12 United States Patent

Mayer et al.

USO011334795B2

US 11,334,795 B2
May 17, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

AUTOMATED AND ADAPTIVE DESIGN AND
TRAINING OF NEURAL NETWORKS

Applicant: DataRobot, Inc., Boston, MA (US)

Inventors: Zachary Albert Mayer, Boston, MA
(US); Jason McGhee, Walnut Creek,
CA (US); Jesse Bannon, Port Orchard,
WA (US); Joshua Matthew Weiner,
Arvada, CO (US)

Assignee: DataRobot, Inc., Boston, MA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Appl. No.: 17/198,841

Filed: Mar. 11, 2021

Prior Publication Data

US 2021/0287089 Al Sep. 16, 2021

Related U.S. Application Data

Provisional application No. 62/989,6835, filed on Mar.
14, 2020.

Int. CI.

GO6N 3/04 (2006.01)

GO6N 3/08 (2006.01)

GO6F 17/18 (2006.01)

U.S. CL

CPC GO6N 3/08 (2013.01); GOoF 17/18

(2013.01); GO6N 3/04 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0224903 Al 8/2016 Talathi et al.

2018/0357543 Al* 12/2018 Brown GO6F 16/9024

2019/0095794 Al 3/2019 Lopez et al.

2019/0236487 Al* 8/2019 Huang GO6N 20/00

2019/0392311 Al 12/2019 Liu et al.

2021/0174246 Al1* 6/2021 Trplet ..., GO6N 20/00
(Continued)

FOREIGN PATENT DOCUMENTS

EP 1 192 595 B1 11/2005
EP 3441 912 Al 2/2019
(Continued)

OTHER PUBLICATTIONS

Abadi, Martin, et al., “TensorFlow: Large-Scale Machine Learning
on Heterogencous Distributed Systems,” arXiv:1603.04467, Mar.
16, 2016.

(Continued)

Primary Examiner — David R Vincent
(74) Attorney, Agent, or Firm — Foley & Lardner LLP

(57) ABSTRACT

Systems and methods are described for developing and
using neural network models. An example method of train-
ing a neural network includes: oscillating a learning rate
while performing a preliminary training of a neural network;
determining, based on the preliminary training, a number of
training epochs to perform for a subsequent training session;
and training the neural network using the determined num-
ber of training epochs. The systems and methods can be used
to build neural network models that efliciently and accu-
rately handle heterogeneous data.

20 Claims, 14 Drawing Sheets

00
4

¢~ Hiovide a neural hetwork and training data I

:

== Determine a size of the training data !

iz i

Determine a type of predictive modeiing nroblem
— [e.g., regression or classification) 1o be solved
usig the neural network

!

:

Determine nased on the size of The training dats,
1 0oneor morefirst hyperparametars including a
mini-batch size and/or & dropout 13te

_______________________________ b

Determine, based on the type of predictive
modeiing nroblem, one or more second
1 hvperparameters inciuging a learning rate, 2
botoh normalization, a number of epochs, and/or
an output activation function

e R

[

7207

Train the neural netwoik using the trawniing data,
¢"1 the one ar more first hyperparameters, and the
ane nr more second hynerparameseters

US 11,334,795 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2021/0190360 Al* 6/2021 Leeeeevvvinnnnnn, GOO6N 3/0445

FOREIGN PATENT DOCUMENTS

2/2019
10/2019

WO WO0O-2019/035364 Al
WO WO0-2019/200410 Al

OTHER PUBLICATIONS

Bishop, Christopher M., “Neural networks for pattern recognition,”

Oxford university press, 1995.
Brownlee, Jason, “A Gentle Introduction to Dropout for Regular-
1zing Deep Neural Networks,” available at: https://

machineleamingmastery.com/dropout-for-regularizing-deep-neural -
networks/#:~:text=The%20default%20interpretation%2001%20the%o

20dropout%20hyperparameter%201s.such%20as%2001%200.8.%
20Use%20a%20Larger%20Network <https://machinelearningmastery.
com/dropout-for-regularizing-deep-neural-networks/>, Aug. 6, 2019.
Brownlee, Jason, “Loss and Loss Functions for Training Deep
Learning Neural Networks,” available at: <https://
machinelearningmastery.com/loss-and-loss-functions-for-training-
deep-learning-neural-networks/>, Oct. 23, 2019.

Dahl, George E., et al., “Improving deep neural networks for
LVCSR using rectified linear units and dropout,” Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on IEEE, 2013.

Hinton, Geoflrey E., et al. “Improving neural networks by prevent-
ing co-adaptation of feature detectors,” arXiv preprint arXiv: 1207.
0580 (2012).

Ioffe, Sergey, et al., “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” JMLR:
Workshop and Conference Proceedings, No. 32, 2015.

Kingma, Diederik, et al., “Adam: A Method for Stochastic Optimi-
zation,” arXiv preprint arXiv:1412.6980 (2015).

Klambauer, Gunter, et al., “Self-Normalizing Neural Networks,”
arX1v:1706.02515, Sep. 7, 2017.

Le, Quoc V., et al. “On optimization methods for deep learning,”
Paper presented at the meeting of the ICML, 2011.

L1, Hao, “Visualizing the Loss Landscape of Neural Nets,” Advances
in Neural Information Processing Systems 31 (2018).

Lu, Z., et al., “The Expressive Power of Neural Networks: A View
from the Width,” Neural Information Processing Systems, arXiv:1709.
02540, 6231-6239, 2017.

Marcus, Gary, “Deep Learning: A Critical Appraisal,” arXiv:1801.

00631, Jan. 2, 2018.
Pham, Hieu, et al., “Efficient Neural Architecture Search via Param-

eter Sharing,” arXiv:1802.03268, Feb. 12, 2018.

Smith, Leslie N., “A disciplined approach to neural network hyper-
parameters: Part 1—learning rate, batch size, momentum, and
welght decay,” arXiv: 1803.09820, Apr. 24, 2018.

Smith, Leslie N., et al., “Super-Convergence: Very Fast Training of
Residual Networks Using Large Learning Rates,” arXiv:1708.
07120, May 17, 2018.

So, David R, et al., “The Evolved Transformer,” arXiv:1901.11117,
May 17, 2019.

Tan, Mingxing, et al., “EflicientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” arXiv:1905.11946, Sep. 11, 2020.
International Search Report and Written Opinion on PCT Appl. Ser.
No. PCT/US2021/021882 dated Jun. 29, 2021 (43 pages).
Loshchilov, Ilya et al., “SGDR: Stochastic Gradient Descent with
Warm Restarts”, Cornell University, 2017, pp. 1-16.

Yamada, Kazuki et al., “Adaptive Learning Rate Adjustment with
Short-Term Pre-Training in Data-Parallel Deep Learning”, 2018

IEEE International Workshop on Signal Processing Systems (S1PS),
2018, pp. 100-105.

* cited by examiner

US 11,334,795 B2

Sheet 1 of 14

May 17, 2022

U.S. Patent

T "5l

> 0LT

US 11,334,795 B2

Sheet 2 of 14

May 17, 2022

U.S. Patent

Y ¢ BMPON

Jialht=at=Nle BENTHE

ELL IBPON
paUIR

< DI

07 ¢ HNPOoN uoneldepy
jayaueiediodA

81 SHNPOW
jaisuiesediadAy 121U

91 ¢ SiNPOy
LOIIDNIISUD)) [BPOIA

PIT SINPOIN 3uiel |

007 5

{1 C SPON
3UISS3o0I0-344

- OL¢ elegg
- Buguies | ey

U.S. Patent May 17, 2022 Sheet 3 of 14 US 11,334,795 B2

{300

y

Provide training data for a neural network, the
training data comuprising a column of numerical

=12 values

Transtorm the column of numerical values to
3‘14'“5 obtain a column of transformed numerical values

Create a plurality of bins for the numerical values,
) each bin comprising a column of identitiers
3116 ingicating whether respective values from the
column of numerical values belong in the bin

Train the neural network using the column of
318~ transtormed numerical values and the bins

US 11,334,795 B2

Sheet 4 of 14

2022

May 17,

U.S. Patent

1 ndIng

OCY IRART .

Yy nding

0oy —

(0P BOITIBULOY

IeNPISSY

\

\

G anguig Sistehtaly

Q07 JoAe|-gng-

7 1

i

57 Jake

”tdﬂw:ﬁu
- yanosyi-sseyd

0TV 4BAET USPRIH

(0 UGHRD2UUGT
enpisay

§

S04
'1NC U

wﬁ 1gfe it}

e02 JeAegng

US 11,334,795 B2

Sheet 5 of 14

May 17, 2022

U.S. Patent

H

uone

AT

(0%

0G4 HORISUUOD
enpisay

S "Did

T

s

ng |

{

VIS

e

sislentaly

T

07
e
GSPBI

Qmm mauwwu 20075
 [enpEsy

U.S. Patent May 17, 2022 Sheet 6 of 14 US 11,334,795 B2

Provide training data for a neural network

610
Determine a distribution of a target variable in
612 = the training data
Determine a type of predictive modeling problem
(e.g., regression or classification) 1o be solved
bid using the neural network
Choose based on the determined type of
| predictive modeling problem and the getermined
616~ distribution, a loss function for the neural
network
| Choose, based on the loss tunction, an output
513"5 activation function for the neural network

FG. 6

U.S. Patent May 17, 2022 Sheet 7 of 14 US 11,334,795 B2

700

4

1 Provide a neural network and training data

Determine a size of the training data

F Vi

Determine a type of predictive modeling probiem
¢ {e.g., regression or classification) to be solved
using the neural network

Determine based on the size of the fraining data,

one or more first hyperparameters inciuding a
mini-batch size and/or a dropout rate

716

Determine, based on the type of predictive
modeling problem, one or more second
hyperparameters including a learning rate, 3
batch normalization, a number of epochs, and/or
an cutput activation function

/318

Train the neural network using the training data,
the one or more first hyperparameters, and the

7207
one or more second hyperparameters

FlG. 7

US 11,334,795 B2

Sheet 8 of 14

May 17, 2022

U.S. Patent

' L TR NN L L o) R, SRRy L TSR SR * SR L o] R, R, b TR ‘SRR

_Phasa
élb

;““ 800
wWarm-
fown

4 WA WA A br = v -~ g AT W WA, - L = r = A A R - T L e o) A - WA, - WA A L = r = et ot = B
.

J1EY ULIBST

iteration

FiG. 8

12

S

i

"
H
L
"
b .

E'2'E'E'E'E'E'2'E'E'2'2'E'Z'2'E'2'2'E'2'E'E'2'2'E'2'E'E'E'E'E'2'2'E'2'2'E'2'2'E'2'2'E'2'E'E'2'2'E'2'E'E'E'2'E'2'2'E'2'2'E'2'E'E'2'2'E'2'2'E'2'2'E'2'2'E'2'2'E'2'2'E'2'2'E'2'E'E'2'2'E'2'2'E'2'2'E'2'2'E'2'2'E'2'E'E'E'l'i'i'i'i'i'l'i'i'i'l'i'l'i'i'i'l'i'l'i"i' RS

;

L

g
\
z
|
z
|
a
)
z
;
z
|
|
a
z
|
z
+

.__-“}il. P R T T TV g v g Y Y Wit Rt Rty Sl Rttty SRy it e ... L

L e Dl

-{a’-!’-.'-F-.'-.'-.'-F-.'-.'-F-.'-F-F-.'-F-F-.'-.'a-.'-.'-.'-F-F-.'-F-.'-F-.'-.'-.'-{-,'-.'-F-.'-.'-F-.'-.'-F-.'-.'a-.'-.'-.'-F-.'-.'-F-.'-F-F-.'-.'-F-.'-.'-F-.'-.'-F-F?.'-F-.'-.'-F-.".'-E-‘g'-F-F-F-F-FJJJJJJJJJJJJJJJJJJJJJJJ
] : ;
o + * - t

jg

o
%

rr L]
L
-
e
L)
r]

i

314

Phase

Training

General
BB

A
L

w!nlnlnlnlnln!alln sl n s s 0 n e 0 n 0 0 s a0 v n n n e i

R R S R s e

???????????????????????????????

b A . T S > S~ B (R SR
ST < S T S < S << B < = B <

IUBILB0T) WINJURWOW

i

)

iteration

FiGa. 9

US 11,334,795 B2

Sheet 9 of 14

May 17, 2022

U.S. Patent

T 1000

1018
1

) *'*"u-bf;’*:?

.....

mnne ! ases el
(N g b @ e ww
N)
2

fteration

10127
1
FiG. 10

10127
iy

.....
........
.....

£

~111111111&1111111&111111111111111111111111111{.1111111*-\.11111111-\.1111111111111111‘111111111&11111111111111111111111111!1111111!1111111111111111111111111115-11111111111111111
* ..s g .';.
¥ . LN = .
. . . .

101272
|
|
|
|
i
l
|
|
|
|
|
|
|
|
z
a
}
2

1+ T« D < B < B < B

o I - B

2 w”.____.._.._. '
ot %
I IR - T - B

JUSISIBOD) UNIURLUDIA]

318y Fuitiiea

U.S. Patent May 17, 2022 Sheet 10 of 14 US 11,334,795 B2

FIG. 12

U.S. Patent May 17, 2022 Sheet 11 of 14 US 11,334,795 B2

;’“ 1300

Oscillate a learning rate while performing a

1310~ ' preliminary training of a neural network

Determine, based on the preliminary training, a
number of training epochs to perform for a

1312 subsequent training session
Train the neural network using the determined
1314~ number of training epochs

FIG. 13

T Ol

p et ety e g gy T gt gt gyt by gl gy gyt gl iy By gy gyt gt gy T gy byt gty ay g, gy gt gty et et adhgt Tyt i gt ety Tty gt e, g syt gy gty hgd gty gt et gty bt ety iy gt gy gy et gt iyt el gl iyt gl gty St gty gt gl g gyt ey Tty T oyt gy g’ gt iy T gty e, gty syt Tl Tt by el iy syt g gyt et gl ahyt g gty ayt gl gty Bl iy gt gl gy g gy gty gt Ty gty gt iy gty gl gl gyt hgd gyt gt Tyl i ot gy gyt et gy syt i, gy gt gl gyt gt vty gty syt by e g

ajey amm&mﬁ A m&ﬁmﬂ mmw.wmwmm wmm“mm Wﬁw
e W L Wmm 1y ,m_w _

US 11,334,795 B2

Sheet 12 of 14

May 17, 2022

U.S. Patent

&m,wmm mw,f m

US 11,334,795 B2

Jﬁi‘,

R

Sheet 13 of 14

ﬁaem&égﬁu

e __MW,__.M_____.__.___.___.,_@m&%mﬁ E,,%% e ! X8 S P g ————

...

May 17, 2022

ma_% uam wmf wm

...........

"r.

+ 5 e e e e ww .“wwm, e e ...,...,....,...,.._,...,...,...,..,....,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,JJJJJJJJJJJJJJJJJJJJJJJJ .

. o : 3l R T e A O - T e i A SR S

e ——— w.m_ , m _. mm w t.,ﬁ_mm ity &mﬁmmm

‘g | |

;- + oy .
o o mwmmwmwﬂw :
E3:3%3 RIS .

..

L

U.S. Patent

U.S. Patent

1600

May 17, 2022

selnle o
S e A A A AA AN AN LA L LU LU & e i F
R R T I T ; o £ ;
K- T e L = 5 feartoa “ala gt g
. i - .- » . » -
R AR Pl "':i; .E . . W Tl X
II" Il!: ¥ -:J * :Il % :l-_ ;E :: 'I:l:l.f -‘M x T
a L n F r & - ‘ .
L S . < s .
PO + o
'l. . L] |

'#'Il'll'll-:ll"ll"ll"Il'll'll"ll'Il"ll'Il'll'll"ll'Il'll"ll"Il"ll"Il'll"ll'll"Il:ll:Il'll'll'll'll'll"ll'll'll'll'll'll" "

¥
>

- _:‘

e q

A

e e e e e e ¥ e

L
- o i
;_ , ."‘:"‘-‘r"‘-‘n"‘-‘-‘-‘n"‘-‘-r‘-‘-‘-*r"‘-‘-"'-‘-"‘-‘r‘-‘-‘-‘-‘-‘r‘-‘n‘-‘-‘-‘n‘-‘n‘-‘-‘-‘r‘-‘-‘-‘-‘-‘r‘-‘-‘r‘-":"‘-‘-:‘-"'-‘-‘-*r‘-‘n‘-‘-‘-‘v%:‘-‘-‘r‘-‘-‘-‘-‘-‘r‘-‘-*-‘-‘-*r‘-‘n*-‘-‘-‘r‘-‘-‘-‘-‘-‘n‘-‘-‘-‘-‘-‘r‘-‘-‘r:.‘
" oy

\ .
: 11111111111111111111lililililililililililililililili!‘ﬂ.{ilqlili T I NN N T T I O I O T T O
[l.l.i.l.l.i.l.l.l.I.l.l.l.l.l.I.l.l.I.l.i.l.l.l.I.l.i.l.l.i.I.l.l.I.l.i.l.l.l.I.l.l.l.l.i.l.l.l.l.l.i.l. [.l.l.l.l.i.l.l. l.l.l.l.l.l.I.l.i.l.l.l.I.l.l.I.l.l.I.l.l.I.l.l.l.l.l.l.l.l.l.l.i.l.l.l'.h.

Sheet 14 of 14

a
rl-ll L -ll'-ll'i'#'f'#'i'#li"#"'#"i'#
P e

l-"!-"l-"!-"!-‘.l-#l-‘.!‘.l-#l-‘.!‘.l-
A

LT NN N N NN N NN N NN NN RN NN RN NN R]
. L3 TR

e et

.

e

N “a

-r-j L]
ol {.l
L] 4
- i L]

:%.".".E.

)

| JE P P R RN N RN NN PN NN NN RN W RN ML "'"
Nttt et 3 :
L ; P

[l

[l
-

-

&

-

-

Taie xR xx
=lalnlnle

| p L . L]
e wow'a

1 p r
LA \ et et e

nle

[l o el o Sl el o g

&+ % 4 & 4 & 4 &
oy
[]

I-.I-
e

L

L
-

.E
ielale

-
N
W
o=

wlale

Il'll'lll Wb Wk kb hh kb kh_hkkh_h k]

wlale

o,
- -

-

-

[T T O O YO O T N 1 _’_

*j %ET
wlele

o e e e e e e e e e e e
L}

LA .
I-.J _.: iﬁ w o]
] | | - [
] "5 LN
. i3 7 -
: ":' -’: i m o
] '.J -'] A
1 ‘.‘ i.. . o]
] '.:] .
i L% == 3
1] | | L [
] " LN
] ‘:‘ -'i- 0

L

-

| U W N NN NN PN NN PN NN PN NN M)
4
-Wﬂ'! 3

[l e e e e e Pl Tl Tl e il o ol Bl B Tl Bl ol o el el o Sl Pl Pl e T il T el Tl Sl Tl Tl ol S o Pl il o el ol ol el il ol el e ol Bl el el Sl o Ul Bl B ol Bl R B

- .!l!‘!‘!l!l!l!'!'!l!l!'!'!l!'!l!'!'!'!l!:l'f!.!{*

i-!'-!'."d‘."'-!"'.‘-f‘n"-!‘."-!"'u"d""-!‘."-!"'u‘-!""-!‘.%ﬁ%ﬁ%ﬁ%‘fi‘-ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ:ﬁ%ﬁ:{.ﬁ_

e
.‘_-Il' -

Lk il Ol

ool & o ow n oo wa ro i LI L T R |
rhr p ¥ . F Frs FR R o Bk E oy LI N I N - h
"-l' LI J|"'|"‘_'r L l.*‘_l'_i‘_._i"'-l' b" L "*'ll“'li*i*ﬂ"_# L
kT kTt A h E ko ke kN r T E Rk Rk k

M
)
B,

L T L L L e L L L L L L O L,

»
N NN

-
L
LA ‘ﬂr#

iy

L]

r -
“ L 4

LI I DL I |

k J‘"‘
*k .
Ll
+ b-l L]
N -I_ .r‘r
J -I'Jr-!.
P R .
] Ttbl o
A
XN i
¥ lq-*:.]
LA *
Ll l‘}q‘bb
=y
sk "
J-.‘-.‘J-q-'
1] b!:_“)
- - = u = = Ny N N N N N N N N N _N_E_N_ & _E_E_N_N_E_N_N_N_u&_&]
e ERCNE S e e e e e e e e e e
4 1!- \'r k
b .
, -‘j*l [
¥ ‘J-'l,l]
» “31‘*1'.# k
'] :}*'b o
: *""'r:'r
. ¥ " (]
[e
:] :"'.‘.' b
.)
'] ' o
L L5,
. X 2
I‘“'I"I"I"I"I"I"I"I"I"I"I-'I"I"I-'I"I+“'I"I"I"I"I"I"I"I"I"I"I-'I"I"I-'I . s
*
)

LI 5 L] LI 1 D

ok r = b ke b bR
E

S L

N R

Teluteteleletete e et e e e e e e e e e e

N A R N R R N A I R R R O O O N R R O O O N

llllllllllllllllllllﬁQlll

* F FEFEFEEFEEFEEFFEFEFEFEFFFEEFEYFEFERFS

¥
$

Sacwn "
= 5
R :{:-‘h;:-:

SN

O R R R R R R R R R R R R A I AF B B R A A B R R R R R R R R R R R R R R R R R A R A A N A N N N N N

]
*

.ll 5
- - '-'-*-'-*-'-*-'-*-'l-:..
'

' !

L 3
E

-
P
-

"

-aelm,
"J
*J
*J
*J
*J
*J
"J
*J
*J
*J
*J
*J
*J
*J
*J
"J
*J
*J
¥
o iwiwlelnlvlelelnlvlnlelnlvlalelnlelalvinlolnlnlnlolnlnlulele]
¥
o) *I:I:':I:I:':I:I:{:I:I:{:I:I:{:I:I:{:I:I:{:I:I:{:I:I:{:I:I}l-:'
[} -
. a
:l RN AN N A A N A
.

LY
*T**
-I'-Il-li-

L B

, o o
o = oy -
. - . -
A v

e e
WA T i e e e

R L N

e
T e

L Tl e e e o Tl il Tl e R e e Ol e o il il Tl S e A e e e e R e e o e il Tl o e e e e e e e o e il Tl M S e e e e e e e Tl il Ml i S e B e e e e e e e e e o e e e Tl Sl il el R O o e e e e e e e e M e e Sl T e e " il

-
{‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.‘.'.‘.‘.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.‘.'.‘.‘.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.t.'.‘.‘.'.‘.‘.'.‘.t.'.'.t.'.‘.t.'.‘.t._.‘.t.'.‘.t.'.‘.t.'.‘.‘.'.‘.‘._.'.t.'.‘.t.'.‘.t.'.‘.t.'.‘. i

4 4 4. 4 4. 4. 4 4 4 4 4 449 4449444949494 4949494949494 949494944949499499494949494994949499499494949499499499499494949494944949494944949494949949494949494944949494949449494949494949494494949494944949444944949449 4944949449494 4949449 49449 49449494949+49.+4

F R I I T T T T R T Qe T T R T T T QT R T T T T T T T T T T T T T T T T R N T T N T P N e N B B B R R R T R T T e T T Qe Jae T T T T T T T T T e TN T T e I A A B B B R R e e T T e T T e T T T T T T T T T T T T T R Qe T T T T T e e A I I R R I R R B B R R R R R R R R R [e R T I R T T T T T T I R T

e e e e e e e e e e e e e e e e e e e e

4.4
F]

o

[3
lllll‘.lllll‘.lllll‘.lllll‘.lllll‘.lllll‘.lllll}lllll}lllll}lllll}"

US 11,334,795 B2

. 16

F

US 11,334,795 B2

1

AUTOMATED AND ADAPTIVE DESIGN AND
TRAINING OF NEURAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to and benefit of U.S.
Provisional Application No. 62/989,683, titled “Automated
and Adaptive Design and Training of Neural Networks™ and
filed on Mar. 14, 2020, the entire disclosure of which 1s

hereby incorporated by reference.

TECHNICAL FIELD

This disclosure relates to computer-implemented methods
and systems that automate the building, training, tuning, and
interpretation of neural networks and other machine learning
models.

BACKGROUND

Artificial neural networks (“neural networks™) are a fam-
1ly of computer models inspired by biological neural net-
works and can be used to estimate or approximate functions
from a large number of unknown inputs. Neural network
models can be used for regression and/or classification. In
one example involving classification, images of dogs can be
collected and used to train a neural network model to
recognize different dog breeds. When a new 1mage of a dog
1s provided as input to the tramned model, the model can
provide a score mdicating how closely the dog matches one
or more of the breeds and/or can provide an 1dentification of
the breed. Neural networks can be used 1n seli-driving cars,
character recognition, 1mage compression, stock market
predictions, and other applications.

A neural network model 1s based on a collection of
connected units or nodes called neurons or perceptrons.
Connections between the nodes loosely resemble connec-
tions between neurons 1n a biological brain. For example,
like the neurons and synapses 1n a biological brain, a neuron
in a neural network model can receive and/or transmit
signals (e.g., numerical values) to other neurons. The 1nput
to the neuron can be a real number and the output from the
neuron can be the result of a linear or non-linear function
applied to the neuron’s inputs.

Neural network models, however, are generally not user-
triendly, and the training, development, and interpretation of
neural network models has traditionally been a manually
intensive process. There 1s a need for improved systems and
methods for training, using, and interpreting neural network
models.

SUMMARY

Businesses and other entities regularly use machine learn-
ing and other computer models for analyzing data and
making predictions. Many available machine learning mod-
¢ls are incapable of handling large amounts of data and can
provide poor results 1 such circumstances. Neural net-
works, on the other hand, are generally capable of handling
large and often tortuous data sets; however, neural networks
can require significant manual eflort and can be highly
complex and diflicult to implement and use. Developing,
training, and maintaining neural network models can require
significant computational costs and manual et

ort.
Advantageously, the systems and methods described
herein can significantly improve the development, imple-

10

15

20

25

30

35

40

45

50

55

60

65

2

mentation, and use of neural network models. For example,
the systems and methods utilize a variety of approaches for
ciiciently pre-processing data (e.g., tabular training data,
validation data, and/or prediction data) for use with neural
networks. Such pre-processing techniques can reduce com-
putation times required for training and making predictions,
and can result 1n more eflicient and accurate neural network
models. The systems and methods also utilize techniques for
designing and constructing neural network models, for
example, to select appropriate model architectures, loss
functions, and activation functions (e.g., output activation
functions). Additional techniques are presented for deter-
mining appropriate values for hyperparameters, which can
be used to control the neural network training process. For
example, values for hyperparameters can be determined
automatically based on one or more training data character-
1stics and/or on a type of modeling problem to be solved
(e.g., regression or classification). Values for the hyperpa-
rameters can be adapted or adjusted during training accord-
ing to one or more training schedules. Additional techniques
are presented for automatically determining a suitable num-
ber of training epochs or 1terations to use during the training,
process. The systems and methods also provide tools for
preparing and presenting a variety of charts, tables, and
graphs that can help users interpret and understand the
training process and model predictions.

In general, one 1nnovative aspect of the subject matter
described 1n this specification can be embodied 1n a com-
puter-implemented method of training a neural network. The
method 1ncludes: oscillating a learning rate while perform-
ing a preliminary training of a neural network; determining,
based on the preliminary training, a number of traiming
epochs to perform for a subsequent training session; and
training the neural network using the determined number of
training epochs.

In certain examples, oscillating the learning rate can
include oscillating the learning rate over successive training
iterations (e.g., multiple iterations per oscillation cycle), and
a single iteration can include training the neural network
with a single mini-batch of training data. Oscillating the
learning rate can 1include oscillating the learning rate
between a minimum learning rate and a maximum learning
rate. Oscillating the learning rate can include: determining
that an accuracy of the neural network has not improved
over a threshold number of oscillation cycles and, 1n
response to the determination, decreasing the maximum
learning rate and/or a diflerence between the maximum
learning rate and the minimum learning rate. Each training
epoch can include a tull pass through a set of training data.

In some implementations, the training data can include
tabular data and/or heterogeneous data. Determining the
number of training epochs can include: monitoring a pre-
diction accuracy of the neural network during the prelimi-
nary tramning; and determining the number of tramning
epochs based on a rate of change of the prediction accuracy
over successive training iterations. Training the neural net-
work can include generating a learning rate schedule based
on the determined number of epochs, and the learning rate
schedule can define values for the learning rate over the
determined number of training epochs. Training the neural
network can include generating a momentum schedule based
on the determined number of epochs, and the momentum
schedule can define values for momentum over the deter-
mined number of training epochs. Traiming the neural net-
work can include generating a training schedule for one or
more hyperparameters based on the determined number of
epochs, and the training rate schedule can define values for

US 11,334,795 B2

3

the one or more hyperparameters over the determined num-
ber of training epochs. The one or more hyperparameters can
include learming rate, momentum, mini-batch size, dropout
rate, regularization, an optimizer hyperparameter, a weight
decay, a moment estimation, or any combination thereof.

In another aspect, the subject matter described in this
specification can be embodied 1n a system having one or
more computer systems programmed to perform operations
including: oscillating a learning rate while performing a
preliminary training of a neural network; determining, based
on the preliminary training, a number of training epochs to
perform for a subsequent training session; and training the
neural network using the determined number of training
epochs.

In various examples, oscillating the learning rate can
include oscillating the learning rate over successive training
iterations (e.g., multiple iterations per oscillation cycle), and
a single iteration can include training the neural network
with a single mini-batch of training data. Oscillating the
learning rate can include oscillating the learning rate
between a minimum learning rate and a maximum learning,
rate. Oscillating the learning rate can include: determining,
that an accuracy of the neural network has not improved
over a threshold number of oscillation cycles and, 1n
response to the determination, decreasing the maximum
learning rate and/or a difference between the maximum
learning rate and the minmimum learning rate. Each training
epoch can 1nclude a full pass through a set of training data.

In certain implementations, the training data can include
tabular data and/or heterogenecous data. Determining the
number of training epochs can include: monitoring a pre-
diction accuracy of the neural network during the prelimi-
nary training; and determining the number of training
epochs based on a rate of change of the prediction accuracy
over successive traiming iterations. Training the neural net-
work can 1nclude generating a learning rate schedule based
on the determined number of epochs, and the learning rate
schedule can define values for the learning rate over the
determined number of training epochs. Training the neural
network can include generating a momentum schedule based
on the determined number of epochs, and the momentum
schedule can define values for momentum over the deter-
mined number of training epochs. Training the neural net-
work can 1nclude generating a training schedule for one or
more hyperparameters based on the determined number of
epochs, and the training rate schedule can define values for
the one or more hyperparameters over the determined num-
ber of training epochs. The one or more hyperparameters can
include learming rate, momentum, mini-batch size, dropout
rate, regularization, an optimizer hyperparameter, a weight
decay, a moment estimation, or any combination thereof.

In another aspect, the subject matter described 1n this
specification can be embodied in a non-transitory computer-
readable medium having instructions stored thereon that,
when executed by one or more computer processors, cause
the one or more computer processors to perform operations
including: oscillating a learning rate while performing a
preliminary training of a neural network; determining, based
on the preliminary training, a number of training epochs to
perform for a subsequent training session; and training the
neural network using the determined number of training
epochs.

In another aspect, the subject matter described in this
specification can be embodied 1n a computer-implemented
method of training a neural network. The method 1ncludes:
providing a neural network and training data; determining,
based on a size of the traiming data, one or more first

10

15

20

25

30

35

40

45

50

55

60

65

4

hyperparameters including at least one of a mini-batch size
or a dropout rate; determining, based on a type of predictive
modeling problem to be solved using the neural network,
one or more second hyperparameters including at least one
of a learning rate, a batch normalization, a number of
epochs, or an output activation function; and training the
neural network using the training data, the one or more first
hyperparameters, and the one or more second hyperparam-
eters.

In certain examples, determining the one or more first
hyperparameters includes determining the mini-batch size to
be about 1% of the size of the training data. The training data
can include a plurality of rows, and determining the one or
more first hyperparameters can include determining the
dropout rate to be greater than 5% when the number of rows
1s less than 2,000. Determining the one or more second
hyperparameters can include determining the learning rate to
be: (1) from 0.001 to 0.005 for regression problems mvolv-
ing text; (11) from 0.005 to 0.025 for regression problems 1n
which a loss function utilizes a Poisson distribution, a
gamma distribution, or a Tweedie distribution; or (111)
between 0.01 and 0.05 for other types of predictive model-
ing problems. Determining the one or more second hyper-
parameters can include determining the batch normalization,
and the batch normalization 1s not used unless the type of
predictive modeling problem includes binary classification
or a multiclass classification problem using a neural network
architecture having more than one hidden layer.

In some 1nstances, determining the one or more second
hyperparameters can include determining the number of
epochs, and the number of epochs can be determined to be
from 2 to 4 when the type of predictive modeling problem
1s or includes regression and from 3 to 5 when the type of
predictive modeling problem 1s or includes classification.
Determining the one or more second hyperparameters can
include determining the output activation function, and for
regression problems the output activation function can be
determined to be (1) an exponential function when the
training data includes skewed targets and a loss function
utilizes a Poisson distribution, a gamma distribution, or a
Tweedie distribution or (1) a linear function. Determining
the one or more second hyperparameters can include deter-
mining the output activation function, and for classification
problems the output activation function can be determined to
be (1) a sigmoid function for binary classification problems
or independent multiclass problems or (11) a softmax func-
tion for mutually exclusive multiclass classification prob-
lems. Training the neural network can include: iitiating the
training using the one or more first hyperparameters and the
one or more second hyperparameters; and adjusting at least
one of the one or more {irst hyperparameters and the one or
more second hyperparameters over successive training 1tera-
tions.

In another aspect, the subject matter described in this
specification can be embodied 1n a system having one or
more computer systems programmed to perform operations
including: providing a neural network and training data;
determining, based on a size of the training data, one or more
first hyperparameters including at least one of a mimi-batch
size or a dropout rate; determining, based on a type of
predictive modeling problem to be solved using the neural
network, one or more second hyperparameters including at
least one of a learning rate, a batch normalization, a number
of epochs, or an output activation function; and traiming the
neural network using the training data, the one or more first
hyperparameters, and the one or more second hyperparam-
eters.

US 11,334,795 B2

S

In certaimn examples, determining the one or more first
hyperparameters includes determining the mini-batch size to
be about 1% of the size of the traiming data. The training data
can include a plurality of rows, and determining the one or
more {first hyperparameters can include determining the
dropout rate to be greater than 5% when the number of rows
1s less than 2,000. Determining the one or more second
hyperparameters can include determining the learning rate to
be: (1) from 0.001 to 0.005 for regression problems 1mvolv-
ing text; (11) from 0.005 to 0.025 for regression problems 1n
which a loss function utilizes a Poisson distribution, a
gamma distribution, or a Tweedie distribution; or (i11)
between 0.01 and 0.05 for other types of predictive model-
ing problems. Determining the one or more second hyper-
parameters can include determining the batch normalization,
and the batch normalization 1s not used unless the type of
predictive modeling problem includes binary classification
or a multiclass classification problem using a neural network
architecture having more than one hidden layer.

In some instances, determining the one or more second
hyperparameters can include determining the number of
epochs, and the number of epochs can be determined to be
from 2 to 4 when the type of predictive modeling problem
1s or includes regression and from 3 to 5 when the type of
predictive modeling problem 1s or includes classification.
Determining the one or more second hyperparameters can
include determining the output activation function, and for
regression problems the output activation function can be
determined to be (1) an exponential function when the
training data includes skewed targets and a loss function
utilizes a Poisson distribution, a gamma distribution, or a
Tweedie distribution or (11) a linear function. Determining
the one or more second hyperparameters can include deter-
mimng the output activation function, and for classification
problems the output activation function can be determined to
be (1) a sigmoid function for binary classification problems
or independent multiclass problems or (11) a softmax func-
tion for mutually exclusive multiclass classification prob-
lems. Training the neural network can include: mitiating the
training using the one or more first hyperparameters and the
one or more second hyperparameters; and adjusting at least
one of the one or more first hyperparameters and the one or
more second hyperparameters over successive training itera-
tions.

In another aspect, the subject matter described in this
specification can be embodied in a non-transitory computer-
readable medium having instructions stored thereon that,
when executed by one or more computer processors, cause
the one or more computer processors to perform operations
including: providing a neural network and training data;
determining, based on a size of the training data, one or more
first hyperparameters including at least one of a mim-batch
size or a dropout rate; determining, based on a type of
predictive modeling problem to be solved using the neural
network, one or more second hyperparameters including at
least one of a learning rate, a batch normalization, a number
ol epochs, or an output activation function; and training the
neural network using the training data, the one or more first
hyperparameters, and the one or more second hyperparam-
eters.

In another aspect, the subject matter described in this
specification can be embodied 1 a computer-implemented
method of designing a neural network. The method includes:
providing training data for a neural network; choosing,
based on (1) a type of predictive modeling problem to be
solved using the neural network and (11) a distribution of a
target variable in the training data, a loss function for the

10

15

20

25

30

35

40

45

50

55

60

65

6

neural network; and choosing, based on the loss function, an
output activation function for the neural network.

In various implementations, the type of predictive mod-
cling problem can be or include regression, and choosing the
loss function can includes: (1) choosing a Tweedie loss
function when the target variable 1s zero-inflated; (11) choos-
ing a Poisson loss function when the distribution 1s or
approximates a Poisson distribution; (111) choosing a gamma
loss function or a root mean squared log error (RMSLE) loss
function when the distribution 1s or approximates an expo-
nential distribution; or (iv) otherwise choosing a root mean
squared error (RMSE) loss function. Additionally or alter-
natively, the type of predictive modeling problem can be or
include classification, and choosing the loss function can
include: (1) choosing a sparse categorical cross entropy loss
function when the type of predictive modeling problem 1s a
mutually exclusive multiclass classification problem or (11)
choosing a binary cross entropy loss function when the type
of predictive modeling problem 1s a binary classification
problem or an independent multiclass problem. Choosing
the loss function can include displaying at least one recom-
mended loss function on a client device of a user.

In some examples, choosing the output activation func-
tion can include (1) choosing an exponential output activa-
tion function when the loss function 1s logarithmic or (11)
otherwise choosing a linear output activation function. The
loss function can be logarithmic when the loss function
includes one of a Tweedie loss function, a gamma loss
function, a Poisson loss function, or a root mean squared log
error (RMSLE) loss function. Choosing the output activa-
tion function can include displaying at least one recom-
mended output activation function on a client device of a
user. The neural network can include an 1nput layer, at least
one hidden layer, and an output layer, and the method can
include configuring the neural network to include a residual
connection between the mput layer and the output layer, the
residual connection bypassing the at least one hidden layer
and having a linear activation function. The neural network
can include an output layer having an output activation
function, and the method can include: mitializing a bias for
the output layer to be (1) equal to a mean of the target
variable when the output activation function 1s linear or (11)
equal to a mean of an inverse of the output activation
function. The method can include automatically scaling an
output of the neural network based on a range of the target
variable.

In another aspect, the subject matter described in this
specification can be embodied 1n a system having one or
more computer systems programmed to perform operations
including: providing training data for a neural network;
choosing, based on (1) a type of predictive modeling problem
to be solved using the neural network and (11) a distribution
of a target variable 1n the training data, a loss function for the
neural network; and choosing, based on the loss function, an
output activation function for the neural network.

In various examples, the type of predictive modeling
problem can be or include regression, and choosing the loss
function can 1ncludes: (1) choosing a Tweedie loss function
when the target vanable 1s zero-inflated; (1) choosing a
Poisson loss function when the distribution 1s or approxi-
mates a Poisson distribution; (111) choosing a gamma loss
function or a root mean squared log error (RMSLE) loss
function when the distribution 1s or approximates an expo-
nential distribution; or (iv) otherwise choosing a root mean
squared error (RMSE) loss function. Additionally or alter-
natively, the type of predictive modeling problem can be or
include classification, and choosing the loss function can

US 11,334,795 B2

7

include: (1) choosing a sparse categorical cross entropy loss
function when the type of predictive modeling problem 1s a
mutually exclusive multiclass classification problem or (11)
choosing a binary cross entropy loss function when the type
of predictive modeling problem 1s a binary classification
problem or an independent multiclass problem. Choosing
the loss function can include displaying at least one recom-
mended loss function on a client device of a user.

In certain mnstances, choosing the output activation func-
tion can include (1) choosing an exponential output activa-
tion function when the loss function 1s logarithmic or (11)
otherwise choosing a linear output activation function. The
loss function can be logarithmic when the loss function
includes one of a Tweedie loss function, a gamma loss
function, a Poisson loss function, or a root mean squared log
error (RMSLE) loss function. Choosing the output activa-
tion function can include displaying at least one recom-
mended output activation function on a client device of a
user. The neural network can include an 1nput layer, at least
one hidden layer, and an output layer, and the operations can
include configuring the neural network to include a residual
connection between the mput layer and the output layer, the
residual connection bypassing the at least one hidden layer
and having a linear activation function. The neural network
can include an output layer having an output activation
function, and the operations can include: mitializing a bias
for the output layer to be (1) equal to a mean of the target
variable when the output activation function 1s linear or (11)
equal to a mean of an inverse of the output activation
function. The operations can include automatically scaling
an output of the neural network based on a range of the target
variable.

In another aspect, the subject matter described in this
specification can be embodied in a non-transitory computer-
readable medium having instructions stored thereon that,
when executed by one or more computer processors, cause
the one or more computer processors to perform operations
including: providing training data for a neural network;
choosing, based on (1) a type of predictive modeling problem
to be solved using the neural network and (11) a distribution
ol a target variable 1n the training data, a loss function for the
neural network; and choosing, based on the loss function, an
output activation function for the neural network.

In another aspect, the subject matter described i this
specification can be embodied 1n a computer-implemented
method of traiming and using a neural network. The method
includes: providing training data for a neural network, the
training data including a column of numerical values; trans-
forming the column of numerical values to obtain a column
of transformed numerical values; creating a plurality of bins
for the numerical values, each bin including a column of
identifiers indicating whether respective values from the
column of numerical values belong 1n the bin; and training
the neural network using the column of transformed numeri-
cal values and the bins.

In some instances, the training data can include tabular
data having a plurality of rows and columns. Transforming
the column of numerical values can include performing a
ridit transformation or a cumulative distribution function
transformation. The transformed numerical values can fall
within a specified numerical range. Each row of the column
of transformed numerical values can correspond to a respec-
tive row of the column of numerical values. Each row of the
column of identifiers can correspond to a respective row of
the column of numerical values.

In certain implementations, creating the plurality of bins
can include performing a one-hot encoding. Creating the

10

15

20

25

30

35

40

45

50

55

60

65

8

plurality of bins can include using a decision tree to deter-
mine at least one numerical boundary for each bin. The
method can include: determining that the traiming data
includes one or more missing values for at least one variable;
and replacing the one or more missing values with one or
more new values based on other values for the at least one
variable. The method can include: providing prediction data
for the trained neural network, the prediction data including
a second column of numerical values; transforming the
second column of numerical values to obtain a second
column of transformed numerical values; creating a plurality
of second bins for the second column of numerical values,
cach second bin including a second column of identifiers
indicating whether respective values from the second col-
umn of numerical values belong in the second bin; and
making predictions using the neural network, the second
column of transtormed numerical values, and the second
bins.

In another aspect, the subject matter described in this
specification can be embodied 1 a system having one or
more computer systems programmed to perform operations
including: providing training data for a neural network, the
training data mncluding a column of numerical values; trans-
forming the column of numerical values to obtain a column
of transformed numerical values; creating a plurality of bins
for the numerical values, each bin including a column of
identifiers i1ndicating whether respective values from the
column of numerical values belong in the bin; and training
the neural network using the column of transformed numeri-
cal values and the bins.

In some examples, the training data can include tabular
data having a plurality of rows and columns. Transforming
the column of numerical values can include performing a
ridit transformation or a cumulative distribution function
transformation. The transformed numerical values can {fall
within a specified numerical range. Each row of the column
of transformed numerical values can correspond to a respec-
tive row of the column of numerical values. Each row of the
column of 1dentifiers can correspond to a respective row of
the column of numerical values.

In various implementations, creating the plurality of bins
can include performing a one-hot encoding. Creating the
plurality of bins can include using a decision tree to deter-
mine at least one numerical boundary for each bin. The
operations can include: determining that the training data
includes one or more missing values for at least one variable;
and replacing the one or more missing values with one or
more new values based on other values for the at least one
variable. The operations can include: providing prediction
data for the trained neural network, the prediction data
including a second column of numerical values; transform-
ing the second column of numerical values to obtain a
second column of transformed numerical values; creating a
plurality of second bins for the second column of numerical
values, each second bin including a second column of
identifiers i1ndicating whether respective values from the
second column of numerical values belong 1n the second
bin; and making predictions using the neural network, the
second column of transformed numerical values, and the
second bins.

In another aspect, the subject matter described in this
specification can be embodied in a non-transitory computer-
readable medium having instructions stored thereon that,
when executed by one or more computer processors, cause
the one or more computer processors to perform operations
including: providing training data for a neural network, the
training data mncluding a column of numerical values; trans-

US 11,334,795 B2

9

forming the column of numerical values to obtain a column
of transformed numerical values; creating a plurality of bins
for the numerical values, each bin including a column of
identifiers i1ndicating whether respective values from the
column of numerical values belong 1n the bin; and training
the neural network using the column of transformed numeri-
cal values and the bins.

The above and other preterred features, including various
novel details of implementation and combination of ele-
ments, will now be more particularly described with refer-
ence to the accompanying drawings and pointed out 1n the
claims. It will be understood that the particular methods and
apparatuses are shown by way of illustration only and not as
limitations. As will be understood by those skilled 1n the art,
the principles and {features explained herein may be
employed 1n various and numerous embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed embodiments have advantages and features
which will be more readily apparent from the detailed
description, the appended claims, and the accompanying
figures (or drawings). A brief 1introduction of the figures 1s
provided below.

FIG. 1 1s a schematic diagram of a neural network model,
in accordance with certain embodiments.

FIG. 2 15 a schematic diagram of a system for developing
and/or training a neural network model, 1n accordance with
certain embodiments.

FIG. 3 1s a flowchart of a method of training and using a
neural network, in accordance with certain embodiments.

FI1G. 4 15 a schematic diagram of an exemplary regression
neural network having a residual connection, 1n accordance
with certain embodiments.

FIG. 5 1s a schematic diagram of an exemplary binary or
independent multi-class neural network having a residual
connection, 1n accordance with certain embodiments.

FIG. 6 1s a flowchart of a method of designing a neural
network, 1n accordance with certain embodiments.

FIG. 7 1s a flowchart of a method of training a neural
network, 1n accordance with certain embodiments.

FIG. 8 1s a plot of a training schedule for a learning rate
hyperparameter, 1n accordance with certain embodiments.

FIG. 9 15 a plot of a traiming schedule for a momentum
hyperparameter, in accordance with certain embodiments.

FIG. 10 1s a plot of a preliminary traiming schedule for a
learning rate hyperparameter during a preliminary training
session, 1n accordance with certain embodiments.

FIG. 11 1s a plot of a preliminary training schedule for a
momentum hyperparameter during a preliminary training,
session, 1n accordance with certain embodiments.

FIG. 12 includes plots of loss vs. learning rate and
accuracy vs. learning rate, in accordance with certain
embodiments.

FIG. 13 1s a flowchart of a method of traiming a neural
network, 1n accordance with certain embodiments.

FIG. 14 1s a schematic drawing of a user interface that
presents information related to the traiming and development
of a neural network model, 1n accordance with certain
embodiments.

FIG. 15 1s a schematic drawing of a user interface that
presents information related to the traiming and development
of multiple neural network models, in accordance with
certain embodiments.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 16 1s a schematic block diagram of an example
computer system, 1n accordance with certain embodiments.

DETAILED DESCRIPTION

The figures (F1GS.) and the following description relate to
preferred embodiments by way of illustration only. It should
be noted that from the following discussion, alternative
embodiments of the structures and methods disclosed herein
will be readily recognized as viable alternatives that may be
employed without departing from the principles of what 1s
claimed.

Retference will now be made 1n detail to several embodi-
ments, examples of which are 1llustrated in the accompany-
ing figures. It 1s noted that wherever practicable similar or
like reference numbers may be used 1n the figures and may
indicate similar or like functionality. The figures depict
embodiments of the disclosed system (or method) for pur-
poses of 1llustration only. One skilled in the art will readily
recognize ifrom the following description that alternative
embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples described herein.

As used herein, “data analytics” may refer to the process
of analyzing data (e.g., using machine learning models or
techniques) to discover information, draw conclusions, and/
or support decision-making. Species of data analytics can
include descriptive analytics (e.g., processes for describing
the information, trends, anomalies, etc. 1n a data set), diag-
nostic analytics (e.g., processes for inferring why specific
trends, patterns, anomalies, etc. are present in a data set),
predictive analytics (e.g., processes for predicting future
events or outcomes), and prescriptive analytics (processes
for determining or suggesting a course of action).

“Machine learning” generally refers to the application of
certain techniques (e.g., pattern recognition and/or statistical
inference techniques) by computer systems to perform spe-
cific tasks. Machine learning techniques (automated or oth-
erwise) may be used to build data analytics models based on
sample data (e.g., “training data’) and to validate the models
using validation data (e.g., “testing data™). The sample and
validation data may be organized as sets of records (e.g.,
“observations™ or “data samples™), with each record 1ndi-
cating values of specified data fields (e.g., “independent
variables,” “inputs,” “features,” or “predictors™) and corre-
sponding values of other data fields (e.g., “dependent vari-
ables,” “outputs,” or “targets”). Machine learning tech-
niques may be used to train models to infer the values of the
outputs based on the values of the mputs. When presented
with other data (e.g., “inference data™) similar to or related
to the sample data, such models may accurately infer the
unknown values of the targets of the inference data set.

A feature of a data sample may be a measurable property
of an entity (e.g., person, thing, event, activity, etc.) repre-
sented by or associated with the data sample. For example,
a feature can be the price of a house. As a further example,
a feature can be a shape extracted from an image of the
house. In some cases, a feature of a data sample 1s a
description of (or other information regarding) an enfity
represented by or associated with the data sample. A value
of a feature may be a measurement of the corresponding
property of an entity or an instance of information regarding
an entity. For instance, in the above example in which a
teature 1s the price of a house, a value of the ‘price’ feature
can be $215,000. In some cases, a value of a feature can
indicate a missing value (e.g., no value). For instance, 1n the

US 11,334,795 B2

11

above example 1n which a feature 1s the price of a house, the
value of the feature may be ‘NULL’, indicating that the price
of the house 1s missing.

Features can also have data types. For instance, a feature
can have an 1mage data type, a numerical data type, a text
data type (e.g., a structured text data type or an unstructured
(“Iree”) text data type), a categorical data type, or any other
suitable data type. In the above example, the feature of a
shape extracted from an image of the house can be of an
image data type. In general, a feature’s data type 1s categori-
cal 11 the set of values that can be assigned to the feature 1s
finite.

As used herein, “image data” may refer to a sequence of
digital 1mages (e.g., video), a set of digital images, a single
digital 1mage, and/or one or more portions of any of the
foregoing. A digital image may include an organized set of
picture elements (“pixels™). Digital images may be stored in
computer-readable file. Any suitable format and type of

digital image file may be used, including but not limited to
raster formats (e.g., TIFF, JPEG, GIF, PNG, BMP, etc.),

vector formats (e.g., CGM, SVG@, etc.), compound formats
(e.g., EPS, PDF, PostScript, etc.), and/or stereo formats (e.g.,
MPO, PNS, JPS, etc.).

As used herein, “non-image data” may refer to any type
of data other than 1image data, including but not limited to
structured textual data, unstructured textual data, categorical
data, and/or numerical data. As used herein, “natural lan-
guage data” may refer to speech signals representing natural
language, text (e.g., unstructured text) representing natural
language, and/or data derived therefrom. As used herein,
“speech data” may refer to speech signals (e.g., audio
signals) representing speech, text (e.g., unstructured text)
representing speech, and/or data derived therefrom. As used
herein, “auditory data” may refer to audio signals represent-
ing sound and/or data derived therefrom.

As used herein, “time-series data” may refer to data
collected at different points in time. For example, 1n a
time-series data set, each data sample may include the values
of one or more variables sampled at a particular time. In
some embodiments, the times corresponding to the data
samples are stored within the data samples (e.g., as variable
values) or stored as metadata associated with the data set. In
some embodiments, the data samples within a time-series
data set are ordered chronologically. In some embodiments,
the time intervals between successive data samples 1n a
chronologically-ordered time-series data set are substan-
tially uniform.

Time-series data may be useful for tracking and inferring
changes in the data set over time. In some cases, a time-
series data analytics model (or “time-series model”) may be
trained and used to predict the values of a target Z at time
t and optionally times t+1, . . ., t+1, given observations of Z
at times before t and optionally observations of other pre-
dictor variables P at times before t. For time-series data
analytics problems, the objective 1s generally to predict
tuture values of the target(s) as a function of prior observa-
tions of all features, including the targets themselves.

As used herein, “spatial data” may refer to data relating to
the location, shape, and/or geometry of one or more spatial
objects. A “spatial object” may be an enfity or thing that
occupies space and/or has a location 1n a physical or virtual
environment. In some cases, a spatial object may be repre-
sented by an 1image (e.g., photograph, rendering, etc.) of the
object. In some cases, a spatial object may be represented by
one or more geometric elements (e.g., points, lines, curves,
and/or polygons), which may have locations within an

10

15

20

25

30

35

40

45

50

55

60

65

12

environment (e.g., coordinates within a coordinate space
corresponding to the environment).

As used herein, “spatial attribute” may refer to an attribute
ol a spatial object that relates to the object’s location, shape,
or geometry. Spatial objects or observations may also have
“non-spatial attributes.” For example, a residential lot 1s a
spatial object that that can have spatial attributes (e.g.,
location, dimensions, etc.) and non-spatial attributes (e.g.,
market value, owner of record, tax assessment, etc.). As used
herein, “spatial feature” may refer to a feature that 1s based
on (e.g., represents or depends on) a spatial attribute of a
spatial object or a spatial relationship between or among,
spatial objects. As a special case, “location feature” may
refer to a spatial feature that 1s based on a location of a
spatial object. As used herein, “spatial observation” may
refer to an observation that includes a representation of a
spatial object, values of one or more spatial attributes of a
spatial object, and/or values of one or more spatial features.

Spatial data may be encoded in vector format, raster
format, or any other suitable format. In vector format, each
spatial object 1s represented by one or more geometric
clements. In this context, each point has a location (e.g.,
coordinates), and points also may have one or more other
attributes. Each line (or curve) comprises an ordered, con-
nected set of points. Each polygon comprises a connected set
of lines that form a closed shape. In raster format, spatial
objects are represented by values (e.g., pixel values)
assigned to cells (e.g., pixels) arranged 1n a regular pattern
(e.g., a grid or matrix). In this context, each cell represents
a spatial region, and the value assigned to the cell applies to
the represented spatial region.

Data (e.g., vaniables, features, etc.) having certain data
types, including data of the numerical, categorical, or time-
series data types, are generally organized in tables for
processing by machine-learning tools. Data having such data
types may be referred to collectively herein as “tabular data™
(or “tabular vanables,” “tabular features,” etc.). Data of
other data types, including data of the image, textual (struc-
tured or unstructured), natural language, speech, auditory, or
spatial data types, may be referred to collectively herein as
“non-tabular data” (or “non-tabular variables,” “non-tabular
features,” etc.).

As used herein, “data analytics model” may refer to any
suitable model artifact generated by the process of using a
machine learning algorithm to fit a model to a specific
training data set. The terms “data analytics model,”
“machine learning model” and “machine learned model” are
used interchangeably herein.

As used herein, the “development” of a machine learning
model may refer to construction of the machine learming
model. Machine learning models may be constructed by
computers using training data sets. Thus, “development™ of
a machine learning model may include the training of the
machine learning model using a training data set. In some
cases (generally referred to as “supervised learning”), a
training data set used to train a machine learning model can
include known outcomes (e.g., labels or target values) for
individual data samples in the training data set. For example,
when training a supervised computer vision model to detect
images of cats, a target value for a data sample 1n the training
data set may indicate whether or not the data sample
includes an 1image of a cat. In other cases (generally referred
to as “unsupervised learning”), a training data set does not
include known outcomes for individual data samples 1n the
training data set.

Following development, a machine learning model may
be used to generate inferences with respect to “inference”

US 11,334,795 B2

13

data sets. For example, following development, a computer
vision model may be configured to distinguish data samples
including 1mages of cats from data samples that do not
include 1mages of cats. As used herein, the “deployment™ of
a machine learning model may refer to the use of a devel-
oped machine learning model to generate inferences about
data other than the training data.

Computer vision tools (e.g., models, systems, etc.) may
perform one or more of the following functions: image
pre-processing, feature extraction, and detection/segmenta-
tion. Some examples ol 1mage pre-processing techniques
include, without limitation, image re-sampling, noise reduc-
tion, contrast enhancement, and scaling (e.g., generating a
scale space representation). Extracted features may be low-
level (e.g., raw pixels, pixel intensities, pixel colors, gradi-
ents, patterns and textures (e.g., combinations of colors 1n
close proximity), color histograms, motion vectors, edges,
lines, corners, ridges, etc.), mid-level (e.g., shapes, surfaces,
volumes, patterns, etc.), high-level (e.g., objects, scenes,
events, etc.), or highest-level. The lower level features tend
to be simpler and more generic (or broadly applicable),
whereas the higher level features to be complex and task-
specific. The detection/segmentation function may mmvolve
selection of a subset of the mput 1image data (e.g., one or
more 1mages within a set of 1mages, one or more regions
within an 1mage, etc.) for further processing. Models that
perform 1mage feature extraction (or 1image pre-processing,
and 1mage feature extraction) may be referred to herein as
“1mage feature extraction models.”

Collectively, the features extracted and/or derived from an
image may be referred to herein as a “set of 1image features™
(or “aggregate 1mage feature™), and each individual element
of that set (or aggregation) may be referred to as a “con-
stituent 1mage feature.” For example, the set of image
features extracted from an 1mage may include (1) a set of
constituent 1image feature indicating the colors of the indi-
vidual pixels 1n the 1mage, (2) a set of constituent 1mage
teatures indicating where edges are present in the image, and
(3) a set of constituent 1image features indicating where faces
are present in the 1mage.

As used herein, a “modeling blueprint” (or “blueprint™)
refers to a computer-executable set of pre-processing opera-
tions, model-building operations, and postprocessing opera-
tions to be performed to develop a model based on the input
data. Blueprints may be generated “on-the-ly” based on any
suitable information including, without limitation, the size
of the user data, features types, feature distributions, etc.
Blueprints may be capable of jointly using multiple (e.g., all)
data types, thereby allowing the model to learn the associa-
tions between 1mage features, as well as between 1mage and
non-image features.

In various examples, a “hyperparameter” can be or
include a parameter that defines or controls a tramning
process for a neural network or other machine learning
model. Hyperparameters can be constant or can be adjusted
over time (e.g., according to a schedule) during the training
process. Examples of hyperparameters can include or relate
to, for example, a mini-batch size, a dropout rate (or other
regularization hyperparameter), a learning rate, a batch
normalization (e.g., indicating whether or not batch normal-
ization 1s used), a number of epochs, an output activation
function, a momentum (e.g., one or more coellicients
describing momentum), an optimizer, a weight decay, or any
combination thereof.

In various examples, neural network “regularization” can
refer to a process of modilying a learning algorithm such
that the model generalizes better, 1n contrast to overfitting,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the network to the training data. Certain hyperparameters
can be used to implement or achieve regularization. For
example, 1n some 1nstances, regularization can be achieved
by increasing learning rate, decreasing batch size, increasing
weight decay, running fewer epochs, reducing network
capacity, mcreasing dropout, or any combination thereof.

FIG. 1 1s a schematic diagram of an exemplary neural
network 100, in accordance with certain examples. The
neural network 100 can include an mmput layer 110, a first
hidden layer 120, a second hidden layer 130, and an output
layer 140. Each of these layers can further include neurons
or nodes 150 connected to other nodes from adjacent layers
via connections 160 (also referred to as “edges”). It 1s noted
that neural network 100 1s not limited to the depicted
structure and can have fewer or additional layers, nodes,
and/or connections. In some embodiments, each node 150
can be connected, via connections 160, to each node in a
previous layer and/or to each node 1n a subsequent layer. For
example, each node 1n layer 120 can be connected to each
node 1 layer 110 and/or to each node m layer 130, as
depicted.

As shown i FIG. 1, mput data 170 (e.g., training data,
validation data, and/or prediction data) can be introduced to
the neural network 100 at the input layer 110, and each
subsequent layer can receive information (e.g., numerical
values) from preceding layers until the neural network
provides predictions or results 180 at the output layer 140.
The mput data 170 can be or include original or raw data
(e.g., tabular data) or data that has been pre-processed, as
described herein. Data pre-processing can involve various
data processing operations including, for example, reformat-
ting, joimng, appending, scaling, aggregating, binning, con-
catenating, or any combination therefor. The results 180 can
be used to prepare graphs, charts, and/or tables that enable
users to more easily interpret and understand the results 180.

In various examples, each edge or connection 160 1n the
neural network 100 can be associated with a weight and/or
bias that can be tuned during a neural network traiming
process, which can enable the model to “learn™ to recognize
patterns that may be present 1n the mput data 170. In general,
a weight for a connection 160 between two neurons can
increase or decrease a “strength” (e.g., a contribution) for the
connection 160. The weights can control how sensitive the
network’s predictions are to various features included 1n the
input data 170. In various examples, neurons can have an
activation function that controls how signals or values are
sent to other connected neurons. For example, the activation
function can require a threshold value to be exceeded belore
a signal or value can be sent. In general, the activation
function of a node can define a range for the output of the
node, for a given input or set of inputs.

Multiple connection patterns are possible between two
adjacent layers 1n the neural network 100. For example, the
two layers can be fully connected with each neuron 1n one
layer connected to each neuron in the other layer, as
depicted. Each layer may perform diflerent transformations
on 1ts mput. Signals or values can travel from the input layer
110 to the output layer 140 after traversing through any
intermediate layers, which can be referred to as “hidden
layers” (e.g., the first hidden layer 120 and the second
hidden layer 130). Alternatively or additionally, a neural
network with no hidden layers can be equivalent to a logistic
or linear regression model, depending on the activation
function used (e.g., sigmoid activation or linear activation).
Adding a ludden layer (e.g., a set of neurons followed by an
activation function) can introduce non-linearity, which can

US 11,334,795 B2

15

allow the neural network model to learn non-linear relation-
ships between features and/or can lead to significantly more
poweriul models.

According to some embodiments, the neural network 100
can be trained using a set of traiming data (e.g., a subset of
the mput data 170) that includes one or more features and
one or more actual values that can be compared with model
predictions. The training process can be a challenging task
(e.g., mvolving use of an optimizer and back-propagation)
that requires a methodical approach and includes several
complex operations. For example, the traiming processes can
repeatedly take a small batch of data (e.g., a mini-batch of
training data), calculate a difference between predictions and
actuals, and adjust weights (e.g., parameters within a neural
network that transform input data within each of the net-
work’s hidden layers) in the model by a small amount, layer
by layer, to generate predictions closer to actual values.
Neural network models are flexible and allow for inclusion
or composition ol arbitrary functions. A umversal approxi-
mation theorem states that feed-forward networks with a
finite number of neurons (also referred to as “width™) can
approximate any continuous function and can do so with a
single-layer. For example, networks using a rectified linear
activation function (ReLU) can approximate any continuous
tfunction with n-dimensional mnput variables using a single
hidden layer of width (e.g., number of neurons) n+4.

According to some embodiments, the training process
described herein can utilize or include one or more of the
tollowing high-level operations: (1) input data pre-process-
ing, (1) model construction, (111) initial hyperparameter
determination, (1v) adaptive hyperparameter tuning, and (v)
model iterpretation. Each of the above operations, when
not performed or when performed improperly can result in
a poorly developed neural network model that does not it
data properly and/or provides erroneous or misleading pre-
dictions. While neural network training and interpretation
has traditionally been a manually intensive process, certain
embodiments of this disclosure can be used to automate the
above operations. Such automation can provide substantial
design flexibility, reduce the cost and time associated with
model development, and produce a trained neural network
model that 1s accurate and easy for end users to interpret.

For example, FIG. 2 1s a block diagram of a system 200
for developing and training neural networks or other
machine learning models, according to some embodiments.
Raw training data 210 (e.g., tabular data having rows and
columns) 1s provided to a pre-processing module 212. The
pre-processing module 212 can perform one or more data
processing operations on the raw tramning data 210 to
generate a processed training data, which 1s provided to a
training module 214. The training module 214 includes a
model construction module 216, an 1nitial hyperparameter
module 218, and a hyperparameter adaptation module 220.
The model construction module 216 receives training data
(e.g., as processed by the pre-processing module 212) and
determines an appropriate model architecture for the model,
based on the training data. The model construction module
216 can then construct the model according to the deter-
mined architecture, which can include, for example, a speci-
fied number of layers in the model, a specified number of
neurons 1n each layer, a specified activation function for one
or more layers, or other model characteristics. The 1nitial
hyperparameter module 218 can receive the traiming data
and determine an appropriate 1nitial set of hyperparameters
and/or values for the hyperparameters that can be used to
train the model. The hyperparameter adaptation module 220
can adapt or adjust one or more of hyperparameter values

5

10

15

20

25

30

35

40

45

50

55

60

65

16

during the tramning process. For example, the hyperparam-
eter adaptation module 220 can determine a suitable number
of training 1terations or epochs and/or can construct and
implement one or more training schedules for the hyperpa-
rameters.

In general, the training module 214 can perform a training,
process 1n which model prediction errors are reduced by
adjusting one or more parameters (e.g., weights and/or
biases) for the model. The training process can involve, for
example performing a series of iterations 1 which (1) the
training data 1s provided to the model, (11) predictions are
made based on the traiming data, (111) errors between the
predictions and actual values are determined, and (1v) the
model 1s adjusted 1n an eflort to reduce the errors. In some
instances, the model 1s trained using mini-batches or subsets
of the training data. For example, a mimi-batch of training
data can be provided to the model and the model can be
adjusted based on the determined errors.

Using a single mini-batch of training data to adjust the
model 1n this manner can be referred to herein as an
“1teration.” A number of 1iterations required to make one pass
through the training data can be equal to a number of
mini-batches 1n the training data. For example, if the traiming,
data includes 200 mini-batches, then 1t can take 200 1tera-
tions to make a single pass through the training data. In some
examples, an “epoch™ refers to a single pass through all the
training data and/or all the mini-batches in the training data.
In a typical example, multiple passes are made through the
training data, such that the model i1s trained over multiple
epochs. For example, i1 the model 1s trained over 5 epochs
and there are 200 mini-batches in the training data, then
training can 1iclude a total of 1000 iterations (e.g., 5 traiming
data passesx200 1terations per training data pass=1000 itera-
tions).

Once the training process has been completed, the train-
ing module 214 can provide a trained model 222, which can
be used to make predictions on other data (e.g., prediction
data or validation data that has been pre-processed by the
pre-processing module 212). Output from the trained model
222 can be provided to an interpretation module 224, which
can generate one or more tables, charts, and/or graphs that
a user can access to iterpret the trained model 222. Addi-
tionally or alternatively, the interpretation module 224 can
receive model predictions and/or training information from
the training module 214. The mterpretation module 224 can
use this information to generate one or more tables, charts,
and/or graphs that provide a user with information related to
the model training process. The pre-processing module 212,
the training module 214, the model construction module
216, the imitial hyperparameter module 218, the hyperpa-
rameter adaptation module 220, the interpretation module
224, and the operations performed by these modules are
described 1n more detail below.

Data Pre-Processing

Data pre-processing for neural network models can be
particularly challenging and/or lead to model performance
issues when performed manually or improperly. For
example, improperly pre-processing input data can have a
detrimental eflect on the overall accuracy/loss of the pre-
dictive model. On the other hand, proper data pre-processing
can require deep understanding of the data, which can be a
time-consuming task. Advantageously, the systems and
methods described herein are able to automate the data
pre-processing 1 a manner that can significantly improve
training el

iciency and model accuracy, and can greatly
simply the user experience.

US 11,334,795 B2

17

Still referring to FIG. 2, pre-processing of traiming data
220 can occur 1n the pre-processing module 212 where
training data 210 can be appropriately processed and/or
reformatted before being sent to the training module 214. In
some embodiments, one or more automatic pre-processing
techniques can be used to pre-process the training data 210
and/or can depend on the type of data and/or values present
in the tramning data 210. The one or more automatic pre-
processing techniques can be or include, for example, (1)
Ridit scoring, (1) one-hot encoding, (111) binning, (1v) auto-
matic numeric imputation, (v) sparse pre-processing, (vi)
concatenation, (vi1) 1mage featurization, (vii1) text pre-pro-
cessing (e.g., TFIDF or term-frequency inverse-document-
frequency), other data processing techniques, or any com-
bination thereof. In some instances, for example, it can be
helptul to concatenate results or columns obtained from
binning or one-hot encoding with results or columns
obtained from Ridit scoring or other transformation (e.g.,
obtained with a cumulative distribution function). Automatic
pre-processing may include ensuring some or all numeric
data for one or more features 1s on a specified scale (e.g., O
to 1 or -1 to 1), imputing missing values, concatenating
alternative representations of numerics to the data, and/or
leveraging TFIDF for text. The pre-processing techniques
described herein can improve convergence 1n terms of speed
and stability.

In general, Ridit scoring 1s a statistical method for ana-
lyzing ordered data or measurements. The Ridit score can be
or include, for example, a percentile rank of an 1tem 1n a
reference population. In some embodiments, Ridit scoring
can treat each numeric value of a distribution as a probabil-
ity. Each numeric value can be transformed to a value on an
interval (e.g., from 0 to 1), so that the transformed popula-
tion of values maintains the distribution of the original
values. Table 1 presents an example of Ridit scores gener-
ated for a single column variable A having values 17, 54, 60,
19, 9, 6, and 14. Ridit scoring and/or an empirical cumula-
tive distribution function can be used to transform values to

an interval from 0 to 1, from -1 to 1, or to some other
suitable interval.

TABLE 1

Rudit transformation example.

Original Dataset Ridit Score
A A_RDT

17 0.04748603

54 0.24581006

60 0.5642458%1
19 0.7849162

9 0.86312849

6 0.90502793

14 0.96089385

In various examples, one-hot encoding can be appropriate
for converting categorical variables 1into a numerical form
represented by zeros and ones. For example, one-hot encod-
ing can convert a single column having a cardinality of N to
N new columns. Fach new column can correspond to one of
the categories from the original column and can include ones
and zeros according to values 1n the original column. For
example, 11 a column corresponds to category B, then the
column can have a value of 1 1n each row where the original
column has a value of B, and all other elements 1n the
column can be 0. Table 2 below shows an example of a
simple one-hot encoding of a column having 7 values.

10

15

20

25

30

35

40

45

50

55

60

65

18
TABLE 2

One-hot encoding example.

Original
Dataset One-Hot Encoding
A A 17 A 54 A_60 A 19 A O A6 A l4
17 1 0 0 0 0 0 0
54 0 1 0 0 0 0 0
60 0 0 1 0 0 0 0
19 0 0 0 1 0 0 0

9 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0
14 0 0 0 0 0 0 1

In some examples, a maximum cardinality M can be
specified for one-hot encoding. For example, when a cardi-
nality N for a column exceeds the maximum cardinality M,
M+1 new columns can be created, with M columns repre-
senting the M most frequent categories i the column and

one additional column representing all remaining, less fre-
quent categories. The most frequent categories in the origi-
nal column can be represented by ones 1n the M columns and
the less frequent categories can be represented by ones 1n the
one additional column.

In some embodiments, the one-hot encoding can be
concatenated with the Ridit scoring. For example, the col-
umns 1n Tables 1 and 2 above can be combined as shown 1n
Table 3 below. Concatenation 1n this case ivolves combin-
ing two or more columns 1nto a set of columns that includes
the two or more columns. Such concatenation may not
include combining one more elements from two or more
columns 1nto a single column. The resulting concatenation
of columns can be used as iput to a neural network model
(e.g., for training and/or making predictions). For example,
cach column can be assigned to a respective neuron in an
input layer of the neural network model.

TABLE 3

Example of concatenation of one-hot encoding and Ridit transformation.

Original Ridit Score Concatenated with One-Hot Encoding
Dataset Ridit Score One-Hot Encoding
A A_RDT A 17 A 534 A 60 A 19 A9 A 6 A l4
17 0.04748603 1 0 0 0 0 0 0
54 0.24581006 0 1 0 0 0 0 0
60 0.56424581 0 0 1 0 0 0 0
19 0.7849162 0 0 0 1 0 0 0

9 0.86312849 0 0 0 0 1 0 0

6 0.90502793 0 0 0 0 0 1 0
14 0.96089385 0 0 0 0 0 0 1

In some embodiments, the training data 220 can be
binned, 1nstead of or in addition to being one-hot encoded.
Binning can refer to a transformation of continuous vari-
ables into discrete variables by creating a set of contiguous
intervals (e.g., bins) spanning over a range of values. In
some embodiments, binning can help manage outliers by
placing the outliers ito lower or higher bins or intervals,
along with inlier values of the distribution. With this
approach, outlier values may no longer differ from other
values at tail ends of the distribution, as such values can all
be grouped together 1 the same bin. Additionally or alter-
natively, the creation of appropriate bins can help spread
values of a skewed variable across the bins, with each bin
having a substantially equal number of observations.

US 11,334,795 B2

19

In some embodiments, binning can involve using a deci-
s1on tree and setting a maximum number of leaves to be a
maximum number of desired bins. The decision tree can be
{it using training data and training labels. During this pro-
cess, a tree can be created that repeatedly makes decisions
or splits the data according to one or more thresholds. The
thresholds can be determined by picking points for subsets
of the data that best satisfy some criterion, such as maxi-
mizing an information gain or a Gim 1mpurity. The decision
tree can be used to define appropriate boundaries for each
bin, by sorting the thresholds and treating each as a bound-
ary of a bin. Once the threshold values are determined,
numerical values 1n one or more columns can be added to the
bins. In one example, four bins can be generated such that:
a first bin can have a threshold of less than or equal to 0 (e.g.,
<0); a second bin can have threshold values of greater than
0 and less than or equal to 1 (e.g., (0, 1]); a third bin can have
threshold values greater than 1 and less than or equal to 4.5
(e.g., (1, 4.3]); and a fourth bin can have a threshold of
greater than 4.5 (e.g., >4.5). Each bin can then be repre-
sented by a new column having zeros and one, indicating
whether a value 1n a row falls within the bin. For example,
like one-hot encoding described above, the row of a bin
column can have a value of 0 when a respective value 1n the
original column falls outside the bin and a value of 1 when
the respective value falls within the bin. As another example,
if the original column has a row with a value of 3, then the
row across all four bins described above can be [0, O, 1, 0],
to indicate that the value falls within the third bin.

In certain examples, new columns representing bins can
be concatenated with one or more other columns. For
example, the binming approach described herein can be used
to transform a column of training data into a plurality of new
bin columns, one column for each bin. A Ridit transforma-
tion can also be performed on the column of training data to
generate a new column of Ridit transformation values. The
plurality of bin columns can then be concatenated with the
column of Ridit transformation values, and the resulting
combination of columns can be used as mput to a neural
network model (e.g., for training and/or making predic-
tions).

According to some embodiments, automatic numeric
imputation can involve a process 1n which missing data (e.g.,
no data in one or more rows of a column) 1s replaced with
substituted values. The substituted values for a column can
be based on other values 1n the column. For example, the
substituted values can be or include, for example, a median
value for the column, an average value for the column, a
minimum value for the column, a maximum value for the
column, a most common value for the column, or some other
suitable value.

Finally, sparse pre-processing techmiques can be used to
handle data sets that are sparse (e.g., with many zeros and
few non-zero values). Such techniques can involve, for
example, representing the sparse data with an alternate data
structure. Additionally or alternatively, zero values in a
sparse data set can be 1gnored such that only non-zero values
in the sparse matrix are stored or acted upon.

Text data can be pre-processed using various methods that
convert the text into numerical representations of the text.
For example, categorical text data can be processed using
one-hot encoding. Term frequency-inverse document fre-
quency (TF-IDF) methods can be used to assign each word
a weight that represents an importance of the word. Addi-
tionally or alternatively, bag-of-words (BoW) and/or bag-
of-characters techniques can be used to extract features from
text.

10

15

20

25

30

35

40

45

50

55

60

65

20

In various examples, the pre-processed data (e.g., training,
data, validation data, and/or prediction data) can be provided
to a neural network model at an 1nput layer. Each neuron/
perceptron 1n the model can be, 1n eflect, a linear model, and
outputs from the neurons can be sent through a non-linearity
(e.g., a non-linear activation function), such as ReL.U. All
inputs at the input layer can be multiplied by weights and
added to a bias of each neuron 1n a next layer (e.g., a first
hidden layer). For example, each neuron in one layer can
receive all neuron output of a previous layer, such that each
neuron 1n the first hidden layer can receive all input data.
Alternatively or additionally, 1n a neural network regressor,
which has no hidden layers, there can be a single neuron in
the output layer that receives all input data, performs a
matrix multiplication with learned weights, adds the learned
bias, and then outputs a prediction or value.

Advantageously, the pre-processing techmques described
herein can significantly improve the training and overall
performance of neural network models. In various examples,
performing the binning techniques (and/or one-hot encoding
techniques) described herein improved training etliciency
(e.g., computation times) and/or model accuracy by a factor
of 2, 5, 10, or more. For example, the pre-processing and/or
training techniques (e.g., use of ftraining schedules)
described herein can enable neural networks to converge
much more quickly during training, such that training can be
performed using CPUs. By comparison, previous
approaches for training neural networks have generally
required the use of GPUs.

Further, when combined with an adaptive training sched-
ule, as described herein, binning and/or one-hot encoding
can allow neural networks to converge to functions that
describe discontinuous (e.g., piece-wise) target functions or
target functions having discontinuities. Traditional or pre-
vious neural networks have been limited to learning con-
tinuous functions and have had little or no success learning
discontinuous functions. The pre-processing techniques
described can make 1t possible for neural networks to be
used ethiciently and accurately for discontinuous targets or
target functions.

Additionally or alternatively, the pre-processing tech-
niques and/or training techniques described herein can make
neural networks suitable for use with data that 1s tabular
and/or heterogenous. The techniques can be particularly
applicable to tabular data (e.g., numeric, categorical, and/or
textual data) and tlexible enough to allow neural networks to
be applied to multiple data types at once. By comparison,
previous neural network approaches have been suitable only
for non-tabular and/or homogeneous data related to images,
video, audio, or natural language processing.

FIG. 3 1s a flowchart of a method 300 of training and using,
a neural network. Tramming data for a neural network 1is
provided (step 312) that includes a column of numerical
values. The column of numerical values 1s transformed (step
314) to obtain a column of transformed numerical values. A
plurality of bins for the numerical values 1s created (step
316). Each bin 1s or includes a column of 1dentifiers 1ndi-
cating whether respective values from the column of
numerical values belong 1n the bin. The neural network 1s
trained (step 318) using the column of transformed numerti-
cal values and the bins.

Automatic Model Design and Construction

Previous approaches to designing and building neural
network models are manually intensive and require signifi-
cant time and experience. For example, designing and
building the right model can involve manually choosing and
implementing custom functions, such as loss functions,

US 11,334,795 B2

21

activation functions, and/or custom pre-processing func-
tions. Users may 1incorrectly connect layers, improperly
build custom functions, mislabel variables of the neural
network, or fail to pay attention to the correct variables.
Advantageously, the systems and methods described herein
can automate the design and construction of neural network
models, so that more eflicient and accurate models can be
generated with less time and expertise required.

Referring again to FIG. 2, 1 certain examples, the model
construction module 216 can be used to automatically
design and construct a neural network model (e.g., the
trained model 222). For example, the model construction
module 216 can determine a distribution of a target variable
in the tramning data and/or can determine a type of predictive
modeling problem (e.g., regression or classification) to be
solved. The distribution of the target variable can be deter-
mined, for example, by creating a histogram for the target
variable. The histogram can then be analyzed to estimate a
distribution (e.g., uniform, normal, Tweedie, gamma, or
Poisson distribution) based on values contained in each bin.
The type of predictive modeling problem to be solved can be
received from user mput (e.g., a user specitying whether the
problem 1s regression or classification). Alternatively or
additionally, the modeling problem can be automatically
inferred based on a data type or format used for the target
variable. For example, 11 a column of target values icludes
integers, then the modeling problem 1s more likely to be
classification. If the target values are floating point or
decimals, then the modeling problem 1s more likely to be
regression, for example, because there may not be a finite
number ol classes for classification and/or a regression
model can produce floating point output.

Once the target distribution and/or type of modeling
problem have been determined, the model construction
module 216 can choose a suitable loss Tunction for the model
and/or can choose a suitable output activation function. The
target variable can be or include a parameter that 1s or waill
be predicted by the neural network model. The distribution
of the target variable can be or approximate, for example, a
normal distribution, a multimodal distribution (e.g., a
bimodal distribution), a uniform distribution, or other type
ol distribution.

In various examples, neural networks can be trained using,
an optimization process that utilizes a loss function to
calculate the model error. The loss function can be or
provide a measure of how well the model performs in terms
of being able to predict an expected outcome or value.
Maximum likelihood can provide a framework for choosing
a loss function when training neural networks and machine
learning models. Exemplary types of loss functions can
include, for example, cross-entropy, Tweedie, Gamma, Pois-
son, root mean square log error (RMSLE), and mean
squared error (MSE).

In various implementations, the loss function chosen by
the model construction module 216 can be used to evaluate
an accuracy of predictions made by the neural network
model. For example, small errors or small losses calculated
by the loss function can be indicative of accurate predic-
tions, while large errors or large losses can be indicative of
inaccurate predictions. The loss function can provide a
gauge for measuring model prediction accuracy, based on a
comparison between model predictions and known values.

In general, the model construction module 216 can choose
a loss function based on the target distribution and/or the
type of modeling problem to be solved. For example, for
regression problems, the model construction module 216
can choose the following: a Tweedie loss function when the

10

15

20

25

30

35

40

45

50

55

60

65

22

target 1s zero-intlated (e.g., a distribution that allows for
frequent zero-valued observations); a Poisson loss function
when the target follows or approximates a Poisson distribu-
tion; a Gamma or RMSLE loss function when the target
follows or approximates an exponential distribution; and a
root mean square error (RMSE) loss function 1n a general
case (e.g., when the target distribution 1s linear). Likewise,
for classification problems, the model construction module
216 can choose the following: a sparse categorical cross
entropy loss function when the determined type of predictive
modeling problem 1s a mutually exclusive multiclass clas-
sification problem; or a binary cross entropy loss function
when the determined type of predictive modeling problem 1s
a binary classification problem or an independent multiclass
problem. In various examples, the chosen loss function can
be displayed on a client device of a user. The user can
override the chosen loss function, 11 desired, by selecting a
different loss function from a list of possible choices. Such
user selection can be made after an initial training of the
model.

In some embodiments, model construction module 216
can choose an output activation function (e.g., for an output
layer of the neural network) based on the selected loss
function. For example, when the loss function 1s logarithmic
in nature (e.g., Tweedie, Gamma, Poisson, or RMSLE), an
exponential output activation function can selected (e.g., €”
where ‘X’ 1s an output from the output layer). For non-
logarithmic loss functions, a linear output activation func-
tion or other output activation function may be used. In
various examples, the chosen output activation function can
be displayed on a client device of a user. The user can
override the chosen output activation function, 1f desired, by
selecting a different output activation function from a list of
possible choices. Such user selection can be made after an
initial training of the model.

According to some embodiments, the model construction
module 216 can form a residual connection from an input
layer (e.g., input layer 110 shown in FIG. 1) directly to an
output layer (e.g., output layer 140 shown in FIG. 1), such
that any hidden layers (e.g., hidden layers 120 and 130
shown 1n FIG. 1) are bypassed. One approach for creating
such a residual connection 1s to introduce a linear layer (e.g.,
having a linear activation function) with no bias between the
input and output layers. The linear layer can have an input
shape (e.g., an iput data size) that matches an output shape
(e.g., an output data size) of the mput layer. An output shape
of the linear layer can match an input shape of the output
layer.

In some embodiments, by providing a direct connection
between the output layer and the mput layer, the residual
connection can reduce or avoid information loss that can
result from the use of hidden layers. For example, the hidden
layers and associated activation functions can compress a
dimensionality (e.g., size) of the data and/or introduce
information loss. The residual connection can allow the
neural network to leverage the input data more directly. For
example, the residual connection can allow the neural net-
work to discover linear relationships that may exist between
the 1mput layer and the output layer.

FIG. 4 1s a schematic diagram of an exemplary regression
neural network 400 featuring a residual connection 460 via
a linear pass-through layer 440. The network 400 further
includes an mput layer 410, a plurality of hidden layers 420,
an output layer 430, and an output add layer 450. Output
from the output layer 430 1s connected to the output add
layer 450, which can include or be followed by an output
activation function. As depicted, the pass-through layer 440

US 11,334,795 B2

23

of the residual connection 460 bypasses the hidden layers
420 and the output layer 430 by providing a direct connec-
tion between the mput layer 410 and the output add layer
450. The pass-through layer 440 can be a dense layer having

a number of mputs (e.g., 1205) that 1s equal to a number of 5

outputs of the input layer 410, and a number of outputs (e.g.,
1) that 1s equal to a number of inputs of the output add layer
450. The pass-through layer 440 can have weights and a bias
that are trained 1n a training process along with weights and
biases of other layers. In the depicted example, the pass-
through layer 440 1s not followed by an activation function.
The output add layer 450 can combine or add output from
the pass-through layer 440 and output from the output layer
430. Output activation can be applied following the output
add layer 430, it applicable. The hidden layers 420 in this
example includes a first hidden layer 420a and a second
hidden layer 4206. The first hidden layer 420q utilizes a
linear activation function and the second hidden layer 42056
utilizes a parametric rectified linear unit (PRelLU) activation
function.

Each layer of the network 400 includes a respective input
A and a respective output B. In general a shape or size of an
output of a preceding layer matches a shape or size of an
input of a subsequent layer. For example, output B of the
input layer 410 has a size of 1205 (e.g., 1205 neurons 1n the
input layer 410), which 1s equal to the size of input A 1n the
first hidden layer 420a and 1n the pass-through layer 440.
Similarly, the size of output B in the second hidden layer
4206 (e.g., 64 neurons 1n the second hidden layer 4205) 1s
equal to the size of input A in the output layer 430. In
general, the size or number of outputs of a layer can be equal
to the number of neurons in the layer.

According to some embodiments, FIG. 5 shows an exem-
plary binary or independent multi-class network 500 which,
like the regression network 400, features a residual connec-
tion 560 that includes a pass-through layer 540. The network
500 includes a hidden layer 520, which can be or include a
dense or fully connected layer followed by an activation
function. As depicted, the pass-through layer 540 of the
residual connection 560 bypasses the hidden layer 520 and
provides a direct connection between the mput layer 510 and
a later layer, which 1n the depicted example 1s a pass-through
add layer 550. The pass-through add layer 350 can combine
or add output from the pass-through layer 540 and output
from an output layer 530. According to some embodiments,
the network 500 can utilize batch normalization (as 1ndi-
cated by BN1, BN2, and BN3) at the output of one or more
layers (e.g., following the activation function). A non-linear
activation layer 570 can include or apply a nonlinear acti-
vation function (e.g., a sigmoid function). Advantageously,
use of the residual connection 560 can allow the network
500 to learn linear relationships between features (e.g., by
not passing through a hidden layer plus non-linearity). The
learned linear relationships can enrich what the network 500
learns through the use of one or more hidden layers plus
non-linearity (e.g., non-linear activation functions).

In some examples, the model construction model 216 can
initialize an output layer bias so that model output 1s equal
a mean of the target data (e.g., after inverting the output
activation function). This can mnitialize the model to output
values that are close to the target, rather than requiring the
model to be tramned to learn the target mean. For example,
il the output layer provides or utilizes a relationship such as
Wx+b where W 1s a weight matrix, x 1s input, and b 1s bias,
an 1nitial value for b can be set to a mean of the target data.
This can allow the mitial output from the output layer to be
substantially close to the target mean. For non-linear output

10

15

20

25

30

35

40

45

50

55

60

65

24

activation functions, the initial bias can be determined by
inverting the output activation function. For example, i1 the
output activation function 1s exponential (e.g., €*), then
before finding the mean of the target data the inverse
function (e.g., natural log) of each target value should be
taken first. This can ensure that the target mean 1s obtained
when the 1nitial bias 1s passed through the activation func-
tion. In the case where the activation 1s exponential, the
output bias can be mitialized by taking the mean of the
target’s logarithmic value (e.g., mean(log(target)). Addition-
ally or alternatively, the model construction model 216 can
auto-scale the output of a network from an alternate range
than that of the target to the range of the target. For example,
when an activation function provides output having a range
(e.g., —1 to 1) that 1s inconsistent with a range of the target
(e.g., O to 1), the output can be automatically scaled to be
consistent with the range of the target.

FIG. 6 1s a flowchart of a method 600 of designing a
neural network. Training data for a neural network 1s pro-
vided (step 610). A distribution of a target variable in the
training data 1s determined (step 612). A type of predictive
modeling problem to be solved using the neural network
(e.g., regression or classification) 1s determined (step 614).
Based on the determined type of predictive modeling prob-
lem and the determined distribution, a loss function for the
neural network 1s chosen (step 616). Based on the loss
function, an output activation function for the neural net-
work 1s chosen (step 618).

Initial Hyperparameter Determination

With previous approaches, there 1s no simple and easy
way to set hyperparameters, such as learning rate, mini-
batch size, momentum, and weight decay. Tuning hyperpa-
rameters manually can be a slow process that requires
significant resources and computational hours. For example,
manual hyperparameter tuning can require expertise and
writing code, and can result 1n suboptimal performance and
limited freedom. A grid search (e.g., a process that searches
exhaustively through a manually specified subset of the
hyperparameter space) or a random search of a hyperparam-
eter space can be computationally expensive and time con-
suming, and can require significant manual expertise. Fur-
ther, training time and final model performance can be
highly dependent on good choices. Advantageously, the
systems and methods described herein are able to automati-
cally choose and/or adjust hyperparameter values 1n a man-
ner that significantly improves training efliciency and model
accuracy. For example, the systems and methods can enable
neural networks to be trained using CPUs. By comparison,
previous approaches for training neural networks have used
GPUs.

Referring again to FIG. 2, 1n various examples, the initial
hyperparameter module 218 can be used to determine 1nitial
values for a set of hyperparameters that can be used to train
a neural network model. The mitial values can be deter-
mined based on one or more guidelines and/or heuristics
developed through experimentation. In one example, experi-
ments were performed on hundreds of data sets using a wide
variety of hyperparameter types, hyperparameter values,
model architectures, and training data, to arrive at appropri-
ate heuristics and guidelines for determining initial hyper-
parameter values. As indicated below, 1initial hyperparameter
values can be determined based on, for example, a size of the
training dataset (e.g., a number of observations, rows, and/or
columns) and/or a type of predictive modeling problem
being solved (e.g., regression or classification) using the
neural network.

US 11,334,795 B2

25

Mim-Batch Size

In some 1instances, for example, 1mitial hyperparameter
module 218 can be used to determine a mini-batch size (e.g.,
a number of samples) for a mini-batch of training data. In
general, a neural network can be trained repeatedly with
minmi-batches of tramming data (e.g., small subsets of an
overall set of tramning data), which may be randomly
selected from the training data. The “mini-batch size” hyper-
parameter can define a number of samples or observations
(e.g., 10, 20, 50, 100, 200, 500, 1000, etc.) that are included
in each mini-batch. Each sample or observation can corre-
spond to a row of the training data.

In general, an 1mitial value for the mini-batch size can be
determined based on a size of the training dataset (e.g., a
number of rows and/or columns in the dataset). For example,
when the training dataset 1s or includes tabular data, the
initial mini-batch size can be about 1% of the rows of the
training dataset, such that the training dataset can include
about 100 mini-batches of data. For smaller training datasets
(e.g., less than about 2,000 rows), two separate models can
be tramned with different mini-batch sizes. The mini-batch
s1ze for one of the models can be, for example, 1% of the
number of rows or samples i1n the training dataset. The
mini-batch size for the other model can be, for example,
10% of the number of columns of training data (e.g., as
adjusted by the pre-processing module 212). Both of the
resulting models can be benchmarked or validated using a
holdout portion of the training data, and the superior per-
forming model can be selected for further use.

Learning Rate

To calculate how weights should be updated after runnming
cach mini-batch of training data, the gradient of the loss
function can be calculated and multiplied by a hyperparam-
cter referred to as the “learming rate.” Determining a suitable
or optimal value for the learming rate i1s not a trivial task.
According to some embodiments, key considerations
towards determiming the learning rate can include, for
example: (1) the learning rate should increase when repeat-
edly updating 1n the same direction or decrease when not
(e.g., an adaptive learning rate); (11) each layer should have
its own adaptive learning rate because different layers can
have different weight magnitudes and different gradient
magnitudes; (111) upon reaching a minima (e.g., loss begins
to plateau), learning rate should decay to descend as deeply
as possible into the mimma; (1v) warming up (starting at a
low learning rate and building up) can help mitigate early
overfitting; (v) a hugh learning rate early in training can help
regularize the neural network; (vi) consider utilizing cyclic
learning rates and cosine annealing (e.g., cyclically varying
between reasonable bounds, instead of monotonically
decreasing the learning rate, to improve handling saddle
points, which can produce very small gradients); and (vi1)
utilize a single cycle that warms-up and maintains a high
learning rate for some portion of training, decays for the
bulk of training, and subsequently decays even further to
descend 1nto sharp minima.

In general, the learning rate can control or define how
much the weights and/or biases of the neural network are
adjusted at each training iteration based on an estimated
prediction error. For example, a calculated loss function
gradient (e.g., including a gradient of the loss function for
cach weight) at a given 1teration or step can be multiplied by
the learning rate to determine how much to update the
weilghts of the network at that iteration. In general, smaller
learning rates can result in smaller adjustments to the
weights at each 1teration, while larger learning rates result in
larger adjustments. It can be desirable 1n various instances to

10

15

20

25

30

35

40

45

50

55

60

65

26

keep the learning rate low to avoid overfitting of the training
data, so that the model 1s regularized or better able to
generalize across a wide variety ol observations and data-
sets. Smaller learning rates, however, can result in lengthy or
computationally expensive training sessions.

In various examples, the 1nitial hyperparameter module
218 can calculate 1nitial values for the learning rate hyper-
parameter based on a type of predictive modeling problem
to be solved using the neural network. For example, when
the type of problem 1s a regression problem involving text
(e.g., one or more model mput features or target features
include text strings, rather than or in addition to numerical
values and/or categorical values), the mitial learning rate can
be from about 0.001 to about 0.005, or about 0.003. For
regression problems for which the loss function 1s Poisson,
Gamma, or Tweedie, the 1nitial learning rate can be from
about 0.005 to about 0.025, or about 0.015. In a general case,
the 1mitial learning rate can from about 0.01 to about 0.05, or
about 0.03.

Dropout Rate

The “dropout rate” can be a rate at which output from
neurons 1n each layer 1s 1ignored. For example, a dropout rate
of 1% can 1ndicate that output from 1% of the neurons (e.g.,
in a layer) will be 1gnored at one or more 1terations. Dropout
can be used to reduce overfitting and generally involves
temporarily preventing forward propagation of data in one
or more neurons 1n the network. The specific neurons
ignored or removed can vary during tramning (e.g., at each
iteration).

In various examples, the 1nitial hyperparameter module
218 can calculate an mitial value for the dropout rate based
on a size of the training data. In some 1nstances, for example,
the 1mnitial dropout rate can be small (e.g., from 0% to 5%)
to discourage memorization or overfitting but still allow for
quick convergence. In smaller datasets (e.g., having less
than 2,000 rows), a slightly higher dropout rate (e.g., from
about 5% to about 10%) can be used to further reduce the
risk of overfitting. Alternative techniques to avoid overfit-
ting may result in more optimal convergence, and it may be
desirable to use a dropout rate of 0% 1n such instances.
Batch Normalization

In general, “batch normalization” involves encouraging
the output of a layer of the neural network to have a certain
average value and/or a certain amount of vanation (e.g., a
mean of O and a standard deviation of 1). In various
examples, the 1mitial hyperparameter module 218 can deter-
mine whether batch normalization 1s to be used, at least
initially, based on the type of predictive modeling problem
to be solved using the neural network. For example, batch
normalization may be initially used only for binary classi-
fication or multiclass classification problems (e.g., that use
a neural network architecture containing more than one
hidden layer). It can be preferable to avoid batch normal-
ization for regression problems or regression-based net-
works, given that batch normalization can hinder the net-
work’s ability to quickly converge to weights that determine
an appropriate distribution of predicted values.

Number of Epochs

In various examples, “number of epochs™ can refer to a
number of tull passes made through the training data during
the training process. For example, when the training data 1s
divided into 100 mini-batches, and each mini-batch corre-
sponds to one training iteration, a single pass through the
training data (1.e., one epoch) can involve 100 iterations.
Likewise, when the total number of epochs is set to five,
training can mvolve five passes through the training data, for
a total of 500 1terations.

US 11,334,795 B2

27

In various examples, the initial hyperparameter module
218 can calculate an 1imitial value for the number of epochs
based on the type of predictive modeling problem to be
solved using the neural network. For example, the 1nitial
number of epochs may be from 2 to 4 (e.g., 3) for regression
problems, and from 3 to 5 (e.g., 4) for classification prob-
lems. Other approaches for determining the number of
epochs can involve performing a preliminary training ses-
sion, as described herein.

Hidden Activation

In various examples, “hidden activation” can be or
include an activation function that follows one or more
hidden layers 1n the neural network. Hidden activation can
be used to introduce non-linearity, such that the network can
learn non-linear patterns and/or utilize non-linear functions.
In a general case, the 1nitial hidden activation function may
be the parametric rectified linear umt (PRelLLU) activation
function. A shape of the PReLLU activation function may
change during training, for example, to use a most appro-
priate nonlinearity. Weights for the PReLLU activation func-
tion can be incorporated (and may be adjusted) in each
backward propagation pass during tramming. In some
embodiments (e.g., mvolving self-normalizing networks),
the 1nitial hidden activation function may be a scaled expo-
nential linear unit (SeLLU).

Output Activation

In various examples, “output activation” can be or include
an activation function that follows the output layer of the
neural network. The 1nitial hyperparameter module 218 can
calculate an initial output activation function based on the
training dataset and/or based on a type of predictive mod-
cling problem to be solved. The mitial output activation
function for regression problems (solved using regression
neural networks) may be, for example, (1) a linear activation
function 1 a general case or (1) an exponential activation
function for training datasets having skewed targets where
the loss function 1s or includes a Poisson distribution, a
Gamma distribution, or a Tweedie distribution. Additionally
or alternatively, the mnitial output activation function for
classification problems or classification networks may be,
for example, (1) a sigmoid activation function (e.g., for
binary classification networks or independent multiclass or
multilabel networks), or (1) a softmax activation function
(e.g., Tor mutually exclusive multiclass classification net-
works).

FI1G. 7 1s a flowchart of a method 700 of training a neural
network. A neural network and training data are provided
(step 710). A size of the training data (e.g., number of rows
and/or columns) 1s determined (step 712). A type of predic-
tive modeling problem to be solved (e.g., regression or
classification) using the neural network 1s determined (step
714). Based on the size of the tramning data, one or more {first
hyperparameters are determined (step 716). The one or more
first hyperparameters can include, for example, a mini-batch
s1ze and/or a dropout rate. Based on the type of predictive
modeling problem, one or more second hyperparameters are
determined (step 718). The one or more second hyperpa-
rameters can include, for example, a learning rate, a batch
normalization, a number of epochs, and/or an output acti-
vation function. The neural network i1s trained (step 720)
using the training data, the one or more first hyperparam-
cters, and the one or more second hyperparameters.
Adapting Hyperparameters During Training

Referring again to FIG. 2, in various examples the hyper-
parameter adaptation module 220 can adapt or adjust one or
more of hyperparameter values during the neural network
training process. For example, the hyperparameter adapta-

5

10

15

20

25

30

35

40

45

50

55

60

65

28

tion module 220 can determine a suitable number of training
iterations or epochs and/or can construct and implement one
or more training schedules for the hyperparameters, as
described herein. Advantageously, 1n one experiment, adap-
tively updating hyperparameters using the techniques
described herein improved model error by 70% for about
350 datasets.

Training Schedules

In various examples, the hyperparameters used to train the
neural network model can be adjusted or adapted over time
according to one or more training schedules. For example,
one or more of the hyperparameters used for training the
neural network can be set to the initial hyperparameter
values (e.g., as determined by the initial hyperparameter
module 218) and then adjusted over time, as training pro-
gresses (e.g., using the hyperparameter adaptation module
220). Examples of hyperparameters that can be varied
according to a training schedule can include, without limi-
tation: learning rate, momentum, batch size, dropout, regu-
larization hyperparameters, or any custom hyperparameters
or custom optimizer hyperparameters, such as weight decay,
secondary or tertiary moment estimations, etc. In various
examples, the “momentum™ hyperparameter can be or refer
to a measure of how quickly a step size for learning rate (or
other hyperparameter) can change at each training 1teration.
Momentum can be implemented by configuring an optimizer
to take mto account previous gradients when calculating step
s1ze. A variety of diflerent optimizers can be used. In some
instances, the optimizer can be or include a tunction that 1s
executed to determine what the weights of the network
should be after a back-propagation step (e.g., at each 1tera-
tion). A simple optimizer can calculate a gradient based on
error determined by the loss function, the predicted values,
and the actual values, then multiply the gradient by the
learning rate, and subtract a resulting value from the
welghts. Some optimizers (e.g., ADAM) can update the
learning rate during training using a variety of approaches.
In general, momentum can be adjusted 1n an eflort to speed
up convergence and improve chances of finding optimal
solutions.

FIG. 8 1s a plot of a training schedule 800 for a learning,
rate 810 hyperparameter, 1n accordance with certain
examples. The training schedule 800 shows the learning rate
810 over successive training iterations (a total of 1000
iterations in the depicted example) and 1s divided into three
consecutive phases: a warm-up phase 812, a general training
phase 814, and a warm-down phase 816. During the warm-
up phase 812, the learning rate 810 increases from an 1nitial
value 818 to a maximum or peak value 820. The learming
rate 810 then decreases during the general training phase
814 from the peak value 820 to an mnitial warm-down value
822, which 1s typically the same as the initial value 818. The
learning rate 810 then further decreases during the warm-
down phase 816 from the initial warm-down value 822 to a
final value 824.

Values for the learning rate 810 during each phase can
vary according to a sinusoidal function, a linear function, a
polynomial function, other functional form, or any combi-
nation thereof that provides desired values and/or a desired
rates of change. In some examples, the 1mnitial value 818 can
be determined from the peak value 820, as follows:

Initial Value=C1xPeak Value, (1)

where C1 1s from about 0.01 to about 0.2, or about 0.04. The
final value 824 can be obtained from

Final Value=C2xPeak Value, (2)

US 11,334,795 B2

29

where C2 1s from about 0.001 to about 0.005, or about 0.002.
The peak value 820 1n the depicted example 1s about 0.0125.
In various examples, the peak value 820 can be obtained
from the initial hyperparameter module 218, as described
herein.

The warm-up phase 812, the general traiming phase 814,
and the warm-down phase 816 can each occupy a specified
portion of the training schedule 800. For example, the
warm-up phase 812 can occupy from about 10% to about
30% (e.g., about 25%) of the training iterations. Likewise,
the general training phase 814 can occupy from about 30%
to about 70% (e.g., about 50%) of the training iterations.
Finally, the warm-down phase 816 can occupy from about
10% to about 30% (e.g., about 25%) of the training itera-
tions. In the depicted example, the warm-up phase 812
occupies approximately the first 200 iterations (20% of the
1000 total 1terations), the general training phase 814 occu-
pies the next approximately 530 1terations (55% of the 1000
total iterations), and the warm-down phase 816 occupies the
final approximately 250 iterations (25% of the 1000 total
iterations).

FIG. 9 1s a plot of a training schedule 900 for a momentum
910 hyperparameter (alternatively referred to as a “momen-
tum coeflicient”™), 1n accordance with certain examples. The
training schedule 900 shows the momentum 910 over suc-
cessive traimning iterations (a total of 1000 iterations 1n the
depicted example) and 1s divided into the warm-up phase
812, the general traiming phase 814, and the warm-down
phase 816. During the warm-up phase 812, the momentum
910 decreases from an 1nmitial value 912 to a minimum value
918. The momentum 910 then increases during the general
training phase 814 from the minimum value 918 to a final
value 920. The momentum 910 can remain substantially
constant at the final value 920 during the warm-down phase
816. Values for the momentum 910 can follow linear func-
tions within each of the phases, as depicted. Alternatively of
additionally, the momentum can be varied according to other
functional forms, such as, for example, a sinusoidal func-
tion, a polynomial function, other functional form, or any
combination thereof that provides desired values and/or
desired rates of change. In some examples, the mitial value
912 and/or the final value 920 can be from about 0.90 to
about 0.99 (e.g., about 0.95). The minimum value 918 can
be, for example, from about 0.80 to about 0.90 (e.g., about
0.85). The momentum and learning rate hyperparameters
can be varied simultaneously during the same training
session, with momentum and learning rate each having its
own schedule, as shown in FIGS. 8 and 9. Other hyperpa-
rameters (e.g., dropout rate, batch size, and/or weight decay)
can be varied according to similar schedules, during the
same training session.

In certain implementations, the momentum 910 can be
equal to a beta (B) parameter from an adaptive learning rate
optimization algorithm, such as Adaptive Moment Estima-
tion (ADAM). At each iteration (e.g., back propagation pass)
an optimizer for ADAM can attempt to improve estimates
for a first moment and a second moment. These moments
can be used to help choose a learning rate, which can
adaptively change based on recently observed gradients. The
first moment can be a mean of the gradient, and the second
moment can be an uncentered variance ol the gradient.
Estimates for the moments can be obtained by determining
exponential moving averages ol past gradients and past
gradients squared. Averages can decay at each iteration and
can be controlled by 31 and p2 hyperparameters, respec-
tively.

10

15

20

25

30

35

40

45

50

55

60

65

30

Determining a Number of Epochs

In various 1nstances, 1t can be diflicult to know 1n advance
how many epochs (or iterations) of training are required to
adequately train a neural network model. One approach to
determining a suitable number of epochs can imvolve train-
ing the model with different numbers of epochs and selecting
a number that provides an accurate model and/or does not
require an excessive training time. For example, the number
of epochs can be increased until the model accuracy does not
change significantly.

In other embodiments, the number of epochs can be
determined by cycling or oscillating the learning rate,
momentum, and/or one or more other hyperparameters dur-
ing an exploratory or preliminary training of a neural
network model. The determined number of epochs can then
be used to train the neural network model 1n a subsequent or
final training session, for example, using a set of 1nitial
hyperparameters and/or the training schedules shown in
FIGS. 8 and 9.

For example, FIG. 10 1s a plot of a preliminary training
schedule 1000 for learning rate 1010 during a preliminary
training session, in accordance with certain examples. The
preliminary training session mvolves oscillating or varying
the learning rate 1010 over multiple cycles of iterations.
Each cycle can include a warm-up phase 1012 and a general
training phase 1014. The learming rate 1010 can increase
during each warm-up phase 1012 from a minimum value
1016 to a maximum value 1018. The learning rate 1010 can
decrease during each general training phase 1014 from the
maximum value 1018 to the minimum value 1016. In
various examples, the mimimum value 1016 and the maxi-
mum value 1018 can be equal or similar to the mitial value
and the peak value, respectively, used 1n a training schedule
for a subsequent or final training session (e.g., the initial
value 818 and the final value 820 1n the training schedule
800). In some examples, the minimum value 1016 can be
determined from the maximum value 1018, as follows:

(3)

where C3 1s from about 0.01 to about 0.2, or about 0.04.
Values for the learning rate 1010 during each phase can vary
according to a sinusoidal function, a linear function, a
polynomial function, other functional form, or any combi-
nation thereof that provides desired values and/or desired
rates ol change. The minimum value 1016 and/or the maxi-
mum value 1018 can remain constant and/or can be varied
over successive iterations, as described herein. In the
depicted examples, the number of 1terations per oscillation
cycle 1s about 200; however, other numbers of iterations per
oscillation cycle (e.g., about 30, 100, 300, 500, etc.) can be
used.

Model prediction error can be determined (e.g., using a
loss function) during or after each cycle by comparing the
model predictions with actual values (e.g., using a portion of
training data that 1s specifically separated or held out during
this phase, such as about 15% of the training data). In
general, model prediction error can decrease over successive
cycles and eventually reach a point where significant
changes no longer occur. Once the model prediction error 1s
constant or no longer decreasing substantially (e.g., by at
least 1%, 5%, or 10%) from one cycle to a next cycle, the
total number of cycles performed (four in the depicted
example) can be recorded. In one example, the number of
epochs to use 1n a subsequent or final traiming session can be
determined based on the recorded number of cycles or
iterations performed during the preliminary training session,
as described herein. The preliminary training session can

Mmimum Value=C3xMaximum Value,

US 11,334,795 B2

31

then proceed to a warm-down phase 1020. The learning rate
1010 can decrease during the warm-down phase 1020 from
the minimum value 1016 to a final value 1022. In various
examples, the final value 1022 can be equal or similar to a
final value used 1n a training schedule for a subsequent or
final training session (e.g., the final value 824 1n the training
schedule 800). The final value 1022 can be determined from

the maximum value 1018, as follows:

(4)

where C4 1s from about 0.001 to about 0.005, or about 0.002.

In some instances, for example, after each cycle has been
performed in the preliminary training schedule 1000, the
model can be benchmarked on data separated or held out
from the training data during this phase, though all training
data may subsequently be used to train the model. If model
accuracy has improved compared to a previous cycle, model
parameters (e.g., weights and/or biases) can be saved and an
additional cycle can be performed. Additional cycles can be
performed, as needed, until the accuracy no longer improves
or until a threshold number of cycles (alternatively referred
to as “patience”) has been reached. Once the model accuracy
stops 1improving after performing an additional cycle or the
specified patience has been reached with no accuracy
improvement, the model weights, biases, and/or other model
parameters can be saved.

At this point, 1n some instances, the preliminary training
schedule 1000 can be adjusted for subsequent iterations by
adjusting the maximum value 1018 and/or the minimum
value 1016, such that a difference between the maximum
value 1018 and the minimum value 1016 1s smaller (e.g., by
a factor of 1.5, 2, 3, or more). For example, the maximum
value 1018 can be decreased (e.g., cut in half or divided by
two) and/or the mimimum value 1016 can be adjusted (e.g.,
by doubling C3 from equation (3)). Other methods of
decreasing the diflerence between the maximum value 1018
and the minimum value 1016 are possible. Additional cycles
can then be performed to further train the model using the
modified preliminary training schedule 1000, until model
accuracy no longer improves with additional cycles or the
specified patience has been reached with no accuracy
improvement. At this point, the difference between the
maximum value 1018 and the minimum value 1016 can be
turther decreased (e.g., by cutting the maximum value 1n
half again and optionally doubling C3), and further cycles
can be performed until the specified patience 1s met. This
process of (1) adjusting the maximum value 1018 and/or the
mimmum value 1016 and (1) performing additional cycles
until the specified patience 1s met can be repeated multiple
times. In one example, the process can be stopped when the
maximum value 1018 i1s less than or equal to an original
value for the minimum value 1016 in the preliminary
training schedule 1000.

Once all desired or necessary cycles have been performed,
the preliminary training session can proceed to the warm-
down phase 1020. This can involve, for example, resetting
the model parameters (e.g., weights and/or biases) to values
corresponding to when the model had a lowest error prior to
performing the warm-down phase 1020.

After completion of the preliminary training schedule
1000, the total number of cycles and/or 1terations performed
during the preliminary training session can be used to define
the number of epochs to be used during the subsequent or
final training of the neural network model. For example, the
number of epochs used for the final training session can be
equal to the number of cycles performed during the prelimi-
nary training session. Additionally or alternatively, the num-

Final Value=C4xMaximum Value,

10

15

20

25

30

35

40

45

50

55

60

65

32

ber of epochs can be defined as the number of cycles
performed plus or minus some 1nteger number, such as 1 or
2. For example, 4 cycles were performed 1n the example 1n
FIG. 10, which means the number of epochs to use for the
final training session can be set to 4. In other examples, the
number of epochs to be performed during the final traiming
session can be derived from the total number of iterations
performed during preliminary training session. For example,
if the preliminary training session (e.g., including all cycles
and/or all cycles plus the warm-down phase 1020) lasted
1000 1terations and there are 250 iterations per epoch, then
the total number of epochs to be used 1n the final traiming
session can be 4 (1.e., 1000/250).

Once the desired number of epochs for the final training
session has been determined, the hyperparameter training
schedules for the final training session can be constructed.
For example, referring again to FIGS. 8 and 9, the learning
rate schedule 800 and/or momentum schedule 900 can be
constructed such that the schedules cover the determined
number of epochs. Each schedule can be configured, for
example, to cover a number of iterations required to achieve
the determined number of epochs. In one example, 11 there
are 250 1terations per epoch and the determined number of
epochs 1s 4, then the training schedules can be configured to
cover 1000 iterations.

Configuring a training schedule can involve, for example,
stretching or compressing a duration of the training schedule
(e.g., 1n an X-direction) so that the traiming schedule covers
the desired number of epochs or iterations. Additionally or
alternatively, configuring the training schedule can mvolve
preserving one or more mimmum, maximum, or other
values for the hyperparameter. For example, configuring the
training schedule in FIG. 8 can involve adjusting the traiming
duration to cover the desired number of epochs or iterations
while, at the same time, preserving the 1nitial value 818, the
peak value 820, the initial warm-down value 822, and/or the
final value 824.

Referring again to FIG. 10, the warm-up phase 1012, the
general training phase 1014, and the warm-down phase 1020
in the preliminary training schedule 1000 can each be
performed for a specified number of 1terations, which can be
any suitable integer number. For example, the warm-up
phase 1012 can have a duration 1n a range from about 10
iterations to about 100 1terations. The general training phase
1014 can have a duration 1n a range from about 50 1iterations
to about 300 1iterations. The warm-down phase 1020 can
have a duration 1n a range from about 20 iterations to about
200 1terations. Other iteration numbers can be utilized
and/or determined through experimentation. In the depicted
example, the warm-up phase 1012 lasts for about 50 itera-
tions, the general traiming phase 1014 lasts for about 150
iterations, and the warm-down phase 1020 lasts for about
100 iterations.

Additionally or alternatively, the preliminary training
session can involve cycling or oscillating the momentum
hyperparameter or other hyperparameters. For example,
FIG. 11 1s a plot of a preliminary training schedule 1100 for
momentum 1110 during the preliminary training session.
Each cycle can include the warm-up phase 1012 and the
general training phase 1014, as described above for FI1G. 10.
The momentum 1110 can decrease (e.g., according to a
linear, sinusoidal, or other function) during the warm-up
phase 1012 from a maximum value 1112 to a minimum
value 1114. The momentum 1110 can increase (e.g., accord-
ing to a linear, sinusoidal, or other function) during the
general training phase 1014 from the minimum value 1114
to the maximum value 1112. The momentum 1110 can

US 11,334,795 B2

33

remain substantially constant at the maximum value 1112
during the warm-down phase 1020. The preliminary training
schedule 1100 can be performed during the preliminary
training session while one or more other preliminary training
schedules (e.g., the training schedule 1000) are also being
performed. The minmimum value 1114 and/or the maximum
value 1112 can remain constant and/or can be varied over
successive 1terations.

In certain examples, a desired learning rate for training a
neural network model can be determined by training the
model with a wide range of learning rates and determining,
which learning rate provides suitable optimal results. For
example, FIG. 12 includes plots of loss vs. learning rate and
accuracy vs. learning rate for an example where the learning
rate was varied from a small value (e.g., 0.000001) to a large
value (e.g., 1), while a neural network model was being
trained using multiple 1terations or mini-batches of training
data (e.g., 50, 100, 500, 1000 or more mini-batches). Each
mini-batch of training data can be associated with a diflerent
learning rate. In other examples, each learning rate can be
used for multiple mini-batches. After each iteration and/or
for each learning rate, model loss and/or accuracy can be
calculated, and the loss and accuracy can be plotted versus
learning rate as shown in the figure. Gradients, variance,
and/or loss values can be used to 1dentily a learning rate at
which the model i1s consistently improving. An optimal
learning rate can correspond to a location 1210 in the loss vs.
learning rate plot where there 1s a high negative gradient, a
low loss, and/or a low variance. The optimal learning rate
can be used 1n one or more learning rate training schedules.
For example, the peak value 820 and/or the maximum value
1018 can be equal to or dertved from the optimal learning
rate.

FIG. 13 1s a flowchart of a method 1300 of training a
neural network. A learning rate 1s oscillated (step 1310)
while performing a preliminary traiming of a neural network.
Based on the preliminary training, a number of training
epochs to perform for a subsequent training session 1s
determined (step 1312). The neural network 1s then trained
(step 1314) using the determined number of training epochs.
Model Interpretation and Examples

Referring again to FIG. 2, the interpretation module 224
can be used to generate one or more tables, charts, and/or
graphs that a user can access to interpret the trained model
222. Additionally or alternatively, the interpretation module
224 can receive model predictions and/or training informa-
tion from the training module 214. The interpretation mod-
ule 224 can use this information to generate one or more
tables, charts, and/or graphs that provide a user with 1nfor-
mation related to the model training process.

For example, FIG. 14 1s a schematic drawing of a user
interface 1400 that presents information related to the train-
ing and development of a neural network model. The user
interface 1400 includes a plot 1410 of training loss vs.
iterations and a plot 1412 of training accuracy vs. iterations.
The plots 1410 and 1412 provide an indication of model
prediction loss and accuracy during a training process, over
successive 1terations. The user interface 1400 also includes
a plot 1414 of a learning rate schedule and a plot 1416 of a
momentum schedule used for the training. The user interface
1400 also includes a plot 1418 of loss vs. learning rate and
a plot 1420 of accuracy vs. learning rate. These plots 1418
and 1420 can be used determine an appropriate learning rate
for training, as described herein with respect to FIG. 12.

FIG. 15 1s a schematic drawing of a user interface 1500
that presents information related to the training and devel-
opment of multiple neural network models. The user inter-

10

15

20

25

30

35

40

45

50

55

60

65

34

face 1500 1ncludes a plot 1510 of traiming loss vs. iterations
and a plot 1512 of training accuracy vs. iterations. The plots
1510 and 1512 provide an indication of model prediction
loss and accuracy during the training of the multiple models.
The user interface 1500 also includes a plot 1514 of learning
rate vs. iterations and a plot 1516 of momentum vs. 1tera-
tions for the models during the training.

Heterogeneous Data Applications

Previous approaches for heterogeneous data processing
(e.g., processing ol a dataset containing data of different, and
especially multiple, types, such as numeric data, categorical
data, text data, geospatial data, datetime data, image data,
audio data, etc.) are generally not considered to be as readily
applicable to the neural network and deep learning research
space as 1mage processing, audio processing, video process-
ing, and natural language processing. Multi-task learning 1s
a related area of research, but i1s generally applied to
reinforcement learning problems, such as teaching a robotic
arm multiple tasks at once. As a result, many suggested
heuristics and approaches do not apply to neural networks or
require significant manual adaptation. For all the atoremen-
tioned reasons, the application of neural networks to het-
crogenecous data 1s lagging behind.

Advantageously, the systems and methods described
herein can be used to build neural network models that can
elliciently and accurately handle heterogeneous data. The
systems and methods can allow businesses and other users
to: (1) quickly determine 1f neural network(s) should be part
of the problem solution; (1) be confident that the developed
model represents a strong baseline, customized specifically
to solve the problem at hand; (i11) build many diverse,
performant, neural network models which can be ensembled
with one another or with alternative modeling approaches—
such as linear, tree, kernel, etc.—with little to no human-
interaction required; and/or (1v) gain msight on what every
neural network has learned in terms of feature importance,
its generalizability, and be able to easily compare the devel-
oped model to other models. According to some embodi-
ments, the systems and methods described herein can be
repeated for multiple problems the business or user needs to
solve. In some embodiments, the methods described herein
make neural network applications to heterogenous data a
low-risk, low-cost endeavor 1n terms of time and capital.
Computer Implementations

In some examples, some or all of the processing described
above can be carried out on a personal computing device, on
one or more centralized computing devices, or via cloud-
based processing by one or more servers. Some types of
processing can occur on one device and other types of
processing can occur on another device. Some or all of the
data described above can be stored on a personal computing
device, 1n data storage hosted on one or more centralized
computing devices, and/or via cloud-based storage. Some
data can be stored in one location and other data can be
stored 1n another location. In some examples, quantum
computing can be used and/or functional programming
languages can be used. Electrical memory, such as flash-
based memory, can be used.

FIG. 16 1s a block diagram of an example computer
system 1600 that may be used in implementing the technol-
ogy described in this document. General-purpose comput-
ers, network appliances, mobile devices, or other electronic
systems may also include at least portions of the system
1600. The system 1600 includes a processor 1610, a memory
1620, a storage device 1630, and an 1nput/output device
1640. Each of the components 1610, 1620, 1630, and 1640

may be interconnected, for example, using a system bus

US 11,334,795 B2

35

1650. The processor 1610 1s capable of processing instruc-
tions for execution within the system 1600. In some 1mple-
mentations, the processor 1610 1s a single-threaded proces-
sor. In some i1mplementations, the processor 1610 1s a

multi-threaded processor. The processor 1610 1s capable of >

processing instructions stored 1in the memory 1620 or on the
storage device 1630.

The memory 1620 stores information within the system
1600. In some implementations, the memory 1620 1s a
non-transitory computer-readable medium. In some 1mple-
mentations, the memory 1620 1s a volatile memory unit. In
some 1mplementations, the memory 1620 1s a non-volatile
memory unit.

The storage device 1630 1s capable of providing mass
storage for the system 1600. In some implementations, the
storage device 1630 1s a non-transitory computer-readable
medium. In various different implementations, the storage
device 1630 may include, for example, a hard disk device,
an optical disk device, a solid-date drive, a flash dnive, or
some other large capacity storage device. For example, the
storage device may store long-term data (e.g., database data,
file system data, etc.). The mput/output device 1640 pro-
vides mnput/output operations for the system 1600. In some
implementations, the mput/output device 1640 may include
one or more of a network interface devices, e.g., an Ethernet
card, a sertal communication device, e.g., an RS-232 port,
and/or a wireless interface device, e.g., an 802.11 card, a
wireless modem (e.g., 3G, 4G, or 3G). In some 1mplemen-
tations, the mput/output device may include driver devices
configured to receive mput data and send output data to other
input/output devices, e.g., keyboard, printer and display
devices 1660. In some examples, mobile computing devices,
mobile communication devices, and other devices may be
used.

In some implementations, at least a portion of the
approaches described above may be realized by instructions
that upon execution cause one or more processing devices to
carry out the processes and functions described above. Such
instructions may include, for example, interpreted instruc-
tions such as script instructions, or executable code, or other
instructions stored in a non-transitory computer readable
medium. The storage device 1630 may be implemented 1n a
distributed way over a network, for example as a server farm
or a set of widely distributed servers, or may be imple-
mented 1n a single computing device.

Although an example processing system has been
described 1in FIG. 16, embodiments of the subject matter,
functional operations and processes described 1n this speci-
fication can be implemented in other types of digital elec-
tronic circuitry, in tangibly-embodied computer software or
firmware, 1 computer hardware, including the structures
disclosed 1n this specification and their structural equiva-
lents, or in combinations of one or more of them. Embodi-
ments of the subject matter described 1n this specification
can be implemented as one or more computer programs, 1.€.,
one or more modules of computer program instructions
encoded on a tangible nonvolatile program carrier for execu-
tion by, or to control the operation of, data processing
apparatus. Alternatively or 1n addition, the program instruc-
tions can be encoded on an artificially generated propagated
signal, e.g., a machine-generated electrical, optical, or elec-
tromagnetic signal that 1s generated to encode information
for transmission to suitable receiver apparatus for execution
by a data processing apparatus. The computer storage
medium can be a machine-readable storage device, a

10

15

20

25

30

35

40

45

50

55

60

65

36

machine-readable storage substrate, a random or serial
access memory device, or a combination of one or more of
them.

The term “system” may encompass all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. A processing system may
include special purpose logic circuitry, e.g., an FPGA (field
programmable gate array) or an ASIC (application specific
integrated circuit). A processing system may include, 1n
addition to hardware, code that creates an execution envi-
ronment for the computer program in question, €.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program (which may also be referred to or
described as a program, software, a software application, an
engine, a pipeline, a module, a software module, a script, or
code) can be written in any form of programming language,
including compiled or interpreted languages, or declarative
or procedural languages, and it can be deployed 1n any form,
including as a standalone program or as a module, compo-
nent, subroutine, or other unit suitable for use 1in a computing
environment. A computer program may, but need not, cor-
respond to a file 1n a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored 1n a markup language document), 1n
a single file dedicated to the program in question, or 1n
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Computers suitable for the execution of a computer
program can include, by way of example, general or special
purpose microprocessors or both, or any other kind of
central processing unit. Generally, a central processing unit
will receive mstructions and data from a read-only memory
or a random access memory or both. A computer generally
includes a central processing unit for performing or execut-
ing 1nstructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receirve data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded 1n another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device (e.g., a umiversal serial bus (USB) flash
drive), to name just a few.

Computer readable media suitable for storing computer
program instructions and data include all forms of nonvola-
tile memory, media and memory devices, including by way
of example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,

US 11,334,795 B2

37

internal hard disks or removable disks; magneto optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated 1n,
special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liguid crystal display) monitor,
tor displaying information to the user and a keyboard and a
pointing device, e€.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
mput. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s user device 1n response
to requests received from the web browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back end, middleware, or
front end components. The components of the system can be
interconnected by any form or medium of digital data
communication, €.g., a commumnication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of what may be claimed, but rather as
descriptions of features that may be specific to particular
embodiments. Certain features that are described in this
specification in the context of separate embodiments can
also be implemented 1n combination 1n a single embodi-
ment. Conversely, various features that are described in the
context of a single embodiment can also be implemented 1n
multiple embodiments separately or 1n any suitable subcom-
bination. Moreover, although features may be described
above as acting in certain combinations and even 1nitially
claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components 1n the embodiments described above should not
be understood as requiring such separation i1n all embodi-

10

15

20

25

30

35

40

45

50

55

60

65

38

ments, and i1t should be understood that the described
program components and systems can generally be inte-
grated together 1n a single soitware product or packaged into
multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous. Other steps or
stages may be provided, or steps or stages may be elimi-
nated, from the described processes. Accordingly, other
implementations are within the scope of the following
claims.

Terminology

The phraseology and terminology used herein 1s for the
purpose ol description and should not be regarded as lim-
iting.

The term “‘approximately”, the phrase “approximately
equal t0”, and other similar phrases, as used 1n the specifi-
cation and the claims (e.g., “X has a value of approximately
Y™ or “X 1s approximately equal to YY), should be under-
stood to mean that one value (X) 1s within a predetermined
range of another value (Y). The predetermined range may be
plus or minus 20%, 10%, 5%, 3%, 1%, 0.1%, or less than
0.1%, unless otherwise indicated.

Measurements, sizes, amounts, etc. may be presented
herein 1n a range format. The description in range format 1s
merely for convenience and brevity and should not be
construed as an inflexible limitation on the scope of the
invention. Accordingly, the description of a range should be
considered to have specifically disclosed all the possible
subranges as well as individual numerical values within that
range. For example, description of a range such as 10-20
inches should be considered to have specifically disclosed
subranges such as 10-11 inches, 10-12 inches, 10-13 inches,
10-14 inches, 11-12 inches, 11-13 inches, etc.

The indefinite articles “a” and “an,” as used in the
specification and 1n the claims, unless clearly indicated to
the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used 1n the specification and 1n the
claims, should be understood to mean ““either or both™ of the
clements so conjoined, 1.¢., elements that are conjunctively
present 1 some cases and disjunctively present in other
cases. Multiple elements listed with “and/or” should be
construed in the same fashion, 1.e., “one or more” of the
clements so conjoined. Other elements may optionally be
present other than the elements specifically identified by the
“and/or” clause, whether related or unrelated to those ele-
ments specifically i1dentified. Thus, as a non-limiting
example, a reference to “A and/or B”, when used 1in con-
junction with open-ended language such as “comprising’”
can refer, in one embodiment, to A only (optionally includ-
ing elements other than B); 1n another embodiment, to B
only (optionally including elements other than A); 1n vet
another embodiment, to both A and B (optionally including
other elements); etc.

As used 1n the specification and 1n the claims, “or” should
be understood to have the same meaning as “and/or” as
defined above. For example, when separating 1tems 1n a list,
“or” or “and/or” shall be interpreted as being inclusive, 1.e.,
the iclusion of at least one, but also including more than
one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the

US 11,334,795 B2

39

contrary, such as “only one of or “exactly one ol,” or, when
used in the claims, “consisting of,” will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term “or” as used shall only be interpreted as
indicating exclusive alternatives (1.e. “one or the other but
not both”) when preceded by terms of exclusivity, such as
“either,” “one of,” “only one of,” or “exactly one of.”
“Consisting essentially of,” when used 1n the claims, shall
have 1ts ordinary meaning as used 1n the field of patent law.
As used in the specification and 1n the claims, the phrase
“at least one,” 1n reference to a list of one or more elements,
should be understood to mean at least one element selected
from any one or more of the elements 1n the list of elements,
but not necessarily including at least one of each and every
clement specifically listed within the list of elements and not
excluding any combinations of elements in the list of
clements. This definition also allows that elements may
optionally be present other than the elements specifically
identified within the list of elements to which the phrase “at
least one” refers, whether related or unrelated to those
clements specifically identified. Thus, as a non-limiting
example, “at least one of A and B” (or, equivalently, “at least
one of A or B,” or, equivalently *“at least one of A and/or B”)
can refer, 1n one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); 1n yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
clements); etc.
The use of “including,” “comprising,” “having,” “con-
taining,” “involving,” and vanations thereof, 1s meant to
encompass the 1items listed thereafter and additional i1tems.
Use of ordinal terms such as “first,” “second,” “third.”
etc., 1n the claims to modily a claim element does not by
itself connote any priority, precedence, or order of one claim
clement over another or the temporal order 1n which acts of
a method are performed. Ordinal terms are used merely as
labels to distinguish one claim element having a certain
name from another element having a same name (but for use
of the ordinal term), to distinguish the claim elements.
What 1s claimed 1s:
1. A method, comprising:
receiving, by one or more processors, output of a neural
network model trained with input including a hyper-
parameter, the hyperparameter configured to control at
least one of speed, efliciency or accuracy associated
with execution of the neural network model;

generating, by the one or more processors, during a first
phase corresponding to a first predetermined learming
rate, one or more lirst values of the hyperparameter
based on the neural network model and the first pre-
determined learning rate;

generating, by the one or more processors, during a

second phase corresponding to a second predetermined
learning rate different from the first predetermined
learning rate, one or more second values of the hyper-
parameter based on the neural network model and the
second predetermined learning rate;

generating, by the one or more processors, a model

corresponding to the first values of the hyperparameter
and the second values of the hyperparameter, 1n
response to the output of the neural network model; and
providing, by the one or more processors, the first values
of the hyperparameter and the second values of the

A B 1

b

10

15

20

25

30

35

40

45

50

55

60

65

40

hyperparameter to a user device to cause the user
device to generate an object based on the hyperparam-
cter and corresponding to the model for presentation
via a graphical user interface of the user device.

2. The method of claim 1, further comprising:

generating, by the one or more processors, the first values

of the hyperparameter based on the neural network
model, based on the first predetermined learning rate,
and excluding the second predetermined learning rate;
and

generating, by the one or more processors, the first values

of the hyperparameter based on the neural network
model, based on the second predetermined learming
rate, and excluding the first predetermined learming
rate.

3. The method of claim 2, wherein the first phase com-
prises a general training phase and the second phase com-
prises at least one of a warm-up phase occurring before the
general training phase or a warm-down phase occurring after
the general training phase, comprising:

providing, by the one or more processors, a graph for

display via the graphical user interface indicating the
general training phase and at least one of the warm-
phase.

4. The method of claim 3, wherein the hyperparameter
increases during the warm-up phase, decreases at a first rate
during the general training phase, and decreases at a second
rate during the warm-down phase.

5. The method of claim 3, wherein the hyperparameter
decreases during the warm-up phase, increase during the

general training phase, and 1s constant during the warm-
down phase.

6. The method of claim 1, wherein the hyperparameter 1s
based on a size of training data, and the neural network
model 1s traimned with mput including the training data.

7. The method of claim 6, wherein the traiming data
comprises a mini-batch having a size less than the size of the
training data.

8. The method of claim 1, wherein the hyperparameter
includes a dropout rate associated with the model and
corresponding to a predetermined percentage ol neurons
associated with the neural network model.

9. The method of claim 1, further comprising;:

providing, by the one or more processors, a graph 1ndi-

cating one or more of the first predetermined learning
rate and the second predetermined learning rate for
display via the graphical user interface.

10. The method of claim 9, wherein the hyperparameter 1s
based on a second hyperparameter including an adjustable
momentum.

11. A system, comprising:

one or more processors, coupled to memory, configured

to:

receive output of a neural network model trained with

input including a hyperparameter, the hyperparameter
configured to control at least one of speed, efliciency or
accuracy associated with execution of the neural net-
work model:

generate during a first phase corresponding to a first

predetermined learning rate, one or more {irst values of
the hyperparameter based on the neural network model
and the first predetermined learning rate;

generating, by the one or more processors, during a

second phase corresponding to a second predetermined
learning rate different from the {first predetermined
learning rate, one or more second values of the hyper-

US 11,334,795 B2

41

parameter based on the neural network model and the
second predetermined learning rate;

generate a model corresponding to the first values of the

hyperparameter and the second values of the hyperpa-
rameter, in response to the output of the neural network
model; and

provide the first values of the hyperparameter and the

second values of the hyperparameter to a user device to
cause the user device to generate an object based on the
hyperparameter and corresponding to the model for
presentation via a graphical user interface of the user
device.

12. The system of claim 11, wherein the one or more
processors are further configured to:

generate the first values of the hyperparameter based on

the neural network model, based on first predetermined
learning rate, and excluding the second predetermined
learning rate; and

generate the first values of the hyperparameter based on

the neural network model, based on the second prede-
termined learning rate, and excluding the first prede-
termined learning rate.

13. The system of claim 12, wherein the first phase
comprises a general training phase and the second phase
comprises at least one of a warm-up phase occurring before
the general training phase or a warm-down phase occurring,
after the general tramming phase, and the one or more

processors are further configured to:
providing, by the one or more processors, a graph for
display via the graphical user interface indicating the
general training phase and at least one of the warm-
phase.

5

10

15

20

25

42

14. The system of claim 13, wherein the hyperparameter
increases during the warm-up phase, decreases at a first rate
during the general training phase, and decreases at a second
rate during the warm-down phase.

15. The system of claim 13, wherein the hyperparameter
decreases during the warm-up phase, increase during the
general training phase, and 1s constant during the warm-
down phase.

16. The system of claim 11, wherein the hyperparameter
1s based on a size of tramning data, and the neural network
model 1s tramned with mput including the training data.

17. The system of claam 16, wherein the tramning data
comprises a mini-batch having a size less than the size of the
training data.

18. The system of claim 11, wherein the hyperparameter
includes a dropout rate associated with the model and
corresponding to a predetermined percentage ol neurons
associated with the neural network model.

19. The system of claim 11, wherein the one or more
processors are further configured to:

provide a graph indicating one or more of the first
predetermined learning rate and the second predeter-
mined learming rate for display via the graphical user
interface.

20. The system of claim 19, wherein the hyperparameter
1s based on a second hyperparameter including an adjustable
momentum.

	Front Page
	Drawings
	Specification
	Claims

