12 United States Patent

Cao et al.

US011327789B2

(10) Patent No.: US 11,327,789 B2
45) Date of Patent: May 10, 2022

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(86)

(87)

(65)

(1)

(52)

MERGED INPUT/OUTPUT OPERATIONS
FROM A PLURALITY OF VIRTUAL
MACHINES

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Gang Cao, Shanghai (CN); Weihua

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

Rosen Xu, Shanghai (CN); Danny 8,769,270 B2* 72014 Orsinic.co....... HO041. 9/0861
Yigang Zhou, Shanghai (CN) 713/165
8,843,933 B1* 9/2014 Holler GO6F 9/45533
Assignee: Intel Corporation, Santa Clara, CA 718/104
(US) (Continued)
Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 140 days. CN 103634379 A 3/2014
CN 104809124 A 7/2015
WO 2018148934 Al 8/2018

Appl. No.: 16/478,549

PCT Filed: Feb. 17, 2017

PCT No.: PCT/CN2017/073949
§ 371 (c)(1).
(2) Date: Jul. 17, 2019

PCT Pub. No.: W02018/148934
PCT Pub. Date: Aug. 23, 2018

Prior Publication Data

US 2020/0050480 Al Feb. 13, 2020

OTHER PUBLICATTONS

Mengler et al. “FPGA Design of onboard queue management
equipment based on occupancy”, 2011 IEEE, pp. 1111-1114.*

(Continued)

Primary Examiner — Nan H Nguyen
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

In an example, there 1s disclosed a computing apparatus,
having: a data interface to communicatively couple to a
storage pool having a plurality of disks; a virtual machine

Int. CIL. . .
manager including a processor; and a storage coprocessor
GOOI 9745 (2006.01) (SCP) to: create a read queue and write queue for the disks
GO6F 9/455 (2018.01)
_ in the storage pool; receive an mput/output (10) operation
(Continued) from a virtual machine, the IO operation directed to a
US. Cl. storage address located on a disk 1n the storage pool; and add
CpPC ... GO6I 9/4881 (2013.01); GO6F 9/45558 the IO operation to the queue for the disk.

(2013.01); GO6F 13/1668 (2013.01);

(Continued)

23 Claims, 12 Drawing Sheets

10300

MEW S50 ADDED TQ STORAGE POOL

CUERY S50 CONBIGURATION SPACE 10 GET PREFERRED ,/V
BLOCK SIZE |

1600

CREATE READ AND WRITE QUEUES FOR NEW S50 TO 4/
MANAGE SUB-{Gs

1008

v

RECEIVE ARD MERGE NEW 1Os

1098
DONE)

US 11,327,789 B2

Page 2
(51) Int. CL
GO6F 13/16 (2006.01)
HO4L 67/1097 (2022.01)
(52) U.S. CL
CPC GO6EF 2009/45579 (2013.01); GO6F
2009/45583 (2013.01); HO4L 67/1097
(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
9,823,849 B2* 11/2017 Schmusseur GOO6F 3/0685
2006/0195663 Al* 8/2006 Arndt GO6F 3/0605
711/153
2011/0292792 A1 12/2011 Zuo et al.
2012/0072723 Al1* 3/2012 Orsinlcooeeeeevennen. HO041. 63/10
713/165
2013/0305246 Al1* 11/2013 Goggin HO4L 47/783
718/1
2014/0301197 Al 10/2014 Birke et al.
2016/0314017 Al1* 10/2016 Zhang GO6F 9/5011
2018/0088978 Al* 3/2018 Li .oooiiviieiiiiiiiiinnn.., GO6F 13/28
OTHER PUBLICATIONS

Feng et al. “Virtual Disk Reconfiguration with Performance Guar-
antees 1n Shared Storage Environment”, 2005 IEEE, 6 pages.™

PC|
PC|

* cited by examiner

[International Search Report and Written Opinion 1ssued in
[JCN2017/073949 dated Nov. 22, 2017; 11 pages.

06T
SIHAHIS

051 SNV L LY

NAGY
ALBSNOIS

[AN}

Sheet 1 of 12

dvi
FI0SNO3
LINBDW

May 10, 2022

43}

201
453

U.S. Patent

tuﬁEUMm

174
P

011
H381T

OET
LN

/ ot

US 11,327,789 B2

Sheet 2 of 12

N!m.ﬂ.ﬂ ________________ | | p |
1011 E— e, 1161
YO HEOM e _ _ GV OIHEOM

LI i L e, nlle, nlle, ol ke, ke, ol e,
_.

g 74}
21482 DNIHOLIAS

C-vii
SAEYE DNIHILIANS

May 10, 2022

&
i
B
B
#

\@\ El HAaRBR
g T4
Bi-dihk
o g
¥ILNID VLVO

U.S. Patent

US 11,327,789 B2

Sheet 3 of 12

May 10, 2022

U.S. Patent

T
NOLLV 2 IddY

£Zie
INILSAS
SNILYYI4O

e

$30dYQY
AW 14510

05¢
F2THOLS

474
FIVARILNE

R EDRIDED YIAING O

1-04L

__ 5719 WALSAS
YA
A SBHAIAIA

H055300%d

_.,. ” . 098¢
€041 JIVAE LN

S8 AHONIN SHOMLIN
ooz 7

A3EA30 LN

US 11,327,789 B2

Sheet 4 of 12

May 10, 2022

U.S. Patent

743

| ONILYH3dO

 |AYOWIWN

£-0LE

| sna AMoman

1153

HOSSIIOH

oos 7

FOMAZA HIANTS

T-0L€

S8 N3LSAS

0S¢
IDVHOLS

--
-

O9€
AIV 831N
NHOMLIN

ey

474

AR TR BT TIYAATIYIS EQEQIT0:9E 9T
s 0Z°0°0°0T

US 11,327,789 B2

Sheet 5 of 12

May 10, 2022

G0Y T
HAHOAIIN

| SNOLLYDdAY |
QINISIA-TUYARLAOS ” _

NS YITICULNGD NTS

U.S. Patent

2}

BTG 10959184
01°0°0°0%

. “

US 11,327,789 B2

Sheet 6 of 12

May 10, 2022

U.S. Patent

{ HAIINVIVE \
avon _
£ 4NA

/ 2 uIONYIVE \
L avol

b 4NA

9Ly viv

OS5V
ALEINIOHES

YN T3 8 ANA /
74 2N

130
NOISTTYANE
£ ANA

EMIEQU
{ MIGUOY

NOISSIS

sy N\ SN ZIY

43400Y
b INA

9T _ / OTY

TIYA IS
E dNA

OLVALSIHOE0

Uy

AN

US 11,327,789 B2

Sheet 7 of 12

May 10, 2022

U.S. Patent

TR0 E B L

NGOV d

“““““

245
AHOMIIN

90%
NHOAIYId
ANIWIDYNYIN |
YIINIOVIYQ |

T3
ANEDNZ
SHIATYNY

YiVi}

9975 ONI ALINEVIOYNYIN |

““““““““““““““““

3415 fidd

- ALTh Ndd

015 29071 NB041V1d

vrs 31507

pEG: |

m NOLONNE | | m

| NOILONNG | MUOMULIN | |
SV E I WOLRIA | 3

9vS HIARG

HE1S Nda

HILIAS/OIN

YZI5 Nidd

HI3LIMS
TYNLHIA

¥iEs
INIHITIA
WILLYMIA

US 11,327,789 B2

Sheet 8 of 12

L o o g

£85 FAVIOTY

May 10, 2022

Ui ANOdd

U.S. Patent

US 11,327,789 B2

Sheet 9 of 12

May 10, 2022

U.S. Patent

S-H1L

yulL

E¥TL

79TL

viL

1004 3OVHOLS

dOSIANIJAN

/vvou

US 11,327,789 B2

Sheet 10 of 12

May 10, 2022

U.S. Patent

S-HIL

yytL

EviL

474
1004 3DYH0LS
=
E
P
20553308400 IDVA0LS
$74
SOSIANIdAN

viL

Vi

U.S. Patent May 10, 2022 Sheet 11 of 12 US 11,327,789 B2

SO0

.. 9&2

| ALLOCATE READ/WRITE QUEUES FOR EACH DISKIN |4/
STORAGE POOL

904

RECEIVE INCOMING DISK OPERATIONS

306
MERGE SMALLER 10s INTO LARGER 10 BLOCKS {LINK [/
CONTINUOUS OR OVERLAP, PAD WITH ZEROES)
914
N N T gﬁg
TIMEOUT | | WAIT UNTIL QUEUE IS FULL '
... giﬁ

959

U.S. Patent May 10, 2022 Sheet 12 of 12 US 11,327,789 B2

1860

1002

NEW 55D ADDED TO STORAGE POOL

| 1004
QUERY 55D CONFIGURATION SPACE TO GET PREFERRED |/
BLOCK SIZE |
___ . 1006
CREATE READ AND WRITE QUEUES FORNEW SSDTO |4/
MANAGE SUB-10s

1008

US 11,327,789 B2

1

MERGED INPUT/OUTPUT OPERATIONS
FROM A PLURALITY OF VIRTUAL
MACHINES

This application 1s a national stage application under 35
U.S.C. § 371 of PCT International Application Serial No.
PCT/CN2017/073949, filed Feb. 17, 2017, titled “MERGED
INPUT/OUTPUT OPERATIONS.” The disclosure of this
prior application 1s considered part of (and 1s incorporated
by reference 1n) the disclosure of this application.

FIELD OF THE SPECIFICATION

This disclosure relates 1n general to the field of cloud
computing, and more particularly, though not exclusively to,
a system and method for merged input/output operations.

BACKGROUND

Contemporary computing practice has moved away from
hardware-specific computing and toward “the network 1s the
device.” A contemporary network may include a datacenter
hosting a large number of generic hardware server devices,
contained 1n a server rack, for example, and controlled by a
hypervisor. Each hardware device may run one or more
instances of a virtual device, such as a workload server or
virtual desktop.

In some cases, a virtualized network may also include

network function virtualization (NFV), which provides cer-
tain network functions as virtual appliances. These functions
may be referred to as virtual network functions (VNFs). In
the past, the functions provided by these VNFs may have
been provided by bespoke hardware service appliances.

Thus, 1n a contemporary “cloud” architecture, both net-
work endpoints and network infrastructure may be at least
partially provided 1n a virtualization layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s best understood from the fol-
lowing detailed description when read with the accompany-
ing figures. It 1s emphasized that, in accordance with the
standard practice 1n the industry, various features are not
necessarlly drawn to scale, and are used for illustration
purposes only. Where a scale 1s shown, explicitly or implic-
itly, it provides only one illustrative example. In other
embodiments, the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion.

FIG. 1a 1s a block diagram of a network according to one
or more examples of the present specification.

FIG. 156 1s a block diagram of selected components of a
datacenter i1n the network.

FIG. 2 1s a block diagram of selected components of an
end-user computing device according to one or more
examples of the present specification.

FIG. 3 1s a high-level block diagram of a server according,
to one or more examples of the present specification.

FIG. 4a 1s a block diagram of software-defined network-
ing (SDN) according to one or more examples of the present
specification.

FIG. 4b 15 a block diagram of network function virtual-
ization (NFV) according to one or more examples of the
present specification.

FIG. 5§ 1s a block diagram of a platform architecture
according to one or more examples of the present specifi-
cation.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a block diagram of a processor according to one
or more examples of the present specification.

FIG. 7 1s a block diagram of a datacenter with pooled
storage according to one or more examples of the present
specification.

FIG. 8 1s a block diagram of a datacenter with pooled
storage according to one or more examples of the present
specification.

FIG. 9 1s a tlow chart of a method of handling merged 10
operations according to one or more examples of the present
specification.

FIG. 10 1s a flow chart of a method of adding a new disk
according to one or more examples of the present specifi-
cation.

EMBODIMENTS OF THE DISCLOSURE

The 1following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the present disclosure. Specific examples of com-
ponents and arrangements are described below to simplify
the present disclosure. These are, of course, merely
examples and are not intended to be limiting. Further, the
present disclosure may repeat reference numerals and/or
letters 1n the various examples. This repetition 1s for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and/or
configurations discussed. Different embodiments may have
different advantages, and no particular advantage 1s neces-
sarily required of any embodiment.

Cloud computing realizes both advantages and challenges
for service providers and clients. One of these advantages 1s
flexibility of storage. For example, in a classic hardware
architecture, a computer had one or more hard drives, which
had a fixed and immutable size. Hard drives could be
partitioned or divided, but the only way to change the
available storage space for the hard drive was to replace 1t
with another physical hard drive.

In a virtual computing environment, there 1s much more
flexibility, sometimes referred to as “elasticity.” This may
include elastic networks, elastic compute resources, and
clastic storage. In other words, many different kinds of
resources may be dynamically provisioned as they are
needed, rather than “overbuilding” resources to meet hypo-
thetical future demand that may or may not be actually
realized.

Thus, a virtual machine (VM) 1s provisioned with a virtual
drive (VD), which has a nominal size. But the nominal size
may, in fact, be simply a currently-defined maximum size of
disk allocation. This VD may be providing, for example, a
database or real-time analytics, the size of which can be
highly dynamic over time. For example, a VM may have a
virtual disk with a nominal size of 100 gigabytes (GB),
meaning that up to 100 GB may be dynamically allocated to
that VM from a storage pool. As more of the disk 1s “used,”
more storage space 1s dynamically allocated.

Furthermore, the nominal size of a disk need not be fixed.
If a VM with a 100 GB nominal VD finds that its current
allocation 1s 1nsuflicient, 1t 1s possible to 1ncrease the nomi-
nal size of the VD, such as to 250 GB. The low-level details
of which storage blocks are allocated on which disk are not
visible to the VM and need not be. Rather, those details may
be handled by a storage controller attached to the hypervisor
or virtual machine manager (VMM) that “owns” the VM.

While this flexibility 1s advantageous, 1t does present
some challenges. For example, if a VD has a nominal size

of 250 GB, but 1s currently using only 100 GB, those 100

US 11,327,789 B2

3

GB of data may be allocated to a block of storage on a first
physical disk with 1 TB capacity. That block may also host
storage for other VDs. I the actual usage of the VD increase
to 200 GB, there may be insuflicient room on the first
physical disk to contain the new data. So, the data will need
to be hosted on a second physical disk. While this 1s not a
problem for a well-configured cloud environment, some
inefliciencies may arise.

Two benefits of an elastic cloud architecture include the
flexibility to scale up and scale down resources on demand,
and consistent low-latency performance, which may 1n fact
be guaranteed by contract as a Quality of Service ((QoS) or
service level agreement (SLA) metric.

But these two benefits of elasticity may be 1in tension with
cach other. For example, as an application scales up 1its
storage space, 1t may be required to have the same level of
iput/output (10) performance. Normally 1n an elastic cloud
environment, applications run on a single VM, which shares
the network, compute, and storage resources managed by the
VMM or hypervisor. To provide scale-up and scale-down
flexibility, the VMM may allocate storage blocks 1n rela-
tively small, fixed, fine-grained units, such as 4 kilobytes (4
KB). A large storage allocation will include hundreds, thou-
sands, or millions of such allocations. Ideally, all of these
blocks would be contiguously allocated on a single disk.
This can be realized if the maximum size of the disk 1s
reserved on a single physical device, but this defeats a
benefit of elasticity—the storage pool must be over-built to
account for the maximum possible size of every disk. And
if a VM 1s able to dynamically re-allocate the nominal size
of 1its VD, an additional margin needs to be built 1n for this
possibility.

To truly preserve elasticity, 1t 1s thus inevitable that the
storage allocated for the different VDs will be spread across
different discrete physical devices. And when a disk access
involves 1ssuing 10 operations to numerous physical
devices, 10 overhead increases, thus defeating the low-
latency potential of the cloud architecture.

The storage managed by the VMM may generally include
many backend physical devices grouped into a large
resource pool. Within each VM, the application read/writes
may be relatively contiguous or relatively random. How-
ever, for an individual storage device, hosting storage for
many different VMs, the stream of 10O operations may be
highly random (1.e., noncontiguous), and may include a
large number of small, uncorrelated reads and writes.

While some existing cloud architectures address the
latency 1ssue by 1dentifying specific VMs that receive spe-
cial queueing priority, further advantages can be realized by
providing a generalized queueing solution that lowers
latency for all VM. For example, 1n one embodiment, a
storage coprocessor (SCP), which may be, for example, a
field-programmable gate array (FPGA) or application-spe-
cific integrated circuit (ASIC), can be provisioned with the
VMM. The SCP can allocate a read queue and write queue
for each physical disk in the storage pool. Read and write
requests can be aggregated into the queues, and when the
queue for a disk 1s full, the operations stored 1n the queue are
flushed. Thus, for example, a number of small write opera-
tions can be queued by the SCP, and can then be sent to the
target disk as a single batch. This can alleviate the overhead
incurred by 1ssuing a large number of separate 10 operations
to the disk.

In an embodiment, a timeout may also be defined for each
queue. If the timeout expires without a flush, the queue may
be immediately flushed, thus ensuring that the queue itself
does not become a performance bottleneck.

10

15

20

25

30

35

40

45

50

55

60

65

4

Advantageously, the size of each queue 1s configurable,
and can be automatically optimized by the SCP responsive
to the capabilities and requirements of each disk.

This disclosure leverages the SCP to aggregate and handle
I0s from all VMs as a whole, instead of operating on 10s
from VMs individually. The parent 10 operations from one
VM may break down into several real “sub-10s” on the
physical device based on the fine-grained space management
by VMM. With an SCP, particularly a high-speed FPGA or
ASIC, the 10 operations can be handled quickly and with
awareness ol the preferred size for each storage device.

In operation, the SCP may create the read and write
queues for each physical device, and then receive the real
sub-IO0s from the VMs on a non-discriminating basis. In fact,
the SCP need not be aware of the parent 10 operations that
provided each sub-10. Newly-arriving 10s are merged into
a single larger 10, whose size 1s intelligently configured by
the SCP based on each device’s properties (e.g., preferred
block size, a solid state drive (SSD)’s endurance, and
amplification). The SCP merges the sub-IOs by linking
continuous or overlapping 10s, and then mserting zeroes for
adjacent 10s. The SCP may also pad the overall bufler with
appended zeroes to {ill out its designated size. The buller 1s
then sent to the storage device’s hardware queue to perform
the actual 10 operation.

Advantageously, the use of a dedicated SCP can provide
offloading of many CPU interactions with the storage pool.
For example, the SCP can autonomously optimize for the
write endurance of an SSD, the block size of a particular
device, or for write and space amplification for a specific
device. Thus, performance improvements (particularly with
regard to 10 latency) are realized not only on an individual
VM, but across the datacenter.

The foregoing structure and method 1improve 10 perfor-
mance for all VMs sharing a single physical device pool,
managed by a VMM with an appropriate attached SCP.
Thus, the advantages of an elastic cloud architecture, includ-
ing both tlexibility and low latency, can be simultaneously
achieved.

A system and method for merged mput/output operations
will now be described with more particular reference to the
attached FIGURES. It should be noted that throughout the
FIGURES, certain reference numerals may be repeated to
indicate that a particular device or block 1s wholly or
substantially consistent across the FIGURES. This 1s not,
however, mtended to mmply any particular relationship
between the various embodiments disclosed. In certain
examples, a genus of clements may be referred to by a
particular reference numeral (“widget 10”"), while individual
species or examples of the genus may be referred to by a
hyphenated numeral (*“first specific widget 10-1” and “sec-
ond specific widget 10-27).

FIG. 1a 1s a network-level diagram of a network 100 of
a cloud service provider (CSP) 102 according to one or more
examples of the present specification. In the example of FIG.
1a, network 100 may be configured to enable one or more
enterprise clients 130 to provide services or data to one or
more end users 120, who may operate user equipment 110
to access information or services via external network 172.
This example contemplates an embodiment 1n which a cloud
service provider 102 1s itsell an enterprise that provides
third-party “network as a service” (NaaS) to enterprise client
130. However, this example 1s nonlimiting. Enterprise client
130 and CSP 102 could also be the same or a related entity
in appropriate embodiments.

Enterprise network 170 may be any suitable network or
combination of one or more networks operating on one or

US 11,327,789 B2

S

more suitable networking protocols, including, for example,
a fabric, a local area network, an intranet, a virtual network,
a wide area network, a wireless network, a cellular network,
or the Internet (optionally accessed via a proxy, virtual
machine, or other similar security mechanism) by way of
nonlimiting example. Enterprise network 170 may also
include one or more servers, firewalls, routers, switches,
security appliances, antivirus servers, or other useful net-
work devices, which 1n an example may be virtualized
within datacenter 142. In this illustration, enterprise network
170 1s shown as a single network for stmplicity, but in some
embodiments, enterprise network 170 may include a large
number of networks, such as one or more enterprise intranets
connected to the Internet, and may include datacenters 1n a
plurality of geographic locations. Enterprise network 170
may also provide access to an external network, such as the
Internet, via external network 172. External network 172
may similarly be any suitable type of network.

A datacenter 142 may be provided, for example as a
virtual cluster running 1n a hypervisor on a plurality of
rackmounted blade servers, or as a cluster of physical
servers. Datacenter 142 may provide one or more server
functions, one or more VNFs, or one or more “microclouds”
to one or more tenants 1n one or more hypervisors. For
example, a virtualization environment such as vCenter may
provide the ability to define a plurality of “tenants,” with
cach tenant being functionally separate from each other
tenant, and each tenant operating as a single-purpose micro-
cloud. Each microcloud may serve a distinctive function,
and may 1nclude a plurality of virtual machines (VMs) of
many different flavors. In some embodiments, datacenter
142 may also provide multitenancy, i which a single
instance ol a function may be provided to a plurality of
tenants, with data for each tenant being insulated from data
for each other tenant.

It should also be noted that some functionality of user
equipment 110 may also be provided via datacenter 142. For
example, one microcloud may provide a remote desktop
hypervisor such as a Citrix workspace, which allows end
users 120 to remotely login to a remote enterprise desktop
and access enterprise applications, workspaces, and data. In
that case, UE 110 could be a “thin client” such as a Google
Chromebook, running only a stripped-down operating sys-
tem, and still provide user 120 useful access to enterprise
resources.

One or more computing devices configured as a manage-
ment console 140 may also operate on enterprise network
170. Management console 140 may be a special case of user
equipment, and may provide a user interface for a security
administrator 150 to define enterprise security and network
policies, which management console 140 may enforce on
enterprise network 170 and across client devices 110 and
datacenter 142. In an example, management console 140
may run a server-class operating system, such as Linux,
Unix, or Windows Server. In another case, management
console 140 may be provided as a web interface, on a
desktop-class machine, or via a VM provisioned within
datacenter 142.

Network 100 may communicate across enterprise bound-
ary 104 with external network 172. Enterprise boundary 104
may represent a physical, logical, or other boundary. Exter-
nal network 172 may include, for example, websites, serv-
ers, network protocols, and other network-based services.
CSP 102 may also contract with a third-party security
services provider 190, such as McAfee® or another security
services enterprise, to provide security services to network

100.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

It may be a goal of enterprise clients to securely provide
network services to end users 120 via datacenter 142, as
hosted by CSP 102. To that end, CSP 102 may provide
certain contractual quality of service (QoS) guarantees and/
or service level agreements (SLA). QoS may be a measure
of resource performance, and may include factors such as
availability, jitter, bit rate, throughput, error rates, and
latency, to name just a few. An SLA may be a contractual
agreement that may iclude QoS factors, as well as factors
such as “mean time to recovery” (MTTR) and mean time
between faillure (MTBF). In general, an SLA may be a
higher-level agreement that 1s more relevant to an overall
experience, whereas QoS may be used to measure the
performance of 1individual components. However, this
should not be understood as 1mplying a strict division
between QoS metrics and SLA metrics.

Turning to FIG. 15, to meet contractual QoS and SLA
requirements, CSP 102 may provision some number of
workload clusters 118. In this example, two workload clus-
ters, 118-1 and 118-2 are shown, each providing up to 16
rackmount servers 146 1n a chassis 148. These server racks
may be collocated 1n a single datacenter, or may be located
in different geographic datacenters. Depending on the con-
tractual agreements, some servers 146 may be specifically
dedicated to certain enterprise clients or tenants, while
others may be shared.

Selection of a number of servers to provision 1n a data-
center 1s a nontrivial exercise for CSP 102. CSP 102 may
wish to ensure that there are enough servers to handle
network capacity, and to provide for anticipated device
failures over time. However, provisioning too many servers
146 can be costly both 1n terms of hardware cost, and 1n
terms of power consumption. Thus, Ideally, CSP 102 pro-
visions enough servers 146 to service all of 1ts enterprise
clients 130 and meet contractual QoS and SLA benchmarks,
but not have wasted capacity.

The various devices 1n datacenter 142 may be connected
to each other via a switching fabric 174, which may include
one or more high speed routing and/or switching devices. In
some cases, switching fabric 174 may be hierarchical, with,
for example, switching fabric 174-1 handling workload
cluster 118-1, switching fabric 174-2 handling workload
cluster 118-2, and switching fabric 174-3. This simple
hierarchy 1s shown to illustrate the principle of hierarchical
switching fabrics, but 1t should be noted that this may be
significantly simplified compared to real-life deployments.
In many cases, the hierarchy of switching fabric 174 may be
multifaceted and much more involved. Common network
architectures include hub-and-spoke architectures, and leat-
spine architectures.

The fabric 1tself may be provided by any suitable inter-
connect, such as Intel® OmniPath™, TrueSacle™, Ultra
Path Interconnect (UPI) (formerly called QPI or K'TT), STL,
Ethernet, PCI, or PCle, to name just a few. Some of these
will be more suitable for certain types of deployments than
others, and selecting an appropriate fabric for the instant
application 1s an exercise of ordinary skill.

FIG. 2 1s a block diagram of client device 200 according
to one or more examples of the present specification. Client
device 200 may be any suitable computing device. In
vartous embodiments, a “computing device” may be or
comprise, by way of nonlimiting example, a computer,
workstation, server, mainirame, virtual machine (whether
emulated or on a “bare-metal” hypervisor), embedded com-
puter, embedded controller, embedded sensor, personal digi-
tal assistant, laptop computer, cellular telephone, IP tele-
phone, smart phone, tablet computer, convertible tablet

US 11,327,789 B2

7

computer, computing appliance, network applance,
receiver, wearable computer, handheld calculator, or any
other electronic, microelectronic, or microelectromechani-
cal device for processing and communicating data. Any
computing device may be designated as a host on the
network. Each computing device may refer to itself as a
“local host,” while any computing device external to 1t may
be designated as a “remote host.” In particular, user equip-
ment 110 may be a client device 200, and 1n one particular
example, client device 200 1s a virtual machine configured
for remote direct memory access (RDMA), as described
herein.

Client device 200 includes a processor 210 connected to
a memory 220, having stored therein executable instructions
for providing an operating system 222 and at least software
portions of an application 224. Other components of client
device 200 include a storage 250, network interface 260, and
peripheral interface 240. This architecture i1s provided by
way of example only, and 1s intended to be nonexclusive and
nonlimiting. Furthermore, the various parts disclosed are
intended to be logical divisions only, and need not neces-
sarily represent physically separate hardware and/or soft-
ware components. Certain computing devices provide main
memory 220 and storage 250, for example, 1n a single
physical memory device, and in other cases, memory 220
and/or storage 250 are functionally distributed across many
physical devices, such as in the case of a datacenter storage
pool or memory server. In the case of virtual machines or
hypervisors, all or part of a function may be provided 1n the
form of software or firmware runmng over a virtualization
layer to provide the disclosed logical function. In other
examples, a device such as a network interface 260 may
provide only the minimum hardware 1nterfaces necessary to
perform 1ts logical operation, and may rely on a software
driver to provide additional necessary logic. Thus, each
logical block disclosed herein 1s broadly intended to include
one or more logic elements configured and operable for
providing the disclosed logical operation of that block.

As used throughout this specification, “logic elements”
may include hardware (including, for example, a program-
mable software, ASIC, or FPGA), external hardware (digi-
tal, analog, or mixed-signal), software, reciprocating soit-
ware, services, drivers, interfaces, components, modules,
algorithms, sensors, components, firmware, microcode, pro-
grammable logic, or objects that can coordinate to achieve
a logical operation. Furthermore, some logic elements are
provided by a tangible, nontransitory computer-readable
medium having stored thereon executable instructions for
istructing a processor to perform a certain task. Such a
nontransitory medium could include, for example, a hard
disk, solid state memory or disk, read-only memory (ROM),
persistent fast memory (PFM) (e.g., Intel® 3D Crosspoint),
external storage, redundant array of independent disks
(RAID), redundant array of independent nodes (RAIN),
network-attached storage (NAS), optical storage, tape drive,
backup system, cloud storage, or any combination of the
foregoing by way of nonlimiting example. Such a medium
could also 1nclude 1nstructions programmed into an FPGA,
or encoded 1n hardware on an ASIC or processor.

In an example, processor 210 1s communicatively coupled
to memory 220 via memory bus 270-3, which may be a
direct memory access (DMA) bus, by way ol example.
However, other memory architectures are possible, includ-
ing ones in which memory 220 communicates with proces-
sor 210 via system bus 270-1 or some other bus. In data-
center environments, memory bus 270-3 may be, or may
include, the fabric.

10

15

20

25

30

35

40

45

50

55

60

65

8

Processor 210 may be communicatively coupled to other
devices via a system bus 270-1. As used throughout this
specification, a “bus” Includes any wired or wireless inter-
connection line, network, connection, fabric, bundle, single
bus, multiple buses, crossbar network, single-stage network,
multistage network, or other conduction medium operable to
carry data, signals, or power between parts of a computing
device, or between computing devices. It should be noted
that these uses are disclosed by way of nonlimiting example
only, and that some embodiments may omit one or more of
the foregoing buses, while others may employ additional or
different buses.

In various examples, a “processor”’ may include any
combination of logic elements operable to execute nstruc-
tions, whether loaded from memory, or implemented
directly 1n hardware, including, by way of nonlimiting
example, a microprocessor, digital signal processor (DSP),
field-programmable gate array (FPGA), graphics processing
unmit (GPU), programmable logic array (PLA), application-
specific integrated circuit (ASIC), or virtual machine pro-
cessor. In certain architectures, a multicore processor may be
provided, in which case processor 210 may be treated as
only one core of a multicore processor, or may be treated as
the entire multicore processor, as appropriate. In some
embodiments, one or more coprocessors may also be pro-
vided for specialized or support functions.

Processor 210 may be connected to memory 220 1n a
DMA configuration via bus 270-3. To simplify this disclo-
sure, memory 220 1s disclosed as a single logical block, but
in a physical embodiment may include one or more blocks
of any suitable volatile or nonvolatile memory technology or
technologies, including, for example, double date rate ran-
dom access memory (DDR RAM), static random access
memory (SRAM), dynamic random access memory
(DRAM), persistent fast memory (PFM) (such as Intel® 31D
Crosspoint (3DXP)), cache, L1 or L2 memory, on-chip
memory, registers, tlash, read-only memory (ROM), optical
media, virtual memory regions, magnetic or tape memory, or
similar. Memory 220 may be provided locally, or may be
provided elsewhere, such as in the case of a datacenter with
a 3DXP memory server. In certain embodiments, memory
220 may comprise a relatively low-latency volatile main
memory, while storage 250 may comprise a relatively
higher-latency nonvolatile memory. However, memory 220
and storage 250 need not be physically separate devices, and
in some examples may represent simply a logical separation
of function. These lines can be particularly blurred 1n cases
where the only long-term memory 1s a batter-backed RAM,
or where the main memory 1s provided as PFM. It should
also be noted that although DMA 1s disclosed by way of
nonlimiting example, DMA 1s not the only protocol consis-
tent with this specification, and that other memory architec-
tures are available.

Operating system 222 may be provided, though 1t 1s not
necessary 1n all embodiments. For example, some embedded
systems operate on “bare metal” for purposes of speed,
elliciency, and resource preservation. However, 1n contem-
porary systems, 1t 1s common for even minimalist embedded
systems to include some kind of operating system. Where it
1s provided, operating system 222 may include any appro-
priate operating system, such as Microsoit Windows, Linux,
Android, Mac OSX, Apple 10S, Umx, or similar. Some of
the foregoing may be more often used on one type of device
than another. For example, desktop computers or engineer-
ing workstations may be more likely to use one of Microsofit
Windows, Linux, Unix, or Mac OSX. Laptop computers,
which are usually a portable ofl-the-shelf device with fewer

US 11,327,789 B2

9

customization options, may be more likely to run Microsoft
Windows or Mac OSX. Mobile devices may be more likely
to run Android or 10S. Embedded devices often use an
embedded Linux or a dedicated embedded OS such as
VxWorks. However, these examples are not mtended to be
limiting.

Storage 250 may be any species of memory 220, or may
be a separate nonvolatile memory device. Storage 250 may
include one or more nontransitory computer-readable medi-
ums, including by way of nonlimiting example, a hard drive,
solid-state drive, external storage, redundant array of inde-
pendent disks (RAID), redundant array of independent
nodes (RAIN), network-attached storage, optical storage,
tape drive, backup system, cloud storage, or any combina-
tion of the foregoing. Storage 250 may be, or may include
therein, a database or databases or data stored in other
configurations, and may include a stored copy of operational
soltware such as operating system 222 and software portions
of application 224. In some examples, storage 250 may be
a nonftransitory computer-readable storage medium that
includes hardware instructions or logic encoded as processor
instructions or on an ASIC. Many other configurations are
also possible, and are intended to be encompassed within the
broad scope of this specification.

Network interface 260 may be provided to communica-
tively couple client device 200 to a wired or wireless
network. A “network,” as used throughout this specification,
may include any communicative platform or medium oper-
able to exchange data or information within or between
computing devices, including, by way of nonlimiting
example, Ethernet, WiF1, a fabric, an ad-hoc local network,
an Internet architecture providing computing devices with
the ability to electronically interact, a plain old telephone
system (POTS), which computing devices could use to
perform transactions in which they may be assisted by
human operators or in which they may manually key data
into a telephone or other suitable electronic equipment, any
packet data network (PDN) offering a communications
interface or exchange between any two nodes 1n a system, or
any local area network (LAN), metropolitan area network
(MAN), wide area network (WAN), wireless local area
network (WLAN), virtual private network (VPN), intranet,
or any other appropriate architecture or system that facili-
tates communications in a network or telephonic environ-
ment. Note that in certain embodiments, network interface
260 may be, or may include, a host fabric interface (HFI).

Application 224, 1n one example, 1s operable to carry out
computer-implemented methods as described 1n this speci-
fication, including performing functions that require disk
access. As described above, these parent I0s may be routed
via a hypervisor to a storage pool, where they are translated
into actual 10 operations on a physical disk. Application 224
may include one or more tangible nontransitory computer-
readable mediums having stored thereon executable 1nstruc-
tions operable to 1nstruct a processor to provide an applica-
tion 224. Application 224 may also include a processor, with
corresponding memory instructions that instruct the proces-
sor to carry out the desired method. As used throughout this
specification, an “engine’” includes any combination of one
or more logic elements, of similar or dissimilar species,
operable for and configured to perform one or more methods
or functions of the engine. In some cases, application 224
may include a special integrated circuit designed to carry out
a method or a part thereof, and may also include software
instructions operable to instruct a processor to perform the
method. In some cases, application 224 may run as a
“daemon” process. A “daemon” may include any program or

10

15

20

25

30

35

40

45

50

55

60

65

10

series ol executable istructions, whether implemented 1n
hardware, software, firmware, or any combination thereof
that runs as a background process, a terminate-and-stay-
resident program, a service, system extension, control panel,
bootup procedure, basic input/output system (BIOS) sub-
routine, or any similar program that operates without direct
user interaction. In certain embodiments, daegmon processes
may run with elevated privileges in a “driver space™ asso-
ciated with ring 0, 1, or 2 1n a protection ring architecture.
It should also be noted that application 224 may also include
other hardware and software, including configuration files,
registry entries, and interactive or user-mode software by
way ol nonlimiting example.

In one example, application 224 includes executable
instructions stored on a nontransitory medium operable to
perform a method according to this specification. At an
appropriate time, such as upon booting client device 200 or
upon a command from operating system 222 or a user 120,
processor 210 may retrieve a copy of the instructions from
storage 250 and load 1t into memory 220. Processor 210 may
then 1teratively execute the instructions of application 224 to
provide the desired method.

Peripheral interface 240 may be configured to interface
with any auxiliary device that connects to client device 200
but that 1s not necessarily a part of the core architecture of
client device 200. A peripheral may be operable to provide
extended functionality to client device 200, and may or may
not be wholly dependent on client device 200. In some cases,
a peripheral may be a computing device in 1ts own right.
Peripherals may include mput and output devices such as
displays, terminals, printers, keyboards, mice, modems, data
ports (e.g., serial, parallel, USB, Firewire, or similar), net-
work controllers, optical media, external storage, sensors,
transducers, actuators, controllers, data acquisition buses,
cameras, microphones, speakers, or external storage by way
of nonlimiting example.

In one example, peripherals include display adapter 242,
audio driver 244, and put/output (10) driver 246. Display
adapter 242 may be configured to provide a human-readable
visual output, such as a command-line interface (CLI) or
graphical desktop such as Microsoit Windows, Apple OSX
desktop, or a Unix/Linux X Window System-based desktop.
Display adapter 242 may provide output in any suitable
format, such as a coaxial output, composite video, compo-
nent video, VGA, or digital outputs such as DVI or HDMI,
by way of nonlimiting example. In some examples, display
adapter 242 may include a hardware graphics card, which
may have 1ts own memory and its own graphics processing
unit (GPU). Audio driver 244 may provide an interface for
audible sounds, and may include 1n some examples a hard-
ware sound card. Sound output may be provided 1n analog

(such as a 3.5 mm stereo jack), component (“RCA”) stereo,
or in a digital audio format such as S/PDIF, AES3, AES47,

HDMI, USB, Bluetooth or Wi-F1 audio, by way of nonlim-
iting example. Note that in embodiments where client device
200 1s a virtual machine, peripherals may be provided
remotely by a device used to access the virtual machine.
FIG. 3 1s a block diagram of a server-class device 300
according to one or more examples of the present specifi-
cation. Server 300 may be any suitable computing device, as
described 1n connection with FIG. 2. In general, the defini-
tions and examples of FIG. 2 may be considered as equally
applicable to FIG. 3, unless specifically stated otherwise.
Server 300 1s described herein separately to 1llustrate that 1n
certain embodiments, logical operations may be divided
along a client-server model, wherein client device 200

US 11,327,789 B2

11

provides certain localized tasks, while server 300 provides
certain other centralized tasks.

Note that server 300 of FIG. 3 1llustrates, in particular, the
classic “Von Neumann Architecture™ aspects of server 300,
with a focus on functional blocks. Other FIGURES herein
(e.g., FIGS. 4a, 4b, and 5 below) may 1llustrate other aspects
of a client or server device, with more focus on virtualization
aspects. These 1llustrated embodiments are not intended to
be mutually exclusive or to infer a necessary distinction.
Rather, the various views and diagrams are intended to
illustrate diflerent perspectives and aspects of these devices.

In a particular example, server device 300 may be a
memory server as illustrated herein.

Server 300 includes a processor 310 connected to a
memory 320, having stored therein executable instructions
for providing an operating system 322 and at least software
portions of a memory hypervisor 324. Other components of
server 300 include a storage 350, and host fabric interface

360. As described 1n FIG. 2, each logical block may be
provided by one or more similar or dissimilar logic ele-
ments.

In an example, processor 310 1s communicatively coupled
to memory 320 via memory bus 370-3, which may be, for
example, a direct memory access (DMA) bus. Processor 310
may be communicatively coupled to other devices via a
system bus 370-1.

Processor 310 may be connected to memory 320 in a
DMA configuration via DMA bus 370-3, or via any other
suitable memory configuration. As discussed in FIG. 2,
memory 320 may include one or more logic elements of any
suitable type. Memory 320 may include a persistent fast
memory, such as 3DXP or similar.

Storage 350 may be any species of memory 320, or may
be a separate device, as described in connection with storage
250 of FIG. 2. Storage 350 may be, or may include therein,
a database or databases or data stored in other configura-
tions, and may include a stored copy of operational software
such as operating system 322 and software portions of
memory hypervisor 324.

Host fabric interface 360 may be provided to communi-
catively couple server 300 to a wired or wireless network,
including a host fabric. A host fabric may include a switched
interface for communicatively coupling nodes in a cloud or
cloud-like environment. HFI 360 1s used by way of example
here, though any other suitable network interface (as dis-
cussed 1n connection with network interface 260) may be
used.

Memory hypervisor 324 is an engine as described 1n FIG.
2 and, 1 one example, includes one or more logic elements
operable to carry out computer-implemented methods as
described 1n this specification. Software portions of memory
hypervisor 324 may run as a daemon process.

Memory hypervisor 324 may include one or more non-
transitory computer-readable mediums having stored
thereon executable instructions operable to struct a pro-
cessor to provide memory hypervisor 324. At an appropriate
time, such as upon booting server 300 or upon a command
from operating system 322 or a user 120 or security admin-
istrator 150, processor 310 may retrieve a copy of memory
hypervisor 324 (or soitware portions thereol) from storage
350 and load 1t into memory 320. Processor 310 may then
iteratively execute the instructions of memory hypervisor
324 to provide the desired method.

FI1G. 4a 1s a block diagram of a software-defined network
400. In software defined networking (SDN), a data plane 1s
separated from a control plane to realize certain advantages.

10

15

20

25

30

35

40

45

50

55

60

65

12

SDN 1s only one flavor of virtualization, shown here to
illustrate one option for a network setup.

Network function virtualization, illustrated in FIG. 454, 1s
a second nonlimiting flavor of network virtualization, often
treated as an add-on or improvement to SDN, but sometimes
treated as a separate entity. NFV was originally envisioned
as a method for providing reduced capital expenditure
(Capex) and operating expenses (Opex) for telecommuni-
cation services, which relied heavily on fast, single purpose
service appliances. One Important feature of NFV 1s replac-
ing proprietary, special-purpose hardware appliances with
virtual appliances running on commercial ofl-the-shelf
(COTS) hardware within a virtualized environment. In addi-
tion to Capex and Opex savings, NFV provides a more agile
and adaptable network. As network loads change, virtual
network functions (VINFs) can be provisioned (“spun up”) or
removed (“spun down”) to meet network demands. For
example, 1 times of high load, more load balancer VNFs
may be spun up to distribute traflic to more workload servers
(which may themselves be virtual machines). In times where
more suspicious traflic 1s experienced, additional firewalls or
deep packet inspection (DPI) appliances may be needed.

Because NFV started out as a telecommunications fea-
ture, many NFV instances are focused on telecommunica-
tions. However, NFV 1s not limited to telecommunication
services. In a broad sense, NFV includes one or more VNFs
running within a network function virtualization infrastruc-
ture (NFVI). Often, the VNFs are in-line service functions
that are separate from workload servers or other nodes (in
many cases, workload-type functions were long since vir-
tualized). These VNFs can be chained together into a service
chain, which may be defined by a virtual subnetwork, and
which may include a senal string of network services that
provide behind-the-scenes work, such as security, logging,
billing, and similar. In one example, an 1coming packet
passes through a chain of services 1n a service chain, with
one or more of the services being provided by a VNE,
whereas historically each of those functions may have been
provided by bespoke hardware 1n a physical service appli-
ance. Because NFVs can be spun up and spun down to meet
demand, the allocation of hardware and other resources can
be made more ellicient. Processing resources can be allo-
cated to meet the greatest demand, whereas with physical
service appliances, any unused capacity on an appliance 1s
simply wasted, and increasing capacity to meet demand
required plugging 1n a physical (expensive) bespoke service
appliance.

The 1llustrations of FIGS. 4a and 45 may be considered
more functional, while 1n comparison the 1llustration of FIG.
1 may be more of a high-level logical layout of the network.
It should be understood, however, that SDN 400 (FI1G. 4a),
NEFVI 404 (FIG. 4b), and enterprise network 100 may be the
same network, or may be separate networks.

In FIG. 4a, SDN 400 may include an SDN controller 410,
a plurality of network devices 430, and a plurality of host
devices 440. Some or all of SDN controller 410, network
devices 430, and host devices 440 may be embodied within
workload cluster 142 of FIG. 1, or may otherwise form a part
of enterprise network 170.

SDN 400 15 controlled by an SDN controller 410. SDN
controller 410 1s communicatively coupled to a plurality of
network devices 430. Specifically, ND1 430-1, ND2 430-2,
and ND35 430-5 are directly communicatively coupled to
SDN controller 410. Network devices and ND3 430-3 and
ND4 430-4 are not directly coupled to SDN controller 410,
but rather coupled via the intermediate devices, such as ND2
430-2, and NDS5 430-5.

US 11,327,789 B2

13

Some network devices 430 also communicatively couple

directly to host devices 440. Specifically, network device
ND1 directly couples to host A 440-1, which has IP address

10.0.0.10, and MAC address FA:16:3:01:61:8. Network
device ND2 430-2 directly couples to host B 440-2, which
has IP address 10.0.0.20, and MAC address FA:16:3:01:63:
B3. Network device ND5 430-35 directly couples to host D
440-3, which has IP address 10.0.0.30, and MAC address
FA:16:3:01:54:83.

Network devices 430 may be configured to perform a
variety of network functions, such as, by way of nonlimiting,
example, load-balancing, firewall, deep packet inspection
(DPI), DNS, antivirus, or any other suitable network func-
tion. The particular arrangement of 1nterconnections
between network devices 430 and from network devices 430
to host devices 440 may be determined by the particular
network configuration and needs. Thus, the specific configu-
ration of FIG. 4a should be understood to be an 1illustrative
example only.

Each network device 430 may have a plurality of 1ngress
and or egress interfaces, such as physical Ethernet or fabric
ports. In an example, each interface may have a label or new
name, such as P1, P2, P3, P4, P5, and so on. Thus, certain
aspects of the network layout can be determined by inspect-
ing which devices are connected on which interface. For
example, network device ND1 430-1 has an ingress interface
for receiving instructions and communicating with SDN
controller 410. ND1 430-1 also has an interface P1 com-
municatively coupled to host A 440-1. ND1 430-1 has
interface P2 that 1s communicatively coupled to ND2 430-2.
In the case of ND2 430-2, 1t also couples to ND1 430-1 on
its own 1nterface P2, and couples to host B 440-2 wvia
interface P1. ND2 430-2 communicatively couples to inter-
mediate devices ND3 430-3 and ND4 430-4 via interfaces
P3 and P4 respectively. Additional interface definitions are
visible throughout the figure.

A tflow table may be defined for traflic as 1t tlows from one
interface to another. This flow table 1s used so that a network
device, such as ND2 430-2 can determine, after receiving a
packet, where to send 1t next.

For example, the following tlow tables may be defined for

ND1 430-1-ND4 430-4.

TABLE 1

ND1 Flow Rule

Ingress Source Source
I/'F MAC Destination Mac IP Dest. I[P Action
P1 ANY fa:16:3e:01:54:a3 ANY 10.0.0.30 P2
TABLE 2
ND2 Flow Rule
Ingress Source Source
I/'F MAC Destination Mac IP Dest. I[P Action
P2 ANY fa:16:3e:01:54:a3 ANY 10.0.0.30 P4
TABLE 3
ND3 Flow Rule
Ingress Source Source
I/F MAC Destination Mac 1P Dest. I[P Action
P1 ANY fa:16:3e:01:54:a3 ANY 10.0.0.30 P3

10

15

20

25

30

35

40

45

50

55

60

65

14
TABLE 4
ND4 Flow Rule
Ingress Source Source
I'F MAC Destination Mac 1P Dest. I[P Action
P3 ANY fa:16:3e:01:54:a3 ANY 10.0.0.30 P1

FIG. 45 15 a block diagram of a network function virtu-
alization (NFV) architecture according to one or more
examples of the present specification. Like SDN, NFV 1s a
subset of network virtualization. Thus, the network as 1llus-
trated i FIG. 45 may be defined instead of or in addition to
the network of FIG. 4a. In other words, certain portions of
the network may rely on SDN, while other portions (or the
same portions) may rely on NFV.

In the example of FIG. 4b, an NFV orchestrator 402

manages a number of the VNFs running on 1n an NFVI 404,
NFV requires nontrivial resource management, such as
allocating a very large pool of compute resources among
appropriate numbers of 1nstances of each VNF, managing
connections between VNFs, determining how many
instances of each VNF to allocate, and managing memory,
storage, and network connections. This may require com-
plex software management, thus the need for NFV orches-
trator 402.

Note that NFV orchestrator 402 1tself 1s usually virtual-
ized (rather than a special-purpose hardware appliance).
NFV orchestrator 402 may be integrated within an existing
SDN system, wherein an operations support system (OSS)
manages the SDN. This may interact with cloud resource
management systems (e.g., OpenStack) to provide NEFV
orchestration. There are many commercially-available, ofl-
the-shell, proprietary, and open source solutions for NFV
orchestration and management (sometimes referred to as
NEFV MANO). In addition to NFV orchestrator 402, NFV
MANO may also include functions such as virtualized
infrastructure management (VIM) and a VNF manager.

An NFVI 404 may include the hardware, software, and
other infrastructure to enable VNFs to run. This may
include, for example, a rack or several racks of blade or slot
servers (including, e.g., processors, memory, and storage),
one or more datacenters, other hardware resources distrib-
uted across one or more geographic locations, hardware
switches, network interfaces. An NFVI 404 may also include
the soitware architecture that enables hypervisors to run and
be managed by NFV orchestrator 402. NFVI 402 may
include NFVI points of presence (NFVI-PoPs), where VNFs
are deployed by the operator.

Running on NFVI 404 are a number of virtual machines,
cach of which 1n this example 1s a VNF providing a virtual
service appliance. These include, as nonlimiting and 1llus-
trative examples, VNF 1 410, which 1s a firewall, VNF 2
412, which 1s an intrusion detection system, VNF 3 414,
which 1s a load balancer, VNF 4 416, which 1s a router, VNF
5 418, which 1s a session border controller, VNF 6 420,
which 1s a deep packet inspection (DPI) service, VNF 7 422,
which 1s a network address translation (NAT) module, VNF
8 424, which provides call security association, and VNF 9
426, whlch 1s a second load balancer spun up to meet
increased demand.

Firewall 410 1s a security appliance that monitors and
controls the traflic (both mmcoming and outgoing), based on
matching traflic to a list of “firewall rules.” Firewall 410 may
be a barrier between a relatively trusted (e.g., internal)
network, and a relatively untrusted network (e.g., the Inter-

US 11,327,789 B2

15

net). Once trailic has passed inspection by firewall 410, 1t
may be forwarded to other parts of the network.

Intrusion detection 412 monitors the network for mali-
cious activity or policy violations. Incidents may be reported
to security administrator 150, or collected and analyzed by
a security imnformation and event management (SIEM) sys-
tem. In some cases, intrusion detection 412 may also include
antivirus or antimalware scanners.

Load balancers 414 and 426 may farm traflic out to a
group of substantially identical workload servers to distrib-
ute the work 1n a fair fashion. In one example, a load
balancer provisions a number of trathc “buckets,” and
assigns each bucket to a workload server. Incoming traflic 1s
assigned to a bucket based on a factor, such as a hash of the
source 1P address. Because the hashes are assumed to be
tairly evenly distributed, each workload server receives a
reasonable amount of traffic.

Router 416 forwards packets between networks or sub-
networks. For example, router 416 may include one or more
ingress interfaces, and a plurality of egress interfaces, with
cach egress interface being associated with a resource,
subnetwork, virtual private network, or other division. When
traflic comes 1n on an ingress interface, router 416 deter-
mines what destination 1t should go to, and routes the packet
to the appropriate egress interface.

Session border controller 418 controls voice over IP
(VoIP) signaling, as well as the media streams to set up,
conduct, and terminate calls. In this context, “session” refers
to a communication event (e.g., a “call”). “Border” refers to
a demarcation between two different parts ol a network
(stmilar to a firewall).

DPI appliance 420 provides deep packet inspection,
including examining not only the header, but also the content
of a packet to search for potentially unwanted content
(PUC), such as protocol non-compliance, malware, viruses,
spam, or intrusions.

NAT module 422 provides network address translation
services to remap one IP address space into another (e.g.,
mapping addresses within a private subnetwork onto the
larger Internet).

Call security association 424 creates a security association
tor a call or other session (see session border controller 418
above). Maintaining this security association may be critical,
as the call may be dropped if the security association 1s
broken.

The illustration of FIG. 4 shows that a number of VNFs
have been provisioned and exist within NFVI 404, This
figure does not necessarily 1illustrate any relationship
between the VNFs and the larger network.

FIG. 3§ illustrates a block diagram of components of a
computing plattorm 500 according to one or more examples
of the present specification. In the embodiment depicted,
computer platform 500 includes a plurality of platforms 502
and system management platform 506 coupled together
through network 508. In other embodiments, a computer
system may include any suitable number of (1.e., one or
more) platforms. In some embodiments (e.g., when a com-
puter system only includes a single platform), all or a portion
of the system management platform 506 may be included on
a platform 502. A platform 502 may include platform logic
510 with one or more central processing units (CPUs) 512,
memories 314 (which may include any number of diflerent
modules), chipsets 316, communication interfaces 318, and
any other suitable hardware and/or software to execute a
hypervisor 520 or other operating system capable of execut-
ing workloads associated with applications running on plat-
form 3502. In some embodiments, a platform 502 may

5

10

15

20

25

30

35

40

45

50

55

60

65

16

function as a host platform for one or more guest systems
522 that invoke these applications. Platform 500 may rep-
resent any suitable computing environment, such as a high
performance computing environment, a datacenter, a com-
munications service provider inirastructure (e.g., one or
more portions of an evolved packet core), an mm-memory
computing environment, a computing system of a vehicle
(e.g., an automobile or airplane), an Internet of Things
environment, an idustrial control system, other computing
environment, or combination thereof.

In various embodiments of the present disclosure, accu-
mulated stress and/or rates of stress accumulated to a
plurality of hardware resources (e.g., cores and uncores) are
monitored and entities (e.g., system management platform
506, hypervisor 520, or other operating system) of computer
plattorm 500 may assign hardware resources of platform
logic 510 to perform workloads 1n accordance with the stress
information. For example, system management platform
506, hypervisor 520 or other operating system, or CPUs 512
may determine one or more cores to schedule a workload
onto based on the stress information. In some embodiments,
seli-diagnostic capabilities may be combined with the stress
monitoring to more accurately determine the health of the
hardware resources. Such embodiments may allow optimi-
zation 1 deployments including network function virtual-
ization (NFV), software defined networking (SDN), or mis-
sion critical applications. For example, the stress
information may be consulted during the 1nitial placement of
virtual network functions (VNFs) or for migration from one
plattorm to another in order to improve reliability and
capacity utilization.

Each platform 502 may include platform logic 510. Plat-
form logic 510 comprises, among other logic enabling the
functionality of platform 502, one or more CPUs 512,
memory 514, one or more chipsets 5316, and communication
interface 518. Although three platforms are 1llustrated, com-
puter platform 500 may include any suitable number of
platforms. In various embodiments, a platform 3502 may
reside on a circuit board that 1s installed in a chassis, rack,
or other suitable structure that comprises multiple platiorms
coupled together through network 508 (which may com-
prise, €.g., a rack or backplane switch).

CPUs 512 may each comprise any suitable number of
processor cores and supporting logic (e.g., uncores). The
cores may be coupled to each other, to memory 514, to at
least one chipset 516, and/or to communication interface
518, through one or more controllers residing on CPU 612
and/or chipset 516. In particular embodiments, a CPU 612 1s
embodied within a socket that 1s permanently or removably
coupled to platform 3502. CPU 612 1s described in further
detail below in connection with FIG. 2. Although four CPUs
are shown, a platform 502 may include any suitable number
of CPUs.

Memory 514 may comprise any form of volatile or
nonvolatile memory including, without limitation, magnetic
media (e.g., one or more tape drives), optical media, random
access memory (RAM), read-only memory (ROM), flash
memory, removable media, or any other suitable local or
remote memory component or components. Memory 514
may be used for short, medium, and/or long term storage by
platform 502. Memory 514 may store any suitable data or
information utilized by platform logic 510, including sofit-
ware embedded 1 a computer readable medium, and/or
encoded logic incorporated in hardware or otherwise stored
(e.g., lirmware). Memory 514 may store data that 1s used by
cores of CPUs 512. In some embodiments, memory 514 may
also comprise storage for mnstructions that may be executed

US 11,327,789 B2

17

by the cores of CPUs 512 or other processing elements (e.g.,
logic resident on chipsets 516) to provide functionality
associated with the manageability engine 526 or other
components of platform logic 510. Additionally or alterna-
tively, chipsets 516 may each comprise memory that may
have any of the characteristics described herein with respect
to memory 514. Memory 514 may also store the results
and/or intermediate results of the various calculations and
determinations performed by CPUs 312 or processing ele-
ments on chipsets 516. In various embodiments, memory
514 may comprise one or more modules of system memory
coupled to the CPUs through memory controllers (which
may be external to or integrated with CPUs 512). In various
embodiments, one or more particular modules of memory
514 may be dedicated to a particular CPU 612 or other
processing device or may be shared across multiple CPUs
512 or other processing devices.

In various embodiments, memory 314 may store stress
information (such as accumulated stress values associated
with hardware resources of platform logic 310 in nonvolatile
memory, such that when power is lost, the accumulated
stress values are maintained). In particular embodiments, a
hardware resource may comprise nonvolatile memory (e.g.,
on the same die as the particular hardware resource) for
storing the hardware resource’s accumulated stress value.

A platform 502 may also include one or more chipsets 516
comprising any suitable logic to support the operation of the
CPUs 512. In various embodiments, chipset 516 may reside
on the same die or package as a CPU 612 or on one or more
different dies or packages. Each chipset may support any
suitable number of CPUs 512. A chipset 516 may also
include one or more controllers to couple other components
of platform logic 510 (e.g., communication interface 518 or
memory 514) to one or more CPUs. Additionally or alter-
natively, the CPUs 512 may include integrated controllers.
For example, communication interface 518 could be coupled
directly to CPUs 3512 via integrated 10 controllers resident
on each CPU.

In the embodiment depicted, each chipset 516 also
includes a manageability engine 526. Manageability engine
526 may include any suitable logic to support the operation
of chipset 5316. In a particular embodiment, manageability
engine 526 (which may also be referred to as an innovation
engine) 1s capable of collecting real-time telemetry data
from the chipset 516, the CPU(s) 512 and/or memory 514
managed by the chipset 516, other components of platform
logic 510, and/or various connections between components
of platform logic 510. In various embodiments, the telem-
etry data collected includes the stress information described
herein.

In various embodiments, the manageability engine 526
operates as an out-of-band asynchronous compute agent
which 1s capable of interfacing with the various elements of
platiorm logic 510 to collect telemetry data with no or
mimmal disruption to running processes on CPUs 512. For
example, manageability engine 526 may comprise a dedi-
cated processing element (e.g., a processor, controller, or
other logic) on chipset 516 which provides the functionality
of manageability engine 526 (e.g., by executing software
instructions), thus conserving processing cycles of CPUs
512 for operations associated with the workloads performed
by the platform logic 510. Moreover, the dedicated logic for
the manageability engine 526 may operate asynchronously
with respect to the CPUs 512 and may gather at least some
of the telemetry data without increasing the load on the

CPUs.

10

15

20

25

30

35

40

45

50

55

60

65

18

The manageability engine 526 may process telemetry data
it collects (specific examples of the processing of stress
information will be provided herein). In various embodi-
ments, manageability engine 526 reports the data it collects
and/or the results of 1ts processing to other elements 1n the
computer system, such as one or more hypervisors 520 or
other operating systems and/or system management soit-
ware (which may run on any suitable logic such as system
management platform 506). In some embodiments, the
telemetry data 1s updated and reported periodically to one or
more of these entities. In particular embodiments, a critical
event such as a core that has accumulated an excessive
amount of stress may be reported prior to the normal interval
for reporting telemetry data (e.g., a notification may be sent
immediately upon detection).

In various embodiments, a manageability engine 526 may
include programmable code configurable to set which
CPU(s) 512 a particular chipset 516 will manage and/or
which telemetry data will be collected.

Chipsets 516 also each include a communication interface
528. Communication interface 3528 may be used for the
communication of signaling and/or data between chipset 516
and one or more IO devices, one or more networks 508,
and/or one or more devices coupled to network 508 (e.g.,
system management platform 506). For example, commu-
nication interface 528 may be used to send and receive
network traflic such as data packets. In a particular embodi-
ment, communication interface 528 comprises one or more
physical network interface controllers (NICs), also known as
network interface cards or network adapters. A NIC may
include electronic circuitry to communicate using any suit-
able physical layer and data link layer standard such as

Ethernet (e.g., as defined by a IEEE 802.3 standard), Fibre
Channel, InfiniBand, Wi-Fi, or other suitable standard. A
NIC may include one or more physical ports that may couple
to a cable (e.g., an Ethernet cable). A NIC may enable
communication between any suitable element of chipset 516
(e.g., manageability engine 526 or switch 330) and another
device coupled to network 508. In some embodiments,
network 508 may comprise a switch with bridging and/or
routing functions that 1s external to the platform 502 and
operable to couple various NICs distributed throughout the
computer platform 500 (e.g., on different platforms) to each
other. In various embodiments a NIC may be integrated with
the chipset (1.e., may be on the same integrated circuit or
circuit board as the rest of the chipset logic) or may be on
a different integrated circuit or circuit board that 1s electro-
mechanically coupled to the chipset.

In particular embodiments, communication interface 528
may allow communication of data (e.g., between the man-
ageability engine 526 and the system management platform
506) associated with management and monitoring functions
performed by manageability engine 526. In various embodi-
ments, manageability engine 526 may utilize elements (e.g.,
one or more NICs) of communication interface 528 to report
the telemetry data (e.g., to system management platform
506) 1n order to reserve usage of NICs of communication
interface 518 for operations associated with workloads per-
formed by platform logic 510. In some embodiments, com-
munication interface 528 may also allow 10 devices inte-
grated with or external to the platform (e.g., disk drives,
other NICs, etc.) to commumnicate with the CPU cores.

Switch 5330 may couple to various ports (e.g., provided by
NICs) of communication interface 328 and may switch data
between these ports and various components of chipset 516
(e.g., one or more Peripheral Component Interconnect

US 11,327,789 B2

19

Express (PCle) lanes coupled to CPUs 512). Switch 530
may be a physical or virtual (1.e., software) switch.

Platform logic 510 may include an additional communi-
cation interface 518. Similar to communication interface
528, communication interface 318 may be used for the
communication of signaling and/or data between platiform
logic 510 and one or more networks 308 and one or more
devices coupled to the network 508. For example, commu-
nication interface 518 may be used to send and receive
network traflic such as data packets. In a particular embodi-
ment, communication interface 518 comprises one or more
physical NICs. These NICs may enable communication
between any suitable element of platform logic 510 (e.g.,
CPUs 512 or memory 314) and another device coupled to
network 508 (e.g., elements of other platforms or remote
computing devices coupled to network 308 through one or
more networks). In particular embodiments, communication
interface 518 may allow devices external to the platform
(e.g., disk dnives, other NICs, etc.) to communicate with the
CPU cores. In various embodiments, NICs of communica-
tion 1nterface 518 may be coupled to the CPUs through 10
controllers (which may be external to or integrated with
CPUs 512).

Platform logic 510 may receive and perform any suitable
types of workloads. A workload may include any request to
utilize one or more resources of platform logic 510, such as
one or more cores or associated logic. For example, a
workload may comprise a request to instantiate a software
component, such as an 10 device driver 524 or guest system
522; a request to process a network packet received from a
virtual machine 532 or device external to platform 502 (such
as a network node coupled to network 508); a request to
execute a process or thread associated with a guest system
522, an application running on platform 502, a hypervisor
520 or other operating system running on platform 502; or
other suitable processing request.

In various embodiments, platform 502 may execute any
number of guest systems 522. A guest system may comprise
a single virtual machine (e.g., virtual machine 532q or 5325)
or multiple virtual machines operating together (e.g., a
virtual network function (VNF) 334 or a service function
chain (SFC) 536). As depicted, various embodiments may
include a variety of types of guest systems 522 present on
the same platform 502.

A virtual machine 532 may emulate a computer system
with 1ts own dedicated hardware. A virtual machine 532 may
run a guest operating system on top of the hypervisor 520.
The components of platform logic 510 (e.g., CPUs 512,
memory 514, chipset 516, and communication interface
518) may be virtualized such that 1t appears to the guest
operating system that the virtual machine 332 has 1ts own
dedicated components.

A virtual machine 332 may include a virtualized NIC
(VNIC), which 1s used by the virtual machine as 1ts network
interface. A vINIC may be assigned a media access control
(MAC) address or other identifier, thus allowing multiple
virtual machines 532 to be individually addressable 1n a
network.

In some embodiments, a virtual machine 5325 may be
paravirtualized. For example, the virtual machine 5325 may
include augmented drivers (e.g., drivers that provide higher
performance or have higher bandwidth interfaces to under-
lying resources or capabilities provided by the hypervisor
520). For example, an augmented driver may have a faster
interface to underlying virtual switch 538 for higher network
performance as compared to default drivers.

10

15

20

25

30

35

40

45

50

55

60

65

20

VNF 534 may comprise a soitware implementation of a
functional building block with defined interfaces and behav-
1ior that can be deployed in a virtualized infrastructure. In
particular embodiments, a VNF 534 may include one or
more virtual machines 3532 that collectively provide specific
functionalities (e.g., wide area network (WAN) optimiza-
tion, virtual private network (VPN) termination, firewall
operations, load-balancing operations, security functions,
etc.). A VNF 534 running on platform logic 510 may provide
the same functionality as traditional network components
implemented through dedicated hardware. For example, a
VNF 534 may include components to perform any suitable
NFV workloads, such as virtualized evolved packet core
(VEPC) components, mobility management entities, 3rd
Generation Partnership Project (3GPP) control and data
plane components, etc.

SFC 336 1s group of VNFs 334 organized as a chain to
perform a series ol operations, such as network packet
processing operations. Service function chaining may pro-
vide the ability to define an ordered list of network services
(e.g. firewalls, load balancers) that are stitched together 1n
the network to create a service chain.

A hypervisor 520 (also known as a virtual machine
monitor) may comprise logic to create and run guest systems
522. The hypervisor 520 may present guest operating sys-
tems run by virtual machines with a virtual operating
platiorm (1.e., it appears to the virtual machines that they are
running on separate physical nodes when they are actually
consolidated onto a single hardware platform) and manage
the execution of the guest operating systems by platform
logic 510. Services of hypervisor 520 may be provided by
virtualizing 1n software or through hardware assisted
resources that require minimal soiftware intervention, or
both. Multiple instances ol a variety of guest operating
systems may be managed by the hypervisor 520. Each
platform 502 may have a separate instantiation of a hyper-
visor 3520.

Hypervisor 520 may be a native or bare-metal hypervisor
that runs directly on platform logic 510 to control the
platiorm logic and manage the guest operating systems.
Alternatively, hypervisor 520 may be a hosted hypervisor
that runs on a host operating system and abstracts the guest
operating systems from the host operating system. Various
embodiments may include one or more non-virtualized
platforms 502, 1n which case any suitable characteristics or
functions of hypervisor 520 described herein may apply to
an operating system of the non-virtualized platform.

Hypervisor 520 may include a virtual switch 538 that may
provide virtual switching and/or routing functions to virtual
machines of guest systems 522. The virtual switch 538 may
comprise a logical switching fabric that couples the vNICs
of the virtual machines 532 to each other, thus creating a
virtual network through which virtual machines may com-
municate with each other. Virtual switch 538 may also be
coupled to one or more networks (e.g., network 508) via
physical NICs of communication interface 518 so as to
allow communication between virtual machines 332 and one
or more network nodes external to platform 3502 (e.g., a
virtual machine running on a different platform 502 or a
node that 1s coupled to platform 502 through the Internet or
other network). Virtual switch 538 may comprise a software
clement that 1s executed using components of platform logic
510. In various embodiments, hypervisor 520 may be 1n
communication with any suitable entity (e.g., a SDN con-
troller) which may cause hypervisor 520 to reconfigure the
parameters of virtual switch 338 1n response to changing
conditions 1n platform 502 (e.g., the addition or deletion of

US 11,327,789 B2

21

virtual machines 532 or identification of optimizations that
may be made to enhance performance of the platiform).

Hypervisor 520 may also include resource allocation logic
544 which may include logic for determining allocation of
platform resources based on the telemetry data (which may
include stress mformation). Resource allocation logic 544
may also include logic for communicating with various
components of platform logic 510 entities of platform 502 to
implement such optimization, such as components of plat-
form logic 502. For example, resource allocation logic 544
may direct which hardware resources of platform logic 510
will be used to perform workloads based on stress informa-
tion.

Any suitable logic may make one or more of these
optimization decisions. For example, system management
platform 506; resource allocation logic 544 of hypervisor
520 or other operating system; or other logic of platform 502
or computer platform 500 may be capable of making such
decisions (either alone or 1n combination with other ele-
ments of the platform 502). In a particular embodiment,
system management platform 506 may communicate (using
in-band or out-of-band commumnication) with the hypervisor
520 to specitly the optimizations that should be used 1n order
to meet policies stored at the system management platform.

In various embodiments, the system management plat-
form 506 may receive telemetry data from and manage
workload placement across multiple platiorms 502. The
system management platiorm 506 may communicate with
hypervisors 520 (e.g., in an out-of-band manner) or other
operating systems of the various platforms 502 to implement
workload placements directed by the system management
platform.

The eclements of platform logic 5310 may be coupled
together 1 any suitable manner. For example, a bus may
couple any of the components together. A bus may include
any known interconnect, such as a multidrop bus, a mesh
interconnect, a ring Interconnect, a point-to-point intercon-
nect, a serial interconnect, a parallel bus, a coherent (e.g.
cache coherent) bus, a layered protocol architecture, a
differential bus, or a Gunnming transceiver logic (GTL) bus.

Elements of the computer platform 500 may be coupled
together 1n any suitable manner, such as through one or more
networks 508. A network 508 may be any suitable network
or combination of one or more networks operating using one
or more suitable networking protocols. A network may
represent a series ol nodes, points, and interconnected
communication paths for receiving and transmitting packets
of information that propagate through a communication
system. For example, a network may include one or more
firewalls, routers, switches, security appliances, antivirus
servers, or other useful network devices. A network offers
communicative interfaces between sources and/or hosts, and
may comprise any local area network (LAN), wireless local
area network (WLAN), metropolitan area network (MAN),
intranet, extranet, Internet, wide area network (WAN), vir-
tual private network (VPN), cellular network, or any other
appropriate architecture or system that facilitates communi-
cations 1n a network environment. A network can comprise
any number of hardware or software elements coupled to
(and 1n communication with) each other through a commu-
nications medium. In various embodiments, guest systems
522 may communicate with nodes that are external to the
computer platform 500 through network 3508.

FIG. 6 illustrates a block diagram of a central processing
unit (CPU) 612 1n accordance with certain embodiments.
Although CPU 612 depicts a particular configuration, the
cores and other components of CPU 612 may be arranged 1n

5

10

15

20

25

30

35

40

45

50

55

60

65

22

any suitable manner. CPU 612 may comprise any processor
or processing device, such as a microprocessor, an embed-
ded processor, a digital signal processor (DSP), a network
processor, an application processor, a coprocessor, a system
on a chip (SOC), or other device to execute code. CPU 612,
in the depicted embodiment, includes four processing ele-
ments (cores 630 in the depicted embodiment), which may
include asymmetric processing elements or symmetric pro-
cessing elements. However, CPU 612 may include any
number of processing elements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of
hardware processing elements include: a thread unit, a
thread slot, a thread, a process unit, a context, a context unit,
a logical processor, a hardware thread, a core, and/or any
other element which 1s capable of holding a state for a
processor, such as an execution state or architectural state. In
other words, a processing clement, 1n one embodiment,
refers to any hardware capable of being independently
associated with code, such as a software thread, operating
system, application, or other code. A physical processor (or
processor socket) typically refers to an integrated circuit,
which potentially mncludes any number of other processing
elements, such as cores or hardware threads.

A core may refer to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state 1s
associated with at least some dedicated execution resources.
A hardware thread may refer to any logic located on an
integrated circuit capable of maintaining an independent
architectural state, wherein the independently maintained
architectural states share access to execution resources. As
can be seen, when certain resources are shared and others are
dedicated to an architectural state, the line between the
nomenclature of a hardware thread and core overlaps. Yet
often, a core and a hardware thread are viewed by an
operating system as individual logical processors, where the
operating system 1s able to individually schedule operations
on each logical processor.

Physical CPU 612 may include any suitable number of
cores. In various embodiments, cores may include one or
more out-of-order processor cores or one or more n-order
processor cores. However, cores may be individually
selected from any type of core, such as a native core, a
soltware managed core, a core adapted to execute a native
istruction set architecture (ISA), a core adapted to execute
a translated ISA, a co-designed core, or other known core.
In a heterogeneous core environment (1.e. asymmetric
cores), some form of translation, such as binary translation,
may be utilized to schedule or execute code on one or both
cores.

In the embodiment depicted, core 630A includes an
out-of-order processor that has a front end unit 670 used to
fetch incoming instructions, perform various processing
(e.g. caching, decoding, branch predicting, etc.) and passing,
instructions/operations along to an out-of-order (OOOQO)
engine 680. OO0 engine 680 performs further processing on
decoded nstructions.

A front end 670 may include a decode module coupled to
fetch logic to decode fetched elements. Fetch logic, in one
embodiment, includes individual sequencers associated with
thread slots of cores 630. Usually a core 630 1s associated
with a first ISA, which defines/specifies instructions execut-
able on core 630. Often machine code instructions that are
part of the first ISA include a portion of the istruction
(referred to as an opcode), which references/specifies an

US 11,327,789 B2

23

instruction or operation to be performed. The decode module
may include circuitry that recognizes these mstructions from
their opcodes and passes the decoded instructions on in the
pipeline for processing as defined by the first ISA. For
example, decoders may, 1n one embodiment, include logic
designed or adapted to recognize specific instructions, such
as transactional instructions. As a result of the recognition by
the decoders, the architecture of core 630 takes specific,
predefined actions to perform tasks associated with the
appropriate mstruction. It 1s important to note that any of the
tasks, blocks, operations, and methods described herein may
be performed 1n response to a single or multiple 1nstructions;
some of which may be new or old instructions. Decoders of
cores 630, in one embodiment, recognize the same ISA (or
a subset thereof). Alternatively, in a heterogeneous core
environment, a decoder of one or more cores (e.g., core
630B) may recognize a second ISA (either a subset of the
first ISA or a distinct ISA).

In the embodiment depicted, out-of-order engine 680
includes an allocate unit 682 to receive decoded 1instructions,
which may be 1n the form of one or more micro-instructions
or uops, from front end unit 670, and allocate them to
appropriate resources such as registers and so forth. Next,
the mstructions are provided to a reservation station 684,
which reserves resources and schedules them for execution
on one of a plurality of execution units 686 A-686IN. Various
types of execution units may be present, including, for
example, arithmetic logic units (ALUs), load and store units,
vector processing units (VPUs), and floating point execution
units, among others. Results from these different execution
units are provided to a reorder bufler (ROB) 688, which take
unordered results and return them to correct program order.

In the embodiment depicted, both front end umt 670 and
out-of-order engine 680 are coupled to different levels of a
memory hierarchy. Specifically shown 1s an instruction level
cache 672, that 1n turn couples to a mid-level cache 676, that
in turn couples to a last level cache 695. In one embodiment,
last level cache 6935 1s implemented 1n an on-chip (some-
times referred to as uncore) unit 690. Uncore 690 may
communicate with system memory 699, which, in the 1llus-

trated embodiment, 1s implemented via embedded dynamic
random access memory (eDRAM). The various execution
units 686 within out-of-order engine 680 are 1n communi-
cation with a first level cache 674 that also 1s 1n communi-
cation with mid-level cache 676. Additional cores 630B-
630D may couple to last level cache 695 as well.

In various embodiments, uncore 690 (sometimes referred
to as a system agent) may include any suitable logic that 1s
not a part of core 630. For example, uncore 690 may include
one or more ol a last level cache, a cache controller, an
on-die memory controller coupled to a system memory, a
processor interconnect controller (e.g., an Ultra Path Inter-
connect or similar controller), an on-die 10 controller, or
other suitable on-die logic.

In particular embodiments, uncore 690 may be in a
voltage domain and/or a frequency domain that 1s separate
from voltage domains and/or frequency domains of the
cores. That 1s, uncore 690 may be powered by a supply
voltage that 1s diflerent from the supply voltages used to
power the cores and/or may operate at a frequency that 1s
different from the operating frequencies of the cores.

CPU 612 may also include a power control unit (PCU)
640. In various embodiments, PCU 640 may control the
supply voltages and the operating frequencies applied to
cach of the cores (on a per-core basis) and to the uncore.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

PCU 640 may also instruct a core or uncore to enter an 1dle
state (where no voltage and clock are supplied) when not
performing a workload.

In various embodiments, PCU 640 may detect one or
more stress characteristics of a hardware resource, such as
the cores and the uncore. A stress characteristic may com-
prise an indication of an amount of stress that 1s being placed
on the hardware resource. As examples, a stress character-
1stic may be a voltage or frequency applied to the hardware
resource; a power level, current level, or voltage level
sensed at the hardware resource; a temperature sensed at the
hardware resource; or other suitable measurement. In vari-
ous embodiments, multiple measurements (e.g., at difierent
locations) of a particular stress characteristic may be per-
formed when sensing the stress characteristic at a particular
instance of time. In various embodiments, PCU 640 may
detect stress characteristics at any suitable interval.

In various embodiments, PCU 640 may comprise a micro-
controller that executes embedded firmware to perform
various operations associated with stress monitoring
described herein. In one embodiment, PCU 640 performs
some or all of the PCU functions described herein using
hardware without executing software instructions. For
example, PCU 640 may include fixed and/or programmable
logic to perform the functions of the PCU.

In various embodiments, PCU 640 1s a component that 1s
discrete from the cores 630. In particular embodiments, PCU
640 runs at a clock frequency that 1s different from the clock
frequencies used by cores 630. In some embodiments where
PCU 1s a microcontroller, PCU 640 executes instructions
according to an ISA that 1s different from an ISA used by
cores 630.

In various embodiments, CPU 612 may also include a
nonvolatile memory 650 to store stress information (such as
stress characteristics, incremental stress values, accumulated
stress values, stress accumulation rates, or other stress
information) associated with cores 630 or uncore 690, such
that when power 1s lost, the stress information 1s maintained.

FIG. 7 1s a block diagram of a storage architecture
according to one or more examples of the present specifi-
cation. In the example of FIG. 7, a plurality of virtual
machines 1s configured in the datacenter, namely VM 1
702-1, VM 2 702-2, VM 3 702-3, and VM 4 702-4. There
1s provisioned for each virtual machine 702 a virtual disk
704. Specifically, virtual disk 704-1 1s provisioned for VM
1 702-1, virtual disk 704-2 1s provisioned for VM 2 702-2,
virtual disk 704-3 1s provisioned for VM 3 702-3, and virtual
disk 704-4 1s provisioned for VM 4 702-4.

Virtual disks 704 are not necessarily associated with a
particular physical disk, but as described above, represent an
allocation of a nominal disk size for the virtual machine. A
teature of the datacenter 1s that 1f a virtual machine 702 1s not
using the full capacity of its virtual disk 704, there 1s no need
to consume the tull nominal disk size 1n storage pool 706.
Rather, hypervisor 706 may allocate only the necessary
resources within storage pool 708.

Storage pool 708 includes a number of physical disks
714-1, 714-2,714-3, 714-4, and 714-5. From the perspective
of a virtual machine 702, with a provisioned virtual disk 704,
it does not matter which physical disk 714 the storage space
1s allocated on. Rather, hypervisor 706 merely ensures that
virtual disk 704 has access to suflicient storage resources in
storage pool 708.

Furthermore, according to the principles of elastic com-
puting, the nominal size of a virtual disk 704 may be
flexible. Virtual disks 704 may grow or shrink according to
the needs of a particular application. When the size of a

US 11,327,789 B2

25

virtual disk 704 changes, hypervisor 706 allocates appro-
priate resources 1n storage pool 708.

As discussed above, as the disk usage of a virtual disk 704
changes, or as the nominal size of a virtual disk 704 changes,
storage resources may be allocated in noncontiguous blocks
on storage pool 708. For example, virtual disk 704-1 may
have an 1itial size of 500 GB. Of that, only 100 GB may be
mitially used. Storage pool 708 may allocate the full 300 GB
on hard disk 714-2, but this may lead to inefliciency. In this
case, physical disk 714-2 has 400 GB of allocated space
sitting around waiting to be used. It 1s more eflicient to use
only as much space as necessary to meet the current demand,
and as storage pool 708 approaches capacity, to simply add
more physical disks 714 to handle the increased demand. In
other words, 1t 1s possible that the total size of allocated
virtual disks 704 may exceed the actual capacity of physical
disks 714 11 the virtual machines are not using their full
nominal capacity. As virtual machines 702 use more of the
allocated space on their respective virtual disks 704, addi-
tional storage resources may be provided in storage pool
708, and additional physical drives 714 may be added.

While a modern datacenter 1s well-equipped to handle
these circumstances, this method can lead to inefliciencies.
Specifically, as noncontiguous blocks of disk space are
allocated, 10 operations from a particular virtual disk 704
may be directed to different physical disks. Furthermore, a
plurality of virtual disks 704 may be trying to access the
same physical disk 714 at the same time.

For example, consider the case where a VM has a 10 Mb
file open for writing and editing. Once the writing and
editing are done, the user closes the file, and the file 1s
written to disk. However, the 10 Mb parent 10 operation
may then be broken up into several sub-10s. For example,
the file may be spread across three noncontiguous blocks on
three different physical disks 714 of storage pool 708. These
may be broken down 1nto several different small blocks, and
written out to the various disks.

FIG. 8 1llustrates an improvement of the system of FIG.
7 1n which a storage coprocessor 740 provides greater 10
operation ethiciency.

As belore, a plurality of virtual machines 702 have
allocated to them a plurality of virtual disks 704, and the
virtual disks 704 1ssue parent 10 operations that are directed
by hypervisor 706 to a storage pool 708 including a plurality
of physical disks 714. Note that storage pool 708 may be
local the datacenter, or it may be a remoted storage pool. For
example, a virtual machine 702 may be hosted 1n a San
Francisco datacenter, and may be accessing a storage pool
708 that 1s co-located 1n that same San Francisco datacenter,
or that 1s located 1n a separate offsite datacenter in, for
example, Austin, Tex.

In this case, a storage coprocessor 740 1s provided 1n the
datacenter. As described above, storage coprocessor 740
may be any appropriate type of processor, mncluding an
ASIC, FPGA, programmable processor, or any other logic
device configured to carry out the operations of storage
coprocessor 740. In cases where an ASIC, FPGA, or similar
1s used, turther advantages are realized by operating storage
coprocessor 740 at hardware speeds.

In some cases, storage coprocessor 740 may also include
a persistent fast memory 720, or other local nonvolatile
memory block. Persistent fast memory 720 may be, for
example, an Intel® 3G Crosspoint memory, which provides
random access memory at or near the speed of traditional
dynamic RAM, but that 1s also persistent in the sense that 1f
power 1s removed, persistent fast memory 720 retains its
data indefinitely. Note that persistent fast memory 720 may

10

15

20

25

30

35

40

45

50

55

60

65

26

be locally hosted with storage coprocessor 740 in some
examples. In other examples, persistent fast memory 720
may be provided by a dedicated memory server, such as a
dedicated 3-D Crosspoint server. In cases where persistent
fast memory 720 1s provided by a memory server, memory
operations may not achieve persistence until storage copro-
cessor 740 recerves an acknowledgment (ACK) that the data
have been stored 1n the persistent fast memory 720.

In this example, storage coprocessor 740 allocates a
queue 724 for each physical disk 714. This queue may
include both a read queue and a write queue. In this example,

queue 724-1 1s allocated to disk 714-1, queue 724-2 is
allocated to disk 714-2, queue 724-3 1s allocated to disk
714-3, queue 724-4 1s allocated to disk 714-4, and queue
724-5 1s allocated to disk 714-5.

As 1llustrated 1n this example, virtual disk 704-1 may
issue a 16 kB 10 operation, virtual disk 704-2 may issue a
12 kB IO operation, virtual disk 704-3 may 1ssue a 20 kB 10

operation, and virtual disk 704-4 may 1ssue a 12 kB 10
operation. These various 10 operations are to illustrate the
heterogeneous nature of the 10s that may occur in the
datacenter.

As hypervisor 706 receives parent 10 operations from
virtual disks 704, the requests are not routed directly to
storage pool 708 for access to physical disks 714. Rather,
hypervisor 706 receives these various parent 10 operations,
and routes them to storage coprocessor 740. Storage copro-
cessor 740 does not send these directly to storage pool 708,
but rather queues each 10 operation up into the appropnate
queue for the target physical disk 714. Once a queue 724 1s
tull, the queue 1s tlushed to or from the physical disk 714.

For example, 1f queue 724-1 has a size of 128 kB for both
read and write, then once 128 kB of read operations are
accumulated 1n the read queue, the queue 1s tlushed out to
disk 714-1, the data are read and returned, and storage
coprocessor 740 returns the data to the various virtual disks
704 that have 1ssued the parent read operations.

Similarly, for the write queue of queue 724-1, storage
coprocessor 740 accumulates write operations until 128 kB
of write data are accumulated, and then write queue 724-1
1s flushed out to disk 714-1, and the data are written to the
disk.

Note that 1n certain operations, the queue may be flushed
betore it 1s Tull. For example, a timer may be associated with
cach queue as well, and 11 the timer expires, the queue 1s
flushed regardless of whether the queue 1s full. This can
ensure that the queue 1tself does not become a bottleneck 1n
the 10 operations.

Also note that 1n this example, the read queue and write
queue both have a unmiform size of 128 kB, which 1s a
nonlimiting and illustrative example. However, the read
queue and write queue need not have the same size.

In a general sense, storage coprocessor 740 allocates the
size of each queue 724 according to the attributes and
characteristics of 1ts corresponding physical disk 714. Thus,
storage coprocessor 740 may determine the optimal size for
a queue 724 by reading the attributes of disk 714, and
crafting a queue size that 1s appropriate to that disk. This
allocation need not be a static allocation. Rather, storage
coprocessor 740 may monitor the performance of each disk
714, and may dynamically allocate the size of queues to
ensure that the disks are functioning efliciently. When a new
physical disk 714 1s added to storage pool 708, storage
coprocessor 740 may allocate an appropniately-sized queue,
and may then monitor the queue as with the other disks, to
ensure that the queue size maintains optimal efliciency.

US 11,327,789 B2

27

Advantageously, storage coprocessor 740 handles all 1Os
from all virtual machines as a whole rather than handling the
I0s from each separate VM as a separate entity. The parent
I0 from one virtual machine may include several real
sub-10s on the physical device based on fine-grained space
management by hypervisor 706. To optimize the 10s, stor-
age coprocessor 704 handles the 10s quickly, with aware-
ness of the target device’s optimal block size.

To do this, as discussed above, storage coprocessor 740
creates read and write queues 724 for each physical drive
714, and then accepts the real sub-IOs from the virtual
machines umiformly, without needing to be aware of which
parent 10 came from which VM 702. Newly-arrived 1Os are
checked and merged 1nto one single larger 10, whose size 1s
automatically and dynamically assigned by SCP 740, based
on each device’s properties such as preferred block size,
SSD endurance, and amplification. Once the queue 1s full,
the 10 1s sent to the target device.

Advantageously, for the user of SCP 740, not only 1s 10
clliciency optimized, but the CPU’s interaction with back-
end physical devices can be oflloaded to SCP 740.

In a usage example, storage pool 708 may include a
number of SSD drives 714. These are especially usetful for
latency-sensitive applications. SCP 740 can optimize sub-
I0s to ensure optimal usage of bandwidth and optimal
endurance of the SSD.

By way of example, the parent 10 from a virtual machine
702 may be 16 kB, and hypervisor 706 may split that into
four 4 kB units, which may go to one or more physical disks.
Data protection technologies like redundant array of inde-
pendent disks (RAID) and erasure coding may drive the
block size 1n certain existing systems. So when hypervisor
706 1s handling data operations, the block size may be
suboptimal for the preferred block size for the SSD, which
may be much larger, such as 128 kB. This block size 1s
selected by the SSD to optimize for write and space ampli-
fication. Thus, writing a large number of 4 kB blocks to the
SSD may be suboptimal and may decrease endurance.
Manually realigning hypervisor 706 to a larger block size
(e.g., 128 kB) 1s also suboptimal, as some of the writes may
still result 1n small data blocks (e.g., a write 1s split among
several disks). Furthermore, different SSDs may have dif-
terent preferred block sizes, so hypervisor 706 may at best
be able to compromise and select a block size that works
“pretty well” for all SSDs 1n the datacenter.

But by employing SCP 740 of the present specification,
the need for compromise 1s eliminated. SCP 740 can identify
an optimal block size for each disk 714, and establish
separate read and write queues for each. This can also
climinate the problem of highly-mixed read and write opera-
tions, which interfere with each other’s efliciency. In this
case, reads and writes are queued separately, and are sent
only when a suflicient block has been accumulated. Thus, a
large number of 4 kB blocks may be received from some
number of VMs 702. SCP 740 aggregates these without the
need to know which machine onginated which 10. Rather,
SCP 740 simply builds a block of optimal size, at hardware
speeds, including linking continuous 10s, linking over-
lapped read 10s, mnserting holes (zeroes) for adjacent and
noncontiguous 10s, and zero padding (ifront or rear) as
necessary to build the appropriate data structure. SCP 740
then efliciently hands the large 10 block off to SSD 714.

In another operational example, SCP 740 may improve
the datacenter’s flexibility to scale up or down for the elastic
cloud environments, while maintaining low latency

As mentioned above, the elastic could provide two ben-
efits: one 1s flexibility of scale up and down, including the

10

15

20

25

30

35

40

45

50

55

60

65

28

storage, and the other 1s consistent low-latency 10 perfor-
mance. Sometimes these two benefits can hardly be
achieved with the current solutions due to the nature of
dynamic and runtime space management by the VMM.

Without SCP 740, when storage on one VM 702 1s scaled
up 1n the elastic cloud environment, hypervisor 706 maps
additional space from shared storage pool 708 to that VM.
Because hypervisor 706 provides fine-grained space man-
agement, that new space allocation may be discrete and
noncontiguous irom the previous mapping. When a new
SSD 714 1s added to the storage pool, hypervisor 706
formats 1t into, for example, 4 kB units, and maps those
allocations 1n the shared storage pool. When an SSD 714 1s
removed from the storage pool (e.g., in the case of a physical
drive failure), its storage allocations are remapped to other
SSDs 714. Thus, 1n a real-world datacenter, 1t 1s often not
realistic to expect VD 704 of a particular VM 702 to be
contiguous on a single drive 714.

But with SCP 740 deployed 1n the datacenter, contiguous
mapping 1s not necessary to realize read and write optimi-
zation. All 10s from all VMs can be continuously optimized.

As 1llustrated herein, all 10s directed to a particular SSD
714 are first sent to the read and write queues that SCP 740
has allocated for the disk. Once an 1O arrives in the queue
724, SCP 740 can mspect the 10 at hardware speed to find
adjacent or overlapped 1Os based on logical block addresses.
The merged 10 1s then placed 1n the mnternal memory of SCP
740, along with properties such as the 10 type and target
device. Once the 10 accumulates to the preterred size, SCP
740 moves the single accumulated 10 to the device’s hard-
ware queue for processing. SCP 740 may also insert,
prepend, or append zeroes as necessary to eliminate the
SSD’s internal mechanisms, such as write amplification, to
handle the 10 as fast as possible.

Queues may also be flushed by a timeout, or driven by an
interrupt or a polling mechanism. Once SCP 740 receives the
IO 1interrupt or polling signal, it may provide the 10s with
previously-saved 10 properties and then update SCP 740’s
allocated read or write queues.

Note that the optimal queue size may depend not only on
the block size of a disk, but also on factors like write
endurance. For example, solid state drives (SSDs) generally
have a limited number of write cycles (endurance). In one
embodiment, an individual cell may be expected to tolerate
on the order of 10° to 10° write cycles before wearing out.
This can be an 1important optimization, as many datacenters
use SSDs 1n their storage pools to increase read and write
speeds.

In cases where storage coprocessor 740 1s provisioned
with a persistent fast memory 720 or other local nonvolatile
memory, additional advantages can be realized. For
example, a virtual disk 704-1 may issue a parent write
operation that 1s routed to storage coprocessor 740. Storage
coprocessor 740 may queue the write operation up nto the
appropriate write queue 724, and may also log the transac-
tion to persistent fast memory 720. In this case, storage
coprocessor 740 can now return an ACK to the virtual disk
704 without having actually written to storage pool 708.
Because the data were stored in persistent fast memory 720,
the data have achieved persistence. Once the queue 1s full
and the wrnte 1s flushed, storage coprocessor 740 may
remove the cached data from persistent fast memory 720. In
the event that storage coprocessor 740 suflers a power loss,
then when power 1s restored, storage coprocessor 740 reads
the data from persistent fast memory 720 and completes the
appropriate write operation to the appropriate physical disk

714.

US 11,327,789 B2

29

FIG. 9 1s a flowchart of a method 900 of performing
merged input/output operations according to one or more
examples of the present specification. In the example of
method 900, 1n block 902, storage coprocessor 740 allocates
read and write queues for each disk 1n storage pool 708 as
described 1n the preceding figures.

In block 904, storage coprocessor 740 receives incoming,
disk operations representing parent 10 operations from
virtual disks 704.

In block 906, storage coprocessor 740 merges smaller 10s
into larger 10 blocks. These blocks may be linked continu-
ously or may overlap, and 1n appropriate cases may be
padded with zeros.

In block 908, storage coprocessor 740 sends the large 10
blocks to the approprniate physical disk 714.

In block 910, storage coprocessor 740 waits until the
queue 1s full, then flushes the 10 blocks out to disk. [Needs
Review to Coincide with Figures]

In block 999, the method 1s done.

Note that 1n certain cases, a timeout 914 may occur, which
short-circuits the weight block 908, and causes a flush
immediately.

In block 999, the method is done.

FIG. 10 1s a flow chart of a method that an SCP may
perform upon addition of a new hard drive, such as an SSD,
according to one or more examples of the present specifi-
cation.

In block 1002, a new SSD (or other drive) 1s added to the
storage pool, such as storage pool 708 of FIG. 7.

In bock 1004, the SCP queries the configuration space of
the new SSD to determine information such as the preferred
block size for the disk. It may also query other sources to
gather relevant information, such as a database with infor-
mation about the endurance of the SSD, which will allow the
SCP to crait an optimal storage solution.

In block 1006, the SCP creates read and write queues for
the new SSD, which will be used to manage future incoming,
sub-10s.

In block 1008, the SCP begins receiving new 10s directed
to the new disk. It begins filling queues as described herein,
and continues managing the IO0s according to the methods of
the present specification.

In block 1099, the method 1s done.

The foregoing outlines features of several embodiments
so that those skilled 1n the art may better understand various
aspects of the present disclosure. Those skilled in the art
should appreciate that they may readily use the present
disclosure as a basis for designing or modifying other
processes and structures for carrying out the same purposes
and/or achieving the same advantages of the embodiments
introduced herein. Those skilled 1n the art should also realize
that such equivalent constructions do not depart from the
spirit and scope of the present disclosure, and that they may
make various changes, substitutions, and alterations herein
without departing from the spirit and scope of the present
disclosure.

All or part of any hardware element disclosed herein may
readily be provided 1n a system-on-a-chip (SoC), including
central processing unit (CPU) package. An SoC represents
an integrated circuit (IC) that integrates components of a
computer or other electronic system into a single chip. Thus,
for example, client devices or server devices may be pro-
vided, 1n whole or 1n part, 1n an SoC. The SoC may contain
digital, analog, mixed-signal, and radio frequency functions,
all of which may be provided on a single chip substrate.
Other embodiments may 1include a multichip module
(MCM), with a plurality of chips located within a single

10

15

20

25

30

35

40

45

50

55

60

65

30

clectronic package and configured to interact closely with
cach other through the electronic package. In various other
embodiments, the computing functionalities disclosed
herein may be implemented 1n one or more silicon cores in
application-specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), and other semiconductor
chips.

Note also that in certain embodiments, some of the
components may be omitted or consolidated. In a general
sense, the arrangements depicted 1n the figures may be more
logical 1n their representations, whereas a physical architec-
ture may include various permutations, combinations, and/
or hybrids of these elements. It 1s imperative to note that
countless possible design configurations can be used to
achieve the operational objectives outlined herein. Accord-
ingly, the associated infrastructure has a myrnad of substitute
arrangements, design choices, device possibilities, hardware
configurations, soltware implementations, and equipment
options.

In a general sense, any suitably-configured processor can
execute any type of instructions associated with the data to
achieve the operations detailed herein. Any processor dis-
closed herein could transform an element or an article (for
example, data) from one state or thing to another state or
thing. In another example, some activities outlined herein
may be implemented with fixed logic or programmable logic
(for example, solftware and/or computer instructions
executed by a processor) and the elements 1dentified herein
could be some type of a programmable processor, program-
mable digital logic (for example, a field programmable gate
array (FPGA), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM)), an ASIC that includes digital logic,
soltware, code, electronic instructions, flash memory, opti-
cal disks, CD-ROMs, DVD ROMs, magnetic or optical
cards, other types of machine-readable mediums suitable for
storing electronic nstructions, or any suitable combination
thereof.

In operation, a storage may store information 1 any
suitable type of tangible, nontransitory storage medium (for
example, random access memory (RAM), read only memory
(ROM), field programmable gate array (FPGA), erasable
programmable read only memory (EPROM), electrically
erasable programmable ROM (EEPROM), etc.), software,
hardware (for example, processor instructions or micro-
code), or 1n any other suitable component, device, element,
or object where appropriate and based on particular needs.
Furthermore, the information being tracked, sent, received,
or stored 1n a processor could be provided in any database,
register, table, cache, queue, control list, or storage structure,
based on particular needs and implementations, all of which
could be referenced 1n any suitable timeframe. Any of the
memory or storage elements disclosed herein, should be
construed as being encompassed within the broad terms
‘memory’ and °‘storage,” as appropriate. A nontransitory
storage medium herein 1s expressly itended to include any
nontransitory special-purpose or programmable hardware
configured to provide the disclosed operations, or to cause a
processor to perform the disclosed operations.

Computer program logic implementing all or part of the
functionality described herein 1s embodied in various forms,
including, but 1n no way limited to, a source code form, a
computer executable form, machine instructions or micro-
code, programmable hardware, and various intermediate
forms (for example, forms generated by an assembler,
compiler, linker, or locator). In an example, source code
includes a series of computer program instructions Imple-

US 11,327,789 B2

31

mented 1n various programming languages, such as an
object code, an assembly language, or a high-level language
such as OpenCL, FORTRAN, C, C++, JAVA, or HIML for
use with various operating systems or operating environ-
ments, or in hardware description languages such as Spice,
Verilog, and VHDL. The source code may define and use
various data structures and communication messages. The
source code may be 1n a computer executable form (e.g., via
an interpreter), or the source code may be converted (e.g.,
via a translator, assembler, or compiler) into a computer
executable form, or converted to an intermediate form such
as byte code. Where appropriate, any of the foregoing may
be used to build or describe appropriate discrete or inte-
grated circuits, whether sequential, combinatorial, state
machines, or otherwise.

In one example embodiment, any number of electrical
circuits of the FIGURES may be implemented on a board of
an associated electronic device. The board can be a general
circuit board that can hold various components of the
internal electronic system of the electronic device and,
turther, provide connectors for other peripherals. More spe-
cifically, the board can provide the electrical connections by
which the other components of the system can communicate
clectrically. Any suitable processor and memory can be
suitably coupled to the board based on particular configu-
ration needs, processing demands, and computing designs.
Other components such as external storage, additional sen-
sors, controllers for audio/video display, and peripheral
devices may be attached to the board as plug-in cards, via
cables, or integrated into the board itself. In another
example, the electrical circuits of the FIGURES may be
implemented as stand-alone modules (e.g., a device with
associated components and circuitry configured to perform
a specific application or function) or implemented as plug-in
modules 1nto application-specific hardware of electronic
devices.

Note that with the numerous examples provided herein,
interaction may be described in terms of two, three, four, or
more electrical components. However, this has been done
for purposes of clarity and example only. It should be
appreciated that the system can be consolidated or recon-
figured 1n any suitable manner. Along similar design alter-
natives, any of the illustrated components, modules, and
clements of the FIGURES may be combined in various
possible configurations, all of which are within the broad
scope of this specification. In certain cases, 1t may be easier
to describe one or more of the functionalities of a given set
of tlows by only referencing a limited number of electrical
clements. It should be appreciated that the electrical circuits
of the FIGURES and its teachings are readily scalable and
can accommodate a large number of components, as well as
more complicated/sophisticated arrangements and configu-
rations. Accordingly, the examples provided should not limit
the scope or inhibit the broad teachings of the electrical
circuits as potentially applied to a myriad of other architec-
tures.

Numerous other changes, substitutions, variations, altera-
tions, and modifications may be ascertained to one skilled in
the art and 1t 1s 1intended that the present disclosure encom-
pass all such changes, substitutions, variations, alterations,
and modifications as falling within the scope of the
appended claims. In order to assist the United States Patent
and Trademark Office (USPTO) and, additionally, any read-
ers of any patent 1ssued on this application in interpreting the
claims appended hereto, Applicant wishes to note that the
Applicant: (a) does not intend any of the appended claims to

invoke paragraph six (6) o1 35 U.S.C. section 112 (pre-AlA)

10

15

20

25

30

35

40

45

50

55

60

65

32

or paragraph (1) of the same section (post-AlA), as 1t exists
on the date of the filing hereof unless the words “means for”
or “steps for” are specifically used in the particular claims;
and (b) does not intend, by any statement in the specifica-
tion, to limait this disclosure 1n any way that 1s not otherwise
expressly reflected 1n the appended claims.

EXAMPLE IMPLEMENTATTONS

There 1s disclosed 1n one example, a computing apparatus,
comprising: a data interface to communicatively couple to a
storage pool comprising a plurality of disks; a wvirtual
machine manager comprising a processor; and a storage
coprocessor (SCP) to: create a read queue and write queue
for the disks 1n the storage pool; recerve an mput/output (10)
operation from a virtual machine, the 10 operation directed
to a storage address located on a disk 1n the storage pool; and
add the 10 operation to the queue for the disk.

There 1s also disclosed an example, wherein the SCP
comprises a field-programmable gate array.

There 1s also disclosed an example, wherein the SCP
comprises an application-specific integrated circuit.

There 1s also disclosed an example, wherein the SCP
comprises a microprocessor, and a storage medium having
instructions for providing an SCP function.

There 1s also disclosed an example, wherein the SCP 1s to
determine that a timeout has expired, and to flush the queue
for the disk.

There 15 also disclosed an example, wherein the SCP 1s to
determine that the queue 1s full, and flush the queue.

There 15 also disclosed an example, wherein the SCP 1s to
dynamically optimize the read and write queue of a disk
based at least in part on a property of the disk.

There 1s also disclosed an example, wherein the property
1s a block size of the disk.

There 1s also disclosed an example, wherein the property
1s a write endurance of the disk.

There 1s also disclosed an example, wherein the SCP 1s to
dynamically optimize with the disk live.

There 1s also disclosed an example, wherein the SCP 1s to
dynamically receive the property from the disk.

There 1s also disclosed an example, wherein the storage
pool 1s a remote networked storage.

There 1s also disclosed an example, wherein the SCP
comprises a nonvolatile storage, and wherein the SCP 1s to
provide an immediate acknowledgement of a write opera-
tion.

There 1s also disclosed an example of a storage copro-
cessor (SCP) for a virtual machine manager, comprising
logic to: communicatively couple to a storage pool com-
prising a plurality of disks; create a read queue and write
queue for the disks in the storage pool; receive an mput/
output (I0) operation from a virtual machine, the 10 opera-
tion directed to a storage address located on a disk 1n the
storage pool; and add the 10 operation to the queue for the
disk.

There 1s also disclosed an example, comprising a field-
programmable gate array.

There 1s also disclosed an example, comprising an appli-
cation-specific itegrated circuit.

There 1s also disclosed an example, comprising a micro-
processor, and a storage medium having instructions for
providing at least part of the logic.

There 1s also disclosed an example, wherein the logic 1s
to determine that a timeout has expired, and to flush the
queue for the disk.

US 11,327,789 B2

33

There 1s also disclosed an example, wherein the logic 1s
to determine that the queue 1s full, and flush the queue.

There 1s also disclosed an example, wherein the logic 1s
to dynamically optimize the read and write queue of a disk
based at least 1n part on a property of the disk.

There 1s also disclosed an example, wherein the property
1s a block size of the disk.
There 1s also disclosed an example, wherein the property

1s a write endurance of the disk.

There 1s also disclosed an example, wherein the logic 1s
to dynamically optimize with the disk live.

There 1s also disclosed an example, wherein the logic 1s
to dynamically receive the property from the disk.

There 1s also disclosed an example of a method of
managing a storage pool, comprising: communicatively
coupling to a storage pool comprising a plurality of disks;
creating a read queue and write queue for the disks in the
storage pool; recerving an mput/output (I0) operation from
a virtual machine, the 10 operation directed to a storage
address located on a disk 1n the storage pool; and adding the
IO operation to the queue for the disk.

There 1s also disclosed an example, further comprising
determining that a timeout has expired, and to flush the
queue for the disk.

There 1s also disclosed an example, further comprising
determining that the queue 1s full, and to flush the queue.

There 1s also disclosed an example, further comprising
dynamically optimizing the read and write queue of a disk
based at least in part on a property of the disk.

There 1s also disclosed an example, wherein the property
1s a block size of the disk.

There 1s also disclosed an example, wherein the property
1s a write endurance of the disk.

There 1s also disclosed an example, further comprising
dynamically optimizing with the disk live.

There 1s also disclosed an example, further comprising
dynamically receiving the property from the disk.

There 1s also disclosed an example, wherein the storage
pool 1s a remote networked storage.

There 1s also disclosed an example, further comprising
caching a write operation to a nonvolatile storage, and
providing an immediate acknowledgement of the write
operation.

There 1s also disclosed an example of one or more
tangible, nontransitory computer-readable storage mediums
having stored thereon executable instructions for carrying
out the method.

An apparatus comprising means for performing the
method.

There 1s also disclosed an example, wherein the means
comprise a storage coprocessor.

There 1s also disclosed an example, wherein the storage
coprocessor 1s an application-specific itegrated circuit.

There 1s also disclosed an example, wherein the storage
coprocessor 1s a lield-programmable gate array.

There 15 also disclosed an example, wherein the storage
coprocessor 1s a programmable processor.

What 1s claimed 1s:

1. A computing apparatus, comprising:

a data interface to communicatively couple to a storage
pool comprising a plurality of physical storage devices;
and

circultry to:
create device-specific read queue and write queues for

the physical storage devices 1n the storage pool;

10

15

20

25

30

35

40

45

50

55

60

65

34

receive a first input/output (10) operation from a virtual
machine, the 10 operation directed to a storage
address located on a physical storage device 1n the
storage pool;

add the first IO operation to a device-specific queue for
the physical storage device;

receive a second 10 operation from the same or a
different virtual machine, the second 10O operation
directed to a storage address located on the physical
storage device;

add the second IO operation to the device-speciiic
queue for the physical storage device;

merge the first 10 operation and second 10 operation
into a merged TO operation; and

send the merged 10 operation to the physical storage
device.

2. The computing apparatus of claam 1, wheremn the
circuitry comprises a field-programmable gate array.

3. The computing apparatus of claim 1, wherein the
circuitry comprises a microprocessor, and a storage medium
having instructions for providing an SCP function.

4. The computing apparatus of claim 1, wheremn the
circuitry 1s to determine that a timeout has expired, and to
flush the queues for the physical storage device.

5. The computing apparatus of claam 1, wheremn the
circuitry 1s to determine that the queues are full, and flush the
queues.

6. The computing apparatus of claim 1, wherein the
circuitry 1s to dynamically optimize the device-specific read
queue and write queues of a disk based at least 1n part on a
property of the disk.

7. The computing apparatus of claam 6, wheremn the
property 1s a block size of the disk.

8. The computing apparatus of claim 6, wherein the
property 1s a write endurance of the disk.

9. The computing apparatus of claim 6, with the circuitry
1s to dynamically optimize with the disk live.

10. The computing apparatus of claim 6, wherein the
circuitry 1s to dynamically receive the property from the
disk.

11. The computing apparatus of claam 1, wherein the
storage pool 1s a remote networked storage.

12. The computing apparatus of claam 1, wherein the
circuitry comprises a nonvolatile storage, and wherein the
circuitry 1s to provide an immediate acknowledgement of a
write operation.

13. The computing apparatus of claam 1, wherein the
circuitry 1s further to aggregate IO operations from a plu-
rality of virtual machines into the device-specific queue.

14. A storage coprocessor (SCP), comprising circuitry to:

communicatively couple to a storage pool comprising a

plurality of physical storage devices;

create device-specific read queue and write queues for the

physical storage devices 1n the storage pool;

recerve a first mput/output (10) operation from a virtual

machine, the TO operation directed to a storage address
located on a physical storage device in the storage pool;
recerve a second IO operation from the same or a different
virtual machine, the second 10 operation directed to a
storage address located on the physical storage device;

add the first and second 10 operations to a device-specific
queue for the physical storage device;

merge the first 10 operation and second 10 operation into
a merged TO operation; and

US 11,327,789 B2

35

send the merged 10 operation to the physical storage

device.

15. The SCP of claim 14, wherein the circuitry 1s to
determine that a timeout has expired, and to flush the queues
for the physical storage device. d

16. The SCP of claim 14, wherein the circuitry 1s to
determine that the queues are full, and flush the queues.

17. The SCP of claim 14, wherein the circuitry 1s to
dynamically optimize the device-specific read queue and

write queues of a disk based at least 1n part on a property of 10

the physical storage device.

18. The SCP of claim 17, wherein the property 1s a block
s1ze of the physical storage device.

19. The SCP of claim 17, wherein the property 1s a write
endurance of the physical storage device.

20. The SCP of claim 17, wherein the circuitry 1s to
dynamically receive the property from the physical storage
device.

15

to aggregate 10 operations from a plurality of wvirtual
machines 1nto the device-specific queue.

36

22. A method of managing a storage pool, comprising;:

commumnicatively coupling to a storage pool comprising a
plurality of physical storage devices;

creating device-specific read queue and write queues for
the physical storage devices in the storage pool;

recetving a first input/output (I0) operation from a virtual
machine, the TO operation directed to a storage address
located on a physical storage device 1n the storage pool;

recerving a second IO operation from the same or a
different virtual machine, the 10 operation directed to
a storage address located on the physical storage
device;

adding the first and second 10 operations to a device-
specific storage pool for the physical storage device;

merging the first and second 10 operations into a merged
IO operation; and

sending the merged 10 operation to the physical storage
device.

23. The method of claim 22, further comprising aggre-

21. The SCP of claim 14, wherein the circuitry is further ,, gating 1O operations from a plurality of virtual machines

into the device-specific queue.

G * G % ex

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,327,789 B2 Page 1 of 1
APPLICATION NO. : 16/478549

DATED : May 10, 2022
INVENTOR(S) : Gang Cao et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Under Item (56), “Primary Examiner”, in Column 2, Line 1, delete “Nan H Nguyen” and insert
-- Van H Nguyen --, therefor.

In the Claims

In Column 34, Claim 1, Line 14, delete “TO operation;” and insert -- 10 operation; --, therefor.
In Column 34, Claim 9, Line 38, delete “with” and insert -- wherein --, therefor.

In Column 34, Claim 14, Line 59, delete “TO operation” and msert -- IO operation --, therefor.
In Column 34, Claim 14, Line 67, delete “TO operation;” and 1nsert -- 1O operation; --, therefor.
In Column 36, Claim 22, Line 7, delete “TO operation” and 1nsert -- IO operation --, therefor.

In Column 36, Claim 23, Line 19, delete “TO operations” and insert -- IO operations --, therefor.

Signed and Sealed this
Twenty-third Day ot May, 2023

H : 4 g - Ty e R - B - . e e - 3 i g
T S < T e T R o T OwE OE el (g - o SRR R
AT SR S - SR A s R A EF B OB & e
! . - - I o -l B - S . AR e . % B L
H-I) ".-' '..:. O 3 -.'.:-.' ' :-'.- . i e ..:- -. v o - g :.-: :.' e .'" ..'- L o -::: ; E'. ' :'.: o -' :E -:::i':!;.: :-i

Katherme Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

