United States Patent

US011321514B2

(12) (10) Patent No.: US 11,321,314 B2
Li et al. 45) Date of Patent: May 3, 2022
(54) QUERY CONTENT-BASED DATA USPC e, 707/713
GENERATION See application file for complete search history.
(71) Applicant: INTERNATIONAL BUSINESS (56) References Cited
MACHINES CORPORATION -
’ U.S. PATENT DOCUMENTS
Armonk, NY (US)
6,289,334 Bl 9/2001 Reiner et al.
(72) Inventors: Shuo Li, Beyjing (CN); Xiaobo Wang, 7,240,078 B2* 7/2007 Cheng GO6F 16/24539
Beijing (CN); ShengYan Sun, Beijing 7,653,610 B2 1/2010 Abrashkevich et al.
‘ . : : ranke et al.
(CN); Hong Mei Zhang, Beijing (CN) 8,631,000 B2 /2014 Frank 1
(Continued)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, OTHER PUBLICATIONS
Armonk, NY (US
(U5) Pollack, “Query Optimization Techniques 1n SQL Server: Tips and
(*) Notice: Subject to any disclaimer, the term of this Iricks”, SQLShack, Jun. 19, 2018, pp. 1-17.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 70 days.
Primary Examiner — Hung 1 Vy
(21) Appl. No.: 16/881,139 (74) Attorney, Agent, or Firm — Willilam Hartwell;
Matthew M. Hulihan; Heslin Rothenberg Farley & Mesiti
(22) Filed: May 22, 2020 PC
(65) Prior Publication Data (57) ABSTRACT
US 2021/0365451 A1l Nov. 25, 2021 Query coqtent-based data generation includes obtaining a
query having an outer query and one or more subqueries,
(51) Int. CL performing subquery transformation on each subquery,
GOGF 16/2453 (2019.01) which converts predicates of the subqueries to be predicates
GOGF 16/242 2019 01 of the outer query, and thereby obtain a transtormed query,
GOGF 9/30 5201 2 0 ; generate from the transformed query block(s) each having a
COGF 16/27 (201 9' O:h) l1st (:)f predicates selected from the tr{ansformgd query, pro-
COGF 16/28 501 9' O:h cessing each query block for column information, including
(01) column range information and column relationship informa-
g P
(52) US. Cl tion, and generating data and populating a dataset having
CPC ... GO6F 16/24535 (2019.01); GO6F 9/30029 table(s) and respective column(s) for each of the table(s).
(2013.01); GO6F 16/221 (2019.01); GOGF Generating the data uses the column range information and
16/2282 (2019.01); GO6F 16/2428 (2019.01); the column relationship information to select data for the
Goor' 16/288 (2019.01) dataset such that data records from the dataset are produced
(58) Field of Classification Search as results to executing the obtained query against the dataset.

CPC GO6F 16/24532; GO6F 16/283; GO6F
16/24535; GO6F 16/252

20 Claims, 13 Drawing Sheets

100a
P 100b
SELECT ORDER order_id SELECT ORDER order i -~
FROM ORDER, URDER? . OFEet
T _ FROM ORDER, ORDER?
|] | t r—-—-—~—~~~>~>~>~>~>~>~~---------"---"- - - ---- - - - -"-"=-"=-"=-7 1
| WHERE CRDERZ ORBER 1D < 105 AND EXISTS) | ORDER2.ORDER ID < 105 ;
. (SELECT 1 o | | o | +
: FROM WAREHOUSE DISTRICT? fE-vi 02 : AND WAREHLUISE warehouse id = DISTRICT 2. district_warehouse id L..., 102"
| WHEZRE WAREMOUSE warehouse id = DISTRICT2 district warehouse_id : | AND WARFHOUSE warehouse _id = ORDFR.order_ warehousa_id I
- - - - - AND WAREHOUSE warehouse_id = ORDER order warehouseid ____ . i : AND DISTRICT2.district_id IN i
! ANDDISTRIG 2 district.ic N | ! (SELECT CUSTOMER customer._district id *
! (SELECT CUSTOMER customer_district_id 104 CHSTEMEL G, ~ 104
| _ | FROM CUSTOMER
e RO S O L T WHEREEXISTS T T T T T TTTTTTToo K
. WHERE EXISTS s . " |
| (SELECT 1 : | (SELECT 1 |
l = f I - r , - A J‘
| FROM WAREHOUSE2, CUSTOMER? ‘ ' FROM WAREHOUSEZ LUSTOMERe |
| R , t | WHERE WAREHOUSE? warehouse id = |
! WHERE WAREHOHUSEZ warehouse id= f l . f
| | 106 | CUSTOMERZ2 customer warchouse_id ;
| CUSTOMER? customer_warehouse _id : : T ~ 106
. | o : | AND CUSTOMERZ customer disirict id = ;
, AND CUSTOMERZ customer_district_id = E | . L ,
: L E | CUSTOMER customer_district_id i
CUSTOMER. customer_district _id L

! , . ; ! AND CUSTOMERZ customer_disirict id = *
l ANE CUSTOMER2.cusiomer_dlistrict id = ; l T +
! ORDER orcer district id t o e o o QFEDE%E?@E{;ESEH?JG mmmmmmmmmmmmmmm *
g LI oo - a OR ORDER.ORDER_DISTRICT D IN(b
| OR ORDER.ORDER DISTRIGTID 1N f ' SELECT ORDERZ. ORDER_DISTRICT_ID |
: Sl ECT OROERZ.ORDER DISTRICT 1D : : FROM OFEEIERé ” ” i
| FROM ORDER? | | ' ~ 3 +
: WHERE ORDER ORDER CARRIER 1D = :ﬂwf 08 : WHERE ORDER.ORDER_CARRIER |D = I—«.., ‘08
| E | ORDERZ. ORDER_CARRIER) f
| URDERZ ORDER_CARRIER i) j | AND ORDER? ORDER 1) < 105 *
I AND ORDER2.ORDER D <135 : Lo L N
I cm e h s s e i imr e s mm s M e g mm i g mm e s mee Gm A ma a e mam as mia e s am s vas amr em aar e -

NI

US 11,321,314 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

8,868,544 B2* 10/2014 Witkowski GOG6F 16/283
707/713

9,110,946 B2 8/2015 Chen et al.

10,387,422 B2 8/2019 Cialim et al.

2005/0114311 Al1* 5/2005 Cheng GO6F 16/24539

OTHER PUBLICATIONS

Mell, et al., “The NIST Definition of Cloud Computing”, NIST
Special Publication 800-145, Sep. 2011, Gaithersburg, MD, pp. 1-7.

* cited by examiner

U.S. Patent May 3, 2022 Sheet 1 of 13

SELECT ORDER.order_id
FROM ORDER, ORDER?Z

WHERE ORDERZ2.ORDER_ID < 105 AND EXISTS

Welilgly wiwimiwe ieivivieln wishibe. wibieir 0 miwiie ikl obinbiet e winieet Mekkbie mivieivh 0 miniiet el eeewie el ekl deewew B bbbl W i e S e W ek bbbl b N ey et il

(SELECT 1
FROM WAREHOUSE DISTRICT?2
WHERE WAREHOUSE .warehouse_id = DISTRICT2.district_warehouse_id
AND WAREHOUSE .warehouse_id = ORDER .order_warehouse_id
AND DISTRICT2.district_id IN

(SELECT CUSTOMER .customer_district_id
FROM CUSTOMER
WHERE EXISTS
(SELECT 1
FROM WAREHOUSEZ2,CUSTOMER?2
WHERE WAREHOUSE?2.warehouse_id =
CUSTOMERZ.customer_warehouse_id
AND CUSTOMERZ2.customer_district_id =
CUSTOMER .customer_district_id
AND CUSTOMERZ2.customer_district_id =
ORDER.order_district_ia
OR ORDER.ORDER_DISTRICT_ID IN(
SELECT ORDER2.ORDER_DISTRICT _ID
FROM ORDER?

WHERE ORDER.ORDER_CARRIER_ID =
ORDERZ.ORDER_CARRIER_ID

AND ORDER2.ORDER_ID < 105

e I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

US 11,321,314 B2

-~ 106

~108

U.S. Patent May 3, 2022 Sheet 2 of 13 US 11,321,314 B2

100Db
,A/Z/

SELECT ORDER.order id

FROM ORDER, ORDERZ

e e i -
1 ORDER2.ORDER_ID < 10

AND WAREHOUSE .warehouse 1d = DISTRICTZ.district warehouse id 102
AND WAREHOUSE .warehouse id = ORDER.order warehouse id

|

|

|

|

l__

: AND DISTRICT2.district id IN
: (SELECT CUSTOMER.customer_district_id 104
3 FROM CUSTOMER |

= WHERE EXISTS

|

. (SELECT 1

: FROM WAREHOUSE2 CUSTOMER? *
: WHERE WAREHOUSE2.warehouse id =

| CUSTOMERZ2.customer warehouse id
j AND CUSTOMER2.customer_district id =
:

|

|

|

P

|

|

|

l

|

!

|

|

|

"

CUSTOMER:.customer_district_id
AND CUSTOMERZ.customer_district_id =
ORDER.order_district_id
OR ORDER.ORDER_DISTRICT_ID IN(
SELECT ORDER2.ORDER_DISTRICT_ID
FROM ORDERZ
WHERE ORDER.ORDER_CARRIER_ID =
ORDER2.ORDER_CARRIER_ID
AND ORDER2.ORDER_ID < 105

U.S. Patent May 3, 2022 Sheet 3 of 13 US 11,321,314 B2

100c

L
SELECT ORDER.order id
FROM ORDER. ORDER?

- - - - - --==-=-=-====="""-"""7 1

' ORDER2.0RDER_ID < 105 ;

' AND WAREHOUSE warehouse_id = DISTRICT2.district_warehouse_id ~102

- AND WAREHOUSE .warehouse_id = ORDER.order_warehouse._id |

oo e oo T e T oo oo oo e e e -

' AND DISTRICTZ.district_id = CUSTOMER customer_district.id 104

. AND EXISTS

(SELECT 1

FROM WAREHOUSEZ2,CUSTOMER?Z
WHERE WAREHOUSEZ2.warehouse_id =
CUSTOMERZ2.customer_warehouse_id
AND CUSTOMERZ.customer_district_id =
CUSTOMER.customer_district_id 106
AND CUSTOMERZ.customer_district_id =
ORDER.order_district_id
OR ORDER.ORDER_DISTRICT_ID IN (
SELECT ORDER2.ORDER_DISTRICT _ID |
FROM ORDER? i
WHERE ORDER.ORDER_CARRIER_ID = :W1 08
i
|

ORDER2.ORDER_CARRIER_ID
AND ORDER2.ORDER_ID < 105

U.S. Patent May 3, 2022 Sheet 4 of 13 US 11,321,314 B2

SELECT ORDER.order id
FROM ORDER, ORDER?Z

ORDER2.ORDER_ID < 105
AND WAREHOUSE.warehouse_id = DISTRICT2.district_warehouse_id ~102
AND WAREHOUSE .warehouse_id = ORDER.order_warehouse_id |

AND DISTRICTZ.district_id = CUSTOMER .customer_district_id ~104

I o a i SRTAFSEr Nt i, e, T T s s s e T

AND WAREHOUSE2.warehouse_id = 1
CUSTOMERZ.customer_warehouse_id
AND CUSTOMERZ2.customer_district_id =
CUSTOMER.customer_district_id |
AND CUSTOMER2.customer_district_id = |
ORDER.order_district_id |
OR ORDER.ORDER_DISTRICT_ID IN (|
SELECT ORDERZ2.ORDER_DISTRICT_ID
FROM ORDER?
WHERE ORDER.ORDER_CARRIER_ID =
ORDER2.ORDER_CARRIER_ID ;

AND ORDER2.ORDER_ID < 105 i

U.S. Patent May 3, 2022 Sheet 5 of 13 US 11,321,314 B2

4 -100e
SELECT ORDER.order 1d
FROM ORDER, ORDERZ

el el e
1 ORDERZ2.ORDER_ID <105 |
! i

' AND WAREHOUSE warehouse_id = DISTRICT2.district_warehouse_id ;*--1 02
| AND WAREHOUSE warehouse_id = ORDER.order_warehouse_id |

r-- - - - ---- - -=-=-=-=-=-=-=-"=-=-=-=-=-=-=-=-=-=-=-=-=-=-"—-""=-="—--=-= = =" T ,

. AND DISTRICT? distict id = CUSTOMER customer distictid ~104
- AND WAREHOUSE2 warehouse._id = B
CUSTOMER2.customer warehouse id ;

AND CUSTOMERZ2.customer_district_id = | ,

~ 106

CUSTOMER.customer district id |
AND CUSTOMER2.customer district id = |
ORDER.order district_id *

ORDERZ2.ORDER_CARRIER_ID ’

|
: AND ORDER ORDER_CARRIER_ID =
I
I
' AND ORDERZ.ORDER_ID < 105 ~ 108’

U.S. Patent May 3, 2022 Sheet 6 of 13 US 11,321,314 B2

200

TABLE

COLUMN ' INDEX
GROUP ’ GROUP

PARTITION PARTITION PARTITION

FIG. 2

U.S. Patent May 3, 2022 Sheet 7 of 13 US 11,321,314 B2

304
300
\S\\ /\/
302
SRR DN HIGH KEY
f \ L OW KEY
@ w —(QUERY BLOCK) @ STEP
: ; CARDINALITY
f . SIZE
' QQUERY BLOCK) @
i |
i l
" (QUERY BLOCK)) | @
\ T)
@ TABLE NAME
TABLE CREATOR
FIG. 3
404

U.S. Patent May 3, 2022 Sheet 8 of 13 US 11,321,314 B2

DISTRICT2.DISTRICT_WAREHOUSE_ID - ORDER.ORDER_WAREHOUSE_ID = 0 :
WAREHOUSE . WAREHOUGSE_ID - DISTICT2.DISTRICT_WAREHOUSE_ID =0 !
WAREHOUSE.WAREHOUSE_ID - ORDER.ORDER_WAREHOUSE_ID =0 '

DISTRICT2.DISTRICT_WAREHOUSE_ID> 105

504
!
\ 1 1 0 , 0
10 1 ' 0
01 1 ' 0
!

‘ o 906

DISTRICT2.DISTRICT_WAREHOUSE_ID
ORDER.ORDER_WAREHOUSE_ID |=k

WAREHOUSE . WAREHOUSE_ID 1

v

k & [106,+00) ——2— 508

FIG. 5

US 11,321,314 B2

Sheet 9 of 13

May 3, 2022

U.S. Patent

J909

€909

U.S. Patent May 3, 2022 Sheet 10 of 13 US 11,321,314 B2

OBTAIN QUERY 702

PERFORM SUBQUERY
TRANSFORMATION 704
GENERATE QUERY BLOCKS —706

PROCESS QUERY BLOCKS FOR
COLUMN INFORMATION BASED ON |~ 708

QUERY BLOCK PREDICATES

GENERATE DATA AND POPULATE

DATASET COLUMN(S)/TABLE(S) 710

FIG. 7

U.S. Patent

May 3, 2022

COMPUTER SYSTEM

800

PROCESSOR
(CPU)

802

/O DEVICES
808

Sheet 11 of 13

/O INTERFACES

810

811

MEMORY
804

OPERATING
SYSTEM

805

COMPUTER
PROGRAMS

806

EXTERNAL DEVICES
812

FIG. 8

US 11,321,314 B2

US 11,321,314 B2

Sheet 12 of 13

May 3, 2022

U.S. Patent

6 Ol

US 11,321,314 B2

Sheet 13 of 13

May 3, 2022

U.S. Patent

0oL 9l
09
2IeM]JOS PUB SleMpIeH
\.N@ oo N~©
Sy "o 99 ~ SIBARS |9
S) GO SIBNIBS 8INJ08)IYOIY)
2Jlemyos uoneoyddy BUBLONS) Spe|] 9 SouB.IUR
aseqeleq spomeN HOMIN - oheioig) OSld JUEN
0 & (2 [l y
GL—~ PL~ €L 2. . UOREZINHIA
SE]e wcowmom_mg< @@Emz mmwgw mHm/amw
[eniA ETA [enIA eNpIA ENHIA
] (8 Oo L /-
cQ cQ Z9 18 Juswisbeuel
Juswijiyin4 pue Juswisbeuey B0 Jos buiolid pue BuloIsInOI4
Buiuueld v1s [9A9 90INISS buusie|y 92IN0S9Y 06
SPROPHOAN

f1anieQ JuaLuabeue
UOJRIBURD) busseootd // bussecol // LOIEIP %@&: uoeBineN
2i=lg uonoesuel] //sonkeuy ereq F_M3 m__> 1O UBWdojAS pue Buidde

2IeMJOS

06 G0 148 €6 ¢6 16

US 11,321,314 B2

1

QUERY CONTENT-BASED DATA
GENERATION

BACKGROUND

The gathering, storage, and use of data 1s ubiquitous and,
as a result, reliance on databases and queries on the data-
bases has become prevalent. This 1n turn drives development
ol database functions and capabilities, as well as function-
ality testing and problem troubleshooting. Development and
problem troubleshooting may be heavily reliant on the
ability to test database functionality through the provision of
queries to the database. Test cases/queries may be expected
to deliver query results, such as data records, in order
recreate observed problems, for instance. Queries are some-
times to be submitted against databases with actual data
even 11 just for testing purposes.

In some settings, a query that 1s problematic in terms of
producing a desired response may be provided without the
dataset/database against which the query 1s being submitted
when producing the problem. A specific example of this
situation 1s when a customer provides to a vendor a prob-
lematic query without the customer’s actual data against
which the query 1s being run by the customer.

SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a com-
puter-implemented method. The method obtains a query.
The query has an outer query and one or more subqueries of
the outer query. The method also performs subquery trans-
formation on each subquery of the one or more subqueries
to obtain a transformed query. The subquery transformation
converts predicates of the one or more subqueries to be
predicates of the outer query. The method additionally
generates from the transformed query one or more query
blocks each including a list of predicates selected from the
transformed query. The method processes each query block
of the one or more query blocks for column information
based on the list of predicates of that query block. The
column information includes column range information and
column relationship information. Further, the method gen-
crates data and populates a dataset including one or more
tables and a respective one or more columns for each of the
one ol more tables. Generating the data uses the column
range information and the column relationship information
to select data for the dataset such that data records from the
dataset are produced as results to executing the obtained
query against the dataset.

Further, a computer system 1s provided that includes a
memory and a processor 1 commumication with the
memory, wherein the computer system i1s configured to
perform a method. The method obtains a query. The query
has an outer query and one or more subqueries of the outer
query. The method also performs subquery transformation
on each subquery of the one or more subqueries to obtain a
transformed query. The subquery transformation converts
predicates of the one or more subqueries to be predicates of
the outer query. The method additionally generates from the
transformed query one or more query blocks each including
a list of predicates selected from the transformed query. The
method processes each query block of the one or more query
blocks for column information based on the list of predicates
of that query block. The column information includes col-
umn range information and column relationship informa-
tion. Further, the method generates data and populates a

10

15

20

25

30

35

40

45

50

55

60

65

2

dataset including one or more tables and a respective one or
more columns for each of the one of more tables. Generating
the data uses the column range information and the column
relationship information to select data for the dataset such
that data records from the dataset are produced as results to
executing the obtained query against the dataset.

Yet further, a computer program product including a
computer readable storage medium readable by a processing
circuit and storing nstructions for execution by the process-
ing circuit 1s provided for performing a method. The method
obtains a query. The query has an outer query and one or
more subqueries of the outer query. The method also per-
forms subquery transformation on each subquery of the one
or more subqueries to obtain a transformed query. The
subquery transformation converts predicates of the one or
more subqueries to be predicates of the outer query. The
method additionally generates from the transformed query
one or more query blocks each including a list of predicates
selected from the transformed query. The method processes
cach query block of the one or more query blocks for column
information based on the list of predicates of that query
block. The column information includes column range nfor-

mation and column relationship information. Further, the
method generates data and populates a dataset including one
or more tables and a respective one or more columns for
cach of the one of more tables. Generating the data uses the
column range information and the column relationship infor-
mation to select data for the dataset such that data records
from the dataset are produced as results to executing the
obtained query against the dataset.

Additional features and advantages are realized through
the concepts described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects described herein are particularly pointed out and
distinctly claimed as examples 1n the claims at the conclu-
sion of the specification. The foregoing and other objects,
features, and advantages of the disclosure are apparent from
the following detailed description taken 1n conjunction with
the accompanying drawings 1n which:

FIGS. 1A-1E collectively depict example query content,
identified query portions, and transformation thereof, 1n
accordance with aspects described herein;

FIG. 2 depicts an example conceptual layout of database
objects;

FIG. 3 depicts further details of a conceptual database
object layout and data attribute determination for data gen-
eration, in accordance with aspects described herein;

FIG. 4 depicts an example conceptual representation of an
independent query predicate and a dependent query predi-
cate;

FIG. 5 depicts a conceptual example of predicate rela-
tionship analysis for column information, in accordance
with aspects described herein;

FIG. 6 depicts an example representing a foreign key
constramnt for foreign key cycle resolution, in accordance
with aspects described herein;

FIG. 7 depicts example processes for query content-based
data generation, 1n accordance with aspects described
herein;

FIG. 8 depicts one example of a computer system and
assoclated devices to i1ncorporate and/or use aspects
described herein;

FIG. 9 depicts a cloud computing environment according,
to an embodiment of the present invention; and

US 11,321,314 B2

3

FIG. 10 depicts abstraction model layers according to an
embodiment of the present invention.

DETAILED DESCRIPTION

When a query i1s obtained but no dataset 1s available
against which to run the query, 1t may be desired to generate
such a dataset against which to run the query, for instance for
testing or other purposes. Lack of data against which to run
the query can be problematic. For instance, 1t could result in
too much resource (time, human resource) spend when
attempting to recreate the problem being observed 1n execut-
ing the query. Sometimes, recreation of the problem being
experienced by the customer 1s too difficult without an
accurately constructed data set.

An approach to addressing the lack of data 1s to request
from the customer or other entity the data against which the
problematic query 1s being run. This can present potential
security/data security risks. Another approach 1s to obtain
from the entity a masked version of the data, however this
too can be problematic, for instance 1f the entity does not
have the proper tools, knowledge, or resources to mask the
data, or the masking does not provide a desired level of
security.

Accordingly, described herein are approaches for query
content-based data generation. In some embodiments, this
involves query transformation and additional processing that
generates data, the generated data 1s configured such that
results are produced when the particular query 1s run against
the generated data (1.e. the data 1s the target against which
the query 1s evaluated to generate and return results).

FIGS. 1A-1E collectively depict example query content,
identified query portions, and transformation thereof, 1n
accordance with aspects described herein. In particular, FIG.
1A presents query content 100a of an example source query.
Query content 100a may represent some or all of an entire
query. Thus, 1n some examples, query content 100aq 1s a
subset of a larger query, and the execution of the query
content 1s to be tested and/or presents problems to be
troubleshooted. It may be that a particular portion (e.g.
100a) of the larger query has been identified as being
problematic, for instance, and processing described herein 1s
to be performed against that portion of the larger query, as
an example. In other examples, the query content 100a
represents the entirety of the query being processed for data
generation.

Referring to FIG. 1A, query 100q 1s an ‘outer query’
including a ‘SELECT . .. FROM . . . ’ statement with a
WHERE clause and several subqueries. In accordance with
aspects described herein, query portions/sections (e.g. 102,
104, 106, 108) are transiformed by way of processing the
query content, specifically those sections. Ultimately, this
can provide a transformed query that 1s used for data
generation. The data generated can 1n turn be used as a
dataset against which to run the query or query content 1n
order to recreate the problem(s) being experienced with the
query and/or dataset(s) against which the query 1s run.

Query content (sometimes referred to herein as just a
‘query’) 1s obtamned, in some embodiments, along with
relevant data definition/description language (DDL) for
defining the database schema. DDL associated with database
objects can be used in, for instance, the creation and/or
modification of database objects, such as tables, indexes,
and other objects, as examples. Additionally, 1n some
examples, a database parameter list of parameters/properties
of the database 1s also obtained. It 1s noted that DDL and/or
the data parameters may not be as sensitive from a security

10

15

20

25

30

35

4

or privacy standpoint as the database data 1itself, and there-
fore 1t may be more acceptable to a customer or other entity
to share the DDL/parameter information with a vendor to
perform the testing/troubleshooting on the query.

FIG. 2 depicts an example conceptual layout of database
objects relative to data generation as described herein. The
layout 200 shows a root node as a table object. A table has
columns (three in this example). A column group refers
to/includes two or more columns, and column(s) may be
indexed by way of an index object, which also can be into
an 1mdex group. A column might belong to several indexes
but only one index group. Each column may be made of one
or more partitions (partition 0 when tablespace 1s a seg-
ment), with each partition having block(s), and each block
having one or more section(s).

Additionally or alternatively, various database constraints
may be defined, for instance by an administrator or other
user, and can factor into the data generation. Example such
constraints are a unique index constraint, foreign key con-
straint, mult1 column join constraint, check constraint, data
type constraint, and partition range constraint, as examples.

Aspects described herein for data generation can support
any of various data types, examples of which include but are
not limited to: Numerals, such as Integer, Big Integer
(Biglnt), Small Integer (Smalling Float, Double, Real, Deci-
mal, Decfloat, Timestamp, Data, and Time, as examples;
String, such as Char, Varchar, Binary, Varbinary, Graph and
Vargraph, as examples; and others, such as Blob, Clob,
DBlob, Rowid, Extensible Markup Language (XML) and
user-defined datatype (UDT), as examples. The particular
types ol data to generate 1n various columns of the generated
dataset may be dictated or discernable by the obtained DDL,
for example.

A query typically has one or more predicates. Query
predicates can be independent (an ‘independent’ or ‘inde-
pendency’ predicate) or dependent (a ‘dependent’ or ‘depen-
dency’ predicate). An independent predicate refers to one
that does not set forth a dependency or relation among
multiple columns of data. An independent predicate relates

40 just one column to a literal, for istance. The predicate

45

50

55

60

65

ORDER2.ORDER_ID<105 1n query portion 108 of FIG. 1A
1s an example of an independent predicate. A dependent
predicate sets forth a dependency or relation between more
than one column of data. The predicate
WAREHOUSE.warehouse 1d=DISTRICT?2.district

warchouse_1d 1 query portion 102 of FIG. 1A 1s an example
dependent predicate, as 1t expresses a relation between

values 1n two diflerent columns (warehouse_1d' from table
‘WAREHOUSE’ and ‘district warehouse 1d’ from table

‘DISTRICT?2’) for given records. The relation in this
example 1s that the value from each of the two columns for
a given corresponding record are equal.

In an example process for query content-based data
generation described herein, a query i1s obtamned and
includes an ‘outer’ query and one or more subqueries of the
outer query. In this regard, an overall “query” can be
composed of several discrete queries, one of more of which
are subqueries to an ‘outer’ or ‘main’ query of the overall
query. The process performs subquery transformation as
described herein on each subquery of the one or more
subqueries and obtains a ‘transformed’ query. Subquery
transformation converts predicates of the one or more sub-
queries to be predicates of the outer query. Example sub-
query transformation described herein includes correlated
subquery transiformation and non-correlated subquery trans-
formation. In addition to subquery transformation, predicate
transformation 1s performed, which includes transformation

US 11,321,314 B2

S

of dependent predicate(s) and/or transtormation of 1ndepen-
dent predicate(s). Predicate transformation can be performed
prior to, or aiter, a process for query block generation, in
which data blocks of the transformed query are ‘divided’
into one or more lists. Further, constraint-based adjustment
and/or query block adjustment may be performed as
described herein, followed by data generation from resulting
query blocks.

As noted, subquery transformation converts predicate(s)
ol a subquery to be corresponding predicate(s) of the outer
query. Referring back to FIG. 1A, query content 100a (also
referred to herein as query 100a) includes portions 102, 104,
106 and 108, which are each subqueries to be transtormed
in accordance with aspects described herein. Each portion
includes respective query predicates for conversion to be
predicates of the outer query (SELECT ORDER.order id
FROM ORDER, ORDER2 WHERE . . . ").

With respect to portion 102, it includes predicate
ORDER2.ORDER_ID<1035, which 1s an independent predi-
cate, followed by ‘AND EXSTS (SELECT 1 FROM
Referring to FIG. 1B showing partially transformed query

1006, section 102' represents a transformed version of
portion 102. In section 102, the ‘WHERE

ORDER2.ORDER_ID<105 AND EXISTS . ..’ clause is
broken down 1nto the predicate ORDER2.ORDER_ID<1035
and predicates that are converted from rest of section 102 of
FIG. 1A, which are merged to the premise of the outer query.

The WHERE EXISTS clause and operator of section 102
(FIG. 1A) 1s handled 1n this example with a subquery
transformation in which predicate(s) “bubble up’ to the outer
query. The following presents an example of local filtering
within a correlated subquery, in which the EXISTS operator
results 1n a merge mto the parent query block. Take the
following query portion:

SELECT T1.*
FROM T1
WHERE EXISTS

(SELECT 1

FROM 12

WHERE T1.88N = T2.55N
AND T2.SSN = “123 45 6789’)

In this example, the subquery 1s dependent on table T1.

No local filtering 1s done on the outer table T1 1n this
example. The WHERE T1.SSN=12.55N presents a corre-
lation predicate and the AND T2.SSN=°123 45 6789’ pres-

ents a local predicate on the same column (T1) as the
correlation predicate.

This 1s converted 1n accordance with aspects described
herein by pulling out predicate T1.SSN=°123 45 6789’ (as
T1.SSN=T2.SSN by the correlation predicate) to be a predi-
cate of the outer query (1.e. “AND T1.SSN="123 45 6789°”).
T1 then has a local predicate on SSN.

This ‘bubble up’ 1s an example of converting predicate(s)
of a subquery to be predicate(s) of the outer query. The
subquery transformation identifies predicate(s) of the sub-
query and converts the 1dentified predicate(s) to at least one
predicate of the outer query. The subquery can be eliminated
at that point such that 1t does not appear in the transformed
query. In the example, converting an identified predicate
includes, based on identifying a correlation predicate (e.g.
WHERE T1.SSN=T12.55N), of the subquery, that correlates
table columns (1.e. T1.SSN and T2.SSN), converting at least
one predicate of the subquery (T2.SSN="123 45 6789) to a

10

15

20

25

30

35

40

45

50

55

60

65

6

local predicate of the outer query (AND T1.SSN=°123 45
6789), the local predicate being on a column (T1.SSN) of

the correlated table columns.

Turmning again to FIG. 1B, section 102' includes the
predicates “AND WAREHOUSE.warehouse_1d=
DISTRICT?2.district warehouse 1d” and “AND
WAREHOUSE . warehouse 1d=ORDER.order warehouse
1d” which replace the “(SELECT 1 FROM . . . ” subquery
of section 102 (FIG. 1A).

FIG. 1C, presenting partially transformed query 100c,

shows section 104", transformed from section 104 (FI1G. 1A),
which included the clause “AND DISTRICT2.district 1d IN

(SELECT CUSTOMER.customer_district_id . . . 7. This
subquery 1s transformed 1nto “AND DISTRICT?2.
district 1d=CUSTOMER .customer district 1d” as show 1n
section 104' of FIG. 1C.

Meanwhile, the “WHERE EXISTS . .. ” clause of original
section 106 (see FIG. 1A) 1s pulled-out as shown 1n 106' of
FIG. 1C as an “AND EXISTS . .. ” clause of the outer query.
A transtformation on the EXISTS operator of 106' proceeds
as described above to produce modified section 106' (see
FIG. 1D presenting partially transformed query 100d), 1n
which predicates of the ‘EXISTS (SELECT 1. .. subquery
have been converted into the following predicates of the

outer query as show m m 106' of FIG. 1D:
“WAREHOUSE2 .warehouse 1d=CUSTOMER2.customer

warehouse 1d”, “CUSTOMER2.customer district 1d=
CUSTOMER.customer district_1d”, and “CUSTOMER2.
customer district 1d=ORDER.order district 1d”.

An example transformation transforms a non-correlated
subquery using an IN predicate to a ‘join’. Below 1s an
example merge of a subquery that uses an IN operator:

Betore:
SELECT *
FROM EMP
WHERE DEPTNO IN
(SELECT DEPTNO FROM DEPT
WHERE LOCATION IN ('ST, 'SE")
AND DIVISION = 'MARKETING')
After:
SELECT EMP.*
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO
AND DEPT.LOCATION IN ('ST, 'SF')
AND DEPT.DIVISION = 'MARKETING*

The ‘After” query still includes SELECT ... FROM . ..
statement with a WHERE clause but the query 1s made more
simplistic as the subquery has been eliminated. This results
in simplified query blocks (see below).

Referring still to FIG. 1D, it 1s seen that section 108 leads
with an OR, which represents an alternative to the predicate
set 1 section 106' of FIG. 1D. The OR and its following
predicates are pulled out as predicates of the outer query and
the transformation described above with the IN operator 1s
performed to produce the transformed section 108' of FIG.
1E, presenting transformed query 100e. The predicates of

section 108 are transtformed 1n accordance with the above to
be ‘ORDER.ORDER_ DISTRICT ID=0ORDER2.ORDER

DISTRICT_ID’, ‘ORDER.ORDER_CARRIER_ID=
ORDER2.ORDER_CARRIER_ID’ and ‘ORDER2.
ORDER_ID<105".

The OR operator of 108' in FIG. 1E operates as an
alternative to the predicates of 106'. Thus, as part of con-
verting predicates ol a subquery, the converting converts
predicates of a subquery that has an OR operator into a first
set of predicates of the transtformed query (e.g. 1n 106') and

US 11,321,314 B2

7

a second set of predicates of the transformed query (e.g. 1n
108'), the first set of predicates and the second set of
predicates representing alternatives to each other for evalu-
ation of the transformed query.

Accordingly, a process can perform subquery transforma-
tion on each subquery of the subqueries if the 1nitial/
obtained query (100a) 1n order to obtain a transformed query
(e.g. 100e), 1n which the subquery transformation converts
predicates of the subqueries to be predicates of the outer
query. From the transformed subquery, query block(s) may
then be generated as described herein, each query block
including a list of predicates selected from the transformed

query.

Generated from the transtormed query (100e of FIG. 1E)
from the examples above are two query blocks. Sections
102" and 104' are part of each query block, while sections
106' and 108' represent alternatives to each other for satis-
tying the query. A process for generating query block(s) can

therefore generate a respective query block for each of the
alternatives mvolved.

A query block may be a list of predicates. As noted, two

lists/query blocks are generated from the example of FIG.
1E—one block for the first branch (106') of the OR and the

10

15

20

8

Listl:

ORDER2.ORDER_ID<105

DISTRICT2.DISTRICT WAREHOUSE ID=0ORDER.
ORDER_ WARFHOUSE ID

WAREHOUSE. WAREHOUSE_ID=DISTRICT?2.
DISTRICT WAREHOUSE ID

WAREHOUSE. WAREHOUSE_ID=ORDER.ORDER_
WAREHOUSE_ID

DISTRICT2.DISTRICT_ID=CUSTOMER.
CUSTOMER_DISTRICT_ID

ORDER.ORDER_DISTRICT_ID=ORDER2.ORDER
DISTRICT_ID

ORDER2.ORDER_CARRIER_ID=ORDER.ORDER _
CARRIER_ID

ORDER2.ORDER_ID<105

It 1s seen that the ListO includes the predicates from
sections 102', 104', and 106' of FIG. 1E, while List] includes

the predicates from sections 102', 104', and 108' of FIG. 1E.

Table 1 below presents a summary for translating sub-
queries for various operators. The left column 1s the opera-
tor, the middle column 1s the ‘Before’ query and the right
column 1s the ‘After’, or transformed, query.

TABLE 1
IN AND CITY IN AND CITY = CUSTOMER_ CITY
(SELECT CUSTOMER__CITY AND CUSTOMER__ID < 200
FROM TB_ CUSTOMER__PBR
WHERE CUSTOMER__ID < 200)
<= ANY AND OR.ORDER_SHIP DATE <= ANY AND OR.ORDER_SHIP DATE
<= ORDER__ESTIMATE_ DATE
(SELECT ORDER__ESTIMATE_ DATE ~ AND ORDER_ID =
FROM SCI21101.TB_ORDER_ PBG OR.ORDER__ID
WHERE)
<> AND ORDER__CARRIER_ID < SOME AND ORDER__CARRIER_ID <>
SOME (SELECT ORDER_CARRIER_ID ORDER_ CARRIER_ ID
FROM TB_ ORDER_ PBR AND
WHERE ORDER__CREATE_BIGINTI ORDER_ CREATE_ BIGINT!1 IS
IS NOT NULL) NOT NULL
EXISTS AND EXISTS AND DISTRICT__STATE =
(SELECT * CUSTOMER__STATE
FROM TB_ CUSTOMER__ PBR
WHERE DISTRICT__STATE =
CUSTOMER__STATE)
>ALL AND ORDER CUSTOMER_ID >ALI. AND ORDER_CUSTOMER_ ID

(SELECT CUSTOMER__ID
FROM TB__CUSTOMER__PBR
WHERE CUSTOMER__STATE LIKE

EC% 3)

other block for the other branch (108") of the OR. The two
query blocks in this example are referred to as ListO and
[1st]l, and are as follows:

[1st0:

ORDER2.ORDER ID<105

DISTRICT2.DISTRICT WAREHOUSE ID=0RDER.
ORDER WAREHOUSE 1D

WAREHOUSE. WARFHOUSE_ID=DISTRICT?2.
DISTRICT WARFHOUSE ID

WAREHOUSE. WARFHOUSE_ ID=0ORDER.ORD)]
WAREHOUSE 1D

DISTRICT2.DISTRICT ID=CUSTOMER.
CUSTOMER_DISTRICT 1D

WAREHOUSE2 WAREHOUSE ID=CUSTOMER?2.
CUSTOMER_ WAREHOUSE 1D

CUSTOMER2.CUSTOMER _DISTRICT ID=
CUSTOMER.CUSTOMER_ DISTRICT 1D

CUSTOMER2.CUSTOMER _DISTRICT ID=0ORDER.
ORDER _DISTRICT ID

L1
v

50

55

60

65

> ALL CUSTOMER__ID
AND CUSTOMER__STATE LIKE
EC%?

FIG. 3 depicts further details of a conceptual database
object layout and data attribute determination for data gen-
eration, 1 accordance with aspects described herein. As
noted above, the conceptual layout (300) of database objects
can 1nclude a table (named, and having a creator) which
includes column(s). Columns are referenced by one or more
query blocks 302. Each query block can be broken into
sections as described herein, and each section can inform
attributes 304 (may also be referred to as constraints) about
data for column(s) of the section. Example column attributes
include high key, low key, step, cardinality, and size. These
attributes may be used for generating data as described
herein.

Prior to, or after, query block generation described above,
predicates of the transformed query can themselves be
transformed. Predicates can be independent or dependent.
FIG. 4 depicts an example conceptual representation of an
independent query predicate and a dependent query predi-
cate. Specifically, independent predicate 402 indicates a

US 11,321,314 B2

9

column, an operand, and a literal. The operand relates
column value(s) to the literal. ColumnA>200, for instance,
indicates that values 1n Column A are greater than the literal
‘200°. Dependent predicate 404 sets forth a dependency or
relation between more than one column of data, specifically
by relating two columns with an operand, and relating that
result to a literal with another operand. Column A-Column
B<100, for instance, indicates that the value of Column 4
minus the value of Column B (a relation between the two)
1s less than literal ‘100,

Dependent predicates 1n the generated query blocks (e.g.
L1stO and Listl above) can be rewritten into the form that

1solates the literal on one side of an equation. For example,
the predicate DISTRICT2.DISTRICT_WAREHOUSE

ID=ORDER.ORDER_WARFEHOUSE_ID 1s equivalent to,
and can be rewritten as, DISTRICT2.DISTRICT
WAREHOUSE_ID-ORDER.ORDER_WAREHOU-
SE_ID=0. Thus, as part of processing a query block for
column information to generate data, a process can rewrite
a predicate referencing multiple columns as an equation
predicate relating the multiple columns using a literal such
that the literal indicates a relationship between values of the
multiple columns referenced by the predicate. In example
above, the relationship indicates equality between the two
columns using a ‘0’ as the literal.

Using List0 from above, dependent predicate transforma-

tion can rewrite the list as:
ORDER2.ORDER_ID<105

DISTRICT2.DISTRICT_WAREHOUSE_ID-ORDER.
ORDER_WAREHOUSE_ID=0
WAREHOUSE.WAREHOUSE_ID-
DISTRICT2.DISTRICT_WAREHOUSE_ID=0
WAREHOUSE.WAREHOUSE_ID-ORDER.ORDER _
WAREHOUSE_ID=0
DISTRICT2.DISTRICT_ID-CUSTOMER.CUSTOM -
ER_DISTRICT_ID=0
WAREHOUSE2. WAREHOUSE_ID-
CUSTOMER2.CUSTOMER_WAREHOUSE_ID=0
CUSTOMER2.CUSTOMER_DISTRICT_ID-CUSTO-
MER.CUSTOMER_DISTRICT_ID=0
CUSTOMER2.CUSTOMER_DISTRICT_ID-ORDER.
ORDER_DISTRICT_ID=0
Predicate transformation can be used 1n setting up a query
block for processing to determine column information based
on the list of predicates 1n that query block. The column
information can include column range information and
column relationship information, for instance.
Processing for column information from an mdependent
predicate can be straight-forward. Take the independent

predicate ORDER2.ORDER_ID>105. An attribute of col-
umn ORDER_ID of table ORDER?2 1is that the low key 1s
106 (assuming integer or similar values 1 which the step
between values 1s 1). This predicate alone does not inform
of a high key for the column.

Dependent predicates relate columns, and therefore a
collection of predicates informing of relation(s) a given
column has to other columns can be useful in figuring out
how column values relate to each other. Thus, part of
processing a query block for column information can
include grouping dependent predicates of the query block
into predicate groups, where each predicate group includes
dependent predicates that reference a respective common set
of columns, such that each column referenced by any of the
grouped dependent predicates of the query block 1s refer-
enced only by dependent predicates in one of the predicate
groups. In other words, this groups together predicates that
together reference a common group of columns that does not

5

10

15

20

25

30

35

40

45

50

55

60

65

10

overlap with the columns referenced by any of the other
groups. A goal of this 1s to 1solate each column to a single
group. A given column should not be set-forth in dependent
predicates across two or more groups.

Again using the example of ListO from above, the depen-
dent predicates 1n the ListO are processed and grouped into
three groups.

Groupl includes predicates:
DISTRICT2.DISTRICT_WAREHOUSE_ID-ORDER.

ORDER_WAREHOUSE_ID=0
WARFHOUSE. WAREHOUSE_ID-
DISTRICT2.DISTRICT_WAREHOUSE_ID=0
WARFHOUSE. WAREHOUSE_ID-ORDER.ORDER _
WAREHOUSE_ID=0
There are three dependent predicates in this group, and the
three predicates form a closed group 1n terms of the columns

referenced—DISTRICT2.DISTRICT_WAREHOUSE_ID,
ORDER.ORDER_WAREHOUSE_ID, and WAREHOUSE.
WAREHOUSE_ID.

Group2 includes predicate WAREHOUSE?2.
WAREHOUSE_ID-CUSTOMER2.CUSTOMER _
WARFEHOUSE ID=0, which stands alone because there 1s
no relationship of this predicate to any of the other predi-
cates 1n the List0O. The columns mvolved 1n this predicate do
not have a relationship to any other column referred to in the
other predicates of the ListO.

Group3 1ncludes predicates:

DISTRICT2.DISTRICT_ID-CUSTOMER.CUSTOM-
ER_DISTRICT_ID=0

CUSTOMER2.CUSTOMER_DISTRICT_ID-CUSTO-

MER.CUSTOMER_DISTRICT_ID=0

CUSTOMER2.CUSTOMER_DISTRICT_ID-ORDER.

ORDER_DISTRICT_ID=0

There are three dependent predicates 1n this group, and the

three predicates form a closed group 1n terms of the columns

u LlJ

referenced-DISTRICT2.DISTRICT_ID, CUSTOMER.
CUSTOMER_DISTRICT_ID, CUSTOMERZ2.
CUSTOMER_DISTRICT_ID, and ORDER. ORDER_DIS-

TRICT_ID.

Each of the column groups of dependent predicates can be
analyzed for column information using predicate relation-
ship analysis. FIG. 3§ depicts a conceptual example of
predicate relationship analysis for column information, in
accordance with aspects described herein.

Column Groupl above includes dependent predicates:

DISTRICT2.DISTRICT_WAREHOUSE_ID-ORDER.

ORDER_WAREHOUSE_ID=0
WARFHOUSE. WAREHOUSE_ID-
DISTRICT2.DISTRICT_WAREHOUSE_ID=0
WARFHOUSE. WAREHOUSE_ID-ORDER.ORDER _
WAREHOUSE_ID=0.

Independent predicate(s) mforming about a column of a
column group also applies to that column group. Assume by
way ol example that an independent predicate of the query
block states that DISTRICT2.DISTRICT
WAREHOUSE_ID>103.

Thus, referring to FIG. 5, the set of four predicates for
column Groupl are shown in 1n box 502. The first three
predicates are the dependent predicates. In accordance with
aspects of the predicate relationship analysis, a linear matrix
504 1s constructed to relate the three columns referenced 1n

the three dependent predicates. The first column of the
matrix corresponds to DISTRICT2.DISTRICT_

WAREHOUSE 1D, the second column of the matric corre-
sponds to ORDER.ORDER_ WAREHOUSE_ID, and the
third column of the matrix corresponds to WAREHOUSE.
WAREHOUSE_ID. The last column 1n this example 1ndi-

US 11,321,314 B2

11

cates the relation between the two columns indicated 1n each
row. A ‘0’ indicates equality, as the dependent predicates
indicate that ColA-ColB=0.

The linear matrix 1s converted into a relationship vector
506 that relates all three columns relative to a k constraint.

The k constraint here 1s the constrained wvalue of
DISTRICT2.DISTRICT WAREHOUSE ID from the inde-

pendent predicate, indicating that DISTRICT_WAREHOU-
SE_ID>105. This predicate informs some column range
information based on the relation of the column DISTRICT
WAREHOUSE_ID to the literal 105 using the ‘greater than’
operand. Here, 1t informs a low key of 106 for DISTRICT_
WAREHOUSE_ID. DISTRICT_WAREHOUSE_ID can
therefore include values of 106 or greater (see constraint
508). The vector (1,1,1) of 506 presents the relationship
between the column values for a given k. The value for
columns DISTRICT2.DISTRICT_
WAREHOUSE_ID, ORDER.ORDER_WAREHOUSE_ID,
and WAREHOUSE. WAREHOUSE_ID are each k*1 for any
chose k. This makes sense, as the three predicates above
indicate that all three are equal. Whatever k greater than 106
1s chosen, the column value for each of the three columns i1s
k*1.

The example of FIG. 8 presents a relatively basic
example. In practical applications, the linear matrix may be
more complex, resulting in a more complex relationship
vector.

The equation predicates inform equivalency in column

attributes between columns indicates as equal.
DISTRICT2.DISTRICT_WAREHOUSE_ID-ORDER.

ORDER_WAREHOUSE_ID=0 indicates that attribute(s)
for DISTRICT2.DISTRICT_WAREHOUSE_ID, {or
instance that the low key=106, applies to the ORDER.
ORDER _ WAREHOUSE ID column as well. In other
words, a constraint on DISTRICT2.DISTRICT
WAREHOUSE_ID implies the same constraint on ORDER.
ORDER_WAREHOUSE_ID, again because they were indi-
cated as being equal. If instead ORDER.ORDER_WAR.
HOUSE_ID were double DISTRICT2.DISTRICI
WAREHOUSE_ID (e. 2*DISTRICT2.DISTRICT_
WAREHOUSE_ID=0ORDER.ORDER_WAREHOUSE_ID,

then the low key of ORDER.ORDER_WAREHOUSE_ID
would be 212.

Example attributes include high key, low key, step, car-
dinality, and size. Cardinality can refer to the uniqueness of
values 1n a column, e.g. how many diflerent values are to be
generated for the set of values of the column. A lower
cardinality indicates a greater number of duplicated values
than a higher cardinality. The size attribute may be some-
thing an administrator or other user defines for the size/
length of the column. It may refer to a total number of values
to generate for the column, for instance. Step can refer to the
step size between unique values of the key range. For
instance, a step size of 1 can refer to integer values. Using
the example of DISTRICT2.DISTRICT _
WAREHOUSE_ID with a low key o1 106, a step of 1 would
indicate that values 106, 107, 108, etc. are value for column
DISTRICT2.DISTRICT_WAREHOUSE_ID.

Inequation predicate relationship analyzing and handling
can be similar to the above. An mnequation predicate refers
to one that relates values using an inequality operator, for
instance when the value of one column 1s greater than the
value of another column for a given record. As part of
processing a query block for column information, rewriting,
a predicate referencing multiple columns as an equation
predicate relating the multiple columns using a literal can
include rewriting the inequality relationship, e.g. X>Y, as an

1 [T

5

10

15

20

25

30

35

40

45

50

55

60

65

12

equation predicate, e.g. X=Y +literal). Thus, the predicate
DISTRICT2.DISTRICT_WAREHOUSE_ID>

CUSTOMER2.CUSTOMER_DISTRICT_ID can be rewrtit-
ten as DISTRICT2.DISTRICT_WAREHOUSE _
ID=CUSTOMER2.CUSTOMER_DISTRICT_ID+X. In

conjunction with the independent predicate above indicating

that DISTRICT2.DISTRICT WAREHOUSE ID>103,
Then the column information for
CUSTOMER2.CUSTOMER DISTRICT ID would indi-
cate that the High key of

CUSTOMER2.CUSTOMER_DISTRICT_ID 1s 105.

If an 1nequality 1s part of a column group, the relationship
vector generation involving a linear matrix discussed above
can be performed as above except that an ‘X’ may be
selected before generating the relationship vector. In fact,
multiple different X’s would be selected to generate appro-
priate relationship vectors.

Aspects of query block adjustment are discussed with
reference to the following query
SELECT*FROM Tls
WHERE C1 IN
(SELECT C2 FROM T1
WHERE C2>10 AND

AND C3>H’

Query blocks provide some givens or truths about column
values, and column rows should be ‘aligned’ so that retrieval
of a record obtains the proper values from each of the
involved columns. It for
DISTRICT2.DISTRICT_WAREHOUSE_ID (which has a
low key of 106) the value in row 1 of the column 1s 106, then
the value 1n row 1 of ORDER.ORDER WAREHOUSE ID

1s to be 106. Similarly, 1t 100 values are generated for
column DISTRICT2.DISTRICT_WAREHOUSE_ID, then

100 values are to be generated for column ORDER.
ORDER_WARFHOUSE_ID.

The above query can be broken 1nto two query blocks. C1
represents column 1, C2 represents column2, and C3 rep-
resents column 3. The first query block indicates that
10<C1<100 and C3>‘H’ (with no information about C2),
and the second query block indicates that 10<C2<10 and
C3<*H’ (with no mformation about C1). In query block 1,
when 10<C1<100 then C3>°H’ and there are no constraints
on C2. In this case, random numbers could be inserted for
those values of C2. However, the inserted numbers are not
to be between 10 and 100 because that case 1s handled by
query block 2 where C3<*H’. With respect to query block 2,
random numbers could be inserted for values of C1 however,
again, these are not to be between 10 and 100 as that range
1s covered by query block 1.

With the constraints established and relationship vector(s)
determined, the process can generate appropriate data and
populate a dataset including one or more tables and a
respective one or more columns for each of the one of more
tables. Generating the data uses the column range 1nforma-
tion and the column relationship information identified
above to select data for the dataset such that data records
from the dataset are produced as results to executing the
particular query that was transformed and analyzed as
described above against the generated dataset of data.

In this regard, a data producer component can operate in
any desired manner to generate the data consistent with the
predicates analyzed. In some embodiments, a user specifies
a data scale for the result set and/or table size. The data
producer can dynamically adjust depending on the relation
calculations.

US 11,321,314 B2

13

The low key can indicate a ‘start value’ for a column and
the high key can indicate an end value. Step indicates a step
or distance between consecutive values 1n a range. As noted,
cardinality refers to uniqueness of the values 1n the column.
For the Integer data type, if starting from 1 and ending at
100, there are 100 different values at most, and cardinality
can be 100 (at most). In some examples, cardinality and/or

s1ze are column attributes/constraints that can be defined by
an administrator or other user.

In addition, a validation engine could validate data gen-
crated and save the proper data as new file(s)

In an example specific process including phases (not
necessarily 1n this order), a phase 1 includes data type
sorting that 1terates through a group of predicates to sort the
predicates 1nto string data types (e.g. CHAR and VARCHAR
as examples), numeral data types (e.g. Integer, Decimal,
Float, Double, and Long, as examples), and other data types
(e.g. Timestamp, and Date as examples). A phase 2 includes
predicate transformation that attempts to transform predi-

cates to the general form T1.C1 [+/-] T2. C2 OP C, where
T1.C1 1s column C1 of Table T1, T2.C2 1s column C2 of

table T2, OP 1s an operand, and C 1s a constant. A phase 3
includes predicate sorting to sort predicates into independent
predicates and dependent predicates. Independent predicates
contain one column element, while the dependent predicates
contain two or more column elements. Dependent predicates
can be partitioned between the predicate’s operator, such
that the equation and 1inequation portions are 1dentified, and
equations are grouped into subparts (groups) in which the
predicates correlate to each other for identitying relationship
vectors between correlated columns. A phase 4 include
predicate handling in which, depending on a column’s data
type, numerical data types can be solved using range and
string data types can be set to a single value. Range in that
case can be the set of many single values. A phase 5 can
include result adjusting, 1n which, after obtaining the range
indicated by each predicate, the relation among columns 1s
considered. For example, a join relation, a partition key
constraint and the setting values or range for some columns
that are not 1 the SQL’s predicates are considered. In a
phase 6, an XML file 1s generated, 1n which each column’s
result 1s saved using any desired internal structure but then
rewritten to a file of the XML format.

Generating the data can account for one or more con-
straints on database object defimitions. The one or more
constraints can include, for instance, one or more CHECK
constraints, one or more unique index constraints, and/or
one or more foreign key constraints, as examples.

A check constraint 1s sometimes used 1n custom DDL. As
an example, the following can be defined in the DDL:

CREATE TABLE EMPSAL

(ID INTEGER NOT NULL,

SALARY INTEGER CHECK (SALARY>=15000));

This check constraint can be implemented as one or more
independent predicates, for instance SALARY>=15000,
added to each query block list.

In dealing with indexes, 1t may be desired to ascertain a
unique value for each index.

Table 2 below presents an example summary of indexes
for a database:

TABLE 2
Index Column Column Column
Name Column Name Sequence Number Count
18 NUBC_PAT STAT CD 35
19 NUBC_ADMIT SRC_CD 24
22 NUBC_ADMIT_TYPE CD 15

10

15

20

25

30

35

40

45

50

55

60

65

14
TABLE 2-continued

Index Column Column Column
Name Column Name Sequence Number Count
14 INTERNAL_CLAIM_ID 1 5 2

HDR_LST PROCESS DT 2 11 2
13 HDR_LST_ PROCESS_DT 1 11 2
CLM_HEADER_ SK 2 2 2
16 CLM__HEADER_SK 1 2 3
NUBC_ADMIT TYPE CD 2 15 3
PROCESSED_MLT 3 160 3
12 HDR_LST PROCESS_ DT 1 11 3
SRC_TYPE_CD 2 7 3
CLM__LINE_SK 3 1 3

Indexes on one column may not problematic, but indexes
with more than one column could be. Indexes 18, 19 and 22

in the above Table 2 each refer to only one column. The
other indexes (14, 13, 16, 12) include more than one column.
Theretore, the process could identily indexes with more than
one column for different tables, order these by a number of
columns 1n the indexes (as above) and build an index group
for each table. A primary key is selected as a unique index,
and an 1ndex to use 1 an SQL jo1n 15 selected. In the above
table, Index 14 may be selected, which indexes column
HDR_LST_PROCESS_DT. Since Index 13 indexes that
column, Index 13 is eliminated. Similarly, Index 12 indexes
that column, and 1t 1s eliminated. Index 16 indexes columns
that are not already indexed by another selected Index, and
therefore 1ndex 16 1s not eliminated. What remains from the
original Table 2 1s indexes 18, 19, 22, 14, and 16. These 5
indexes may be generated w1th the generated dataset.

Foreign key constraints and information can dictate the
order 1n which columns are generated. Generating the data
can therefore account for one or more foreign key con-
straints. In some examples, foreign key relationships may
result 1n a cyclic relationship between columns. Accounting
for these foreign key relationships can include i1dentifying
and resolving a cycle 1n a foreign key relationship chain
between columns and using the result to 1dentify an order in
which to generate data for multiple columns of the dataset.

Foreign key constraints are common in DDL. An example
process 1dentifies an insert order for an index, detect any
foreign key cycle problems, and builds the appropnate
foreign key relationship(s) 1n generating data.

FIG. 6 depicts an example representing a foreign key
constraint for foreign key cycle resolution, 1n accordance
with aspects described herein.

Foreign key relationship diagram 602a presents a situa-
tion where column A is a foreign key to column B (e.g. when
iserting a value into column B, the appropriate value should
exist 1n column A) and also to column C, while column C 1s
a foreign key to column D. Relationship grid 604a presents
the direct foreign key relationships (represented by a “17)
ascertained from 602a, namely that column A 1s the direct
foreign key to columns B and C and column C 1s the direct
foreign key to column D. Relationship grid 6064 includes
the 1indirect foreign key relationships, namely, 1n addition to
the relationships indicated by grid 604qa, that column A 1s
indirectly the foreign key to column D, since A 1s foreign key
to C and C 1s foreign key to D.

Foreign key relationship diagram 60256 presents a situa-
tion where there 1s a foreign key cycle. Column A 1s a
foreign key to column B, which 1s a foreign key to column
C, which 1s a foreign key to column D, which 1s a foreign
key to column A. Relationship grid 6045 presents the direct
foreign key relationships and relationship grid 6065 includes
the indirect foreign key relationships. Here, a cycle 1s

US 11,321,314 B2

15

indicated because there are ‘1°s down the diagonal from
column A-row A to column D-row D. To handle this, an edge
(e.g. representative of one of the foreign key relationships)
between columns 1s removed to resolve the cycle. Revolving
the cycle enables the data generation component/process to
perform the data iserts in a proper order. Removing the
edge between column D and C, for instance, would dictate
that values of column C are generated first, followed by
values of column A, then values of column B, then values of
column D.

Accordingly, a process for data generation includes
dynamically analyzing DDL & query content to inform the
generation of data to produce query results. This can lever-
age subquery transformation with, e.g., predicate bubble-up
and predicate analysis for group-wise analyzing column
relationships, followed by data generation using query
blocks and accounting for constraints on the data/database
objects.

Query content-based data generation can help to improve
(lower) response time for database troubleshooting and
testing cases, which can help reduce any business loss
resulting from problematic queries. It can also reduce
resource consumption, such as developer time spent recre-
ating query problems when quality data i1s not available. It
also provides improved database quality, as 1t expands the
ability to test real queries against generated datasets, for
instance ones placed online, 1n an eflort to verily that the
such online 1nfrastructure can properly host the database to
handle queries correctly. Meanwhile, there are no data
security 1ssues as, €.g., customers will not need to share their
data (it mstead could be generated).

FIG. 7 depicts example processes for query-based data
generation, 1n accordance with aspects described herein. In
some examples, the process 1s performed by one or more
computer systems, such as those described herein.

The process begins by obtaining (702) a query. The query
includes an outer query and one or more subqueries of the
outer query. 1t may be that the query. The process also
performs (704) subquery transformation on each subquery
ol the one or more subqueries to obtain a transformed query.
The subquery transformation converts predicates of the one
or more subqueries to be predicates of the outer query. In
some examples, the subquery transformation on a subquery
of the one or more subqueries includes i1dentifying one or
more predicates of the subquery, converting the i1dentified
one or more predicates to at least one predicate of the outer
query, and eliminating the subquery such that 1t does not
appear in the transformed query. Converting an identified
predicate ol the identified one or more predicates can
include, for instance, based on identifying a correlation
predicate, of the subquery, that correlates table columns,
converting at least one predicate of the subquery to a local
predicate of the outer query, the local predicate being on a
column of the correlated table columns.

The process of FIG. 7 can also generate (706) from the
transformed query one or more query blocks or predicate
lists, each including a list of predicates selected from the
transformed query. In cases where the converting of (of 704)
converts predicates of a subquery, of the one or more
subqueries, having an OR operator 1nto a first set of predi-
cates of the transformed query and a second set of predicates
of the transformed query, the first set of predicates and the
second set of predicates representing alternatives to each
other for evaluation of the transformed query, the generating
the one or more query blocks can generate a respective query
block for each of the alternatives. The process also processes
(708) each query block of the one or more query blocks for

10

15

20

25

30

35

40

45

50

55

60

65

16

column information based on the list of predicates of that
query block. The column information can include column
range information and column relationship information.
Column range information can inform of range(s) of values
to be inserted 1n columns. Column relationship information
can inform of relationships between values of columns, for
instance values of related rows/records of the columns.

In some examples, processing a query block for column
information includes rewriting a predicate, such as a depen-
dent predicated, that references multiple columns as an
equation predicate relating the multiple columns using a
literal. The literal can indicate a relationship between values
of the multiple columns referenced by the predicate. The
relationship can indicate equality between the multiple col-
umns or indicate nequality between the multiple columns
by some magnitude.

Additionally or alternatively, processing a query block for
column i1nformation can include grouping predicates of the
query block into predicate groups, each predicate group
including predicates that reference a respective common set
of columns. Thus, each/any column referenced by any of the
grouped predicates of the query block 1s referenced only by
predicate(s) 1n one of the predicate groups. Processing the
query block can also include 1n this example determining,
based on predicates grouped into a predicate group of the
predicate groups, a relationship vector that defines a rela-
tionship between values of columns referenced by the predi-
cates grouped 1nto that predicate group.

Processing a query block for column information can
include extracting column range information from a predi-
cate that relates a column to a literal using an operand, the
column range information being at least one selected from
the group consisting of: a high key and a low key for that
column.

The process of FIG. 7 also includes generating (710) data
and populating a dataset. The dataset can include one or
more tables, and a respective one or more columns for each
of the one of more tables. Generating the data uses the
column range information and the column relationship infor-
mation to select data for the dataset such that data records
from the dataset are produced as results to executing the
obtained query against the dataset. In some examples, gen-
erating the data accounts for one or more constraints on
database object definitions, such as a CHECK constraint, a
unique index constraint, and/or a foreign key constraint.
Generating the data could, for instance, account for a foreign
key constramnt by identifying and resolving a cycle 1n a
foreign key relationship chain between columns, to 1identity
an order in which to generate data for multiple columns of
the dataset.

Although various examples are provided, variations are
possible without departing from a spirit of the claimed
aspects.

Processes described herein may be performed singly or
collectively by one or more computer systems. FIG. 8
depicts one example of such a computer system and asso-
ciated devices to incorporate and/or use aspects described
herein. A computer system may also be referred to herein as
a data processing device/system, computing device/system/
node, or simply a computer. The computer system may be
based on one or more of various system architectures and/or
instruction set architectures, such as those offered by Inter-
national Business Machines Corporation (Armonk, N.Y.,
USA), Intel Corporation (Santa Clara, Calif., USA) or ARM
Holdings plc (Cambridge, England, United Kingdom), as
examples.

US 11,321,314 B2

17

FIG. 8 shows a computer system 800 1n communication
with external device(s) 812. Computer system 800 includes
one or more processor(s) 802, for mnstance central processing
unit(s) (CPUs). A processor can include functional compo-
nents used in the execution of instructions, such as func-
tional components to fetch program instructions from loca-
tions such as cache or main memory, decode program
instructions, and execute program instructions, access
memory for mnstruction execution, and write results of the
executed instructions. A processor 802 can also include
register(s) to be used by one or more of the functional
components. Computer system 800 also includes memory
804, input/output (I/0O) devices 808, and I/O interfaces 810,
which may be coupled to processor(s) 802 and each other via
one or more buses and/or other connections. Bus connec-
tions represent one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By
way ol example, and not limitation, such architectures
include the Industry Standard Architecture (ISA), the Micro
Channel Architecture (MCA), the Enhanced ISA (EISA), the
Video Electronics Standards Association (VESA) local bus,
and the Peripheral Component Interconnect (PCI).

Memory 804 can be or include main or system memory
(e.g. Random Access Memory) used in the execution of
program 1nstructions, storage device(s) such as hard
drive(s), tlash media, or optical media as examples, and/or
cache memory, as examples. Memory 804 can include, for
instance, a cache, such as a shared cache, which may be
coupled to local caches (examples include L1 cache, L2
cache, etc.) of processor(s) 802. Additionally, memory 804
may be or include at least one computer program product
having a set (e.g., at least one) of program modules, mnstruc-
tions, code or the like that 1s/are configured to carry out
functions of embodiments described herein when executed
by one or more processors.

Memory 804 can store an operating system 805 and other
computer programs 806, such as one or more computer
programs/applications that execute to perform aspects
described herein. Specifically, programs/applications can
include computer readable program instructions that may be
configured to carry out functions of embodiments of aspects
described herein.

Examples of I/O devices 808 include but are not limited
to microphones, speakers, Global Positioning System (GPS)
devices, cameras, lights, accelerometers, gyroscopes, mag-
netometers, sensor devices configured to sense light, prox-
imity, heart rate, body and/or ambient temperature, blood
pressure, and/or skin resistance, and activity monitors. An
I/0 device may be incorporated into the computer system as
shown, though in some embodiments an I/O device may be
regarded as an external device (812) coupled to the com-
puter system through one or more I/O interfaces 810.

Computer system 800 may communicate with one or
more external devices 812 via one or more I/O interfaces
810. Example external devices include a keyboard, a point-
ing device, a display, and/or any other devices that enable a
user to interact with computer system 800. Other example
external devices include any device that enables computer
system 800 to communicate with one or more other com-
puting systems or peripheral devices such as a printer. A
network interface/adapter 1s an example 1/O interface that
enables computer system 800 to communicate with one or
more networks, such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(c.g., the Internet), providing communication with other

10

15

20

25

30

35

40

45

50

55

60

65

18

computing devices or systems, storage devices, or the like.
Ethernet-based (such as Wi-F1) interfaces and Bluetooth®
adapters are just examples of the currently available types of
network adapters used 1n computer systems (BLUETOOTH
1s a registered trademark of Bluetooth SIG, Inc., Kirkland,
Wash., U.S.A.).

The communication between 1I/0O interfaces 810 and exter-
nal devices 812 can occur across wired and/or wireless
communications link(s) 811, such as Fthernet-based wired
or wireless connections. Example wireless connections
include cellular, Wi-F1, Bluetooth®, proximity-based, near-
field, or other types of wireless connections. More generally,
communications link(s) 811 may be any appropriate wireless
and/or wired communication link(s) for communicating
data.

Particular external device(s) 812 may include one or more
data storage devices, which may store one or more pro-
grams, one or more computer readable program instructions,
and/or data, etc. Computer system 800 may include and/or
be coupled to and 1n communication with (e.g. as an external
device of the computer system) removable/non-removable,
volatile/non-volatile computer system storage media. For
example, it may include and/or be coupled to a non-remov-
able, non-volatile magnetic media (typically called a “hard
drive”), a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk’), and/or an optical disk drive for reading from or
writing to a removable, non-volatile optical disk, such as a
CD-ROM, DVD-ROM or other optical media.

Computer system 800 may be operational with numerous
other general purpose or special purpose computing system
environments or configurations. Computer system 800 may
take any of various forms, well-known examples of which
include, but are not limited to, personal computer (PC)
system(s), server computer system(s), such as messaging
server(s), thin client(s), thick client(s), workstation(s), lap-
top(s), handheld device(s), mobile device(s)/computer(s)
such as smartphone(s), tablet(s), and wearable device(s),
multiprocessor system(s), microprocessor-based system(s),
telephony device(s), network appliance(s) (such as edge
appliance(s)), virtualization device(s), storage controller(s),
set top box(es), programmable consumer electronic(s), net-
work PC(s), minicomputer system(s), mainiframe computer
system(s), and distributed cloud computing environment(s)
that include any of the above systems or devices, and the
like.

It 1s to be understood that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three

service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

US 11,321,314 B2

19

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(c.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specily
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, 1n some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning oiten appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deploved
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

10

15

20

25

30

35

40

45

50

55

60

65

20

Hybnd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 9, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54A-N
shown 1n FIG. 9 are intended to be 1llustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 10, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
9) 1s shown. It should be understood in advance that the
components, layers, and functions shown 1 FIG. 10 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
solftware components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, soltware compo-
nents 1nclude network application server software 67 and
database soltware 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or 1nvoicing for
consumption ol these resources. In one example, these
resources may include application soitware licenses. Secu-
rity provides identity vernification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-

US 11,321,314 B2

21

tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 95; and data generation 96.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program 1instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and

10

15

20

25

30

35

40

45

50

55

60

65

22

procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the 1nstructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

In addition to the above, one or more aspects may be
provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create,
maintain, support, etc. computer code and/or a computer
inirastructure that performs one or more aspects for one or
more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of
advertising content to one or more third parties.

In one aspect, an application may be deployed for per-
forming one or more embodiments. As one example, the

US 11,321,314 B2

23

deploying of an application comprises providing computer
infrastructure operable to perform one or more embodi-
ments.

As a further aspect, a computing inirastructure may be
deployed comprising integrating computer readable code
into a computing system, 1in which the code 1n combination
with the computing system 1s capable of performing one or
more embodiments.

As yet a further aspect, a process for integrating comput-
ing inirastructure comprising integrating computer readable
code 1nto a computer system may be provided. The com-
puter system comprises a computer readable medium, in
which the computer medium comprises one or more
embodiments. The code in combination with the computer
system 1s capable of performing one or more embodiments.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Although various embodiments are described above,
these are only examples. For example, computing environ-
ments of other architectures can be used to incorporate and
use one or more embodiments.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting. As used herein, the singular forms “a”, “an™ and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising’,
when used 1n this specification, specily the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
clements, components and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
matenal, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of one or more embodiments has been presented
for purposes of 1illustration and description, but 1s not
intended to be exhaustive or limited to in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art. The embodiment was chosen and
described 1n order to best explain various aspects and the
practical application, and to enable others of ordinary skaill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem-
plated.

10

15

20

25

30

35

40

45

50

55

60

65

24

What 1s claimed 1s:
1. A method comprising:
obtaining a query, the query comprising an outer query
and one or more subqueries of the outer query;

performing subquery transformation on each subquery of
the one or more subqueries to obtain a transformed
query, the subquery transiformation converting predi-
cates of the one or more subqueries to be predicates of
the outer query;

generating from the transformed query one or more query

blocks each comprising a list of predicates selected
from the transformed query;

processing each query block of the one or more query

blocks for column information based on the list of
predicates of that query block, the column information
comprising column range mformation and column rela-
tionship information;

generating data and populating a dataset comprising one

or more tables and a respective one or more columns
for each of the one of more tables, wherein generating
the data uses the column range information and the
column relationship information to select data for the
dataset such that data records from the dataset are
produced as results to executing the obtained query
against the dataset.

2. The method of claim 1, wherein the subquery trans-
formation on a subquery of the one or more subqueries
COmMprises:

identifying one or more predicates of the subquery;

converting the 1dentified one or more predicates to at least

one predicate of the outer query; and

climinating the subquery such that it does not appear 1n

the transformed query.

3. The method of claim 2, wherein converting an 1denti-
fied predicate of the identified one or more predicates
comprises: based on identifying a correlation predicate, of
the subquery, that correlates table columns, converting at
least one predicate of the subquery to a local predicate of the
outer query, the local predicate being on a column of the
correlated table columns.

4. The method of claim 1, wherein the converting converts
predicates of a subquery, of the one or more subqueries,
having an OR operator 1into a first set of predicates of the
transformed query and a second set of predicates of the
transformed query, the first set of predicates and the secon
set of predicates representing alternatives to each other for
evaluation of the transtformed query, and wherein the gen-
erating the one or more query blocks generates a respective
query block for each of the alternatives.

5. The method of claim 1, wherein processing a query
block for column information comprises rewriting a predi-
cate referencing multiple columns as an equation predicate
relating the multiple columns using a literal, wherein the
literal indicates a relationship between values of the multiple
columns referenced by the predicate.

6. The method of claim 5, wherein the relationship
indicates equality between the multiple columns or wherein
the relationship indicates inequality between the multiple
columns by some magnitude.

7. The method of claim 1, wherein processing a query
block for column information comprises:

grouping predicates ol the query block into predicate

groups, each predicate group comprising predicates
that reference a respective common set of columns,
such that each column referenced by any of the grouped
predicates of the query block 1s referenced only by
predicates in one of the predicate groups; and

US 11,321,314 B2

25

determining, based on predicates grouped into a predicate
group ol the predicate groups, a relationship vector that
defines a relationship between values of columns ret-
erenced by the predicates grouped into that predicate
group.

8. The method of claim 1, wherein processing a query
block for column information comprises extracting column
range mformation from a predicate that relates a column to
a literal using an operand, the column range information
being at least one selected from the group consisting of: a
high key and a low key for that column.

9. The method of claim 1, wherein generating the data
accounts for one or more constraints on database object
definitions, the one or more constraints comprising at least
one selected from the group consisting of: a CHECK con-
straint, a unique index constraint, and a foreign key con-
straint.

10. The method of claim 9, wherein generating the data
accounts for a foreign key constraint by identifying and
resolving a cycle 1n a foreign key relationship chain between
columns, to identily an order in which to generate data for
multiple columns of the dataset.

11. A computer system comprising:

a memory; and

a processor 1 communication with the memory, wherein

the computer system 1s configured to perform a method

comprising:

obtaining a query, the query comprising an outer query
and one or more subqueries of the outer query;

performing subquery transformation on each subquery
of the one or more subqueries to obtain a trans-
formed query, the subquery transformation convert-
ing predicates of the one or more subqueries to be
predicates of the outer query;

generating from the transformed query one or more
query blocks each comprising a list of predicates
selected from the transformed query;

processing each query block of the one or more query
blocks for column information based on the list of
predicates of that query block, the column informa-
tion comprising column range mformation and col-
umn relationship information;

generating data and populating a dataset comprising
one or more tables and a respective one or more
columns for each of the one of more tables, wherein
generating the data uses the column range 1nforma-
tion and the column relationship information to
select data for the dataset such that data records from
the dataset are produced as results to executing the
obtained query against the dataset.

12. The computer system of claim 11, wherein the sub-
query transformation on a subquery of the one or more
subqueries comprises:

identifying one or more predicates of the subquery;

converting the identified one or more predicates to at least

one predicate of the outer query; and

climinating the subquery such that it does not appear in

the transformed query.

13. The computer system of claim 12, wherein converting
an 1dentified predicate of the i1dentified one or more predi-
cates comprises: based on identifying a correlation predi-
cate, of the subquery, that correlates table columns, convert-
ing at least one predicate of the subquery to a local predicate
of the outer query, the local predicate being on a column of
the correlated table columns.

14. The computer system of claim 11, wherein processing
a query block for column information comprises rewriting a

10

15

20

25

30

35

40

45

50

55

60

65

26

predicate referencing multiple columns as an equation predi-
cate relating the multiple columns using a literal, wherein
the literal indicates a relationship between values of the
multiple columns referenced by the predicate.
15. The computer system of claim 11, wherein processing
a query block for column imnformation comprises:
grouping predicates ol the query block into predicate
groups, e€ach predicate group comprising predicates
that reference a respective common set of columns,
such that each column referenced by any of the grouped
predicates of the query block 1s referenced only by
predicates 1n one of the predicate groups; and
determining, based on predicates grouped 1nto a predicate
group of the predicate groups, a relationship vector that
defines a relationship between values of columns ref-
erenced by the predicates grouped into that predicate

group.
16. The computer system of claim 11, wherein processing
a query block for column information comprises extracting
column range information from a predicate that relates a
column to a literal using an operand, the column range
information being at least one selected from the group
consisting of: a high key and a low key for that column.
17. A computer program product comprising:
a computer readable storage medium readable by a pro-
cessing circuit and storing mstructions for execution by
the processing circuit for performing a method com-
prising;:
obtaining a query, the query comprising an outer query
and one or more subqueries of the outer query;

performing subquery transiformation on each subquery
of the one or more subqueries to obtain a trans-
formed query, the subquery transformation convert-
ing predicates of the one or more subqueries to be
predicates of the outer query;

generating from the transformed query one or more
query blocks each comprising a list of predicates
selected from the transformed query;

processing each query block of the one or more query
blocks for column information based on the list of
predicates of that query block, the column informa-
tion comprising column range mformation and col-
umn relationship information;

generating data and populating a dataset comprising
one or more tables and a respective one or more
columns for each of the one of more tables, wherein
generating the data uses the column range informa-
tion and the column relationship information to
select data for the dataset such that data records from
the dataset are produced as results to executing the
obtained query against the dataset.

18. The computer program product of claim 17, wherein
the subquery transformation on a subquery of the one or
more subqueries comprises:

identifying one or more predicates of the subquery;

converting the identified one or more predicates to at least
one predicate of the outer query, wherein converting an
identified predicate of the identified one or more predi-
cates comprises, based on 1dentifying a correlation
predicate, of the subquery, that correlates table col-
umuns, converting at least one predicate of the subquery
to a local predicate of the outer query, the local predi-
cate being on a column of the correlated table columns;
and

climinating the subquery such that it does not appear 1n
the transformed query.

US 11,321,314 B2

27

19. The computer program product of claim 17, wherein
processing a query block for column imnformation comprises
rewriting a predicate referencing multiple columns as an
equation predicate relating the multiple columns using a
literal, wherein the literal indicates a relationship between
values of the multiple columns referenced by the predicate.

20. The computer program product of claim 17, wherein
processing a query block for column information comprises:

grouping predicates of the query block into predicate

groups, each predicate group comprising predicates
that reference a respective common set of columns,
such that each column referenced by any of the grouped
predicates of the query block 1s referenced only by
predicates 1n one of the predicate groups; and
determining, based on predicates grouped into a predicate
group ol the predicate groups, a relationship vector that
defines a relationship between values of columns ret-
crenced by the predicates grouped into that predicate

group.

10

15

20

28

	Front Page
	Drawings
	Specification
	Claims

