram of an operator graph for
a stream computing application having a provisional PE 1n
accordance with an 1illustrative embodiment:

FIG. 9 depicts a flowchart of an example dynamic PE
replacement process 1 accordance with an 1illustrative
embodiment;

FIG. 10 depicts a flowchart of an example provisional PE
troubleshooting process in accordance with an illustrative
embodiment;

FIG. 11 depicts a flowchart of an example provisional PE
troubleshooting process 1n accordance with an 1llustrative
embodiment; and

FIG. 12 depicts a tlowchart of an example provisional PE

troubleshooting process 1 accordance with an 1llustrative
embodiment.

DETAILED DESCRIPTION

Stream-based computing and stream-based database com-
puting are emerging as a developing technology for database
systems. Products are available which allow users to create
applications that process and query streaming data before 1t
reaches a database file. With this emerging technology, users

US 11,341,006 Bl

3

can specily processing logic to apply to inbound data
records while they are “in flight,” with the results available
in a very short amount of time, often 1n fractions of a second.
Constructing an application using this type of processing has
opened up a new programming paradigm that will allow for
development of a broad variety of innovative applications,
systems, and processes, as well as present new challenges
for application programmers and database developers.

The main components of stream processing applications
include tuples, data streams, operators, PEs, and jobs. A
“tuple,” 1s an 1ndividual piece of the data in a data stream.
A “data stream,” as used herein, refers to a running sequence
of tuples. An “operator,” as used herein, 1s a logical function
that manipulates the tuple data from the incoming data
stream and produces the results in the form of an output data
stream. A “operator graph,” as used herein, 1s a visual
representation of the operators connected by the data
streams that flow through them and defines the analytic
application. A “processing element” or “PE” as used herein
1s an executable that includes a set of one or more operators
that will run 1n the same process on a network node or
computing resource, for example a server, client, host,
container, or other computing device, such as a data pro-
cessing system. A “node,” as used herein, 1s a network node
including any electronic device addressable over a computer
network that 1s capable of creating, receiving, and/or trans-
mitting information over the computer network, and may
refer to may refer to an element, module, component, board,
device or system.

A streams processing job has a directed graph of PEs that
send data tuples between the PEs. The PE operates on the
incoming tuples, and produces output tuples. A PE has an
independent processing unit and runs on a host. The streams
platform can be made up of a collection of hosts that are
cligible for PEs to be placed upon.

In a stream computing application, PEs are thus con-
nected to one another such that data flows from one PE to the
next over a network connection (e.g., over a TCP/IP socket).
Data flows from one stream operator to another in the form
of a tuple having a sequence of one or more attributes
associated with an entity.

Stream computing applications handle massive volumes
ol data that need to be processed efliciently and 1n real time.
Stream computing 1s able to achieve high performance
streaming and scalability by distributing an application
across multiple nodes by creating executables (1.e., PEs), as
well as replicating PEs on multiple nodes and load balancing,
among them. Thus, a stream computing application may
continuously ingest and analyze hundreds of thousands of
messages per second and up to petabytes of data per day.
Accordingly, each stream operator 1 a stream computing,
application may be required to process a received tuple
within fractions of a second.

An advantage of products, such as IBM Streams, 1s the
massive scalability and performance (IBM 1s a registered
trademark of International Business Machines corporation).
Performance advantages include improvements in terms of
being able to ingest, filter, analyze, and correlate potentially
massively larger volumes of continuous data streams 1n a
given time frame than was previously possible. However, 1f
a streaming application “falls behind” 1n 1ts processing, the
analysis 1t 1s performing loses 1ts value, 1.e. results of the
analysis are based on the past, not the most recent data.

A streaming application might fall behuind simply because
of poor performance of one part of the application. A
streaming application can also fall behind because of fail-
ures within the application. A streaming services provider or

10

15

20

25

30

35

40

45

50

55

60

65

4

operating system may support high-availability and appli-
cation failover, but failure-recovery mechanisms include a
period of time where data 1s not processed while the recov-
ery occurs. For example, the amount of time 1t takes a
processing element (PE) to fail and restart could range from
20 to 30 seconds to several minutes, depending on a number
of factors (e.g. a quick failure versus a gradual failure where
the PE runs slower and slower until 1t ultimately fails, the
amount of time to create/schedule a new resource to host a

restarted PE, the amount of time to deploy the new PE, etc.).

The longer the failure-recovery process takes to com-
plete—the longer the backlog of unprocessed real-time data,
resulting 1n the application falling behind real-time until 1t
“catches up” with the most recent data. If multiple failures
occur, lengthy recovery periods could result in the applica-
tion being completely flooded with real-time data, causing 1t
to completely fail.

The illustrative embodiments of the present disclosure
address problems and performance goals particular to
streams processing by monitoring its processing elements
(PEs) for degradation and replacing a degrading PE (before
it fails) with a better performing replica of itself. Some such
embodiments provide one or more advantages over prior
techniques, such as improving the performance of a stream-
ing application by replacing underperforming PEs, provid-
ing a way to avoid PE failures, and associated lengthy
recoveries, by proactively replacing a degrading PE with a
healthier replica of 1itself before 1t fails, and enabling swi-
tchover to a replacement PE much faster than going through
a full failure-recovery scenario, thereby reducing or prevent-
ing the bwldup of unprocessed real-time data during the
failure-recovery process.

In an 1illustrative embodiment, a streams manager moni-
tors a streaming application, maintaining statistics that rep-
resent the performance of the various PEs that make up the
streaming application. In some embodiments, the streams
manager monitors PEs for degradation and, when degrada-
tion of one or more PEs 1s detected, performs troubleshoot-
Ing processes, or 1ssues notification signals or data to a
troubleshooting module or separate application. For
example, 1n some embodiments, a PE monitors itself for
degradation 1indicators and signals a streams manager when
the PE detects degradation.

In some embodiments, a streams manager detects degra-
dation of a PE by monitoring the PE for occurrence of a
condition that serves as a degradation indicator, which may
differ from one PE to another. In some embodiments, the
thresholds for degradation indicator conditions may also
differ from one PE to another. Thus, in some such embodi-
ments, a degradation indicator condition 1s configurable for
cach PE.

In some embodiments, a degradation indicator condition
includes execution conditions associated with a PE that
deviate from a predefined or expected pattern. For example,
in some embodiments, indicators of degradation include
abnormal amounts of queued tuples (1.¢. tuples waiting to be
processed on 1nput ports of operators in the PE), abnormal
memory usage, number and types of exceptions handled,
and abnormal CPU consumption.

In some embodiments, the streams manager monitors a
plurality of PEs. In alternative embodiments, the streams
manager only monitors a single PE. In some embodiments,
the streams manager maintains statistics that represent the
normal or expected performance of the PE prior to degra-
dation of the PE. In some embodiments, the streams man-
ager logs the utilization of such computing resources by the

US 11,341,006 Bl

S

PE, allowing for normal utilization patterns to be established
and thereby also allowing for abnormal utilization patterns
to be detected.

In some embodiments, abnormal amounts of queued
tuples includes higher than normal amounts of queued
tuples. In some embodiments, abnormal memory usage
includes abnormally high rates of change in memory usage.
In some embodiments, abnormal CPU consumption includes
abnormally high rates of change in CPU consumption.

In some embodiments, when a streams manager detects
degradation of a PE, the streams manager performs an initial
analysis in connection with the degraded PE. In some such
embodiments, the streams manager analyzes the degraded
PE to determme whether the indications signiiying the
degraded performance are actually indications of a problem
other than degradation of the degraded performance PE,
such as backpressure or one or more cluster computing
resources reaching capacity.

In some such embodiments, when a streams manager
detects degradation of a PE and does not detect an alterna-
tive problem, the streams manager tests the use of one or
more provisional PEs as possible replacements for the
degrading PE. In some such embodiments, the streams
manager communicates with a scheduler to 1dentity a node
to host the provisional PE. In some embodiments, the
scheduler searches for a node other than the node hosting the
PE. In some embodiments, the scheduler also searches for a
node based on predetermined rules or criteria, for example
availability of computing resources and vicinity to upstream
and downstream PFs. In some embodiments, once the
scheduler identifies a host node, the scheduler notifies the
streams manager ol the selected location for the provisional
PE.

In some embodiments, the streams manager starts the
provisional PE on the identified node at runtime while
maintaining runtime operation of the degraded performance
PE. In some such embodiments, the streams manager con-
nects the provisional PE to an upstream PE that 1s the same
upstream PE from the degraded PE so that the provisional
PE and the degraded PE both receive the same stream of
tuples from the same upstream PE at the same time. In some
such embodiments, the provisional PE and the degraded PE
both perform the same defined process on the stream of
tuples, which allows the streams manager to compare the
performance of the degraded PE to that of the provisional
PE. In some such embodiments, the degraded PE performs
the defined process on the stream of tuples resulting 1 an
output stream of tuples that the degraded PE transmits to a
downstream PE, while the output of the provisional PE 1s not
connected to any downstream elements.

In some embodiments, the streams manager compares the
operation of the degraded PE to that of the provisional PEs
based on a performance metric associated with one or more
computing resources. For example, 1n some embodiments,
the streams manager compares the operation of the degraded
PE to that of the provisional PE by comparing one or more
of CPU usage, memory usage, and speed of tuple through-
put. In some such embodiments, 1f the streams manager
determines that the provisional PE 1s performing better than
the degraded PE, then the streams manager replaces the
degraded PE with the provisional PE, for example by
connecting the output of the provisional PE to the down-
stream PE 1n place of the degraded performance PE, and the
streams manager shuts down the degraded PE. In some
embodiments, the streams manager sends a notification to
the user via a user mterface regarding the replacement of the
degraded PE with the provisional PE.

10

15

20

25

30

35

40

45

50

55

60

65

6

For the sake of clanty of the description, and without
implying any limitation thereto, the illustrative embodi-
ments are described using some example configurations.
From this disclosure, those of ordinary skill in the art will be
able to conceive many alterations, adaptations, and modifi-
cations of a described configuration for achieving a
described purpose, and the same are contemplated within the
scope of the illustrative embodiments.

Furthermore, simplified diagrams of the data processing
environments are used in the figures and the illustrative
embodiments. In an actual computing environment, addi-
tional structures or components that are not shown or
described herein, or structures or components different from
those shown but for a similar function as described herein

may be present without departing the scope of the 1llustra-
tive embodiments.

Furthermore, the illustrative embodiments are described
with respect to specific actual or hypothetical components
only as examples. The steps described by the various 1llus-
trative embodiments can be adapted for providing explana-
tions for decisions made by a machine-learning classifier
model, for example

Any specific manifestations of these and other similar
artifacts are not intended to be limiting to the invention. Any
suitable manifestation of these and other similar artifacts can
be selected within the scope of the illustrative embodiments.

The examples 1n this disclosure are used only for the
clanity of the description and are not limiting to the 1llus-
trative embodiments. Any advantages listed herein are only
examples and are not intended to be limiting to the 1llustra-
tive embodiments. Additional or different advantages may
be realized by specific illustrative embodiments. Further-
more, a particular illustrative embodiment may have some,
all, or none of the advantages listed above.

Furthermore, the 1llustrative embodiments may be imple-
mented with respect to any type of data, data source, or
access to a data source over a data network. Any type of data
storage device may provide the data to an embodiment of the
invention, either locally at a data processing system or over
a data network, within the scope of the invention. Where an
embodiment 1s described using a mobile device, any type of
data storage device suitable for use with the mobile device
may provide the data to such embodiment, either locally at
the mobile device or over a data network, within the scope
of the 1illustrative embodiments.

The 1llustrative embodiments are described using specific
code, contrastive explanations, computer readable storage
medium, high-level features, historical data, designs, archi-
tectures, protocols, layouts, schematics, and tools only as
examples and are not limiting to the illustrative embodi-
ments. Furthermore, the illustrative embodiments are
described in some instances using particular software, tools,
and data processing environments only as an example for the
clanity of the description. The illustrative embodiments may
be used 1in conjunction with other comparable or similarly
purposed structures, systems, applications, or architectures.
For example, other comparable mobile devices, structures,
systems, applications, or architectures therefor, may be used
in conjunction with such embodiment of the invention
within the scope of the mvention. An illustrative embodi-
ment may be implemented in hardware, software, or a
combination thereof.

The examples 1n this disclosure are used only for the
clanity of the description and are not limiting to the 1llus-
trative embodiments. Additional data, operations, actions,
tasks, activities, and manipulations will be concervable from

US 11,341,006 Bl

7

this disclosure and the same are contemplated within the
scope of the illustrative embodiments.

Any advantages listed herein are only examples and are
not intended to be limiting to the illustrative embodiments.
Additional or different advantages may be realized by spe-
cific 1illustrative embodiments. Furthermore, a particular
illustrative embodiment may have some, all, or none of the
advantages listed above.

With reference to the figures and in particular with
reference to FIGS. 1 and 2, these figures are example
diagrams of data processing environments 1n which 1llus-
trative embodiments may be implemented. FIGS. 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments 1n which different
embodiments may be implemented. A particular implemen-
tation may make many modifications to the depicted envi-
ronments based on the following description.

FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented. Data processing environment 100 15 a
network of computers in which the illustrative embodiments
may be immplemented. Data processing environment 100
includes network 102. Network 102 1s the medium used to
provide communications links between various devices and
computers connected together within data processing envi-
ronment 100. Network 102 may include connections, such
as wire, wireless communication links, or fiber optic cables.

Clients or servers are only example roles of certain data
processing systems connected to network 102 and are not
intended to exclude other configurations or roles for these
data processing systems. Data processing system 104
couples to network 102. Software applications may execute
on any data processing system 1n data processing environ-
ment 100. Any software application described as executing,
in processing system 104 in FIG. 1 can be configured to
execute 1n another data processing system 1 a similar
manner. Any data or information stored or produced in data
processing system 104 in FIG. 1 can be configured to be
stored or produced 1n another data processing system 1n a
similar manner. A data processing system, such as data
processing system 104, may contain data and may have
soltware applications or software tools executing computing
processes thereon. In an embodiment, data processing sys-
tem 104 includes memory 124, which includes application
105A that may be configured to implement one or more of
the data processor functions described herein 1n accordance
with one or more embodiments.

Server 106 couples to network 102 along with storage unit
108. Storage unit 108 includes a database 109 configured to
store data as described herein with respect to various
embodiments, for example 1mage data and attribute data.
Server 106 1s a conventional data processing system. In an
embodiment, server 106 includes PEs of a stream processing
application 105B that may be configured to implement one
or more of the processor functions described herein in
accordance with one or more embodiments.

Clients 110, 112, and 114 are also coupled to network 102.
A conventional data processing system, such as server 106,
or client 110, 112, or 114 may contain data and may have
soltware applications or software tools executing conven-
tional computing processes thereon.

Only as an example, and without implying any limitation
to such architecture, FIG. 1 depicts certain components that
are usable 1n an example implementation of an embodiment.
For example, server 106, and clients 110, 112, 114, are
depicted as servers and clients only as example and not to
imply a limitation to a client-server archutecture. As another

10

15

20

25

30

35

40

45

50

55

60

65

8

example, an embodiment can be distributed across several
data processing systems, and a data network as shown,
whereas another embodiment can be mmplemented on a
single data processing system within the scope of the
illustrative embodiments. Conventional data processing sys-
tems 106, 110, 112, and 114 also represent example nodes in
a cluster, partitions, and other configurations suitable for
implementing an embodiment.

Device 132 1s an example of a conventional computing,
device described herein. For example, device 132 can take
the form of a smartphone, a tablet computer, a laptop
computer, client 110 1n a stationary or a portable form, a
wearable computing device, or any other suitable device. In
an embodiment, device 132 sends requests to server 106 to
perform one or more data processing tasks by stream pro-
cessing application 105B such as initiating processes
described herein. Any software application described as
executing 1n another conventional data processing system 1n
FIG. 1 can be configured to execute in device 132 1n a
similar manner. Any data or information stored or produced
in another conventional data processing system 1n FIG. 1 can
be configured to be stored or produced 1n device 132 1n a
similar manner.

Server 106, storage unit 108, data processing system 104,
and clients 110, 112, and 114, and device 132 may couple to
network 102 using wired connections, wireless communi-
cation protocols, or other suitable data connectivity. Clients
110, 112, and 114 may be, for example, personal computers
or network computers.

In the depicted example, server 106 may provide data,
such as boot files, operating system images, and applications
to clients 110, 112, and 114. Clients 110, 112, and 114 may
be clients to server 106 1n this example. Clients 110, 112,
114, or some combination thereof, may include their own
data, boot files, operating system 1mages, and applications.
Data processing environment 100 may include additional
servers, clients, and other devices that are not shown.

In the depicted example, memory 124 may provide data,
such as boot files, operating system images, and applications
to processor 122. Processor 122 may include its own data,
boot files, operating system 1mages, and applications. Data
processing environment 100 may include additional memo-
ries, processors, and other devices that are not shown.

In the depicted example, data processing environment 100
may be the Internet. Network 102 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet
1s a backbone of data communication links between major
nodes or host computers, including thousands of commer-
cial, governmental, educational, and other computer systems
that route data and messages. Of course, data processing
environment 100 also may be implemented as a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), or a wide area network (WAN).
FIG. 1 1s intended as an example, and not as an architectural
limitation for the different illustrative embodiments.

Among other uses, data processing environment 100 may
be used for implementing a client-server environment in
which the 1illustrative embodiments may be implemented. A
client-server environment enables software applications and
data to be distributed across a network such that an appli-
cation functions by using the interactivity between a con-
ventional client data processing system and a conventional
server data processing system. Data processing environment
100 may also employ a service-oriented architecture where
interoperable software components distributed across a net-

US 11,341,006 Bl

9

work may be packaged together as coherent business appli-
cations. Data processing environment 100 may also take the
form of a cloud, and employ a cloud computing model of
service delivery for enabling convenient, on-demand net-
work access to a shared pool of configurable computing
resources (e.g. networks, network bandwidth, servers, pro-
cessing, memory, storage, applications, virtual machines,
and services) that can be rapidly provisioned and released
with minimal management effort or interaction with a pro-
vider of the service.

With reference to FIG. 2, this figure depicts a block
diagram of a data processing system 1n which illustrative
embodiments may be implemented. Data processing system
200 1s an example of a conventional computer, such as data
processing system 104, server 106, or clients 110, 112, and
114 1n FIG. 1, or another type of device in which computer
usable program code or mstructions implementing the pro-
cesses may be located for the illustrative embodiments.

Data processing system 200 1s also representative of a
conventional data processing system or a configuration
therein, such as conventional data processing system 132 in
FIG. 1 1n which computer usable program code or instruc-
tions 1implementing the processes of the i1llustrative embodi-
ments may be located. Data processing system 200 1s
described as a computer only as an example, without being
limited thereto. Implementations in the form of other
devices, such as device 132 i FIG. 1, may modify data
processing system 200, such as by adding a touch interface,
and even eliminate certain depicted components from data
processing system 200 without departing from the general
description of the operations and functions of data process-
ing system 200 described herein.

In the depicted example, data processing system 200

employs a hub architecture including North Bridge and
memory controller hub (NB/MCH) 202 and South Bridge

and mput/output (I/0) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB/MCH) 202. Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems. Processing unit 206 may
be a multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) 1n certain implementations.

In the depicted example, local area network (LAN)
adapter 212 1s coupled to South Bridge and I/O controller
hub (SB/ICH) 204. Audio adapter 216, keyboard and mouse
adapter 220, modem 222, read only memory (ROM) 224,
universal serial bus (USB) and other ports 232, and PCI/
PCle devices 234 are coupled to South Bridge and I/O
controller hub 204 through bus 238. Hard disk drive (HDD)
or solid-state drive (SSD) 226 and CD-ROM 230 are
coupled to South Bridge and 1/0 controller hub 204 through
bus 240. PCI/PCle devices 234 may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary input/
output system (BIOS). Hard disk drive 226 and CD-ROM
230 may use, for example, an integrated drive electronics
(IDE), serial advanced technology attachment (SATA) inter-
face, or variants such as external-SATA (eSATA) and micro-
SATA (mSATA). A super I/O (SIO) device 236 may be
coupled to South Bridge and I/O controller hub (SB/ICH)
204 through bus 238.

Memories, such as main memory 208, ROM 224, or flash
memory (not shown), are some examples of computer
usable storage devices. Hard disk drive or solid-state drive

10

15

20

25

30

35

40

45

50

55

60

65

10

226, CD-ROM 230, and other similarly usable devices are
some examples of computer usable storage devices 1nclud-
ing a computer usable storage medium.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within data processing system 200 1n FIG.
2. The operating system may be a commercially available
operating system for any type of computing platiorm,
including but not limited to server systems, personal com-
puters, and mobile devices. An object oriented or other type
of programming system may operate in conjunction with the
operating system and provide calls to the operating system
from programs or applications executing on data processing
system 200.

Instructions for the operating system, the object-oriented
programming system, and applications or programs, such as
application 105 1n FIG. 1, are located on storage devices,
such as 1n the form of code 226 A on hard disk drive 226, and
may be loaded into at least one of one or more memories,
such as main memory 208, for execution by processing unit
206. The processes of the illustrative embodiments may be
performed by processing unit 206 using computer 1mple-
mented istructions, which may be located in a memory,
such as, for example, main memory 208, read only memory
224, or 1n one or more peripheral devices.

Furthermore, in one case, code 226 A may be downloaded
over network 201 A from remote system 201B, where similar
code 201C 1s stored on a storage device 201D. In another
case, code 226 A may be downloaded over network 201 A to
remote system 201B, where downloaded code 201C 1s
stored on a storage device 201D.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or 1n place of the hardware depicted 1n FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which 1s generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-
generated data. A bus system may comprise one or more
buses, such as a system bus, an I/O bus, and a PCI bus. Of
course, the bus system may be implemented using any type
of communications fabric or architecture that provides for a
transier of data between different components or devices
attached to the fabric or architecture.

A communications unit may include one or more devices
used to transmit and receive data, such as a modem or a
network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found 1n North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.

The depicted examples i FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a mobile or wearable device.

Where a computer or data processing system 1s described
as a virtual machine, a virtual device, or a virtual compo-
nent, the wvirtual machine, virtual device, or the wvirtual
component operates 1n the manner of data processing system
200 using virtualized manifestation of some or all compo-
nents depicted in data processing system 200. For example,
in a virtual machine, virtual device, or virtual component,
processing unit 206 1s manifested as a virtualized 1nstance of

US 11,341,006 Bl

11

all or some number of hardware processing units 206
available 1n a host data processing system, main memory
208 1s manifested as a virtualized instance of all or some
portion ol main memory 208 that may be available in the
host data processing system, and disk 226 1s mamifested as
a virtualized istance of all or some portion of disk 226 that
may be available 1n the host data processing system. The
host data processing system 1n such cases 1s represented by
data processing system 200.

With reference to FIG. 3, this figure depicts a block
diagram of an example streams application environment 300
in accordance with an illustrative embodiment. In an
embodiment, the streams application environment 300 is
configured to execute a streams application, which 1s an

example of application 105A/105B of FIG. 1.

In the illustrated embodiment, the streams application
environment 300 includes a management system 303 and a
plurality of compute nodes 310A-310D (herein generically
referred to as nodes 310)—i.¢., hosts—which are commu-
nicatively coupled to each other using one or more commu-
nications networks 320. In an embodiment, the communi-
cations network 320 includes one or more servers, networks,
or databases, and uses a communication protocol to transier
data among compute nodes 310. In an embodiment, a
database system 315 containing a database 340 1s commu-
nicatively coupled to network 320 for commumnication with
compute nodes 310. In a particular embodiment, database
system 315 1s an example of server 106 with database 109
of FIG. 1, and nodes 310A-310D are examples of data
processing system 104, clients 110, 112, and 114, and device
132 of FIG. 1.

In the illustrated embodiment, the one or more compute

nodes 310A-310D are configured as shown for compute
node 310D, such that each of the compute nodes 310A-310D

comprise one or more PEs 312, and each PE includes one or
more operators 314. Operators 314 are the fundamental
building blocks of the streams application, allowing for the
streams application to be a distributed computing applica-
tion. In some embodiments, the compute nodes 310A-310D
cach run a Linux operating system, and each PE 312

represents a Linux process, and within each Linux process
there are operators 314 that run one or more aspects of the
streams application such that the streams application 1s
distributed among the operators 314, PEs 312, and compute
nodes 310A-310D.

In some embodiments, the management system 305
includes an operator graph 332 and a stream manager 334.
In some embodiments, developers using the stream comput-
ing service write streaming applications by defining the
operator graph 332, which 1s compiled and submitted to the
management system 305.

The stream manager 334 places the operators in the
operator graph 332 on one or more PEs on one or more
computing nodes, which may include one or more of com-
puting nodes 310A-310D. In some embodiments, the opera-
tor graph 332 includes a description of the stream network
topology, such as the location, arrangement, connections,
and functionality of various operators on nodes 310 of the
streams application environment 300.

PEs, such as PE 312, hosts one or more operators, such as
operator(s) 314, that operate on incoming tuples, and pro-
duces output tuples. A PE has an independent processing
unit and runs on a node, such as any of compute nodes
310A-310D. In a stream application, PEs 312 are connected
to one another such that data flows from one PE to the next.

10

15

20

25

30

35

40

45

50

55

60

65

12

Data tlows from one PE to another in the form of a tuple
having a sequence of one or more attributes associated with
an entity.

In some embodiments, the stream manager 334 monitors
the PEs 312 for degradation and replaces a degrading PE
before 1t fails with a better performing replica of 1tself.
Streaming applications process potentially massive amounts
of data 1n real-time. If a streaming application “falls behind”
in 1ts processing, the analysis it 1s performing may lose 1ts
value, 1.e. results of the analysis are based on the past, not
the most recent data. An application might fall behind
simply because of poor performance of one part of the
application, such as a single PE. Thus, detecting and replac-
ing a degrading PE before 1t fails as described herein
provides for significant improvements in performance and
elliciency for streaming applications.

With reference to FIG. 4, this figure depicts a block
diagram of an example compute node 400 1n accordance
with an illustrative embodiment. In an embodiment, the
compute node 400 1s an example of the compute nodes
310A-310D of FIG. 3.

In the illustrated embodiment, the compute node 400
includes one or more processors (CPUs) 402, a network
interface 408, an interconnect 410, a memory 412, and a
storage 414. The compute node 400 may also include an I/O
device interface 404 used to connect I/O devices 406, e.g.,
keyboard, display, and mouse devices, to the compute node
400. In some embodiments, the functionality described
herein 1s distributed among a plurality of systems, which can
include combinations of software and/or hardware based
systems, for example Application-Specific Integrated Cir-
cuits (ASICs), computer programs, or smart phone applica-
tions.

In some embodiments, each CPU 402 retrieves and
executes programming instructions stored in the memory
412 or storage 414. Similarly, in some embodiments, the
CPU 402 stores and retrieves application data residing 1n the
memory 412. In some embodiments, the interconnect 410
transmits programming instructions and application data
between each CPU 402, I/O device interface 404, storage
414, network interface 408, and memory 412.

In some embodiments, one or more PEs 416 are stored 1n
the memory 412. In some such embodiments, a PE 416
includes one or more stream operators 418. In some embodi-
ments, a PE 416 1s assigned to be executed by only one CPU
402, although in other embodiments the stream operators
418 of a PE 416 include one or more threads that are
executed on two or more CPUs 402. The memory 412 1is
generally included to be representative of a random access
memory, e€.g., Static Random Access Memory (SRAM),
Dynamic Random Access Memory (DRAM), or Flash. The
storage 414 1ncludes a bufler 422 and 1s generally included
to be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), or removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), or connections to storage area
network (SAN) devices, or other devices that may store
non-volatile data.

In some embodiments, a streams application includes one
or more stream operators 418 that are compiled into a PE
416. In some embodiments, the memory 412 includes two or
more PEs 416, each PE having one or more stream operators
418. In some embodiments, each stream operator 418
includes a portion of code that processes tuples flowing into
a PE and outputs tuples to other stream operators 418 in the
same PE, 1n other PEs, or in both the same and other PEs 1n
a stream computing application. In some embodiments, PEs

US 11,341,006 Bl

13

416 pass tuples to other PEs that are on the same compute
node 400 or on other compute nodes that are accessible via
communications networks. For example, 1n an embodiment,
a first PE 416 on a first compute node 400 outputs tuples to
a second PE 416 on a second compute node 400.

In some embodiments, the PEs 416 include a performance
monitor 420. In some embodiments, the performance moni-
tor 420 momnitors the PE 416 for degradation and issues
notification signals or data when degradation of the PE 416
1s detected. For example, 1n some embodiments, the perfor-
mance monitor 420 signals a stream manager (e.g., stream
manager 334 of FIG. 3) when the performance monitor 420
detects degradation of performance of the PE 416.

In some embodiments, a performance monitor 420 detects
degradation by monitoring the PE 416 for occurrence of a
condition that serves as a degradation indicator, which may
differ from one PE 416 to another. In some embodiments, the
thresholds for degradation indicator conditions may differ
from one PE 416 to another. Thus, 1n some such embodi-
ments, a degradation indicator condition 1s configurable for
cach PE 416. In some embodiments, a degradation indicator
condition 1ncludes execution conditions associated with the
PE 416 that deviates from a predefined or expected pattern.
For example, 1n some embodiments, indicators of degrada-
tion include abnormal amounts of queued tuples (1.e. tuples
waiting to be processed on input ports of operators in the
PE), abnormal memory usage, number and types of excep-
tions handled, and abnormal CPU consumption. In some
embodiments, the performance monitor 420 monitors the PE
416 and maintaining statistics that represent the normal or
expected performance of the PE 416. In some embodiments,
a performance monitor 420 logs the utilization of such
computing resources by the PE 416, allowing for normal
utilization patterns to be established and also allowing for
abnormal utilization patterns to be detected. In some
embodiments, abnormal amounts of queued tuples includes
higher than normal amounts of queued tuples. In some
embodiments, abnormal memory usage includes abnormally
high rates of change 1n memory usage. In some embodi-
ments, abnormal CPU consumption includes abnormally
high rates of change in CPU consumption.

With reference to FIG. 5, this figure depicts a block
diagram of an example management system 500 in accor-
dance with an illustrative embodiment. In an embodiment,
the management system 500 1s an example of the manage-
ment system 305 of FIG. 3.

In the illustrated embodiment, the management system
500 1ncludes one or more processors (CPUs) 302, a network
interface 508, an interconnect 5310, a memory 512, and a
storage 514. The management system 500 may also include
an I/0 device interface 504 connecting I/O devices 506, e.g.,
keyboard, display, and mouse devices, to the management
system 500. In some embodiments, the functionality
described herein 1s distributed among a plurality of systems,
which can include combinations of software and/or hard-
ware based systems, for example Application-Specific Inte-
grated Circuits (ASICs), computer programs, or smart phone
applications.

In some embodiments, each CPU 502 retrieves and
executes programming instructions stored in the memory
512 or storage 514. Similarly, 1n some embodiments, each
CPU 502 stores and retrieves application data residing 1n the
memory 512 or storage 514. The mterconnect 510 1s used to
move data, such as programming instructions and applica-
tion data, between the CPU 502, I/O device interface 504,
storage unit 514, network interface 508, and memory 312.
The storage 514 1s generally included to be representative of

10

15

20

25

30

35

40

45

50

55

60

65

14

a non-volatile memory, such as a hard disk drive, solid state

device (SSD), removable memory cards, optical storage,
Flash memory devices, network attached storage (NAS),
connections to storage area-network (SAN) devices, or the
cloud. In some embodiments, the network interface 508 1s
configured to transmit data via the communications network.

In some embodiments, the memory 512 stores a stream
manager 316. Additionally, 1n some such embodiments, the
storage 514 stores an operator graph 522 that defines how
tuples are routed to PEs for processing. In the illustrated
embodiment, the stream manager 516 also contains a pro-
visional PE analysis module 518 and a scheduler 524. In the
illustrated embodiment, the provisional PE analysis module
518 includes a performance monitor 520.

In some embodiments, the analysis module 518 monaitors
the PEs for degradation and replaces a degrading PE before
it fails with a better performing replica of itself. Streaming
applications process potentially massive amounts of data 1n
real-time. If a streaming application “falls behind” 1n 1its
processing, the analysis 1t 1s performing may lose its value,
1.¢. results of the analysis are based on the past, not the most
recent data. An application might fall behind simply because
of poor performance of one part of the application, such as
a single PE. Thus, detecting and replacing a degrading PE
before 1t fails as described herein provides for significant
improvements in performance and efliciency for streaming
applications.

In some embodiments, the performance monitor 520
monitors a streaming application, maintaining statistics that
represent the performance of the various PEs that make up
the streaming application. In some embodiments, the per-
formance momitor 520 is part of the stream manager 516 as
shown. In other embodiments, the performance monitor 520
1s invoked at runtime, but may be a separate entity from the
runtime stream manager 516.

In some embodiments, the performance momitor 3520
monitors PEs for degradation and issues notification signals
or data when degradation of one or more PEs 1s detected. For
example, 1n some embodiments, the performance monitor
520 signals the stream manager 516 when the performance
monitor 520 detects degradation of performance of a PE.

In some embodiments, a performance monitor 520 detects
degradation by monitoring the PEs for occurrence of a
condition that serves as a degradation indicator, which may
differ from one PE 416 to another. In some embodiments, the
thresholds for degradation indicator conditions may differ
from one PE 416 to another. Thus, 1n some such embodi-
ments, a degradation indicator condition 1s configurable for
cach PE 416. In some embodiments, a degradation indicator
condition includes execution conditions associated with a
PE that deviates from a predefined or expected pattern. For
example, 1n some embodiments, indicators of degradation
include abnormal amounts of queued tuples (i.e. tuples
waiting to be processed on input ports of operators 1n the
PE), abnormal memory usage, number and types of excep-
tions handled, and abnormal CPU consumption. In some
embodiments, the performance monitor 520 monitors PEs
and maintaining statistics that represent the normal or
expected performance of the PEs. In some embodiments, a
performance monitor 520 logs the utilization of such com-
puting resources by the PEs, allowing for normal utilization
patterns to be established and also allowing for abnormal
utilization patterns to be detected. In some embodiments,
abnormal amounts of queued tuples includes higher than
normal amounts of queued tuples. In some embodiments,
abnormal memory usage includes abnormally high rates of

US 11,341,006 Bl

15

change 1n memory usage. In some embodiments, abnormal
CPU consumption includes abnormally high rates of change
in CPU consumption.

In some embodiments, the analysis module 518 analyzes
a PE 1dentified by the performance monitor 520 as exhibait-
ing one or more indications of degradation. In some embodi-
ments, the analysis module 518 analyzes the PE to determine
whether the indications 1dentified by the performance moni-
tor 520 are actually indications of a problem other than
degradation of the PE, such as backpressure or one or more
cluster computing resources reaching capacity. In some such
embodiments, 11 the analysis module 518 does not detect a
problem other than degradation of the PE, the analysis
module 518 next evaluates the PE using a provisional PE. In
some such embodiments, the analysis module 518 uses the
scheduler 524 to 1dentily a node to host the provisional PE.
In some embodiments, the scheduler 524 searches for a node
other than the node hosting the PE. In some embodiments,
the scheduler 524 also searches for a node based on prede-
termined rules or criteria, for example availability of com-
puting resources and vicinity to upstream and downstream
PEs.

In some embodiments, once the scheduler 524 i1dentifies
a host node, the analysis module 518 starts the provisional
PE on the identified node at runtime while maintaining
runtime operation of the PE. In some such embodiments, the
provisional PE 1s connected to the same upstream PE as the
PE under analysis so that the provisional PE and the PE
under analysis both receive the same stream of tuples from
the same upstrecam PE at the same time. In some such
embodiments, the provisional PE and the PE under analysis
both perform the same defined process on the stream of
tuples. In some such embodiments, the PE under analysis
performs the defined process on the stream of tuples result-
ing 1n an output stream of tuples that the PE transmits to a
downstream PE, while the output of the provisional PE 1s not
connected to any downstream elements.

In some embodiments, the analysis module 518 compares
operation of the PE under analysis to operation of the
provisional PE based on a performance metric associated
with one or more computing resources. In some such
embodiments, 1f the analysis module 518 determines that the
provisional PE 1s performing better than the PE under
analysis, then the analysis module 518 replaces the PE under
analysis with the provisional PE, for example by connecting
the output of the provisional PE to the downstream PE in
place of the PE under analysis, which 1s then shut down.

With reference to FIG. 6, this figure depicts a block
diagram of an example provisional PE analysis module 600
in accordance with an illustrative embodiment. In an
embodiment, the provisional PE analysis module 600 1s an
example of the provisional PE analysis module 518 of FIG.
5.

In the 1llustrated embodiment, the provisional PE analysis
module 600 includes a performance monitor 602, an initial
analysis module 604, and a provisional troubleshooter 606.
In the 1llustrated embodiment, the provisional troubleshooter
606 1includes a provisional PE generator 610, a performance
comparator 612, and a system updater 614. In some embodi-
ments, the functionality described herein 1s distributed
among a plurality of systems, which can include combina-
tions of soltware and/or hardware based systems, for
example Application-Specific Integrated Circuits (ASICs),
computer programs, or smart phone applications.

In the illustrated embodiment, the performance monitor
602 monitors a streaming application, maintaining statistics

that represent the performance of the various PEs that make

10

15

20

25

30

35

40

45

50

55

60

65

16

up the streaming application. In some embodiments, the
performance monitor 602 monitors PEs for degradation and
1ssues notification signals or data when degradation of one
or more PEs 1s detected. For example, in some embodi-
ments, the performance monitor 602 signals the initial
analysis module 604 when the performance monitor 602
detects degradation of performance of a PE, such as
degraded performance PE 608 shown in FIG. 6.

In some embodiments, the performance momnitor 602
detects degradation of the degraded performance PE 608 by
monitoring the degraded performance PE 608 for occurrence
ol a condition that serves as a degradation indicator, which
may differ from one PE to another. In some embodiments,
the thresholds for degradation indicator conditions may also
differ from one PE to another. Thus, 1n some such embodi-
ments, a degradation indicator condition 1s configurable for
cach PE. In some embodiments, a degradation indicator
condition includes execution conditions associated with a
PE that deviates from a predefined or expected pattern. For
example, 1n some embodiments, indicators of degradation
include abnormal amounts of queued tuples (1.e. tuples
waiting to be processed on input ports of operators in the
PE), abnormal memory usage, number and types of excep-
tions handled, and abnormal CPU consumption. In some
embodiments, the performance monitor 602 monitors a
plurality of PEs, including degraded performance PE 608. In
alternative embodiments, the performance monitor 602 only
monitors degraded performance PE 608. In some embodi-
ments, performance monitor 602 maintains statistics that
represent the normal or expected performance of the
degraded performance PE 608 prior to degradation of PE
608. In some embodiments, the performance monitor 602
logs the utilization of such computing resources by the
degraded performance PE 608, allowing for normal utiliza-
tion patterns to be established and thereby also allowing for
abnormal utilization patterns to be detected. In some
embodiments, abnormal amounts of queued tuples 1includes
higher than normal amounts of queued tuples. In some
embodiments, abnormal memory usage includes abnormally
high rates of change 1n memory usage. In some embodi-
ments, abnormal CPU consumption includes abnormally
high rates of change in CPU consumption.

In some embodiments, the mnitial analysis module 604
analyzes degraded performance PE 608 upon 1t being 1den-
tified by the performance monitor 602 as exhibiting one or
more indications of degradation. In some embodiments, the
initial analysis module 604 analyzes the degraded perfor-
mance PE 608 to determine whether the indications 1denti-
fied by the performance momitor 602 are actually indications
of a problem other than degradation of the degraded per-
formance PE 608, such as backpressure or one or more
cluster computing resources reaching capacity.

In some such embodiments, 1f the 1nitial analysis module
604 does not detect a problem other than degradation of the
degraded performance PE 608, the initial analysis module
604 notifies the provisional troubleshooter 606, which next
evaluates the degraded performance PE 608 using a provi-
sional PE 616. In some such embodiments, the provisional
troubleshooter 606 communicates with a scheduler (e.g.,
scheduler 524 of FIG. 5) to identily a node to host the
provisional PE 616. In some embodiments, the scheduler
searches for a node other than the node hosting the PE. In
some embodiments, the scheduler also searches for a node
based on predetermined rules or criteria, for example avail-
ability of computing resources and vicinity to upstream and
downstream PEs. In some embodiments, once the scheduler
identifies a host node, the scheduler notifies the provisional

US 11,341,006 Bl

17

PE generator 610. The provisional PE generator 610 starts
the provisional PE 616 on the identified node at runtime
while maintaining runtime operation of the degraded per-
formance PE 608. In some such embodiments, provisional
PE generator 610 connects an upstream side of the provi-
sional PE 616 to the same upstream PE as the degraded
performance PE 608 so that the provisional PE 616 and the
degraded performance PE 608 both receive the same stream
of tuples from the same upstream PE at the same time. In
some such embodiments, the provisional PE 616 and the
degraded performance PE 608 both perform the same
defined process on the stream of tuples, which allows for
comparison of the performance of the degraded performance
PE 608 to that of the provisional PE 616 by the performance
comparator 612. In some such embodiments, the degraded
performance PE 608 performs the defined process on the
stream of tuples resulting 1n an output stream of tuples that
the degraded performance PE 608 transmaits to a downstream
PE, while the output of the provisional PE 616 1s not
connected to any downstream elements.

In some embodiments, the performance comparator 612
compares the operation of the degraded performance PE 608
to that of the provisional PE 616 based on a performance
metric associated with one or more computing resources.
For example, 1n some embodiments, the performance com-
parator 612 compares the operation of the degraded perior-
mance PE 608 to that of the provisional PE 616 by com-
paring one or more of CPU usage, memory usage, and speed
of tuple through-put. In some such embodiments, if the
performance comparator 612 determines that the provisional
PE 616 1s performing better than the degraded performance
PE 608, then the performance comparator 612 notifies the
system updater 614. Responsive to the notification by the
performance comparator 612 that the provisional PE 616 1s
performing better than the degraded performance PE 608,
the system updater 614 replaces the degraded performance
PE 608 with the provisional PE 616, for example by
connecting the output of the prewswnal PE 616 to the
downstream PE 1n place of the degraded performance PE
608, and the system updater 614 shuts down the degraded
performance PE 608. In some embodiments, the system
updater 614 sends a notification to the user via a user
interface 618 regarding the replacement of the degraded
performance PE 608 with the provisional PE 616.

With reference to FIG. 7, this figure block diagram of an
operator graph 700 for a stream computing application 1n
accordance with an illustrative embodiment. The operator
graph shown 1n FIG. 7 1s shown for clarity purposes as a
non-limiting example of a streaming application that can
benefit from disclosed embodiments.

In the 1llustrated embodiment, the operator graph 700 1s a
graph for a stream computing application beginning from
one or more sources 710 through to one or more sinks 712,
714. This tlow from source to sink may also be generally
referred to herein as an execution path. Although FIG. 7 1s
abstracted to show connected PEs PE1-PE10, the operator
graph 700 may include data flows between stream operators
(e.g., operator 314 of FIG. 3) within the same or different
PEs. Typically, PEs receive tuples from the stream as well as
output tuples into the stream (except for a sink—where the
stream terminates, or a source—where the stream begins).

In the illustrated embodiment, the operator graph 700
includes ten PEs (labeled as PE1-PE10) running on the
compute nodes 702, 704, 706, and 708. In some embodi-
ments, a PE includes one or more stream operators fused
together to form an independently running process with its
own process ID (PID) and memory space. In embodiments

10

15

20

25

30

35

40

45

50

55

60

65

18

where two (or more) PEs are running independently, inter-
process communication may occur using a “transport,” e.g.,
a network socket, a TCP/IP socket, or shared memory.
However, when stream operators are fused together, the
fused stream operators can use more rapid communication
techniques for passing tuples among stream operators in
cach PE.

The operator graph 700 begins at a source 710 and ends
at a sink 712, 714. Compute node 702 includes the PEs PE1,
PE2, and PE3. Source 710 tlows into the PE PE1, which 1n
turn outputs tuples that are received by PE2 and PE3. For
example, PE1 may split data attributes received 1n a tuple
and pass some data attributes in a new tuple to PE2, while
passing other data attributes 1n another new tuple to PE3. As
a second example, PE1 may pass some received tuples to
PE2 while passing other tuples to PE3. Tuples that flow to
PE2 are processed by the stream operators contained in PE2,
and the resulting tuples are then output to PE4 on compute
node 704. Likewise, the tuples output by PE4 flow to
operator sink PE6 712. Similarly, tuples flowing from PE3
to PES also reach the operators 1in sink PE6 712. Thus, n
addition to being a sink for this example operator graph, PE6
could be configured to perform a join operation, combining
tuples recerved from PE4 and PES. This example operator
graph also shows tuples flowing from PE3 to PE7 on
compute node 706, which itself shows tuples flowing to PES
and looping back to PE7/. Tuples output from PES flow to
PE9 on compute node 708, which in turn outputs tuples to
be processed by operators 1n a sink PE, for example PE10
714.

In some embodiments, a tuple recerved by a particular PE
1s generally not considered to be the same tuple that 1s output
downstream because the output tuple 1s changed 1n some
way. For example, 1n some embodiments, an attribute or
metadata 1s added, deleted, or changed. However, some
embodiments include a PE that does not change an output
tuple from the input tuple 1n any way. Generally, a particular
tuple output by a PE may not be considered to be the same
tuple as a corresponding input tuple even 1t the input tuple
1s not changed by the PE. However, to simplity the present
description and the claims, an output tuple that has the same
data attributes as a corresponding input tuple may be
referred to herein as the same tuple. In the illustrated
embodiment, a performance monitor as described herein 1s
configured to monitor one or more of PEs PE1-PE10 for
degraded performance.

With reference to FIG. 8, this figure depicts a block
diagram of an operator graph 800 for a stream computing
application having a provisional PE in accordance with an
illustrative embodiment. The operator graph shown 1n FIG.
8 1s shown for clarity purposes as a non-limiting example of
a modified version of the operator graph 700 of FIG. 7 that
begins at a source 810 and ends at a sink 812, 814 that can
benefit from disclosed embodiments.

In the illustrated example, a performance monitor (e.g.,
performance monitor 520 of FIG. 5 or performance monitor
602 of FIG. 6) detects degradation of PE2 by monitoring the
PE2 and detecting that execution conditions associated with
PE2 deviates from a predefined or expected pattern. For
example, 1n some embodiments, the performance monitor
detects indicators of degradation including abnormal
amounts of queued tuples (1.e. tuples waiting to be processed
on put ports of operators in the PE), abnormal memory
usage, number and types of exceptions handled, and/or
abnormal CPU consumption. In the illustrated example, a
problem other than degradation has not been detected, so a
provisional PE (designated PPE 1n FIG. 8) 1s started on a

US 11,341,006 Bl

19

different node: since PE2 1s on node 802, PPE 1s located on
node 804, but could alternatively have been started on node
806 or node 808.

The provisional PE i1s started at runtime while maintaining,
runtime operation of PE2. Inttially, for purposes of compar-
ing performance of the provisional PE to PE2, the provi-
sional PE 1s only connected on 1ts upstream side via edge
816 to PE1 so that the provisional PE and PE2 both receive
the same stream of tuples from the same upstream PE1 at the
same time and both perform the same defined process on the
stream of tuples, which allows for comparison of the per-
formance of the provisional PE to that of PE2.

In the 1llustrated example, a performance comparator or
streams manger compares the operation of the provisional
PE to that of PE2 based on a performance metric associated
with one or more computing resources. For example, in
some embodiments, the provisional PE and PE2 are com-
pared based on one or more of CPU usage, memory usage,
and/or speed of tuple through-put. In some such embodi-
ments, 1 the provisional PE performs better than PE2, then
provisional PE replaces PE2, for example by connecting the
output/downstream side of the provisional PE to the down-
stream PE4 of PE2 in place of PE2, for example by
connecting edge 818 from the provisional PE to PE4 and
shutting down PE2.

With reference to FIG. 9, this figure depicts a flowchart of
an example dynamic PE replacement process 900 1n accor-
dance with an 1illustrative embodiment. In a particular
embodiment, the provisional PE analysis module 600 in
FIG. 6 carries out the process 900.

In an embodiment, at block 902, the process 900 starts a
streams application. Next, at block 904, the process 900
monitors processing elements for degraded performance.
Next, at block 906, the process 900 checks whether
degraded performance has been detected at any processing
clements. If not, the process 900 returns to block 904 to
continue monitoring. Otherwise, the process 900 continues
to block 908, where the process 900 begins evaluation of the
degraded PE. At block 908, the process 900 checks the
degraded PE for an indication that backpressure 1s the cause
of the degraded performance, followed by block 912, where
the process 900 checks the operating levels of computing
resources of the cluster of nodes 1n which the degraded PE
1s deployed. If the process 900 detects backpressure or a lack
of available or suflicient cluster computing resources as
being likely to be the cause of the degradation of the
degraded PE, the process proceeds to block 910, where the
process applies other remedies known 1n the art to address
the backpressure and/or lack of cluster computing resources.
Otherwise, the process continues to block 914, where the
process 900 performs a provisional PE troubleshooting
process, for example according to the process 1000 of FIG.
10, the process 1100 of FI1G. 11, the process 1200 of FI1G. 12,
or a process that combines portions of two or more of
process 1000, 1100, and/or 1200.

After the provisional PE troubleshooting process at block
914, the process 900 returns to block 904 to continue
monitoring processing elements for degraded performance.
In the illustrated embodiment, the monitoring continues
until another degraded PE 1s discovered or until the streams
application stops as indicated at block 916, after which the
process 900 ends.

With reference to FIG. 10, this figure depicts a flowchart
of an example dynamic PE replacement process 1000 1n
accordance with an 1illustrative embodiment. In a particular
embodiment, the provisional PE analysis module 600 1n
FIG. 6 carries out the process 1000. In an embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

20

process 1000 1s an example of the provisional PE trouble-
shooting process at block 914 of FIG. 9.

In the 1llustrated embodiment, the process 1000 tests the
use of a provisional processing eclement as a possible
replacement for a degrading PE. At block 1002, the process
1000 determines a location for a provisional PE. In some
embodiments, the process 1000 uses a scheduler to 1dentity
a node on which to deploy the provisional PE. In some such
embodiments, the scheduler determines a best node to run
the provisional PE. In some such embodiments, the sched-
uler excludes the node on which the degrading PE i1s runming
when determiming a best node to run the provisional PE.
Next, at block 1004, the process 1000 starts the provi-
sional PE on the node selected at block 1002. In some
embodiments, the provisional PE 1s started at runtime while
maintaining runtime operation of the degrading PE. In some
embodiments, the provisional PE 1s only connected on 1ts
upstream side, and 1s connected to the immediate next
upstream PE of the degrading PE. This connection results in
both the provisional PE and the degrading PE receiving the
same stream of tuples from the same upstream PE at the
same time.

Next, at block 1006, the process 1000 compares the
performance of the degraded PE and the provisional PE. In
some such embodiments, the provisional PE performs the
same defined processing on the stream of tuples as the
degrading PE, which allows for a performance-based com-
parison of the provisional PE and the degrading PE. In some
embodiments, a performance comparator or streams manger
compares the operation of the provisional PE to that of the
degrading PE based on a performance metric associated with
one or more computing resources. For example, 1n some
embodiments, the provisional PE and the degrading PE are
compared based on one or more of CPU usage, memory
usage, and/or speed of tuple through-put.

Next, at block 1008, the process 1000 determines whether
the performance of the provisional PE is better than the
performance of the degraded PE. In some such embodi-
ments, 1 the provisional PE performs better than the
degraded PE, then at block 1010 the process 1000 performs
a switchover to the provisional PE as a replacement for the
degrading PE, and the degrading PE 1s shut down. In some
embodiments, the switchover includes connecting the out-
put/downstream side of the provisional PE to the next
immediate downstream PE of the degrading PFE.

With reference to FIG. 11, this figure depicts a flowchart
of an example dynamic PE replacement process 1100 1n
accordance with an 1illustrative embodiment. In a particular
embodiment, the provisional PE analysis module 600 1n
FIG. 6 carries out the process 1100. In an embodiment, the
process 1100 1s an example of the provisional PE trouble-
shooting process at block 914 of FIG. 9.

In the 1llustrated embodiment, the process 1100 tests the
use of a plurality of provisional processing elements as
possible replacements for a degrading PE. In some embodi-
ments, the number of provisional PEs 1s a fixed predeter-
mined value. In some embodiments, the number of provi-
sional PEs 1s a user-configurable value that 1s initially set to
a default value and i1s adjustable by user mputs. In some
embodiments, the process 1100 determines the number of
provisional PEs to use based on any number of implemen-
tation-specific factors, for example the type of degrading PE
being replicated (1.e., the operations performed by one or
more operators on the degrading PE), the size of the streams
application, the number of available nodes already being
used by the streams application, and/or any other desired

factors.

US 11,341,006 Bl

21

At block 1102, the process 1100 determines locations for
cach of the plurality of provisional PEs. In some embodi-
ments, the process 1100 uses a scheduler to 1dentify nodes
on which to deploy the provisional PEs. In some such
embodiments, the scheduler determines a list of best nodes
to run the provisional PEs. In some embodiments, the
scheduler also determines the number of provisional PEs to
deploy, for example based on availability of nodes on which
the deploy the provisional PEs. In some such embodiments,
the scheduler excludes the node on which the degrading PE
1s running when determining best nodes to run the provi-
sional PEs.

Next, at block 1104, the process 1100 starts the provi-
sional PEs on the respective node selected at block 1102. In
some embodiments, the provisional PEs are started at run-
time while maintaining runtime operation of the degrading
PE. In some embodiments, the provisional PEs are only
connected on their upstream sides, and are all connected to
the immediate next upstream PE of the degrading PE. This
connection results in both the degrading PE and the set of
provisional PEs receiving the same stream of tuples from the
same upstream PE at the same time.

Next, at block 1106, the process 1100 compares the
performance of the degraded PE and the provisional PEs. In
some such embodiments, the provisional PEs each perform
the same defined processing on the stream of tuples as the
degrading PE, which allows for a performance-based com-
parison of the degrading PE to the provisional PEs. In some
embodiments, a performance comparator or streams manger
compares the operation of the degrading PE to that of the
provisional PEs based on a performance metric associated
with one or more computing resources. For example, in
some embodiments, the provisional PEs and the degrading
PE are compared based on one or more of CPU usage,
memory usage, and/or speed of tuple through-put.

Next, at block 1108, the process 1100 determines whether
the performance of any of the provisional PEs is better than
the performance of the degraded PE. In some such embodi-
ments, 11 any of the provisional PEs performs better than the
degraded PE, then at block 1110 the process 1100 performs
a switchover to the best performing provisional PE as a
replacement for the degrading PE, and the degrading PE and
remaining provisional PEs are shut down. In some embodi-
ments, the switchover includes connecting the output/down-
stream side of the provisional PE to the next immediate
downstream PE of the degrading PE.

With reference to FIG. 12, this figure depicts a flowchart
of an example dynamic PE replacement process 1200 1n
accordance with an 1illustrative embodiment. In a particular
embodiment, the provisional PE analysis module 600 1n
FIG. 6 carries out the process 1200. In an embodiment, the
process 1200 1s an example of the provisional PE trouble-
shooting process at block 914 of FIG. 9.

In the illustrated embodiment, the process 1200 tests the
use ol a provisional processing eclement as a possible
replacement for a degrading PE. At block 1202, the process
1200 determines a location for a provisional PE. In some
embodiments, the process 1200 uses a scheduler to 1dentily
a node on which to deploy the provisional PE. In some such
embodiments, the scheduler determines a list of best nodes
to run the provisional PEs. In some embodiments, the
scheduler also determines the number of provisional PEs to
deploy, for example based on availability of nodes on which
the deploy the provisional PEs. In some such embodiments,
the scheduler excludes the node on which the degrading PE
1s running when determining best node(s) to run the provi-

sional PEs.

10

15

20

25

30

35

40

45

50

55

60

65

22
Next, at block 1204, the process 1200 starts the provi-

sional PE on the node selected at block 1202. In some
embodiments, the provisional PE 1s started at runtime while
maintaining runtime operation of the degrading PE. In some
embodiments, the provisional PE 1s only connected on 1ts
upstream side, and 1s connected to the immediate next
upstream PE of the degrading PE. This connection results in
both the provisional PE and the degrading PE receiving the
same stream of tuples from the same upstream PE at the
same time.

Next, at block 1206, the process 1200 compares the
performance of the degraded PE and the provisional PE. In
some such embodiments, the provisional PE performs the
same defined processing on the stream of tuples as the
degrading PE, which allows for a performance-based com-
parison of the provisional PE and the degrading PE. In some
embodiments, a performance comparator or streams manger
compares the operation of the provisional PE to that of the
degrading PE based on a performance metric associated with
one or more computing resources. For example, in some
embodiments, the provisional PE and the degrading PE are
compared based on one or more of CPU usage, memory
usage, and/or speed of tuple through-put.

Next, at block 1208, the process 1200 determines whether
the performance of the provisional PE is better than the
performance of the degraded PE. In some such embodi-
ments, 11 the provisional PE does not perform better than the
degraded PE, then at block 1212 the process 1200 deter-
mines whether a maximum number of provisional PEs have
been tried. If so, the process ends. If not, the process returns
to block 1202 to perform a next iteration of blocks 1202-
1208 using another provisional PE at a different location
(e.g., deployed on a node other than the node on which the
degrading PE 1s deployed, and also other than node(s) used
for previous 1terations of blocks 1202-1208).

In some embodiments, the maximum number of provi-
sional PEs at block 1212 1s a fixed predetermined value. In
some embodiments, the maximum number of provisional
PEs at block 1212 1s a user-configurable value that is
initially set to a default value and 1s adjustable by user
inputs. In some embodiments, the process 1100 determines
the maximum number of provisional PEs at block 1212
based on any number of implementation-specific factors, for
example the type of degrading PE being replicated (1.¢., the
operations performed by one or more operators on the

degrading PE), the size of the streams application, the

number of available nodes already being used by the streams
application, and/or any other desired factors.

In some such embodiments, 1f any of the iterations of
blocks 1202-1208 result in the provisional PE performing
better than the degraded PE, then at block 1210 the process
1200 performs a switchover to the provisional PE as a
replacement for the degrading PE, and the degrading PE 1s
shut down. In some embodiments, the switchover includes
connecting the output/downstream side of the provisional
PE to the next immediate downstream PE of the degrading
PE.

The following definitions and abbreviations are to be used
for the interpretation of the claims and the specification. As
used herein, the terms “comprises,” “comprising,”
“includes,” “including,” *“has,” “having,” “contains” or
“containing,” or any other varnation thereof, are imntended to
cover a non-exclusive inclusion. For example, a composi-
tion, a mixture, process, method, article, or apparatus that

comprises a list of elements 1s not necessarily limited to only

US 11,341,006 Bl

23

those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

Additionally, the term ““illustrative™ 1s used herein to mean
“serving as an example, instance or illustration.” Any
embodiment or design described herein as “illustrative™ is
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms “at least one”
and “one or more” are understood to include any integer
number greater than or equal to one, 1.€. one, two, three,
four, etc. The terms ““a plurality” are understood to include
any integer number greater than or equal to two, 1.e. two,
three, four, five, etc. The term “connection” can include an
indirect “connection” and a direct “connection.”

References 1n the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described can include a particular feature,
structure, or characteristic, but every embodiment may or
may not include the particular feature, structure, or charac-
teristic. Moreover, such phrases are not necessarily referring
to the same embodiment. Further, when a particular feature,
structure, or characteristic 1s described in connection with an
embodiment, 1t 1s submitted that 1t 1s within the knowledge
of one skilled 1n the art to affect such feature, structure, or
characteristic 1n connection with other embodiments
whether or not explicitly described.

The terms “about,” “substantially,” “approximately,” and
variations thereof, are intended to include the degree of error
associated with measurement of the particular quantity
based upon the equipment available at the time of filing the
application. For example, “about” can include a range of
+8% or 5%, or 2% of a given value.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
described herein.

Thus, a computer implemented method, system or appa-
ratus, and computer program product are provided in the
illustrative embodiments for managing participation 1n
online communities and other related features, functions, or
operations. Where an embodiment or a portion thereof is
described with respect to a type of device, the computer
implemented method, system or apparatus, the computer
program product, or a portion thereot, are adapted or con-
figured for use with a suitable and comparable manifestation
of that type of device.

Where an embodiment 1s described as implemented 1n an
application, the delivery of the application in a Software as
a Service (SaaS) model 1s contemplated within the scope of
the 1llustrative embodiments. In a SaaS model, the capability
of the application implementing an embodiment 1s provided
to a user by executing the application 1n a cloud 1nfrastruc-
ture. The user can access the application using a variety of
client devices through a thin client interface such as a web
browser (e.g., web-based e-mail), or other light-weight
client-applications. The user does not manage or control the
underlying cloud infrastructure including the network, serv-
ers, operating systems, or the storage of the cloud infra-
structure. In some cases, the user may not even manage or

2 L

10

15

20

25

30

35

40

45

50

55

60

65

24

control the capabilities of the SaaS application. In some
other cases, the SaaS implementation of the application may
permit a possible exception of limited user-specific appli-
cation configuration settings.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of imtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present mvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or etther source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through

US 11,341,006 Bl

25

any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article ol manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

10

15

20

25

30

35

40

45

50

55

60

65

26

Embodiments of the present invention may also be deliv-
ered as part of a service engagement with a client corpora-
tion, nonprofit orgamzation, government entity, internal
organizational structure, or the like. Aspects of these
embodiments may include configuring a computer system to
perform, and deploying software, hardware, and web ser-
vices that implement, some or all of the methods described
herein. Aspects of these embodiments may also include
analyzing the client’s operations, creating recommendations
responsive to the analysis, building systems that implement
portions of the recommendations, mtegrating the systems
into existing processes and infrastructure, metering use of
the systems, allocating expenses to users of the systems, and
billing for use of the systems. Although the above embodi-
ments of present invention each have been described by
stating their individual advantages, respectively, present
invention 1s not limited to a particular combination thereof.
To the contrary, such embodiments may also be combined 1n
any way and number according to the mtended deployment
of present invention without losing their beneficial effects.
What 1s claimed 1s:
1. A computer implemented method comprising:
monitoring, at runtime, in a distributed computing appli-
cation wherein a processing element (PE) operating on
a first node processes a {first stream of tuples from an
upstream PE and transmits a second stream of tuples to
a downstream PE, an occurrence of a degradation
condition on the PE;

processing at a first provisional PE on a second node
while maintaiming runtime operation of the PE,

the first stream of tuples from the upstream PE; and

connecting the first provisional PE to replace the second

stream of tuples from the PE to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE.

2. The computer implemented method of claim 1, further
comprising selecting the second node from among a plural-
ity of nodes for executing the first provisional PE.

3. The computer implemented method of claim 2, wherein
the selecting of the second node from among the plurality of
nodes 1s based at least 1n part on availability of computing
resources on the second node.

4. The computer implemented method of claim 1, wherein
the first provisional PE receives the first stream of tuples
from the upstream PE and performs a defined process on the
first stream of tuples while the PE receives the first stream
of tuples from the upstream PE and performs the defined
process on the first stream of tuples.

5. The computer implemented method of claim 4, further
comprising starting a second provisional PE on a third node
at runtime while maintaining runtime operation of the PE,

wherein the second provisional PE receives the first

stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the
first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per-
forms the defined process on the first stream of tuples.

6. The computer implemented method of claim 3, wherein
the connecting 1s responsive to comparing an operation of
the PE to an operation of the first provisional PE, and further
responsive to comparing an operation ol the second provi-
sional PE to the operation of the PE and to the operation of
the first provisional PE based on a performance metric
associated with a computing resource.

7. The computer implemented method of claim 1, further
comprising;

starting the first provisional PE; and

US 11,341,006 Bl

27

starting, prior to starting the first provisional PE, a second
provisional PE on a third node at runtime while main-
taining runtime operation of the PE,

wherein the second provisional PE receives the first

stream of tuples from the upstream PE and performs a
defined process on the first stream of tuples.

8. The computer implemented method of claim 7, further
comprising, prior to starting the first provisional PE:

comparing an operation of the PE to an operation of the

second provisional PE based on a performance metric
associated with a computing resource.

9. The computer implemented method of claim 8, wherein
the comparing of the operation of the PE to the operation of
the second provisional PE results 1n i1dentifying the opera-
tion of the PE exceeding operation of the second provisional
PE based on the performance metric.

10. A computer program product comprising one or more
computer readable storage medium . . . stored on the one or
more computer readable storage medium, the program
instructions executable by a processor to cause the processor
to perform operations comprising:

monitoring a distributed computing application at runtime

for occurrence of a condition,

wherein the distributed computing application comprises

a first node that includes a PE receiving a first stream
of tuples from an upstream PE, performing a defined
process on the first stream of tuples resulting 1n a
second stream of tuples, and transmitting the second
stream of tuples to a downstream PE, and

wherein the condition includes occurrence of a degrada-

tion condition on the PE;

starting a first provisional PE on a second node at runtime

while maintaiming runtime operation of the PE,
wherein the first provisional PE receives the first stream
of tuples from the upstream PE and performs the
defined process on the first stream of tuples;
comparing operation of the PE to operation of the first
provisional PE based on a performance metric associ-
ated with a computing resource; and
connecting the first provisional PE to replace the second

stream of tuples from the PE E

to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE.

11. The computer program product of claim 10, wherein
the stored program instructions are stored in a computer
readable storage medium 1n a data processing system, and
wherein the stored program instructions are transierred over
a network from a remote data processing system.

12. The computer program product of claim 10, wherein
the stored program instructions are stored in a computer
readable storage medium . . . for use 1n a computer readable
storage medium associated with the remote data processing
system, further comprising:

program 1nstructions to meter use of the program instruc-

tions associated with the request; and

program 1nstructions to generate an invoice based on the

metered use.

13. The computer program product of claim 10, further
comprising selecting the second node from among a plural-
ity of nodes for executing the first provisional PE.

14. The computer program product of claim 10, wherein
the first provisional PE receives the first stream of tuples
from the upstream PE and performs the defined process on
the first stream of tuples while the PE receives the first

5

10

15

20

25

30

35

40

45

50

55

60

28

stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples.

15. The computer program product of claim 14, further
comprising starting a second provisional PE on a third node

T 1

at runtime while maintaining runtime operation of the PE,
wherein the second provisional PE receives the first
stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the

first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per-
forms the defined process on the first stream of tuples.

16. The computer program product of claim 15, wherein
the comparing of the operation of the PE to operation of the
first provisional PE further comprises comparing the opera-
tion of the second provisional PE to the operation of the PE
and to operation of the first provisional PE based on the
performance metric associated with the computing resource.

17. A computer system comprising a processor and one or
more computer readable storage medium . . . stored on the
one or more computer readable storage medium, the pro-
gram 1nstructions executable by the processor to cause the
processor to perform operations comprising:

monitoring a distributed computing application at runtime

for occurrence of a condition,

wherein the distributed computing application comprises

a first node that includes a PE receiving a first stream
of tuples from an upstream PE, performing a defined
process on the first stream of tuples resulting 1n a
second stream of tuples, and transmitting the second
stream of tuples to a downstream PE, and

wherein the condition includes occurrence of a degrada-

tion condition on the PE;

starting a first provisional PE on a second node at runtime

while maintaiming runtime operation of the PE,
wherein the first provisional PE receives the first stream
of tuples from the upstream PE and performs the
defined process on the first stream of tuples;
comparing operation of the PE to operation of the first
provisional PE based on a performance metric associ-
ated with a computing resource; and
connecting the first provisional PE to replace the second
stream of tuples from the PE to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE.

18. The computer system of claim 17, further comprising
selecting the second node from among a plurality of nodes
for executing the first provisional PE.

19. The computer system of claim 17, wherein the first
provisional PE receives the first stream of tuples from the
upstream PE and performs the defined process on the first
stream of tuples while the PE receives the first stream of
tuples from the upstream PE and performs the defined
process on the first stream of tuples.

20. The computer system of claim 19, further comprising
starting a second provisional PE on a third node at runtime
while maintaining runtime operation of the PE,

wherein the second provisional PE receives the first

stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the
first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per-

forms the defined process on the first stream of tuples.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

