US011334590B2

a2 United States Patent (10) Patent No.: US 11,334,590 B2

Srinivasan et al. 45) Date of Patent: May 17, 2022
(54) CLOUD-BASED DATABASE-LESS (56) References Cited
SERVERLESS FRAMEWORK USING DATA U'S. PATENT DOCUMENTS
FOUNDATION T -~
_ _ o 9,594,823 B2 3/2017 Chaney et al.
(71) Applicant: Accenture Global Solutions Limited, 10,855,754 B1* 12/2020 Mercier HO4L 67/1029
Dublin (IE) 2003/0023439 Al* 1/2003 Cuurpita G10L 15/22
| 704/246
(72) Inventors: Madhan Kumar Srinivasan, Bangalore 2013/0132967 Al >/2013 Soundararajan et al.
_ : 2013/0339972 Al* 12/2013 Zhang GO6F 11/3447
(IN); Arun Purushothaman, Chennai 218/104
(IN); Vijaya Tapaswi Achanta, 2017/0357703 Al 12/2017 Theimer et al.
Hyderabad (IN) (Continued)

(73) Assignee: Accenture Global Solutions Limited,

. OTHER PUBLICATIONS
Dublin (IE)

_ _ _ _ _ Extended Furopean Search Report in FEurope Application No.
(*) Notice: Subject to any disclaimer, the term of this 19198437.6, dated May 19, 2020, 8 pages.

patent 1s extended or adjusted under 35 (Continued)

U.S.C. 134(b) by 700 days. o
Primary Examiner — Vaishali Shah

(21) Appl. No.: 16/235,815 (74) Attorney, Agent, or Firm — Crowell & Moring LLP
(22) Filed: Dec. 28, 2018 (57) ABSTRACT
A system may support multiple tier serverless data founda-
(65) Prior Publication Data tion creation to support large data set processing. At a data
ingestion tier, data igestion serverless tasks may receive
US 2020/0210443 Al Jul. 2, 2020 source data for processing. The data integration serverless

tasks may filter and group the source data into file-object

(31) Imt. CI. stored items. Further, data integration serverless tasks may

Goor 16725 (2019.01) capture metadata that, when paired with the file-object
GOol" 16/26 (2019.01) stored 1tems, establishes the data foundation. The data
GO6F 16/14 (2019.01) foundation facilitates database-like performance in data
GO6F 16/13 (2019.01) operations in a database-less system. At the processing tier,
(52) U.S. CL the processing serverless tasks access the data foundation by
CPC ... GOG6F 16/254 (2019.01); GO6F 16/13 iterating across the file-object stored items to generate

(2019.01); GO6F 16/148 (2019.01); GO6F output-object stored items. At the directed storage tier,
16/285 (2019.01) directed storage serverless tasks capture metadata for the

(58) Field of Classification Search output-object stored items to establish an output data foun-

CPC GOG6F 16/254: GO6F 16/285: GOGE 16/148: dation or prepare the output data for storage in a data
j j GOGE 16/13: warehouse.

See application file for complete search history. 20 Claims, 5 Drawing Sheets
"“i

Data ingesiion Tier 110

jhmm 142 " 112 ;

jhi_imhu L 11 £

nlles] w || 12 B

Lo
___________ | S

Chrected Storape Tier 130

2 3
— {
— *
— 1
— el L

&
e

2
‘ﬁ

US 11,334,590 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2018/0196867 Al 7/2018 Wiesmaier et al.
2018/0203744 Al 7/2018 Wiesmaier et al.
2019/0026150 A1* 1/2019 Shimamura GO6F 9/5038
2020/0167360 Al1* 5/2020 Rathccocenei.. GO6F 3/0644

OTHER PUBLICATIONS

Examination Report No. 1 in Australia Application No. 2019222934,

dated Apr. 24, 2020, 7 pages.

Amazon, “Data Lake Foundation on Aws”, <URL: https://web.
archive.org/web/20181122214031/https://aws.amazon.com/
solutionspace/data-lake-foundation-with-aws-services/> published on
Nov. 22, 2018 as per Wayback Machine, obtained from the Internet
on May 28, 2020, 6 pages.

Amazon, “Amazon SNS features”, <URL: https://web.archive.org/
web/20181227214136/https://aws.amazon.com/sns/features/> pub-
lished on Dec. 27, 2018 as per Wayback Machine, obtained from the
Internet on May 28, 2020, 6 pages.

Examination Report No. 2 for Australian application 2019222934
dated Sep. 29, 2020, 5 pages.

Santucci, D. “Building a serverless architecture for data collection
with AWS Lambda”. https://web.archvie.org/web/20170401185243/
https://cloudacademy.com/blog/build-a-serverless-data-pipeline-with-
aws-lambda published Apr. 1, 2017.

* cited by examiner

U.S. Patent May 17, 2022 Sheet 1 of 5 US 11,334,590 B2

111~

Figure 1

U.S. Patent May 17, 2022 Sheet 2 of 5 US 11,334,590 B2

Estabiish data ingestion
serveriess {asks.

Generate cutput-object
stored fiems £

Filter source data. 204

Filter entity data. lInitiate partitioning serveriess
tasks. o

WOVOTCY OWOELE WCORWRN OWWAWE O SOROWOAR MO WMDY WENOEY 0 UNEROD SONEMERN 0 OPONRN OO MWD OO

Group {opic-associated data. 708

r-"r iyt igigiy dhgigieg). gl Sogogiegh. g

N | Generate partitioning inter-tier 26
ﬁcommunicaﬁan ink. ==

Establish data foundation. 21

l
|
|
|
|
; |
Capture input metadata. 210 : ﬂﬂﬂﬂﬂﬂ o s -
|
|
|
I
|
|
|
|

Generate ingestion inter-tier

e G Generate processing inter-tier
communication Iink. Rl

communication iink.

Inittate directed storage
serveriess tasks.

L ., SPEETEETEY L L, k., TR P L ., L, L L, T

Initiate processing serverless
tasks.

| terate across output-abject
Establish processing _ f stored-items
serveriess tasks. =

_ Capture oufput metadata. 284 1
Access data foundation LY :
I

Write output metfadata {o data

lterate over file~-object stored ny |
items. = -

Determine order for | IDecom.pose output-object 248 ¢]
execution of operations. S8 Istored items.

|Send decomposed datato host o5
P - |server.

US 11,334,590 B2

Sheet 3 of 5

May 17, 2022

U.S. Patent

181] 9bei0)g pajoal(]

_____ 107

~§7¢CH yogepunod eleg

1811 Buissea0id

j81} uoneibsiug eleq

00t

v ainbi

US 11,334,590 B2

101
uoepunod eeg

Sheet 4 of 5

May 17, 2022

1] 9BeIo)g pae | 101} Buissa0id o1 Buonpied | 181] uonesBeiu) eleq |

N

00V

U.S. Patent

US 11,334,590 B2

'« \BI% ooepauy Josh

Sheet 5 of 5

S109100 EEUW

00G Sanjongs pue suoneoyddy
_ S80B}B1U| Jndul

May 17, 2022

snguwiis / 0zl
Buuiubry / p6eL / 88N
Ainolgy eoepslu} Buag,

Y-311/3L7/ 9% /981 3901
300 [JPweuld / NY T / L8]
AUNOND X/ XL

(5)1088800id} /
4

STE SODBSIU| LOREOUNWWO)

U.S. Patent

US 11,334,590 B2

1

CLOUD-BASED DATABASE-LESS
SERVERLESS FRAMEWORK USING DATA
FOUNDATION

TECHNICAL FIELD

This disclosure relates to a cloud-based database-less
serverless framework.

BACKGROUND

Rapid advances 1n communications and storage technolo-
gies, driven by immense customer demand, have resulted 1n
widespread adoption of cloud systems for managing large
data payloads, distributed computing, and record systems.
As one example, modern enterprise systems presently main-
tain data records many petabytes in size in the cloud.
Improvements 1n tools for execution of analytics systems
will further enhance the capabilities of cloud computing
systems.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

FIG. 1 show an example multiple tier serverless system.

FIG. 1 shows an example multiple tier serverless system.

FIG. 2 shows example multiple tier data foundation logic.

FIG. 3 shows an example multiple-tier execution flow for
the multiple tier data foundation logic of FIG. 2.

FIG. 4 shows a second example multiple-tier execution
flow for the multiple tier data foundation logic of FIG. 2.

FIG. 5 shows an example execution environment 500 for
the multiple tier serverless system of FIG. 1.

DETAILED DESCRIPTION

Serverless cloud-based systems may allow operators to
run a routine, execute an application, or perform other types
of computational tasks (e.g., serverless tasks) without nec-
essarily requiring the operator to first define a virtual system
or requisition specific hardware on which to perform the
computational task. Accordingly, an operator may request
the performance of a serverless task without designating any
particular hardware or virtualized hardware on which the
serverless task should run.

Similarly, stored items, such as those stored 1n an object
storage environment or other stored i1tems, may not neces-
sarilly be attached to particular storage hardware. For
example, a stored item may be associated with storage
identifier and retrieved through provision of that identifier to
a host interface. The disassociation of the stored item with
particular storage hardware and/or reserved virtualized stor-
age hardware allows flexibility 1n selection of platforms for
storage and retrieval from storage.

Database systems use a combination of storage and pro-
cessing to provide indexed retrieval of stored data. In some
cases, the data stored may be indexed using numerous
processor cycles. The indexing allows for accurate retrieval
of the data under differing search terms, queries, specific
retrieval requests or other storage access operations. Accord-
ingly, overall performance i1n database systems may be
dependent on both processing and storage performance
within the database system.

In some cases, using the techniques and architectures
disclosed herein, storage and processing may be provided
via stored 1tems that are disassociated with reserved storage
volumes and serverless tasks to create database-like pertfor-
mance 1n a cloud-based database-less system. A data foun-

10

15

20

25

30

35

40

45

50

55

60

65

2

dation may refer to a computational processing data storage
platiorm using a system of file-objects, as discussed 1n detail
below. A data foundation may be created using tiered
processing circuitry, which may operate 1n the context of a
cloud-based database-less serverless framework. The data
foundation may be created via filtering and association
processing performed by serverless tasks and then stored
(under the direction of the serverless tasks) as stored items,
for example 1n an object storage paradigm. The stored 1tems
may include file-object stored 1tems associated (e.g., through
processing via the serverless tasks) with metadata defiming
topic associations within the file-object stored items. In
some 1implementations, metadata may be associated with the
file-object stored item by storing the metadata within the
associated file-object stored 1tem or by storing the metadata
in another file-object stored item and including a reference
to the associated file-object stored 1tem.

In various implementations, file-object stored 1tems may
be created by filtering input data according to topics to
generate topic-associated data. The topic-associated data
may then be grouped into a stored item to generate a
file-object stored 1tem. A corpus of one or more file-object
stored 1tems along with associated metadata that captures to
the topic relationships i in the file-object stored items
makeup a data a data foundation.

In some cases, use of a data foundation and/or the
file-object stored items and metadata which make up the
data foundation 1n accord with the techniques and architec-
tures described herein may improve the operation of the
underlying hardware on which the data foundation 1s 1mple-
mented. The data foundation may allow database-less hard-
ware to perform like (and 1n some cases outperform) data-
based hardware 1n database-like operations, such as batch
data processing, analytics processing, or other big-data
computing tasks. Further, the data foundation provide
increased flexibility relative to database system through
operation 1n serverless computing environment paired with
hardware disassociated storage environments. Thus, the data
foundation executed i1n accord with the techniques and
architectures described herein provides a technical solution
to a technical problem by providing a flexible hardware
architectural replacement to database systems. Further, the
serverless tasks creating and accessing the data foundation
may be parallelized or serialized to increase performance or
increase resource consumption efliciency without necessar-
i1ly reconfiguring designated hardware on which the data
foundation 1s implemented. Conversely, to alter the perfor-
mance/efliciency of a database system, reconfiguration may
be compulsory. Hence, the use of a data foundation and/or
the file-object stored items and metadata which make up the
data foundation in accord with the techniques and architec-
tures described herein provides an improvement (that 1s both
technical and market driven) over existing market solutions.

In serverless cloud computing environments, computing,
providers may enforce execution limits, such as task tim-
couts, maximum processing loads, processor cycles, or other
limits on compute resource consumption. In some cases, the
execution limits may be enforced per serverless task.
Accordingly, the provider may force a serverless task to
terminate within the execution limit. In an 1llustrative
example, an example provider may enforce a five-minute
task timeout for serverless tasks implemented using the
provider’s cloud platforms. Accordingly, tasks may not
necessarily execute for longer than five minutes from start to
termination.

In some cases, creation of a data foundation and execution
of a processing application on that data foundation 1n a

US 11,334,590 B2

3

serverless cloud system may call for computing resources 1n
excess ol a defined execution limit. Implementation of the
data foundation may be automatically and dynamically
divided or partitioned prior to commencement by a multiple
tier serverless execution structure (MTSES) system, such as
that described 1 U.S. patent application Ser. No. 16/159,
399, filed 12 Oct. 2018, and entitled Distributed Multiple
Tier Multi-Node Serverless Framework for Complex Ana-
lytics Task Execution, which 1s incorporated by reference
herein 1n 1ts entirety. Therein, the tasks within a computing,
project being performed with the application may be com-
pleted after the system dynamically and automatically
divides or parses the received single computing project
across multiple serverless tasks. In some cases, the system
may dynamically form, generate and/or allocate the server-
less task to be partially or tully concurrent such that data
may be passed between the serverless tasks to achieve
computational continuity that persists beyond the executions
limaits, to achieve coordinated parallel computing among the
tasks, or achieve some combination thereof. To divide the
computing project, the MTSES system may dynamically
determine one or more partitioning criteria to guide division
of the computing project. For example, the partitioning
criteria may be used to partition a dataset with detail data (or
pre-processed data) such that multiple serverless tasks each
perform an analytic analysis on a portion of the dataset.
Accordingly, the computing project as a whole may be
performed by the system dynamically developing and coor-
dinating multiple serverless task each acting on a portion of
the mput data to the system.

Referring now to FIG. 1, an example multiple tier server-
less system (MTSS) 100 1s shown. The multiple tiers of the
MTSS 100 may execute on processing circuitry making up
the hardware underpinning of the MTSS 100. In this
example, the MTSS 100 includes a data ingestion tier 110,
a processing tier 120, and a directed storage tier 130. In
some 1mplementations, the MTSS may further include a
partitioning tier 140 between the data imngestion tier and the
processing tier 120.

In various 1illustrative scenarios, the MTSS 100 may be
used as a platiform for computing analytics, batch process-
ing, data set processing, or other data processing tasks.
Accordingly, the MTSS 100, using serverless processes
executing at the data ingestion tier, may obtain input data
from various sources.

In the following, reference 1s made to the MTSS 100 of
FIG. 1 and the corresponding example multiple-tier data
foundation logic (MTDEFL) 200 1n FIG. 2 1in the context of
the MTSS 100 system. The logical features of the MTDFL
200 may be implemented in various orders and combina-
tions. For example, 1n a first implementation, one or more
features may be omitted or reordered with respect to a
second 1mplementation.

At the data ingestion tier 110, the MTDFL 200 may
establish one or more data ingestion serverless tasks 112
(202). In various implementations, via the data ingestion
serverless tasks, the MTSS 100 may access one or more sets
(e.g.,sets 1, 2, . . ., n) of source data 114 (e.g., historical
utilization data, tagging data, consumption metric data,
utility sensor data, IoT data, retail/consumer data, gaming
data, healthcare data, or other data) through network inter-
face circuitry (e.g., communication interfaces 512, see
below) from one or more data sources 111, which may be
different from one another (204). In various implementa-
tions, the data ingestion serverless tasks 112 may include
source data 114 with 1n a defined analysis window. For
example, data outside the analysis window may be excluded

10

15

20

25

30

35

40

45

50

55

60

65

4

from the source data 114. In an example scenario, a defined
analysis window may include a 90-day period. In the
example scenario, the data ingestion serverless tasks 112
may exclude, from the detail data, data originating outside
the 90-day period. In various implementations, the source
data may be stored within a source stored item.

The data ingestion serverless tasks may create a database-
less data foundation 101. In some cases, the creation process
may be 1terative. For example, the data ingestion serverless
tasks may 1terate across one or more entity identifiers within
the data. For example, the entity i1dentifiers may identify
clients, data sources, logical groupings or other entities that
provide a basis for data separation.

In iterative implementations of data foundation 101 cre-
ation, for each of the enfity i1dentifiers, the data ingestion
serverless tasks may filter the source data 114 to generate
entity data 116 (204). The filtered entity data 116 may
include data relevant to the entity associated with the entity
identifier. The filtering process may include keyword filter-
ing, content filtering, date-range filtering or other filtering to
identily data relevant to the entity associated with the entity
identifier.

After filtering the source data 114 1n accord with the entity
identifier to generate the entity data 116, the data ingestion
serverless tasks may filter the entity data 116 using topic-
associated queries to generate topic-associated data 118
(206). The topic-associated queries may include content
filtering (such as string searches, filename searches, text
queries, or other filter techniques) to separate the entity data
116 by topic. For example, the entity data may be filtered
based on data relevant to “cost-metrics” and may employ
topic-associated queries (for example, keyword search
terms) likely to 1dentily cost metric related data. In various
implementations, the topic-associated queries may relate to
various topics relevant to the processing performed at the
processing tier. In an analytics processing example scenario,
the topic-associated queries may 1dentity historical utiliza-
tion data, cost metric data, and/or tagging data such as those
discussed 1n U.S. patent application Ser. No. 15/922,639,
filed Mar. 15, 2018, entitled Prescriptive Analytics Based
Committed Compute Reservation Stack for Cloud Comput-
ing Resource Scheduling, which 1s incorporated by refer-
ence 1n 1ts enfirety or U.S. patent application Ser. No.
15/925,073, filed Mar. 19, 2018, entitled Resource Control
Stack Based System for Multiple Domain Presentation of
Cloud Computing Resource Control, which 1s incorporated
by reference 1n 1ts entirety.

Aflter generating the topic-associated data 118, the data
ingestion serverless tasks 112 may group the topic-associ-
ated data into one or more file-object stored items 102 (208).
The file-object stored items 102 serve as building blocks of
the data foundation 101. The file-object stored items 102 are
implemented to be used with metadata to provide database-
less operations that supplant database dependent implemen-
tation of data processing (e.g., “Big-Data” processing).

For the second building block of the data foundation 101,
the data ingestion serverless tasks 112 may capture input
metadata 103 based on the topic-associated queries (210)
and store the captured mput metadata 103 to establish the
data foundation (212). The mput metadata provides a guide
reference for the contents of the file-object stored 1tems. For
example, 1 place of extensive imndexing to support certain
database operations, the data foundation may rely on the
captured mput metadata as a reference for pinpointing
content within the file-object stored 1tems. In various 1mple-
mentations, the captured metadata may be stored within the
file-object stored items themselves. In an 1illustrative

US 11,334,590 B2

S

example, the captured input metadata may be stored within
the file-object stored item to which the metadata 1s relevant.
In another example, the captured input metadata may be
stored within another (e.g., centralized metadata storage)
file-object stored i1tem with reference to the relevant target
file-object stored item.

In various implementations, the data foundation may be
created without necessarily iterating over entity i1dentifiers,
but rather generating the file-object stored 1tems using the
topic-associated queries on the source data 114.

After the data foundation 1s established (either iteratively
or otherwise), the data ingestion serverless tasks may gen-
erate an mgestion iter-tier communication link (214). Inter-
tier communication links may allow serverless tasks 1n first
tier pass data to serverless tasks structured into another tier.
For example, inter-tier communication links may utilize
network hardware resources to communicate with serverless
tasks running across distributed system. Additionally or
alternatively, mter-tier communication links may use data
transiers over internal system buses. In some cases, the
inter-tier communication links may include memory
addresses (registers, pointers, or other memory addresses)
where communication from one serverless task to another
serverless task may be stored and accessed to effect com-
munication between the tasks. In some cases, publish and
subscribe (pub/sub) messaging may be used to communicate
between the layers. In an illustrative example, an inter-tier
communication link may use a simple-notification-service
(SNS) pub/sub system.

Using the ingestion mter-tier communication link 119, the
data mngestion serverless tasks 112 may initiate one or more
processing serverless tasks 122 at the data integration and
processing tier 120 (216). Initiation of serverless tasks may
include sending a message indicating that the task should be
executed. In some cases, the mitiation may further include
sending a task descriptor (e.g., a token or other data struc-
ture) that details the operation, dependencies, or other data
used to setup the new serverless task. Accordingly, a first
serverless task may spawn a second serverless task without
necessarily depending mput from a third source. In other
words, mitiation may include actions ranging from sending,
a notification to start a new serverless to fully detailing and
establishing the new serverless task, and/or other actions. In
some cases, 1nitiation may occur indirectly. For example, a
first serverless task may 1nitiate a second serverless task with
instructions to initiate a third serverless task as a mode of
iitiating the third serverless task.

Responsive to iitiation by the data ingestion serverless
tasks 112, the MTDFL 200 may establish the one or more
processing serverless tasks 122 (218). Over the ingestion
inter-tier communication link 119, the MTDFL 200 may
receive the mitiation messages and/or task descriptors from
the data ingestion serverless tasks 112. The MTDFL 200
may setup the one or more processing serverless tasks 122
based on the received data. In some cases, the MTDFL 200
may operate through the data ingestion serverless tasks 112
to effect setup of the one or more data integration serverless
tasks 122.

Once the one or more processing serverless tasks 122 are
iitiated, the processing serverless task may access the data
toundation (220). The processing serverless tasks may then
iterate across the one or more file-object stored 1tems within
the data foundation. In some implementations, the “itera-
tions” may be performed in parallel, e.g., by multiple
processing serverless tasks. For example, in some process-
ing implementations, the processing operations performed
by the processing serverless tasks may be not necessarily be

10

15

20

25

30

35

40

45

50

55

60

65

6

dependent on a particular order of operations. Accordingly,
with regard to this disclosure, the iterations performed by
serverless tasks (data ingestion, processing, directed storage,
or other types of serverless tasks) 1n various implementa-
tions may refer to iterations done serially (e.g., serial 1tera-
tions), in parallel (e.g., parallel iterations), or a combination
thereol (e.g., partially serial and/or partially parallel).

In some implementations, to iterate across the one or more
file-object stored items, the processing serverless tasks 122
may iterate over storage identifiers for the one or more
file-object stored 1tems (222). For example, the processing
serverless tasks 122 may reference object storage 1dentifiers
to access the one or more file-object stored i1tems.

While iterating over across the one or more file-object
stored 1tems, the processing serverless tasks 122 may deter-
mine an order to execute multiple operations on current
file-object stored item (224). For example, the processing
serverless tasks 122 may 1dentity a processing job to per-
form on the file-object stored item. Decomposed, the pro-
cessing job may include multiple operations (e.g., processor-
level operations or other computational operations) for
completion. The processing serverless tasks 122 may deter-
mine a sequence for those multiple operations making up the
processing job. The processing serverless tasks may then
execute the multiple operations 1n the order determined
(228).

As a result of the multiple operations on the file-object
stored 1tems, the processing serverless task may generate
one or more output-object stored items 104 (230). In various
implementations, the processing serverless tasks may imple-
ment different levels of correspondence between file-object
stored 1tems and output-object stored 1tems. For example, 1n
some cases, the processing serverless tasks 122 may trans-
late file-object stored 1tems 1nto output-object stored items 1n
a one-to-one operation. In some cases, the processing server-
less tasks may concatenate results from multiple file-object
stored 1tems 1nto a single output-object stored 1tem. In some
cases, the processing serverless tasks 122, may divide results
from a single file-object stored item into multiple output-
object stored items. Accordingly, 1n various implementa-
tions, the number of output-object stored items may corre-
spond to the number of file-object stored items, correspond
to a multiple of the number of the file-object stored 1tems, a
divisor of the number of file-object stored 1tems, correspond
to the number of file-object stored i1tems 1n another math-
ematical relationship, or not correspond to the number of
file-object stored items.

In some implementations, before mitiating the processing
serverless tasks 122, the data ingestion serverless tasks may
initiate one or more partitioning serverless tasks 142 at a
partitioning tier (232). The partitioning serverless tasks may
proceed to divide the processing job to be done 1nto one or
more processing tasks by splitting into data chunks 144
(234). The partitioning may include designating chunks 144
of data from the one or more file-object stored 1tems. The
chunks of data may corresponding to portions of the file-
object stored items or multiple ones of file-object stored
items. The size and number of chunks 144 may vary (in
some cases, drastically vary) depending on the computa-
tional intensity of the processing job, the size of the total
data to be processed, the execution limits of the serverless
system, the overall processing time, and/or other processing
and data size factors.

The size of the chunks may be determined based on the
execution limits of the serverless tasks, the duration of
overlap between successive tasks, the overall size of the
file-object stored 1tems, the number of processing serverless

US 11,334,590 B2

7

tasks (e.g., 1I pre-defined—the number of serverless tasks
may be dynamically specified based on the result of parti-
tioming), the processing job target execution duration (e.g.,
the entire processing duration used to complete the process-
ing job), the complexity of processing operations, or other 5
factors. In some 1implementations, partitioning schemes such

as those discussed with respect to the partitioning tier
discussed 1n U.S. patent application Ser. No. 16/159,39, filed
12 Oct. 2018, and entitled Distributed Multiple Tier Multi-
Node Serverless Framework for Complex Analytics Task 10
Execution, which was previously incorporated herein.
Therein, partitioning of analytics tasks 1s discussed.

Once the processing job 1s partitioned, the partitioning
serverless tasks 142 may establish a partitioning inter-tier
communication link 149 (236) and establish the processing 15
serverless tasks 122 (218) via the link. The partitioning
serverless tasks 142 may use the techniques and architec-
tures discussed above with respect to the data ingestion
inter-tier communication link to establish the partitioning
inter-tier communication link. 20

Moving now to the operation of the processing serverless
tasks after generation of the output-object stored items, the
processing serverless tasks 122 may 1nitiate a processing
inter-tier communication link 129 (240) using the techniques
and architectures discussed above with respect to the data 25
ingestion inter-tier communication link. Using the process-
ing inter-tier communication link 129, the processing server-
less tasks may 1initiate one or more directed storage server-
less tasks 132 at the directed storage tier 130 (241).

The directed storage serverless tasks 132 may 1terate 30
across the one or more output-object stored items (242). For
cach of the output-object stored items the directed storage
serverless tasks 132 may access details of the operations
performed by the processing serverless tasks 122 and the
metadata corresponding to the file-object stored items to 35
capture output metadata 105 (244) for the current output-
object stored 1tem.

In some implementations, the directed storage serverless
tasks may write the output metadata to an output data
foundation 106 (246). The optional use of an output data 40
foundation may be beneficial where the output data may be
used 1n a database-like function. For example, the output of
the system may be used as a basis for presentation of
analytical data in various visualization and management
tools fast, broad spectrum access to the data may improve 45
the performance (e.g., speed of command execution, efli-
ciency ol operation, responsiveness to updates, or other
performance metrics) ol the wvisualizations and controls.
Accordingly, inclusion of an output data foundation may
improve the operation of the underlying hardware and 50
provide technical improvements over existing market solu-
tions.

In various implementations, the output metadata may be
stored within the output-object stored 1tems. For example,
the output metadata may be stored within the output-object 55
stored item to which it corresponds. Additionally or alter-
natively, output metadata for multiple output-object stored
items may be stored within a single output-object stored
item (e.g., centralized, at least in part).

In some 1implementations, the directed storage tier may 60
utilize database systems or other non-data-foundation-based
storage paradigms. In an illustrative example, the output
may be used 1n systems lacking processing capabilities that
may be assigned to storage operations. Accordingly, 1n the
example, the system operating on the output data may not 65
necessarily support data foundation operation. In various
implementations, the directed storage serverless tasks 132

8

may, for each output-object stored item iterated across,
decompose the output-object stored 1tem (248) and send the
decomposed data to a host server for storage 199 (250). In
various 1implementations, the host server may support dii-
ferent storage paradigms (e.g., databases, such as, MySQL
databases or other databases; data lakes; or other storage
systems).

In various implementations, the data ingestion, data par-
titioning, processing, and/or directed storage serverless tasks
may include a series of serverless tasks. In some cases, each
task within any or each of the series may be at least partially
concurrent with another task within the series. Further,
within any or each of the series, a previous serverless task
may 1nitiate another serverless task within the same tier. In
some cases, implementing the data ingestion, data partition-
ing, processing, and/or directed storage serverless tasks as a
partially concurrent series may allow computational conti-
nuity to persist within a tier beyond execution limits. An
overlap parameter may be used to determine the duration of
overlap between partially or fully concurrent serverless
tasks. The overlap parameter may be selected based on
multiple factors including the amount of data communica-
tion used to maintain continuity between serverless tasks,
the desired level of parallelism in operation, the volume of
processing jobs, or other factors.

In various implementations, control of the various server-
less tasks and stored items described above may be imple-
mented via a serverless-management host mtertace for con-
trol of serverless tasks and a storage-management host
interface for management of stored items. In illustrative
example scenarios, serverless-management host interface
may be provided via the Amazon(R) Web Services (AWS)
Lambda(TM) Service and the storage-management host
interface may be provided by the AWS Simple Cloud
Storage Service (S3), Microsoit(R) Azure Block Blob, and/
or Google(R) Cloud Storage.

FIG. 3 shows an example multiple-tier execution flow 300
for the MTDFL 200. At the data ingestion tier 110, the data
ingestion serverless tasks 112 may process source data 114
from various sources to generate file-object stored items
102. The data ingestion serverless tasks may send an inter-
tier communication 312 (e.g., via an inter-tier communica-
tion link) to 1nitiate the processing serverless tasks 122 at the
processing tier 120. The processing serverless tasks 122 may
iterate across the file-object stored items 102 to generate the
output-object stored i1tems 104. The processing serverless
tasks 122 may send an inter-tier communication 314 (e.g.,
via an inter-tier communication link) to mitiate the directed
storage serverless tasks 132 at the directed storage tier 130.
The directed storage serverless tasks 132 may 1terate across
the output-object stored items 104 to attach the output-object
stored items to output metadata to create an output data
foundation 106. Alternatively or additionally, the directed
storage serverless tasks may decompose the output-object
stored 1tems for data warehousing 1n a database, data lake,
or other storage paradigm.

FIG. 4 shows a second example multiple-tier execution
flow 400 for the MTDFL 200. In the second example
multiple-tier execution flow 400, a partitioning tier 140
resides between the data ingestion tier 110 and the process-
ing tier 120. The data ingestion serverless tasks 112 may
send an 1nter-tier communication 412 (e.g., via an inter-tier
communication link) to initiate the partitioning serverless
tasks 142 at the partitioning tier 140. The partitioming
serverless tasks 142 may designate chunks for processing at
the processing tier 120. The partitioning serverless tasks 142
may send an inter-tier communication 414 (e.g., via an

US 11,334,590 B2

9

inter-tier communication link) to initiate the processing
serverless tasks 122 at the processing tier 120.

FIG. 5 shows an example execution environment 500 for
the MTSS 100 described above. The execution environment
500 may include processing circuitry 514 to support execu-

tion of the multiple tiers of MTSS 100 described above. The

processing circuitry 314 may include processors 516,
memory 520, and/or other circuitry. In various implemen-
tations, the execution environment may include a serverless
execution environment. Accordingly, the process circuitry
may include the underlying circuitry used to execute the
serverless tasks. In some cases, the circuitry used to perform
one or more of the serverless tasks may be the distributed.
The 1nstructions stored on the processing circuitry (whether
localized or distributed) transforms the processing circuitry
into a specifically configured machine in accord with some
or all of the architectures and techniques discussed in this
disclosure. In some distributed cases, the specific portion of
the distributed hardware that may be executing the server-
less tasks may change as execution progresses.

The memory 520 may include processing model param-
cters 352, machine learning heuristics 554, and operational
rules 556. The memory 520 may further include applications
and structures 566, for example, coded objects, machine
instructions, templates, or other structures to support filter-
ing, data grouping into file-object stored items, processing
operations, generation of output-object stored items or other
tasks described above. The applications and structures may
implement the MTDFL 200.

The execution environment 500 may also include com-
munication intertaces 512, which may support wireless, e.g.
Bluetooth, Wi-F1, WL AN, cellular (4G, LTE/A, 3G), and/or
wired, FEthernet, Gigabit Ethernet, optical networking pro-
tocols. The communication interfaces 312 may also include
serial interfaces, such as unmiversal serial bus (USB), sernal
ATA, IEEE 1394 lighting port, I°C, slimBus, or other serial
interfaces. The communication mterfaces 512 may be used
to support and/or implement remote operation of the MTSS
100. The execution environment 300 may include power
functions 334 and various input interfaces 528. The execu-
tion environment may also include a user interface 518 that
may 1include human-to-machine interface devices and/or
graphical user interfaces (GUI). The user interface 518 may
be used to support and/or implement local operation of the
MTSS 100. As discussed above, 1n various implementations,
the processing circuitry 514 may be distributed over one or
more physical servers, be implemented as one or more
virtual machines, be implemented 1n container environments
such as Cloud Foundry or Docker, and/or be implemented 1n
serverless (functions as-a-service) environments.

In some cases, the execution environment 500 may be a
specially-defined computational system deployed 1n a cloud
platform. In some cases, the parameters defining the execu-
tion environment may be specified in a manifest for cloud
deployment. The manifest may be used by an operator to
requisition cloud based hardware resources, and then deploy
the software components, for example, the MTSS 100, of the
execution environment onto the hardware resources. In
some cases, a manifest may be stored as a preference file
such as a YAML (yet another mark-up language), JISON, or
other preference file type.

The methods, devices, processing, circuitry, and logic
described above and below may be implemented in many
different ways and in many different combinations of hard-
ware and software. For example, all or parts of the imple-
mentations may be circuitry that includes an instruction
processor, such as a Central Processing Unit (CPU), micro-

10

15

20

25

30

35

40

45

50

55

60

65

10

controller, or a microprocessor; or as an Application Specific
Integrated Circuit (ASIC), Programmable Logic Device
(PLD), or Field Programmable Gate Array (FPGA); or as
circuitry that includes discrete logic or other circuit compo-
nents, including analog circuit components, digital circuit
components or both; or any combination thereof. The cir-
cuitry may include discrete interconnected hardware com-
ponents or may be combined on a single integrated circuit
die, distributed among multiple integrated circuit dies, or
implemented in a Multiple Chip Module (MCM) of multiple
integrated circuit dies 1n a common package, as examples.

Accordingly, the circuitry may store or access instructions

for execution, or may implement its functionality 1n hard-
ware alone. The instructions may be stored 1n tangible
storage media that 1s other than a transitory signal, such as

a flash memory, a Random Access Memory (RAM), a Read

Only Memory (ROM), an Frasable Programmable Read

Only Memory (EPROM); or on a magnetic or optical disc,
such as a Compact Disc Read Only Memory (CDROM),

Hard Disk Drive (HDD), or other magnetic or optical disk;
or in or on other machine-readable media. The media may be
made-up of a single (e.g., unitary) storage device, multiple
storage devices, a distributed storage device, or other storage
configuration. A product, such as a computer program prod-
uct, may include storage media and instructions stored 1n or
on the media, and the instructions when executed by the
circuitry 1n a device may cause the device to implement any
of the processing described above or illustrated in the
drawings.

The implementations may be distributed. For instance, the
circuitry may include multiple distinct system components,
such as multiple processors and memories, and may span
multiple distributed processing systems. Parameters, data-
bases, and other data structures may be separately stored and
managed, may be incorporated into a single memory or
database, may be logically and physically organized in many
different ways, and may be implemented 1n many different
ways. Example implementations include linked lists, pro-
gram variables, hash tables, arrays, records (e.g., database
records), objects, and 1mplicit storage mechanisms. Instruc-
tions may form parts (e.g., subroutines or other code sec-
tions) of a single program, may form multiple separate
programs, may be distributed across multiple memories and
processors, and may be mmplemented 1 many different
ways. Example implementations include stand-alone pro-
grams, and as part of a library, such as a shared library like
a Dynamic Link Library (DLL). The library, for example,
may contain shared data and one or more shared programs
that include instructions that perform any of the processing,
described above or illustrated 1n the drawings, when
executed by the circuitry.

EXAMPLE

IMPLEMENTATTONS

r

The example implementations (discussed below are
included for the purposes of example illustration of the
techniques and architectures discussed. The principles illus-
trated 1n the example implementations may be applied
separately, combined, or in different contexts from those of
the example 1mplementat10n For example, various ones of
the implementations discussed below are discussed in the
context of AWS Lambda(ITM) and AWS S3. However, the

principles may be applied to other serverless platforms

Example Implementation 1

In some cases, the principles discussed above may be used
to obtain consumption savings (€.g., savings via cost met-
rics) compared to database and data warchousing based
systems. Table 1 shows unit consumption for an example
data warehousing system versus and example database-less
data-foundation-based system for data integration tier opera-
tions and their data warehousing counterparts.

US 11,334,590 B2

11
TABLE 1

Data integration tier operations and data warehousing counterparts

Framework
Stage/Tier
Data Warehousing Framework
Data Sources Extract
Compute Transform
Servers Database Storage Load (ETL) OLAP Servers
32-Core Dell Oracle 11 g Seagate SAP Business SAP
Power Edge Enterprise ST930063538S Warehouse 7.3 NetWeaver
MR&20 Server - Edition Disk Drive 500 Cost: 25000 OLAP Server
8 Servers Cost: 380000 GB Included Units Cost: 2500
Cost: 21600 Units with Server Units
Units

Data Foundation Framework
Data Ingestion

Compute Servers Database Storage

60 AWS Lambda Serverless N/A

Compute Functions (total
execution time 5 hours)

Cost: $214 Units

2090 Cloud Storage Objects/day
Estimated Size 930 GB/vear
Cost: 256.68 Units

Table 2 shows unit consumption for an example data
warchousing system versus and example database-less data-
foundation-based system for processing tier operations and
directed storage tier operations and their data warehousing
counterparts.

TABLE 2

Processing and directed storage tier operations and data warehousing counterparts

Framework
Stage/Tier
Data Warehousing Framework

Database Block Storage

Compute
Analytic Processing Servers Database Storage
Microsoft R server SAP Business Oracle 11 g Seagate
powered by Intel Skylake Warehouse 7.3 Enterprise ST9300653SS
Processor (1 year) Included at ETL Edition Disk Drive 500
Cost 57000 Units Stage Included at GB Included
Database with Server
Stage

Data Foundation Framework

Processing Directed Storage
Compute Compute
Servers Storage Servers Database Storage
600 AWS 1900 Cloud 1900 AWS N/A 1900 Cloud
Lambda Storage Lambda Storage
Serverless Objects/day Serverless Objects/day
Compute Estimated Size Compute Estimated Size
Functions (total 360 GB/year Functions (total 360 GB/year
execution time Cost: 99.36 execution time Cost: 99.36
10 hours) Units 3 hours 10 Units
Cost: $358 minutes)
Units Cost: $159.38

Units

12

US 11,334,590 B2

13

Example Implementation 2

In an example, the system may use algorithms with
implementing pseudocode to implement a data foundation to
support an analytic analysis of client charges via charging
(e.g., billing) data.

In the example, the system may use a first algorithm along
with implementing pseudocode to implement Data Ingestion

of account ID charging, utilization and cost Cloud Informa-
tion corresponding to each client and then to perform merge
operation:

Step 1: Fetch all the Charging Files belonging to different

tenants with below prefix from the bucket:

prefix = “SmartCSA/RS/”
s3 = boto3.resource(‘s3’)

10

15

14

-continued

bucket = s3.Bucket(name=BUCKET__NAME)
FilesNotFound = True
Bucket_ List = []
for obj in bucket.objects.filter(Prefix=prefix):
Charging FileName = *{1}’.format(bucket, obj.key)
print(Charging FileName)
Bucket List.append(Charging FileName)
FilesNotFound = False
if FilesNotFound:
print(“ALERT”, “No file in {0}/{1}”.format(bucket, prefix))

print(Bucket_ List)

Filter files with ‘Charging’ string and to write the First
Input file of the First Tenant to be processed:

Charging FileName = [k for k in Bucket_ List if ‘Charging’ 1n k]

print(Charging FileName)
Preparing the Input File Name

Input_ File = strreplace(Charging FileName[O], ‘Charging Data’,*01__RS_ Input’)
To write the First mput file of the First Tenant to be processed

f=open(“/tmp/Batch_ Iteration_ RSModule.csv”, “w”

lineitem = Input__File + *“r'\n™

print(“Charging FileName[0]”)

print(Charging FileName[O])

f.write(lineitem)

f.close()

30

Step 3: Iterate across each tenant charging file and then

performing data cleansing operations such as fetch sub

string, modifying data types:

for 1 1n range(len(Charging FileName)):
Reading the Charging File from the bucket for each Tenant

s3 = boto3.client(‘s3")

Response = s3.get_ object(Bucket=BUCKET_NAME Key=Charging FileName[i])
Charging File = Response[“Body’’|.read()

Charging File =

pandas.read__csv(10.BytesIO(Charging_ File),names=Charging_File_ Col__ Names, skiprows= 1)
Charging File = Charging File[Charging File[*UsageType’].str.contains(“USW2-BoxUsage™,

na=ralse)]

45

50

55

Step 4: Implement left join between utilization and charg-
ing files based on ResourcelD, Date and Hour column
values:

Merged_File=pandas.merge(left=Utilization_File,
right=Charging_File, @ how=‘lelt’, left_on=[‘Id’,
‘Datel’,*hour’], right_on=[‘ResourcelD’,
‘Datel_B’‘hourl_B’])

Step 5: Prepare the final merged file by doing a leit join
between the above merged file and the cost file based on
SubCategory:

Final Merged_File=pandas.merge(left=Merged_File,
right=Cost_File, how="‘left’, leit_on=‘Sub.Category’,
right_on=*‘Subcategory’)

Step 6: Load all the input file entries into the batch

execution file which contains the list of each tenant input file
to be processed:

File = str.replace(Charging FileName[i], ‘Charging_ Data’, *01__RS_ Input’)
f=open(**/tmp/Batch_ Execution_ RSModule.csv”, “a+”
lineitem = File + “\r\n”

f.write(lineitem)

f.close()

US 11,334,590 B2
15 16

Step 7: Write the mput file of each tenant to the s3 bucket:

csv__buffer = BytesIO()
Final Merged File.to_ csv(csv__bufler)

s3_ resource = boto3.resource(‘s3’)
s3_ resource.Object{ BUCKET_NAME, File).put(Body=csv__bufler.getvalue())

In the example, the system may use a second algorithm Step 1: Fetch the SNS topic key file (format
along with 1mplementing pseudocode to concatenate the 10 “Tnigger csv_files_merge C001_2017_11_24.csv’ where
intermediate .csv output files 1nto an output file (e.g., a single CO001 1s the tenant name) which acts as a trigger notification
output file) m AWS S3 cloud storage. for the .csv merger:

Message_ Payload = json.loads(event[‘Records’|[O][‘Sns’|[*Message’])

Input_ File = urllib.unquote_ plus(Message Payload[*Records’|[0][*s3’][‘object’][‘key’])
Input__File = Input__File.encode(*utf-8’)

Fetching Tenant Id (*CO01” as an example)

Path = str.replace(Input__File, ‘Trigger csv_ files merge °.*")

Tenant_ Id = Path.rsplit(*_ *,—1)[0]

print(Tenant_ Id)

BUCKET NAME = ‘aaas-smartcsa-lambda-artifacts’

Step 2: Fetch all the intermediate output files generated

from analytics engine serverless task into a list:
25

s3 = boto3.resource(‘s3’)
bucket = s3.Bucket(name=BUCKET__NAME)
FilesNotFound = True
Merge_ Prefix = “RS__Output/” + Tenant Id
Merge List = []
for obj 1n bucket.objects.filter(Prefix=Merge_ Prefix):
Output__File = *{1}".format(bucket, obj.key)
print(Output__File)
if Tenant__Id in Output__File:
Merge List.append(Output_ File)
33 FilesNotFound = False
if FilesNotFound:
print(“ALERT”, “No file in {0}/{1}”.format(bucket, Merge Prefix))

30

Step 3: Iterate through the list and appending each file
contents to the temp list:

lemp = []
Merged Output = pandas.DataFrame(columns=Col_Names)
for 1 1n range(len(Merge_ List)):
s3 = boto3.client(*s3’)
print(Merge List[1])
response = s3.get object(Bucket=BUCKET__NAME . Key= Merge_ List[1])
File = response[“Body’’].read()
Temp.append(pandas.read_ csv(io.BytesIO(File), names=Col__Names, skiprows=1,
index__col=False))
print(len{Temp[i]))

Step 4: Concatenate the temp list contents to the
datairame ‘Merged_Output’:

Merged Output = pandas.concat(Temp, 1gnore_ index=True)

Writing the Dataframe contents to the AWS s3 file using BytesIO() stream
csv__builer = BytesIO()

Merged Output.to_ csv(csv__builer)

s3 = boto3.resource(‘s3’)

Bucket Name = ‘acp-platform-s-aaas-smartcsa’

MS_ path = ‘SmartCSA/RS/” + Tenant_ Id + */” + Tenant_ Id + *__ RS_ Output.csv’
s3.0bject(Bucket Name, AWS_ path).put(Body=csv__bufler.getvalue())

US 11,334,590 B2

17

Step S: Fetch the contents of the batch execution file and
then to do a lookup of the currently processed tenant entry
in the file, in order to fetch the next tenant file that has to be
processed 1n the next iteration of the Lambda Architecture
flow.

Step 6: Fetch the next line to be processed e.g., the input
file name of the next tenant from the batch execution file:

File = lines[row_ num]

1
print(“Next Input file to be processed™)

18

-continued

print(File)

#1f not os.path. exists(*Batch_ Iteration_ RSModule.csv’):
f=open(**/tmp/Batch__Iteration_ RSModule.csv”, “w”
lineitem = File + “\r\n”

f.write(lineitem)

f.close()

Step 7: Create the batch 1teration file with the mput file of

" the next tenant entry and then validate 1t the file 1s already

loaded with this new entry before writing to S3:

s3 = boto3.resource(‘s3’)
File_ Exists = False

ry:

s3. Object(BUCKET__NA

~, ‘SmartCSA/RS/Batch_ Iteration_ RSModule.csv’).load()

except botocore.exceptions.ClientError as e:
if e.response[‘Error’][*Code’] == “404:
File Exists = False

else:
raise
else:
File Exists

= True

print(File_ Exists)
if File Exists == True:
print(“File already loaded™)

else:

30

Step 8: Check whether all the input and output files loaded
successiully for the currently processed tenant before
uploading the new batch iteration file with that next tenant
entry:

Input_ Prefix = “RS/” + Tenant_ Id

S3 =

boto3.resource(‘s3”)

bucket = s3.Bucket(name=Bucket)
FilesNotFound = True
Bucket List =]]

for obj in bucket.objects.filter(Prefix=Input_ Prefix):

Input_ File= {1} .format(bucket, obj.key)
print(Input_ File)

Bucket List.append(Input_ File)
FilesNotFound = False

it FilesNotFound:

print(“ALERT”, “No file in {0}/{1}”.format(bucket, Input_ Prefix))

Output_ Prefix = “RS_ Output”” + Tenant_ Id
Bucket_ List =]
for obj in bucket.objects.filter(Prefix=0utput__ Prefix):

Output__ File= ‘{1 }’.format(bucket, obj.key)
print(Output__File)
Bucket_List.append)Output__File)
FilesNotFound = False

1 FilesNotFound:

print(“ALERT”, “No file in {0}/{1}”.format(bucket, Output_ Prefix))

if Input_ Files Count == Output_ Files_ Count:

s3 = boto3.client(‘s3’)
s3.upload_ file(*/tmp/Batch__ Iteration RSModule.csv’, BUCKET NAME,

‘SmartCSA/RS/Batch_ Iteration_ RSModule.csv’)

else:

except IndexError:

print(“Iteration File uploaded”)

print(“All Output files are not loaded”)

print(*All clients Data Processed”)

US 11,334,590 B2

19

Various implementations may use the techniques and
architectures described above.

Al In an example, a system includes: network interface
circuitry configured to access a source stored item; tiered
analytic processing circuitry in data communication with the
network interface circuitry, the tiered analytic processing
circuitry configured to execute multiple tiers of serverless
tasks, the multiple tiers including: a data ingestion tier; a
processing tier; and a directed storage tier; the tiered analytic
processing circuitry configured to: establish, at the data
ingestion tier, a data ingestion serverless task configured to:
create a database-less data foundation by: for each entity
identifier of one or more entity identifiers: filtering content
within the source stored 1item based on the entity identifier to
generate entity data; filtering the entity data based on a
topic-associated query to generate topic-associated data;
grouping the topic-associated data into one or more file-
object stored items; capturing input metadata for the one or
more file-object stored 1tems based on the topic-associated
query; and wrnting the input metadata to an input data
foundation; generate an ingestion inter-tier communication
link; and via the ingestion inter-tier communication link:
initiate a processing serverless task; responsive to imtiation
from the data ingestion serverless task, establish, at the
processing tier, the processing serverless task, the process-
ing serverless task configured to: access the mput data
foundation; iterate across the one or more file-object stored
items by: for each of the one or more file-object stored items:
based on mput metadata within the mput data foundation for
a current file-object stored item: determining an order for
multiple operations for the current file-object stored item;
executing the multiple operations on the current file-object
stored 1item according to the order; and via the multiple
operations, writing to a current output-object stored item
stored among one or more output-object stored i1tems; gen-
erate a processing inter-tier communication link; and via the
processing inter-tier communication link: initiate a directed
storage serverless task; and responsive to 1nitiation from the
processing serverless task, establish, at the directed storage
tier, the directed storage serverless task, the directed storage
serverless task configured to: 1terate across the one or more
output-object stored 1tems by: for each of the one or more
output-object stored 1tems: capturing output metadata based
on: mput metadata for one or more file-object stored 1tems
used to generate the output-object stored item; and opera-
tions performed on the one or more file-object stored 1tems
used to generate the output-object stored item; and writing,
the output metadata to an output data foundation.

A2 The system of example Al, where the input data
foundation 1s supported via storage within the one or more
file-object stored 1tems.

A3 The system of example A2, where the input metadata
1s stored within the one or more file-object stored items.

A4 The system of any of examples Al-A3, where the
output data foundation 1s supported via storage within the
one or more output-object stored i1tems.

A5 The system of example A4, where the output metadata
1s stored within the one or more output-object stored 1tems.

A6 The system of any of examples Al-AS5, where the
network mterface circuitry 1s configured to send a request to
a serverless tack host interface to establish the data ingestion
serverless task, the processing serverless task, the directed
storage serverless task, or any combination thereof.

A7 The system of any of examples A1-A6, where the data
ingestion serverless task 1s configured to, via communica-

10

15

20

25

30

35

40

45

50

55

60

65

20

tion over network interface circuitry, access a storage host
interface to perform storage operations on the one or more
file-object stored 1tems.

A8 The system of any of examples A1-A7, where group-
ing the topic-associated data into one or more file-object
stored items 1ncludes grouping the topic-associated data into
an entity-specific file-object stored item.

A9 The system of any of examples A1-A8, where the data
ingestion serverless task, the processing serverless task, the
directed storage serverless task, or any combination thereof
includes a serially executed chain of continuity-maintaining
serverless tasks.

Al10 The system of example A9, where the continuity-
maintaining serverless tasks are configured to maintain
continuity by maintaining an overlap parameter detailing a
timing overlap for successive serverless tasks.

All The system of any of examples A1-A10, where the
data ingestion serverless task 1s configured to: before initi-
ating the processing serverless task, initiate a partitioning
serverless task configured to partition an analytic analysis
routine 1nto multiple chunks for completion by multiple
continuity-maintaining processing serverless tasks.

Al2 The system of any of examples Al-All, where the
processing serverless task 1s configured to iterate across the
one or more file-object stored 1tems further by iterating over
storage 1dentifiers for the one or more file-object stored
items.

Al3 The system of any of examples Al1-Al12, where the
input metadata for the one or more file-object stored items
1s stored 1n one or more other file-object stored items.

Al4 The system of any of examples Al1-Al13, where the
processing serverless task 1s further configured to: for each
of the one or more output-object stored items, concatenate
results of the multiple operations on the current file-object
stored item with results from a previous file-object stored
item also stored in the current output-object stored item.

Bl In an example, a method includes: accessing, via
network interface circuitry, a source stored item; at tiered
analytic processing circuitry configured to execute multiple
tiers of serverless tasks: establishing, at a data ingestion tier
of the multiple tiers, a data ingestion serverless task; via the
data ingestion serverless task creating a database-less data
foundation by: for each entity identifier of one or more entity
identifiers: filtering content within the source stored item
based on the entity identifier to generate entity data; filtering
the entity data based on a topic-associated query to generate
topic-associated data; grouping the topic-associated data
into one or more file-object stored items; capturing input
metadata for the one or more file-object stored i1tems based
on the topic-associated query; and writing the mput meta-
data to an input data foundation; generating an ingestion
inter-tier communication link; and via the ingestion inter-tier
communication link: initiating a processing serverless task;
responsive to mitiation from the data ingestion serverless
task, establishing, at a processing tier of the multiple tiers,
the processing serverless task; via the processing serverless
task: accessing the input data foundation; iterating across the
one or more file-object stored 1tems by: for each of the one
or more lile-object stored items: based on mmput metadata
within the nput data foundation for a current file-object
stored item: determining an order for multiple operations for
the current file-object stored item; executing the multiple
operations on the current file-object stored 1tem according to
the order; and via the multiple operations, writing to a
current output-object stored 1tem stored among one or more
output-object stored 1tems; generating a processing inter-tier
communication link; and via the processing inter-tier com-

US 11,334,590 B2

21

munication link: mitiating a directed storage serverless task;
and responsive to initiation from the processing serverless
task, establishing, at a directed storage tier of the multiple
tiers, the directed storage serverless task; via the directed
storage serverless task: iterating across the one or more
output-object stored 1tems by: for each of the one or more
output-object stored 1tems: capturing output metadata based
on: mput metadata for one or more file-object stored 1tems
used to generate the output-object stored item; and opera-
tions performed on the one or more file-object stored 1tems
used to generate the output-object stored item; and writing,
the output metadata to an output data foundation.

B2 The method of example B1, where the data ingestion
serverless task, the processing serverless task, the directed
storage serverless task, or any combination thereof includes
a serially executed chain of continuity-maintaining server-
less tasks.

B3 The method of example B2, where the continuity-
maintaining serverless tasks maintain continuity by main-
taining an overlap parameter detailing a timing overlap for
successive serverless tasks.

Cl In an example, a product includes: machine-readable
media other than a transitory signal; and instructions stored
on the machine-readable media, the instructions configured
to, when executed, to cause a machine to: access, via
network interface circuitry, a source stored item; at tiered
analytic processing circuitry configured to execute multiple
tiers of serverless tasks: establish, at a data ingestion tier of
the multiple tiers, a data ingestion serverless task; via the
data mgestion serverless task: create a database-less data
foundation by: for each entity identifier of one or more entity
identifiers: filtering content within the source stored item
based on the entity identifier to generate entity data; filtering,
the entity data based on a topic-associated query to generate
topic-associated data; grouping the topic-associated data
into one or more file-object stored items; capturing input
metadata for the one or more file-object stored items based
on the topic-associated query; and writing the iput meta-
data to an mput data foundation; generate an ngestion
inter-tier communication link; and via the ingestion inter-tier
communication link: imitiate a processing serverless task;
responsive to imitiation from the data ingestion serverless
task, establish, at a processing tier of the multiple tiers, the
processing serverless task; via the processing serverless
task: access the input data foundation; iterate across the one
or more file-object stored 1tems by: for each of the one or
more file-object stored items: based on input metadata
within the mput data foundation for a current file-object
stored item: determiming an order for multiple operations for
the current file-object stored item; executing the multiple
operations on the current file-object stored 1tem according to
the order; and wvia the multiple operations, writing to a
current output-object stored 1tem stored among one or more
output-object stored items; generate a processing inter-tier
communication link; and via the processing inter-tier coms-
munication link: imitiate a directed storage serverless task;
and responsive to initiation from the processing serverless
task, establish, at a directed storage tier of the multiple tiers,
the directed storage serverless task; via the directed storage
serverless task: iterate across the one or more output-object
stored 1tems by: for each of the one or more output-object
stored 1tems: capturing output metadata based on: input
metadata for one or more file-object stored items used to
generate the output-object stored 1tem; and operations per-
formed on the one or more file-object stored 1tems used to
generate the output-object stored item; and writing the
output metadata to an output data foundation.

10

15

20

25

30

35

40

45

50

55

60

65

22

C2 The product of example C1, where the data imngestion
serverless task 1s configured to: before mitiating the pro-
cessing serverless task, 1nitiate a partitioning serverless task
configured to partition an analytic analysis routine into
multiple chunks for completion by multiple continuity-
maintaining processing serverless tasks.

C3 The product of example C2, where the partitioning
serverless task 1s configured to determine a number for the
multiple chunks based on: a processing volume for the
analytic analysis routine; and a duration for each of the
multiple continuity-maintaining processing serverless tasks.

D1 A method implemented by operation of a system of
any ol examples Al-Al4.

E1 A product comprising instructions stored on a machine
readable medium, the instructions configured to cause a
machine to implement the method of example D1.

Various 1mplementations have been specifically
described. However, many other implementations are also
possible.

What 1s claimed 1s:
1. A system including:
network interface circuitry configured to access a source
stored 1tem:
tiered analytic processing circuitry in data communication
with the network interface circuitry, the tiered analytic
processing circuitry configured to execute multiple
tiers of serverless tasks, the multiple tiers including:
a data ingestion tier;
a processing tier; and
a directed storage tier;
the tiered analytic processing circuitry configured to:
establish, at the data ingestion tier, a data ingestion
serverless task configured to:
create a database-less data foundation by:
for each entity identifier of one or more entity
identifiers:
filtering content within the source stored item
based on the entity identifier to generate entity
data;
filtering the entity data based on a topic-asso-
ciated query to generate topic-associated data;
grouping the topic-associated data into one or
more file-object stored 1tems;
capturing nput metadata for the one or more
file-object stored items based on the topic-
associated query; and
writing the input metadata to an mput data
foundation;
generate an 1ngestion inter-tier communication link;
and
via the mgestion inter-tier communication link:
initiate a processing serverless task;
responsive to mitiation from the data ingestion server-
less task, establish, at the processing tier, the pro-
cessing serverless task, the processing serverless task
configured to:
access the mput data foundation;
iterate across the one or more file-object stored 1tems
by:
for each of the one or more file-object stored
items:
based on the mmput metadata within the mput
data foundation for a current file-object stored
item:
determining an order for multiple computa-
tional operations for the current file-object
stored 1tem;

US 11,334,590 B2

23

executing the multiple computational opera-
tions on the current file-object stored item
according to the order; and
via the multiple computational operations,
writing to one or more current output-object
stored 1tems stored among one or more output-
object stored 1tems, wherein the multiple com-
putational operations on the current file-object
stored 1tem translate the current file-object
stored 1tem 1nto the one or more current output-
object stored items by distributing results of the
multiple computational operations on the cur-
rent file-object stored 1tem 1nto multiple corre-
sponding output-object stored items;
generate a processing inter-tier communication link;
and
via the processing inter-tier communication link:
initiate a directed storage serverless task; and
responsive to 1nitiation from the processing serverless
task, establish, at the directed storage tier, the
directed storage serverless task, the directed storage
serverless task configured to:
iterate across the one or more output-object stored
items by:
for each of the one or more output-object stored
items:
capturing output metadata based on:
the input metadata for the one or more file-
object stored 1tems, the one or more file-object
stored 1tems being applied to generate the out-
put-object stored 1tem; and
the computational operations performed on
the one or more file-object stored 1tems applied
to generate the output-object stored 1tem; and
writing the output metadata to an output data
foundation.

2. The system of claim 1, where the mput data foundation
1s supported via storage within the one or more file-object
stored 1tems.

3. The system of claim 2, where the mput metadata 1s
stored within the one or more file-object stored items.

4. The system of claim 1, where the output data founda-
tion 1s supported via storage within the one or more output-
object stored items.

5. The system of claim 4, where the output metadata 1s
stored within the one or more output-object stored items.

6. The system of claim 1, where the network interface
circuitry 1s configured to send a request to a serverless task
host 1nterface to establish the data ingestion serverless task,
the processing serverless task, the directed storage serverless
task, or any combination thereof.

7. The system of claim 1, where the data ingestion
serverless task 1s configured to, via communication over the
network interface circuitry, access a storage host interface to
perform storage operations on the one or more {file-object
stored 1tems.

8. The system of claim 1, where grouping the topic-
associated data into the one or more file-object stored items
includes grouping the topic-associated data into an entity-
specific file-object stored 1tem.

9. The system of claim 1, where the data ingestion
serverless task, the processing serverless task, the directed
storage serverless task, or any combination thereof includes
a serially executed chain of continuity-maintaining server-
less tasks.

10. The system of claim 9, where the continuity-main-
taining serverless tasks are configured to maintain continuity

10

15

20

25

30

35

40

45

50

55

60

65

24

by maintaining an overlap parameter detailing a timing
overlap for successive serverless tasks.

11. The system of claim 1, where the data ingestion
serverless task 1s configured to: before mitiating the pro-
cessing serverless task, initiate a partitioning serverless task
configured to partition an analytic analysis routine into
multiple chunks for completion by multiple continuity-
maintaining processing serverless tasks, wherein sizes of the
chunks are determined based on at least one of the following
factors: execution limits of the processing serverless tasks,
a duration of overlap between the processing serverless
tasks, an overall size of the one or more file-object stored
items, a number of all the processing serverless tasks, and
complexity of the computational operations.

12. The system of claim 1, where the processing server-
less task 1s configured to iterate across the one or more
file-object stored items further by iterating over storage
identifiers for the one or more file-object stored items.

13. The system of claim 1, where the input metadata for
the one or more {ile-object stored 1tems 1s stored 1n one or
more other file-object stored items.

14. The system of claim 1, where the processing server-
less task 1s further configured to:

for each of the one or more output-object stored items,

concatenate results of the multiple computational
operations on the current file-object stored i1tem with
results from a previous file-object stored item also
stored 1n the current output-object stored item.

15. A method including:

accessing, via network interface circuitry, a source stored

item;

at tiered analytic processing circuitry configured to

execute multiple tiers of serverless tasks:
establishing, at a data ingestion tier of the multiple
tiers, a data ingestion serverless task;
via the data ingestion serverless task:
creating a database-less data foundation by:
for each entity identifier of one or more entity
identifiers:
filtering content within the source stored item
based on the entity identifier to generate entity
data;
filtering the entity data based on a topic-asso-
ciated query to generate topic-associated data;
grouping the topic-associated data into one or
more file-object stored 1tems;
capturing input metadata for the one or more
file-object stored items based on the topic-
associated query; and
writing the input metadata to an mput data
foundation:
generating an ingestion inter-tier communication
link; and
via the mngestion 1nter-tier communication link:
initiating a processing serverless task;
responsive to imtiation from the data ingestion server-
less task, establishing, at a processing tier of the
multiple tiers, the processing serverless task;
via the processing serverless task:
accessing the input data foundation;
iterating across the one or more file-object stored
items by:
for each of the one or more file-object stored
items:
based on the mmput metadata within the mput
data foundation for a current file-object stored
item:

US 11,334,590 B2

25

determining an order for multiple computa-
tional operations for the current file-object
stored 1tem;

executing the multiple computational opera-

26

filtering the entity data based on a topic-
associated query to generate topic-associated
data;

grouping the topic-associated data into one or

tions on the current file-object stored item 5 more file-object stored items;
accgrding to th@_‘ order; and | _ capturing input metadata for the one or more
via the multiple computational operations, file-object stored items based on the topic-
wrltlng to one or more current output-object associated query; and
stoired 1tems Sj[OI’E:d among one or more output- writing the input metadata to an input data
object stored 1tems, wherein the multiple com- 10 fundation:
putational operations on the current file-object O . L . L
stored 1tem translate the current file-object genﬁera.te an ingestion nter-tier: commumnication
stored 1tem 1nto the one or more current output- , link: :and L , L
object stored 1tems by distributing results of the vid t.h.e Ingestion 1111[61’-’[161‘ communication link:
multiple computational operations on the cur- 15 11111[1:51‘03 d PrOCEssILLE SErV erless task; _ _
rent file-object stored item into multiple corre- responsive to imtiation from the data ingestion
sponding output-object stored items: serverless task, establish, at a processing tier of the
generating a processing 1nter-tier communication multiple tiers, the processing serverless task:
link: and via the processing serverless task:
via the processing inter-tier communication link: 20 access the mput data foundation;
initiating a directed storage serverless task; and iterate across the one or more file-object stored
responsive to initiation from the processing serverless items by:
task, establishing, at a directed storage tier of the for each of the one or more file-object stored
multiple tiers, the directed storage serverless task; items:
via the directed storage serverless task: 25 based on the mput metadata within the 1nput
iterating across the one or more output-object stored data foundation for a current file-object stored
items by: item:
for each of the one or more output-object stored determining an order for multiple compu-
1tems: tational operations for the current file-object
capturing output metadata based on: 30 stored 1tem;
the mput metadata for the one or more file- executing the multiple computational
object stored 1tems, the one or more file-object operations on the current file-object stored item
stored 1tems being applied to generate the out- according to the order; and
put-object stored 1tem; and via the multiple computational operations,
the computational operations performed on 35 writing to one or more current output-object
the one or more file-object stored 1tems applied stored 1tems stored among one or more output-
to generate the output-object stored 1tem; and object stored 1tems, wherein the multiple com-
writing the output metadata to an output data putational operations on the current file-object
foundation. stored 1tem translate the current file-object
16. The method of claim 15, where the data ingestion 40 stored 1tem 1nto the one or more current output-
serverless task, the processing serverless task, the directed object stored 1tems by distributing results of the
storage serverless task, or any combination thereof includes multiple computational operations on the cur-
a serially executed chain of continuity-maintaining server- rent file-object stored 1tem 1nto multiple corre-
less tasks. sponding output-object stored items;
17. The method of claim 16, where the continuity-main- 45 generate a processing inter-tier communication
taining serverless tasks maintain continuity by maintaining, link; and
an overlap parameter detailing a timing overlap for succes- via the processing inter-tier communication link:
sive serverless tasks. initiate a directed storage serverless task; and
18. A product including: responsive to mitiation from the processing server-
machine-readable media other than a transitory signal; 50 less task, establish, at a directed storage tier of the
and multiple tiers, the directed storage serverless task;
instructions stored on the machine-readable media, the via the directed storage serverless task:
instructions configured to, when executed by at least iterate across the one or more output-object stored
one machine, to cause the at least one machine to: items by:
access, via network interface circuitry, a source stored 55 for each of the one or more output-object stored
1tem; items:
at tiered analytic processing circuitry configured to capturing output metadata based on:
execute multiple tiers of serverless tasks: the input metadata for the one or more
establish, at a data ingestion tier of the multiple tiers, file-object stored items, the one or more {file-
a data ingestion serverless task; 60 object stored items being applied to generate the
via the data ingestion serverless task: output-object stored 1tem; and
create a database-less data foundation by: the computational operations performed
for each entity i1dentifier of one or more entity on the one or more file-object stored items
identifiers: applied to generate the output-object stored
filtering content within the source stored 1tem 65 item; and
based on the entity 1dentifier to generate entity writing the output metadata to an output data

data; foundation.

US 11,334,590 B2
27

19. The product of claim 18, where the data ingestion
serverless task 1s configured to: before mmitiating the pro-
cessing serverless task, nitiate a partitioming serverless task
configured to partition an analytic analysis routine into
multiple chunks for completion by multiple continuity- 3
maintaining processing serverless tasks, wherein sizes of the
chunks are determined based on at least one of the following
factors: execution limits of the processing serverless tasks,

a duration of overlap between the processing serverless
tasks, an overall size of the one or more file-object stored 10
items, a number of all the processing serverless tasks, and
complexity of the computational operations.

20. The product of claim 19, where the partitioning
serverless task 1s configured to determine a number for the
multiple chunks based on: 15

a processing volume for the analytic analysis routine; and

a duration for each of the multiple continuity-maintaining

processing serverless tasks.

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

