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309
Calculate labelled images using multi-echo complex
(or magnitude and phase) data of a set of training
images

Y

310
Organize input images into a multi-dimensional matrix
(the “input matrix’)

v

319
Organize labelled images into a second multi-
dimensional matrix (the “labelled matrix’)

Y

320
Train a neural network with the input matrix and the
labelled matrix

Y

329
Store data describing the frained network for later
deployment

Fig. 3A
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330
Deploy network onto a computing system

Y

339
Acquire new images or retrieve previously stored
Images

v

340
Organize inputs into matrix formatted the same as the
input matrix used for training

Y

345
Using the trained network to calculate output images
based on the matrix created at step 340

Fig. 3B
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ARTIFICIAL INTELLIGENCE BASED
SUPPRESSION OF CHEMICAL SPECIES IN
MAGNETIC RESONANCE IMAGING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 63/000,643 filed Mar. 27, 2020, which
1s incorporated herein by reference in its entirety.

TECHNOLOGY FIELD

The present invention relates generally to methods, sys-
tems, and apparatuses for implementing artificial intelli-
gence (Al)-based framework for the suppression of chemical
species 1n Magnetic Resonance Imaging (MM). This may be

applied, for example, to enhance liver imaging applications.

BACKGROUND

T1 weighted gradient recalled echo (GRE) magnetic
resonance 1maging (MRI) 1s a routinely used approach in
climical abdominal examination. The MRI pulse sequence 1n
a volume interpolated breath-hold examination (VIBE) pro-
vides three-dimensional (3D) GRE 1mage acquisitions, and
serves as a critical contrast type in MM evaluation of the
liver.

On T1 weighted GRE 1mages, fat exhibits bright signal
intensity compared to that of the liver parenchyma. To
increase the image contrast and to better evaluate the liver,
fat suppression 1s a prerequisite for the abdominal 1maging
protocols of 3D T1 weighted GRE acquisition using VIBE.
Homogeneous fat suppression across the entire field-of-view
1s desirable for reliable depiction of disease. VIBE 1s also
routinely used for 3D multiphase dynamic contrast enhanced
imaging acquisition before and after contrast administration
for pre- and post-contrast characterization analysis. Reliable
and homogeneous fat suppression 1s also critical {for
dynamic contrast enhanced imaging.

Fat saturation 1s the most commonly used technique in the
climical VIBE acquisition for fat suppression. This technique
applies a spectrally selective radio-frequency (RF) pre-pulse
to selectively excite the fat spins in the imaging volume, and
immediately saturates (or spoil) the excited fat spins so that
their signal intensities are suppressed in the subsequent
VIBE acquisition. In practice, the performance of fat satu-
ration 1s influenced by BO field inhomogeneity among other
things, leading to non-uniform fat suppression.

An alternative to spectrally selective fat suppression pre-
pulses 1s to use a Dixon approach to separate fat and water
signals. Dixon imaging uses acquisitions with distinct fat-
water phase differences to separate fat and water 1mages.
The orniginal two-point Dixon utilizes mn-phase (IN) and
opposed-phase (OPP) echo data to generate water and fat
images, which may suffer from B0 inhomogeneity, relax-
ation eflects, and fat-water assignment ambiguity. Three-
point Dixon and 1ts variants correct BO inhomogeneity and
12* eflect by acquiring one extra echo, reduce T1 eflect by
relatively long repetition time (TR) and low tlip angle (FA),
and eliminate fat-water assignment ambiguity by various
phase correction methods. Furthermore, research and clini-
cal studies started to explore multi-echo and/or multi-fre-
quency Dixon methods to correct the effects of confounder
sources such as field inhomogeneity, 1T2/T2* and T1, which
allow more accurate fat/water separation and the subsequent
fat fraction quantification, as well as the quantification of
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2

tissue transverse relaxation values (12 or T2*) or relaxation
rates (R2=1/12 or R2*=1/T2).

The water images generated by Dixon techniques can be
used as an alternative to the fat suppressed images by fat
saturation. Dixon techniques ofler several advantages. First,
the water 1mages generally provide more uniform fat sup-
pression than the fat saturated images, because the Dixon
techniques are less sensitive to BO inhomogeneity compared
to the fat saturation techniques. Second, 1t 1s diflicult for the
fat saturation techniques to suppress all fat peaks due to the
overlapping of fat and water peaks in the spectrum, espe-
cially at low field strengths, while the Dixon techniques do
not have such a challenge. However, the main disadvantage
of Dixon techniques 1s a longer acquisition time because of
the need to acquire two or more echoes, compared to only
one echo for fat saturation acquisitions. This often leads to
other compromises such as lower 1image resolution.

SUMMARY

Embodiments of the present invention address and over-
come one or more of the above shortcomings and draw-
backs, by providing methods, systems, and apparatuses
related to artificial intelligence (Al)-based suppression of
chemical species 1n magnetic resonance imaging (MRI).
More specifically, an Al-based framework 1s described
herein that jointly combines deep learning neural networks
and multi-echo Dixon techniques to suppress the fat in the
acquired MR 1mages without the need for performing fat
saturation during acquisition. Briefly, in some embodiments,
water 1mages calculated by the Dixon methods are used as
a ground truth for training the network to generate fat
suppressed 1mages, as an alternative to using the acquired fat
saturated 1mages as the ground truth to train the network.

According to some embodiments, a computer-imple-
mented method for using machine learning to suppress fat in
acquired MR 1mages includes receiving a plurality of multi-
echo 1mages from an anatomical area of interest acquired
using an MRI system. A first subset of the multi-echo 1images
1s acquired prior to application of contrast to the anatomical
area of interest and a second subset of the multi-echo 1mages
1s acquired after application of contrast to the anatomical
area of interest. Next, data 1s generated including a plurality
of water 1images, a plurality of fat images, and a plurality of
cllective R*, maps from the plurality of multi-echo images.
The water images, the fat images, and the eflective R*, maps
are used to create a plurality of synthetic fat suppressed
images. A neural network 1s trained to use the multi-echo
images as mput and the synthetic fat suppressed 1images as
ground truth. A plurality of components of the neural net-
work are saved to allow later deployment of the neural
network on a computing system.

According to other embodiments, a computer-imple-
mented method for using machine learning to suppress fat in
acquired MR data includes receiving a plurality of multi-
echo 1mages from an anatomical area of interest acquired
using an MM system without performing fat saturation on
the anatomical area of interest. A neural network 1s used to
generate a plurality of synthetic fat suppressed images based
on the multi-echo 1mages. Then, the synthetic fat suppressed
images may be displayed.

According to other embodiments, a system for using
machine learning to suppress fat in acquired MR 1mages
comprises an MR 1maging system, one or more computers,
and a display. The MR 1maging system comprises a plurality
of coils configured to acquire a plurality of multi-echo
images from an anatomical area of interest acquired without
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performing fat saturation on the anatomical area of interest.
The computers are configured to use a neural network to
generate a plurality of synthetic fat suppressed images based
on the multi-echo 1images. The display presents the synthetic
fat suppressed 1mages.

Additional features and advantages of the mvention will
be made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the present invention
are best understood from the following detailed description
when read 1n connection with the accompanying drawings.
For the purpose of illustrating the invention, there 1s shown
in the drawings embodiments that are presently preferred, 1t
being understood, however, that the invention 1s not limited
to the specific instrumentalities disclosed. Included 1n the
drawings are the following Figures:

FI1G. 1 1llustrates the pipeline for preprocessing of data for
training and application, according to some embodiments;

FIG. 2 illustrates an example deep learning network that
may be used with the techniques described herein;

FIG. 3A shows an example worktlow for training the
Al-based framework, according to the some embodiments;

FIG. 3B shows an example workflow for use of the
Al-based framework, according to the some embodiments;

FIG. 4 shows example results of the Al based framework
for fat suppression described herein; and

FIG. 5 shows an example MRI system that may be used
in acquisition of the reference and dynamic 1mages, accord-
ing to some embodiments of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The following disclosure describes the present invention
according to several embodiments directed at methods,
systems, and apparatuses for artificial intelligence (AI)-
based suppression of chemical species 1n magnetic reso-
nance (MR) imaging. More specifically, an Al-based frame-
work 1s described herein that jointly combines deep learning
neural networks and multi-echo Dixon techniques to sup-
press the fat in the acquired MR 1mages without the need for
performing fat saturation during acquisition. These tech-
niques are described herein with respect to the VIBE
sequence and demonstrated for liver imaging; however it
should be understood that the techniques can be applied 1n
other body parts. These techniques can also be applied to
other sequence types including, without limitation, turbo
spin echo (TSE), radial, spiral and echo-planar 1maging
(EPI). In addition to the T1-weighted GRE 1mage contrast
described herein, the disclosed techniques can be applied to
different image contrasts, including but not limited to proton
density (PD) weighted and T2 weighted 1image contrasts by
GRE and/or TSE sequences.

FIG. 1 illustrates the pipeline for preprocessing of data for
training and application, according to some embodiments.
The pipeline starts with a multi-step adaptive fitting multi-
echo Dixon module, which 1s used to calculate the separated
water (M,,) and fat (M, images corresponding to the echo
time (TE) equal to 0, and the pixel-by-pixel eflective R2*
values (R*,_.) of the water and fat mixed tissue (ettective
R2* map), as modeled 1n the Equation [1]

S, 1= (M, +C Mp-e 25
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where S 1s the measured MR signal at the n-th echo; ¢, 1s
the complex coetlicient at the n-th TE due to the difference
of fat and water 1n the spectrum, which can be calculated
using prior knowledge of the fat spectral modeling; TE, 1s
the n-th echo time. One example technique for this calcu-
lation of ¢, 1s described in Ren J, Dimitrov I, Sherry A,
Malloy C. Composition of adipose tissue and marrow fat 1n
humans by 1H NMR at 7 Tesla. J Lipid Res 2008; 49:2055-
2062. The detailed algorithm using the acquired multi-echo
images (typically echoes>=6) to calculate the water (M)
and fat (M, 1mages as well as the eftective R2* (R*,_4)
maps 1s well described 1n the previous literature including
U.S. Pat. No. 9,194,925 entitled “Fat and 1ron quantification
using a multi-step adaptive fitting approach with multi-echo
magnetic resonance i1maging,” the entirety of which 1s
incorporated herein by reference.

Next, the water image and the eflective R2* map are used
to calculate synthetic water i1mages (also referred to as
“synthetic fat suppressed 1images” herein). First, a synthetic
water image S' corresponding to any arbitrary TE according
to Equation [2]:

S! =M e *2e1E 2]

Synthetic water images corresponding to any arbitrary TEs
may be calculated using Equation [2]. However, in order to
use all the acquired echo 1mages as mputs to the convolu-
tional neural network, synthetic water images are calculated
according to the acquired TEs as 1n Equation [3].

’ — —RHZE IEH
S, =M e 24

[3]

The originally acquired echo 1images and their corresponding
synthetic water 1images calculated using Equation [3] are
then used to tramn a deep learming convolutional neural
network. Specifically, the echo 1mages are used as iput and
the synthetic images are used as ground truth (i.e., the 1deal
expected output). A network trammed on such data will
reliably provide fat suppressed images from any single-echo
VIBE acquisition.

FIG. 2 illustrates an example deep learming network that
may be used with the techniques described herein. This
network 1s based, 1n part, on the U-Net structure described
in Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas
(2015). “U-Net: Convolutional Networks for Biomedical
Image Segmentation”. arXiv:1505.04597. As shown in FIG.
2, the example U-Net deep learning neural network com-
prises 4 down blocks, 1 flat block and 4 up blocks. The Cony
operation uses the padding with the same size. Images from
different dimensions including echoes, slices, subjects, pre-
and post-contrast, are organized and sorted into one virtual
dimension, N,. In other embodiments, additional dimen-
sions may be added. One such example of an additional
dimension could be channels N _,, so as to include the
magnitude/phase, or real/imaginary parts of the images. For
training, an optimizer type of Adam with Nestrov momen-
tum may be used. The loss function 1n the current imple-
mentation 1s mean squared error (MSE), but alternative loss
functions known 1n the art could also be used.

FIG. 3A shows an example workiflow for training the
Al-based framework, according to the some embodiments.
This worktlow 1s performed using a plurality of training
images targeting the anatomical area of interest. Starting at
step 305, the multi-echo complex (or magnitude and phase)
data of the training 1images are used to calculate the mnput and
labelled 1images as described above with reference to FIG. 1.

Continuing with reference to FIG. 3A, at step 310, the
input 1mages for training from step 305 are organized 1nto a
multi-dimensional matrix N XN _xN [xN_, ], as explained
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above with reference to FIG. 2. This matrix 1s referred to
herein as the mput matrix. If only magnitude images are
used as mput 1images, then N_, 1s 1 and can be neglected.
Alternatively, if complex 1images are used as mput 1images,

the 1image are stored 1n channel dimension. Next, at step 315,
the labelled 1images (i.e., the ground truth) for training from
step 305 are organized mnto a second multi-dimensional
matrix N, XN xN_. This matrix 1s referred to herein as the
labelled matrix. At step 320 the neural network 1s trained
using the mmput matrix and the labelled matrix. Once the
network 1s trained, at step 325 data describing the network
1s saved to allow later deployment. This descriptive infor-
mation may 1include, for example, the structure of the
network, the hyper-parameter values, and the weights within
cach node of the network.

FIG. 3B shows an example workflow for use of the
Al-based framework, according to the some embodiments.
Starting at step 330, the network 1s deployed onto a com-
puting system and the saved hyper-parameter values and
weights are loaded. Next, at step 335, new i1mages are
acquired or previously acquired images are retrieved. The
multi-echo complex (or magnitude and phase) data of the
images 1s organized 1nto the format of the multi-dimensional
matrix that was used for training (1.e., the mput matrix) at
step 340. Then, at step 345, the output 1images are calculated
using the matrix created at step 340.

FIG. 4 shows example results of Al based framework for
tat suppression described herein. The first column of 1mages
are the acquired images for TE=1.23 and TE=7.38 ms. The
second column shows the output of the neural network:
synthetic fat suppressed 1images for the two TE values.

The Al-based framework as described herein has various
advantages over conventional techniques. For example, the
framework can provide fat suppressed images which allow
the radiologists or physicians to view both non-fat-sup-
pressed and fat-suppressed images for diagnosis while only
acquiring non-fat-suppressed images on the MM scanner.
The framework also provides volumetric fat suppressed
images with a single echo time (TE) acquisition. Further-
more, the framework described herein 1s insensitive to the
influence of various T1 eflects, such as contrast-induced T1
changes and thp angle induced T1 changes.

FIG. 5 shows an example MRI system 500 that may be
used 1n acquisition of the reference and dynamic images,
according to some embodiments of the present invention. In
system 500, magnetic coils 12 create a static base magnetic
field in the body of patient 11 to be imaged and positioned
on a table. Within the magnet system are gradient coils 14
for producing position dependent magnetic field gradients
superimposed on the static magnetic field. Gradient coils 14,
in response to gradient signals supplied thereto by a gradient
and shim coil control module 16, produce position depen-
dent and shimmed magnetic field gradients in three orthogo-
nal directions and generates magnetic field pulse sequences.
The shimmed gradients compensate for inhomogeneity and
variability 1n an MR 1maging device magnetic field resulting
from patient anatomical variation and other sources. The
magnetic field gradients include a slice-selection gradient
magnetic field, a phase-encoding gradient magnetic field and
a readout gradient magnetic field that are applied to patient
11.

Further RF (radio-frequency) module 20 provides RF
pulse signals to RF coil 18, which 1 response produces
magnetic field pulses which rotate the spins of the protons in
the 1maged body of the patient 11 by ninety degrees or by
one hundred and eighty degrees for so-called “spin echo”

then N _, 1s 2 and magnitude/phase or real/imaginary parts of 53
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imaging, or by angles less than or equal to 90 degrees for
so-called “gradient echo™ 1imaging. Gradient and shim coil
control module 16 in conjunction with RF module 20, as
directed by central control computer 26, control slice-selec-
tion, phase-encoding, readout gradient magnetic fields,
radio-frequency transmission, and magnetic resonance sig-
nal detection, to acquire magnetic resonance signals repre-
senting planar slices of patient 11.

In response to applied RF pulse signals, the RF coil 18
receives MR signals, 1.e., signals from the excited protons
within the body as they return to an equilibrium position
established by the static and gradient magnetic fields. The
MR signals are detected and processed by a detector within
RF module 20 and k-space component processor unit 34 to
provide an MR dataset to an image data processor for
processing into an image. In some embodiments, the image
data processor 1s located in central control computer 26.
However, 1n other embodiments such as the one depicted 1n
FIG. 11, the image data processor 1s located 1n a separate
umt 27. Electrocardiogram (ECG) synchronization signal
generator 30 provides ECG signals used for pulse sequence
and 1maging synchronization. A two or three dimensional
k-space storage array of individual data elements 1n k-space
component processor unit 34 stores corresponding indi-
vidual frequency components comprising an MR dataset.
The k-space array of individual data elements has a desig-
nated center and individual data elements mdividually that
have a radius to the designated center.

A magnetic field generator (comprising coils 12, 14 and
18) generates a magnetic field for use 1n acquiring multiple
individual frequency components corresponding to 1ndi-
vidual data elements in the storage array. The individual
frequency components are successively acquired 1n an order
in which radius of respective corresponding individual data
clements increases and decreases along a substantially spiral
path as the multiple individual frequency components 1s
sequentially acquired during acquisition of an MR dataset
representing an MR 1mage. A storage processor in the
k-space component processor unit 34 stores individual fre-
quency components acquired using the magnetic field 1n
corresponding individual data elements i1n the array. The
radius of respective corresponding individual data elements
alternately increases and decreases as multiple sequential
individual frequency components are acquired. The mag-
netic field acquires individual frequency components in an
order corresponding to a sequence of substantially adjacent
individual data elements i1n the array and magnetic field
gradient change between successively acquired frequency
components 1s substantially minimized.

Central control computer 26 uses information stored 1n an
internal database to process the detected MR signals in a
coordinated manner to generate high quality images of a
selected slice(s) of the body (e.g., using the image data
processor) and adjusts other parameters of system 500. The
stored information comprises predetermined pulse sequence
and magnetic field gradient and strength data as well as data
indicating timing, orientation and spatial volume of gradient
magnetic fields to be applied in 1imaging. Generated 1mages
are presented on display 40 of the operator interface. Com-
puter 28 of the operator interface includes a graphical user
interface (GUI) enabling user interaction with central con-
trol computer 26 and enables user modification of magnetic
resonance 1maging signals 1n substantially real time. Display
processor 37 processes the magnetic resonance signals to
provide 1image representative data for display on display 40,
for example.
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The embodiments of the present disclosure may be imple-
mented with any combination of hardware and software. In
addition, the embodiments of the present disclosure may be
included in an article of manufacture (e.g., one or more
computer program products) having, for example, computer-
readable, non-transitory media. The media has embodied
therein, for nstance, computer readable program code for
providing and facilitating the mechanisms of the embodi-
ments of the present disclosure. The article of manufacture
can be included as part of a computer system or sold
separately.

The term “computer readable medium™ as used herein
refers to any medium that participates in providing nstruc-
tions to the processor for execution. A computer readable
medium may take many forms including, but not limited to,
non-volatile media, volatile media, and transmission media.
Non-limiting examples of non-volatile media include optical
disks, solid state drives, magnetic disks, and magneto-
optical disks, such as hard disk or removable media drive.
One non-limiting example of volatile media 1s dynamic
memory. Non-limiting examples of transmission media
include coaxial cables, copper wire, and fiber optics, includ-
ing the wires that make up one or more buses. Transmission
media may also take the form of acoustic or light waves,
such as those generated during radio wave and infrared data
communications.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of 1llustra-
tion and are not intended to be limiting, with the true scope
and spirit being indicated by the following claims.

An executable application, as used herein, comprises code
or machine readable instructions for conditioning the pro-
cessor to implement predetermined functions, such as those
of an operating system, a context data acquisition system or
other information processing system, for example, 1n
response to user command or mput. An executable proce-
dure 1s a segment of code or machine readable instruction,
sub-routine, or other distinct section of code or portion of an
executable application for performing one or more particular
processes. These processes may include receiving input data
and/or parameters, performing operations on recerved 1nput
data and/or performing functions in response to received
input parameters, and providing resulting output data and/or
parameters.

The functions and process steps herein may be performed
automatically or wholly or partially in response to user
command. An activity (including a step) performed auto-
matically 1s performed in response to one or more execut-
able instructions or device operation without user direct
initiation of the activity.

The system and processes of the figures are not exclusive.
Other systems, processes and menus may be derived 1n
accordance with the principles of the mvention to accom-
plish the same objectives. Although this mnvention has been
described with reference to particular embodiments, it 1s to
be understood that the embodiments and variations shown
and described herein are for illustration purposes only.
Modifications to the current design may be implemented by
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those skilled 1n the art, without departing from the scope of
the ivention. As described herein, the various systems,
subsystems, agents, managers and processes can be 1mple-
mented using hardware components, soltware components,
and/or combinations thereof. No claim element herein 1s to
be construed under the provisions of 35 U.S.C. 112(1),
unless the element 1s expressly recited using the phrase
“means for.”

We claim:

1. A computer-implemented method for using machine
learning to suppress fat in acquired magnetic resonance
(MR) images, the method comprising;:

recerving a plurality of multi-echo 1mages from an ana-

tomical area of interest acquired using an MRI system,
wherein a first subset of the multi-echo 1mages 1s
acquired prior to application of contrast to the anatomi-
cal area of interest and a second subset of the multi-
echo 1mages 1s acquired after application of contrast to
the anatomical area of interest;

generating a plurality of water images, a plurality of fat

images, and a plurality of effective R*, maps from the
plurality of multi-echo 1mages;

using the water images, the fat images, and the effective

R*, maps to create a plurality of synthetic fat sup-
pressed 1mages;

training a neural network to use the multi-echo 1mages as

input and the synthetic fat suppressed images as ground
truth; and

saving a plurality of components of the neural network to

allow later deployment of the neural network on a
computing system.

2. The method of claim 1, wherein the plurality of water
images and the plurality of fat images correspond to an echo
time (TE) equal to O.

3. The method of claim 2, wherein each synthetic fat
suppressed 1mage corresponds to a distinct TE value greater
than O.

4. The method of claim 1, wherein the synthetic fat
suppressed 1mages are generated using multi-echo Dixon
reconstruction and multi-step adaptive fitting.

5. The method of claim 1, wherein the neural network 1s
a deep learning network.

6. The method of claim 5, wherein the deep learming
network 1s based on a U-Net structure.

7. The method of claim 5, wherein the plurality of
multi-echo 1mages are acquired 1n a plurality of dimensions
and the deep learning network transforms the plurality of
dimensions into a single virtual dimension.

8. The method of claam 7, wherein the plurality of
dimensions correspond to echoes, slices, subjects, pre-con-
trast processing, and post-contrast processing.

9. The method of claam 8, wherein the plurality of
dimensions further include channels of the MRI system used
in acquiring the multi-echo 1images.

10. The method of claim 1, wheremn the plurality of
components ol the neural network comprise a structural
description of the neural network, one or more hyper-
parameters used in training the neural network, and one or
more weights resulting from training of the neural network.
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