12 United States Patent

US011321294B2

(10) Patent No.: US 11,321,294 B2

Agrawal et al. 45) Date of Patent: May 3, 2022
(54) DATABASE INDEX REPAIR (56) References Cited
U.S. PATENT DOCUMENTS
(71) Applicant: salesforce.com, inc., San Francisco, CA
(US) 5,551,027 A * 81996 ChOyccooveevrnnnn, GOG6F 9/355
6,507,847 B1* 1/2003 Fleischman GO6F 16/2255
707/704
(72) Inventors: Rohit Agrawal, San Francisco, CA (Continued)
(US); Thomas Fanghaenel, San
Francisco, CA (US) FOREIGN PATENT DOCUMENTS
: : : : Al 388046 B 12/2020
(73) Assignee: ?Elllg;force.com, inc., San Francisco, CA AU 2018700758 R? 212020
(Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PURI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 137 days. Pg:Reindex—rebuild postgresql indexes concurrently without lock-
ing, metacpan.org, Binary.com, https://metacpan.org/pod/
Pg::Reindex, 7 [Retrieved Sep. 23, 2019].
(21) Appl. No.: 16/565,401 gi:Reindex, 7 pages. [Refrieved Sep. 23, 201
(Continued)
_— Primary Examiner — Syling Yen
(22) Tiled; Sep. 9, 2019 (74) Attorney, Agent, or Firm — Kowert, Hood, Munyon,
Rankin & Goetzel, P.C.
(65) Prior Publication Data (57) ARSTRACT
US 2021/0073195 A1 Mar. 11, 2021 A computing system may repair a database index for a
database table by placing a first structural lock on the
database table to prevent modifications to the structure of the
(31) Int. CL table. The computing system may scan the database table to
GoOoF 16/22 (2019.01) determine a plurality of database records. The system may
GoOol 16/2453 (2019.01) probe the database index for the database records to identify
(Continued) records with missing entries 1n the mndex. Based on the
(52) U.S. CL. plf'o‘lb;in(%,, ﬂf SYSt%I? may placedz} first datf{ lqck gnda record
CPC . GOGF 16/2272 (RUIO.01); GOSF 1621, 1y enl mocification of data i the record. In response 0
(01); | (01); placing the first record lock, the system adds an index entry
16/2343 (2019.01); GO6F 16/2453 (2019.01) for the locked database record to the database index. During
(58) Field of Classification Search repair of the index, one or more processes may use the

CPC GO6F 16/2272; GO6F 16/22

82; GOG6F database index to locate one of the plurality of database

16/2453; GO6F 16/21; GO6F 16/2343 records included in the database table.

(Continued) 20 Claims, 10 Drawing Sheets
100
o
Struc‘tftggj “0X [Detabase Table 110
*"T'“;";}J Zm—1
ec |
Dat%tsock | LeA | Repair Region
, —) i
o L T
S o a]
‘ Record 112C |
Record w/ .
Missing Index .
Entry 1128
5 | Record 112N |
Repair Application
Process{es)
140
Database index 120
Mm r I _________________
index Entry | | Enfry 1224
1228~ L_|L o[~ Missing Index Erry 1228 Coreurrent
| E—
| Erty 1200 l Acces:; fzequest
Structural Lock ,

1368
\

L_____

US 11,321,294 B2

Page 2
(51) Imt. CL 2020/0097581 Al 3/2020 Chong et al.
GO6F 16/21 (2019.01) 2020/0097583 Al 3/2020 Fanghaenel
COGF 16/23 (2019.01) 2020/0201745 Al 6/2020 Martin et al.
: : : 2020/0250325 Al 8/2020 Chong et al.
(58) Elsei,%"f Classification Search 07781 2020/0341864 Al 10/2020 Agrawal et al.
.. 2020/0409915 Al 1212020 A rawal ¢t ol

See application file for complete search history.
FOREIGN PATENT DOCUMENTS

(56) References Cited
— AU 2017356901 B2 12/2020
U.S. PATENT DOCUMENTS AU 2018290745 B2 12/2020
AU 2020102616 A4 12/2020
6,963,882 B1* 11/2005 Elkocccoovnnnnnnnn. GOO6F 9/546 DFE 248428 Al Q/1987
8,838,551 B2 9/2014 Fanghaenel et al. DE 249326 Al 0/1987
9,400,817 B2 7/2016 Wildermuth DFE 757030 Al 12/1987
10,621,071 B2 4/2020 Martin et al. DFE 754063 Al /1988
10,691,693 B2 6/2020 Fanghaenel et al. DE 2773751 A3 11/1989
10,691,696 B2 6/2020 Helland et al. DFE 274018 Al 12/1989
10,872,066 B2 12/2020 Martin et al. DE 274019 A1l 12/19%9
10,936,559 B1* 3/2021 Jones GOOF 16/24562 DFE 252028 BS5 4/1994
2005/0246612 Al1* 11/2005 Leis ..oovvvvvvennn, GOOF 11/0727 DFE 252029 BS5 4/1994
7147763 IN 2013MU01211 A 12/1989
2007/0016754 Al* 1/2007 Testardi GO6F 3/0635
711/206
2015/0186442 Al* 7/2015 Wildermuth GOGF 16/2228 OTHER PUBLICATIONS
707/696
2015/0317340 Al* 11/2015 Sardina GO6F 16/22 Reorganize and rebuild indexes—SQL Server, Microsoft Docs,
707/803 Aug. 20, 2019, https://docs.microsoft.com/en-us/sql/relational-
2018/0218023 Al 8/2018 Fanghaenel et al. databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-
2019/0163613 Al 5/2019 Martin et al. 2017 16 Retrieved Sen. 23. 2019
2020/0097205 Al 3/2020 Fanghaenel et al. » 10 pages. [Retrieved Sep. 25,]*
2020/0097558 Al 3/2020 Fanghaenel _ _
2020/0097573 Al 3/2020 Fanghaenel et al. * cited by examiner

U.S. Patent May 3, 2022 Sheet 1 of 10 US 11,321,294 B2

100
o~
St “C%’ggwc"k Database Table 110
Data Lock | |
Repair Region
138 114
Record 112C
Record w/ .
Missing Index .
Entry 1128

Repair |
Process

Application
Process(es)
130

140

mmmmmmmmmmmmmmmmm]

Missing |
Index Entry | || ._ ET!]/122A
fez8 Missing Index Entry 122B
Entry 122C

Concurrent
: Access Request
' 142
Structural Lock | .
1368 | o
|

L“““““““w“

Entry 12M

Fig. 1

U.S. Patent May 3, 2022 Sheet 2 of 10 US 11,321,294 B2

Database Table
Scan 200
o~
Structural Lock
Acquisition 202
Database Table 110
Sequential
FProgression
204
Index Ke [— — iT\- Data Lock
Read 2038/ :[| Index Key 222 Record 1128 E| Acquisition 206
Repair E 5
Frocess
130
Probe 210 Database Index 120
(W/ Key 222)

Index entry Indication

212

Missing Index Entry 122B

Missing Index
Entry Addition
214

Fig. 2

U.S. Patent May 3, 2022 Sheet 3 of 10 US 11,321,294 B2

Repair
FProcess
130

Database Index

Scan 300
o~
Structural Lock
Acquisition 302
Database Table 110
Probe 310
(w/ Index Key 222)
Index Entry
Indication 312 el N Data Lock
p 10) | f
(based on Probe 310) Record 112 | Acquisition 308

Dabae Index 120

Sequential
Progression
304

Index Key 222 | Incorrect Entry 122
Index-Key d—

Read 300

Incorrect Entry
Removal 314

FIg. 3

U.S. Patent May 3, 2022 Sheet 4 of 10 US 11,321,294 B2

Missing Index
Entry Example
400
o~
Database Database
Table 110 Index 120
“ o~
Second .
Missing Index
necor Entry 1228
(for second
\A = record 112)
“~_/

Fig. 4

U.S. Patent May 3, 2022 Sheet 5 of 10 US 11,321,294 B2

Incorrect Index
Entry Example
500

"

Database Database
Table 110 Index 120

S
Primary Key| Field Value Index Key
Value 417 414 Value 227

Second Incorrect Index
Record Entry 122B
.
k‘ _ record 112)
BN ~/
s ——— — — —

L
* oS
* e e

FIg. 5

U.S. Patent May 3, 2022 Sheet 6 of 10 US 11,321,294 B2

Multi-Transaction

Repair 600
o~
i 1
\ Database Record :
1124 |
|
:::::::::: First Data Lock 138A
| < ~
| Database fecord First Probe 310A
11D ———__~
First Repair ________ |
Transaction 602 S yoecond Data Lock 1368
\ Database Record :<—Cj
| 1120 I Second Probe 3108
. ___ D ——
T T T T 1
\ Database Record :
1120 |
_ |
i 1
Second Repair | Database Record :
Transaction 604 | 112E |
|

Fig. 6

U.S. Patent May 3, 2022 Sheet 7 of 10 US 11,321,294 B2

Failed Lock
Acquisition
Recovery 700
o~
Time
710
First Scan
300A
Falod Data ook | o goeats | <
120A
Release Previous
Data Locks 704
Second Scan
3008
Successful Data ‘/
Lock Acquisition Database Index at {2 {2
/06 1208

FIg. 7

U.S. Patent May 3, 2022 Sheet 8 of 10 US 11,321,294 B2

Multi-tenant

Database System
800

y~

Multi-tenant Index 820

Incorrect Entry for First Tenant 822A . Data Locks 138
Entries 802 > (for corresponding
Entry for Second Tenant 8228 recoras)

Entry for Third Tenant 822C
Entry for Third Tenant 822D

Correct
Entries 804

Fig. 8

U.S. Patent May 3, 2022 Sheet 9 of 10 US 11,321,294 B2

Method 900
o~

Repair a database index for a database table
910

Place a first structural lock on the database table to prevent modifications to
the structure of the database table

920

Scan the database table to determine a plurality of database records
included in the database table

930

Probe the database index for the plurality of database records to identify
database records having missing entries in the database index

940

Based on the probing, place a first data lock on a record of the database
table corresponding to a missing index entry to prevent modification of data
in the record

950

In response to placing the first record lock, add an index entry for the locked

database record to the database index
960

During the repair, use the database index to locate one of the plurality of database
records included in the database table

970

Fig. 9

U.S. Patent May 3, 2022 Sheet 10 of 10 US 11,321,294 B2

Computin Repar
Deeice ’ Storage 1012 Pronass
W0 130
interconnect
1060 |
/O Interface Pr O(L:/ensifmg
1o 1050
- T T |
 Nework 21 Nefwork Delgi?:es
1020 Interface 04

"""""" 1032

Fig. 10

US 11,321,294 B2

1
DATABASE INDEX REPAIR

BACKGROUND

Technical Field

This disclosure relates generally to database systems, and,
more specifically, to database 1indexes used to locate infor-
mation 1n a database system.

Description of the Related Art

Database indexes may allow for etlicient retrieval of data
from a database table. Maintaining indexes, however, uses
additional write commands and storage space. Periodically,
a database index may become inconsistent with 1ts under-
lying database table as database records are added or
removed from the table but the index 1s not similarly
updated, which may cause degradation 1n query perfor-
mance for the index. Accordingly, a database system may
need to repair the index to prevent such degradation. While
the system 1s repairing an index, however, it prevents other
processes Irom accessing the index.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

FIG. 1 1s a block diagram 1illustrating a computing system
configured to perform a repair operation for an index while
allowing access to the index concurrently with the repair
operation, according to some embodiments.

FI1G. 2 1s a block diagram 1llustrating an example database
table scan performed during the repair operation, according,
to some embodiments.

FI1G. 3 1s a block diagram 1llustrating an example database
index scan performed during the repair operation, according
to some embodiments.

FI1G. 4 1s a block diagram 1llustrating an example database
index with a missing index entry, according to some embodi-
ments.

FIG. 5 1s a block diagram 1llustrating an example database
index with an incorrect imndex entry, according to some
embodiments.

FIG. 6 1s a diagram 1illustrating example transactions for
the repair operation, according to some embodiments.

FIG. 7 1s a block diagram illustrating an example of a
recovery from a failed lock acquisition during the repair
operation, according to some embodiments.

FIG. 8 1s a block diagram illustrating an example multi-
tenant database system that includes a multi-tenant index
with incorrect entries for one or more tenants, according to
some embodiments.

FIG. 9 1s a flow diagram 1llustrating a method for repair-
ing a database mdex using both a structural lock and a data
lock, according to some embodiments.

FIG. 10 1s a block diagram illustrating an example com-
puting device, according to some embodiments.

This disclosure includes references to “one embodiment™
or “an embodiment.” The appearances of the phrases “in one
embodiment” or “in an embodiment” do not necessarily
refer to the same embodiment. Particular features, struc-
tures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

Within this disclosure, diflerent entities (which may vari-
ously be referred to as “units,” “circuits,” other components,
etc.) may be described or claimed as “configured” to per-
form one or more tasks or operations. This formulation—
|entity] configured to [perform one or more tasks]—is used

10

15

20

25

30

35

40

45

50

55

60

65

2

herein to refer to structure (1.e., something physical, such as
an electronic circuit). More specifically, this formulation 1s

used to indicate that this structure 1s arranged to perform the
one or more tasks during operation. A structure can be said
to be “configured to” perform some task even 1f the structure
1s not currently being operated. A “computing system con-
figured to repair a database index™ 1s intended to cover, for
example, a computer system having, for example, a proces-
sor, network interface, memory having program instruc-
tions, etc. to performs this function during operation, even 1
the computer system 1n question 1s not currently being used
(e.g., a power supply 1s not connected to 1t). Thus, an entity
described or recited as “configured to” perform some task
refers to something physical, such as a device, circuit,
memory storing program instructions executable to 1mple-
ment the task, etc. This phrase 1s not used herein to refer to
something 1ntangible.

The term “configured to” 1s not mtended to mean “con-
figurable to.” An unprogrammed FPGA, for example, would
not be considered to be “configured to” perform some
specific function, although 1t may be “configurable to”
perform that function and may be “configured to” perform
the function after programming.

Reciting 1n the appended claims that a structure 1s “con-
figured to” perform one or more tasks 1s expressly intended
not to mvoke 35 U.S.C. § 112(1) for that claim element.
Accordingly, none of the claims 1n this application as filed
are intended to be interpreted as having means-plus-function
clements. Should Applicant wish to mvoke Section 112(1)
during prosecution, it will recite claim elements using the
“means for” [performing a function] construct.

As used herein, the terms “first,” “second,” etc. are used
as labels for nouns that they precede, and do not imply any
type of ordering (e.g., spatial, temporal, logical, etc.) unless
specifically stated. For example, 1n a computing system
having multiple user accounts, the terms “first” and “sec-
ond” user accounts can be used to refer to any users. In other
words, the “first” and “second” user accounts are not limited
to the mitial two created user accounts, for example. When
used herein, the term “or” 1s used as an inclusive or and not
as an exclusive or. For example, the phrase “at least one of
X, Vv, or Z” means any one ol X, y, and z, as well as any
combination thereof (e.g., x and y, but not z or X, v, and z).

As used herein, the term “based on” 1s used to describe
one or more factors that affect a determination. This term
does not foreclose the possibility that additional factors may
aflect a determination. That 1s, a determination may be
solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B 1s a factor used to determine A or that aflects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s determined based solely on B. As used
herein, the phrase “based on” 1s thus synonymous with the
phrase “based at least 1n part on.”

DETAILED DESCRIPTION

As mentioned above, 1n various situations, indexes may
become 1inconsistent with the underlying database table upon
which they are built and, therefore, may need to be repaired
in order to avoid degradation for various index searches.
Traditional i1ndex repair, however, prevents concurrent
access to both the index and the data table 1n order to prevent
other processes from interfering with the repair process by

US 11,321,294 B2

3

potentially modifying entries being used by the repair pro-
cess. The 1nability of the other processes to use the data table
or the index during the repair causes degradation as these
processes may be forced to 1dly wait until the repair process
completes. This performance hit can be particularly signifi-
cant 1n systems that, for example, have large data sets and
handle high-volumes of database transactions concurrently.
The present disclosure describes embodiments 1n which a
computing system may repair a database index while allow-
ing the index or data table to be concurrently accessed by
processes other than the repair process handling the reparir.
As will be described below 1n various embodiments, such an
index repair may be performed using multiple locks having
varied restrictions and varied scopes. For example, 1n some
embodiments, the repair process acquires a less restrictive
lock on a set of database records that restricts structural
modifications but allows concurrent access and acquires a
more restrictive lock on single database records determined
to be relevant to correcting a particular identified 1nconsis-
tency. Performing a repair process using these types of locks
may, as mentioned, advantageously allow application pro-
cesses to concurrently access the database index or database
table while the repair 1s ongoing. Thus, any processes that
would have traditionally blocked awaiting access to the
database table or the index can proceed forward, avoiding
the prior degradation in performance.
Example Index Repair
FIG. 1 1s a block diagram 1illustrating a computing system
100 configured to repair an index while allowing access to
the 1index concurrently with the repair, according to some
embodiments. In the illustrated embodiment, computing
system 100 1ncludes a database table 110, a database 1index
120 for table 110, a repair process 130 for repairing index
120, and one or more application process(es) 140 executable
to access mdex 120 to locate content of table 110.
Database table 110, in the illustrated embodiment, 1s a
data structure that includes records 112A-112N, which may
include various data maintained by system 100. In some
embodiments, database table 110 1s a relational database;
however, database table 110 may employ any suitable data-
base scheme. In some embodiments, database table 110 1s
included 1n a multi-tenant database system and, therefore,
may 1include records 112 for different tenants. As used
herein, the term “multi-tenant database system™ refers to
those systems 1n which various elements of hardware and
soltware of the database system are shared by multiple
customers. As shown, database table 110 may store data for
one or more application processes 140 1n records 112. As
used herein, the term “process™ refers to an instance of a
computer program/program instructions being executed by a
computing system 100. In some embodiments, one or more
ol application processes 140 may use a database index 120
to quickly locate their data within database table 110.
Database index 120, in the 1llustrated example, 1s a data
structure used to locate records 112 of database table 110.
Database index 120 includes entries 122A-122M for corre-
sponding database records 112A-112N 1n database table 110.
In some embodiments, index entries 122 include index key
values that match values for fields of corresponding database
records 112. In some embodiments, one of application
processes 140 locates database records 112 by comparing a
key value (associated with a given field of database table
110) to the index 120. Based on finding a match for the key
value 1n the index 120, the application process 140 may
retrieve data stored 1n the 1dentified record from the database

table 110.

10

15

20

25

30

35

40

45

50

55

60

65

4

In some embodiments, multiple types of indexes may be
maintained for a database table, which may be generally
classified as primary or secondary indexes. In some embodi-
ments, computing system 100 generates a database index
120 based on a non-primary key/secondary key of record
112 that corresponds to a field (column) of the database table
110 for which quick lookup is desired—thus index 120 may
be classified as a secondary index. In some embodiments,
computing system 100 generates database index 120 for a
multi-tenant database table. In such situations, database
index 120 may include entries for records of multiple
different tenants. An example multi-tenant index 1s dis-
cussed 1n detail below with reference to FIG. 8.

Repair process 130, in the illustrated example, 1s an
instance of a computer program that 1s executable by com-
puting system 100 to repair database index 120. For
example, as shown, repair process 130 may read a particular
record 112B, determine that the record 112B does not have
a corresponding entry 122B, and insert a new index entry
122B 1nto database index 120. In some embodiments, repair
process 130 operates on a repair region 114 that includes
only a subset of the records 112 during a given repair as
shown 1 FIG. 1. A repair region 114, as shown in the
illustrated example, includes a region of database table 110
for which an index may be repaired. For example, repair
process 130 may evaluate index entries for records 112A and
112B for a given repair and evaluate an index entry for
record 112C during another repair. In other embodiments,
repair region 114 includes all records 112 1n database table
110, rather than a portion of the records included 1n the table.
As discussed 1n detail below with reference to FIGS. 2 and
3, repatr process 130 may perform a repair in two phases,
which may be performed 1n any order. In a first phase of
repair, process 130 may perform a scan of database table 110
to 1dentily one or more database records 112 with missing
index entries 1n database mdex 120. In a second phase of
repair, process 130 may perform a scan of database index
120 to determine one or more incorrect index entries 122,
which may be pointing at removed records 112 or the wrong
records 112.

To prevent other processes (such as an application process
140) from interfering with the repair, in the illustrated
embodiment, repair process 130 begins by placing a struc-
tural lock 136A on the portion of database table 110 corre-
sponding to repair region 114—e.g., records 112A and 112B
in the example shown 1n FIG. 1. As used herein, the term
“structural lock™ refers to a type of lock that prevents
structural modifications to a data structure by other pro-
cesses but can allow other process to modily the data in the
data structure. Accordingly, a structural lock may prevent
Database Definition Language (DDL) operations (e.g., cre-
ate, alter, drop, etc.) by other processes on a database table
but may allow Database Manipulation Language (DML)
operations (e.g., select, insert, update, delete, merge, etc.) by
other processes on content of records included in the data-
base table. In the 1llustrated example, repair process 130 also
places a structural lock 136B on the entries 1n the database
index 120 that correspond to the records 112 1n repair region
114. (In other embodiments, structural locks 136A and 1368
may have a scope covering the entireties of database table
110 and database index 120). In acquiring locks 136, repair
process 130 may prevent, for example, another process from
adding (or removing) a field, which could result 1n the repair
malfunctioning.

After placing respective structural locks 136, repair pro-
cess 130 may i1dentify that, for example, database table 110
includes a record 112B with a missing index entry and places

US 11,321,294 B2

S

a data lock 138 on the unindexed record 112B. As used
herein, the term “data lock™ refers to a type of lock that
prevents modifications to the data/content of database
records by other processes. In the 1llustrated example, repair
process 130 generates the missing index entry 122B based
on record 112B and adds 1t 1in database index 120. In some
embodiments, repair process 130 performs periodic repairs
(e.g., mightly, weekly, monthly) for one or more database

indexes 120.

As mentioned above, the usage of structural locks 136 and
data locks 138 may allow processes other than repair process
130 to access records 112 and index entries 122 during a
repair. For example, as shown, an application 140 may
perform a concurrent access 142 of an mdex entry 122A
during a repair in order to look up some corresponding
record in database table 110. While structural locks 136 may
prevent applications 140 from modifying the structures of

table 110 and index 120 and data locks 138 may bar

modification of individual records 112 and entries 122, the
overall impact of the repair can be greatly reduced. Further-
more, attempting to repair regions 114 on only portions of
table 110 and 1ndex 120 may mitigate the overall impact. For
example, 1n embodiments implementing a multi-tenant data-
base scheme, a repair may be performed for a given tenant’s
data in order to reduce the impact on other tenants.
Example Scanning

FIG. 2 1s a block diagram 1llustrating an example sequen-
tial scan 200 of database table 110 during repair of a
database imndex 120, according to some embodiments. In the
illustrated embodiment, repair process 130 performs various
repair steps 202-214 to add a missing index entry 122B to
database index 120. In other embodiments, repair process
130 may implement steps 202-214 in a different order or
perform different steps. For example, although described as
a sequential scan 200, other suitable scanning techniques
may be employed.

Repair process 130, 1n the 1llustrated embodiment, begins
with an acquisition 202 of a structural lock 136 A on a repair
region 114 that includes record 112B, of database table 110,
to prevent structural modifications to that record during

repair of database imndex 120. In some embodiments, repair
process 130 also acquires a structural lock 136B on database
index 120. After successtully acquiring locks 136, repair
process 130 scans one or more records 112 of database table
110 1n a sequential progression 204. As repair process 130
progresses forward, 1t may perform an acquisition 206 for a
data lock 138 on a record 112 and then perform a read 208
of an mndex key 222 from the record 112. In some embodi-
ments, index key 222 1s the value of a field included in
record 112B for which indexing 1s desired. After obtaining,
scanned record 112, repair process 130 performs a probe
210, with index key 222, of database index 120.

In the illustrated example, repair process 130 receives an
index entry indication 212 based on probe 210. In some
embodiments, 1 no corresponding entry 122 exists 1n data-
base index 120 for the probed index key 222, indication 212
may merely indicate the lack of an entry 122 such as will be
discussed below with FIG. 4. In some embodiments, if the
index key 222 for record 112B matches the index key value
of entry 122B 1n database imndex 120, indication 212 may
include the corresponding entry 122 with the matching index
entry 122, so that repair process 130 can confirm that 1t does
not reference the wrong record 112. Based on the index entry
indication 212, repair process 130 generates missing 1index
entry 122B for database record 112B and performs an

10

15

20

25

30

35

40

45

50

55

60

65

6

addition 214 of 1t to database index 120. In some embodi-
ments, steps 206-214 are repeated for subsequently scanned
database records.

In some embodiments, repair process 130 omits record
112B from repair, even though it has a missing enfry in
database index 120. For example, as will be discussed below
with reference to FI1G. 7, 11 repair process 130 1s unable to
acquire data lock 138 on record 112B, the process may skip
over this record and continue to the next record within

database table 110. For example, 11 an application process
140 1s modilying record 112B when repair process 130
requests acquisition, the requested acquisition may fail.

FIG. 3 1s a block diagram 1llustrating an example sequen-
tial scan 300 of a database index 120 during repair of the
database 1ndex 120, according to some embodiments. In the
illustrated example, repair process 130 performs various
repair steps 302-314 during a second phase of index reparr.
In other embodiments, repair process 130 may implement
steps 302-314 1n a different order or perform ditferent steps.
For example, although described as a sequential scan 300,
other suitable scanning techniques may be employed.

In the 1llustrated embodiment, repair process 130 begins
with an acquisition 302 of a structural lock 136 A on one or
more records 112 of database table 110 to prevent structural
modifications to those records during repair of database
index 120. In some embodiments, repair process 130 also
acquires a structural lock 136B on database index 120.
Repair process 130 then performs a scan 1n sequential
progression 304 of database index 120. In the illustrated
example, this scanning includes performing a read 306 of an
index key 222 1n an index entry 122. Based on the index key
222 of the scanned entry 122, repair process 130 performs
an acquisition 308 of a data lock 138 on the corresponding
database record 112. In some embodiments, acquisition of
data lock 138 1s unsuccessiul and computing system 100
performs a recovery operation as described 1n detail below
with reference to FIG. 7.

In the illustrated embodiment, after acquiring lock 138,
repair process 130 performs a probe 310 of database table
110. Repair process 130, 1n the 1llustrated example, receives
index entry indication 312 based on probe 310. Finally,
repair process 130 performs a removal 314 of incorrect entry
122 from database index 120 after receiving index entry
indication 312. In some embodiments, steps 306-314 are
repeated for subsequently scanned database index entries. In
situations where multiple incorrect entries are returned
based on database index scan 300, computing system 100
may become overloaded due to the large amount of memory
tied up. Therefore, computing system 100 may separate
repair process 130 into multiple different transactions as
discussed 1n detail below with reference to FIG. 6. Examples
ol possible inconsistencies between database records 112
and database index entries 122 will now be discussed with
respect to FIGS. 4 and 5.

Examples of Index Inconsistencies

FIG. 4 1s a block diagram 1llustrating an example 400 of
database index 120 with a missing index entry 122, accord-
ing to some embodiments. In the illustrated embodiment,
database table 110 includes records with primary key values
412 and field values 414, while database index 120 includes
index key values 222 for corresponding database records.
Database index 120, in the illustrated example, includes
index key values 222 for corresponding records of database
table 110 except for second record 112B, which 1s missing
an mdex entry 122 within mdex 120. In the illustrated
example, index key values 222 of index entries point to rows

US 11,321,294 B2

7

ol database table 110 (e.g., by referencing the primary key
412 of the records 112 1n an additional field not depicted 1n
FIG. 4).

As shown 1n example 400, index key value “A” points to
the first row of database table 110 where the row has a
matching field value 414 of “A.” Similarly, 1n the illustrated
example, index key value “C” points to the third row of
database table 110, which has a matching field value 414 of
“C.” In some embodiments, repair process 130 may 1dentily
that database index 120 omits an entry 122B for a database
record 112B. Such an omission may have occurred, for
example, when an application process 140 added a record
112B to database table 110, but no corresponding index
entry 122B was added to database index 120. In this case,
repair process 130 may attempt to insert the omitted entry
1228 into index 120.

FIG. 5 15 a block diagram 1llustrating another example 500
of database index 120 with an incorrect index entry 122B,
according to some embodiments. As shown, entry 122B may
have the index key value 222 of “Z7Z” and point at record
112B. The second index entry 122B, however, 1s mcorrect
because the index key value 222 no longer matches the
correct field value 414 of “B” for second record 112B. Such
an inconsistency may occur, for example, when the field
value 414 1s updated without also updating the index key
value 222 1n database index 120. Therelfore, repair process
130 may repair database index 120 to mitigate this error by
updating index key value 222 to “B”—or removing index
entry 122B 11 another entry 122 currently exists for record
112B.

Example Repair Process Transactions

FIG. 6 1s a diagram 1illustrating example transactions for
a database index repair process, according to some embodi-
ments. In some embodiments, repair process 130 performs a
single transaction to repair all incorrect index entries 1n
database index 120. In other embodiments, repair process
130 performs multiple transactions that each include repair-
ing a portion of the incorrect index entries 1n the index.
Performing multiple transactions may allow database
records or index entries, that otherwise would be locked
during performance of a single transaction for the database
index, to be concurrently accessed during the repair—thus,
reducing the amount of resources (e.g., records, index
entries) that are unavailable during repair of a database
index. Multi-transaction repair 600 1llustrates two different
transactions 602 and 604 that may be included 1n a repair
process 130.

In the illustrated example, a repair process 130 acquires

[1

locks on one or more of database records 112A-112F
included in a database table 110 1 order to repair corre-
sponding entries ol database index 120. In a first repair
transaction 602, a process 130 repairs index entries for
database records 112B and 112C. In the illustrated example,
alter scanning database table 110 to identify records 112B
and 112C for a first repair transaction, repair process 130
acquires a lirst data lock 138 A on database record 112B.
Next, repair process 130 performs a {first probe 306A of
database table 110 based on acquiring lock 138 A on record
112B. In some embodiments, based on results of the first
probe 306 A, repair process 130 may tombstone or remove
an index entry for database record 112B.

In the 1llustrated example, repair process 130 places a
second data lock 138B on database record 112C and then
performs a second probe 310B on database table 110. Based
on results of the second probe 310B, repair process 130 may
tombstone or remove an mdex entry corresponding to data-
base record 112C. Finally, after completing {first repair

5

10

15

20

25

30

35

40

45

50

55

60

65

8

transaction 602 and before beginning second repair trans-
action 604, repair process 130 may release data locks 138A
and 138B.

In some embodiments, after removing an index entry for
database record 112B and before removing an index entry
for database record 112C, repair process 130 releases {first
data lock 138A. In the illustrated example, repair process
130 performs a second repair transaction 604. Second repair
transaction 604, in the illustrated example, includes only
database record 112E. In some embodiments, transactions
602 and 604 are included 1n the same repair process 130. At
the end of repair process 130 (which may include a plurality
ol transactions), all data locks 138 acquired during transac-
tions 602 and 604 may be released. Note that index entries
awaiting repair i process 130 may be split up into a
plurality of diflerent transactions.

Example Index Snapshots

FIG. 7 1s a block diagram 1llustrating an example 700 of
a recovery from a failed lock acqusition during a repair
operation performed on database index 120, according to
some embodiments. Example 700 displays snapshots of a
database index 120 (shown as 120A and 120B) at two
different points in time 710.

In the illustrated example, repair process 130 performs a
first scan 300A of database index 120 at t1, which corre-
sponds to a first snapshot of mmdex 120. At 702, in the
illustrated example, repair process 130 attempts to acquire a
data lock 138 on a database record that corresponds to an
index entry 122 included 1n snapshot 120A of the database
index 120. In the illustrated example, however, repair pro-
cess 130 fails to acquire the data lock—this failed acquisi-
tion may be described as a snapshot violation in some
embodiments. Rather than block awaiting release of this
lock, repair process 130 proceeds forward until completion
and, at 704, releases previously-acquired data locks 138.
Note that this may allow other processes to access database
records corresponding to the released data locks instead of
these processes waiting for repair process 130 to unblock.
The data locks released at 704 may have been previously
acquired on various database records corresponding to
entries included 1n index snapshot 120A.

When repair process 130 later attempts a subsequent
repair, the process performs a second scan 300B of the
database 1ndex at t2, which corresponds to a second snapshot
of mndex 120. In this example, at 706, repair process 130
successtully acquires a data lock 138 on a database record
112 that corresponds to an entry 122 included in snapshot
120B of the database index and 1s able to finally correct the
inconsistency for the entry associated with the failed lock
acquisition. In some embodiments, repair process 130
begins second scan 300B at a location corresponding to the
database record upon which acquisition of data lock 138
tailed.

In some embodiments, repair process 130 stores one or
more updated index entries for database index 120 1n a data
structure. In some embodiments, the data structure stores
one or more changes awaiting commitment. For example,
the data structure may store newly generated index entries
betore the entries are committed to the database index. In
various situations, this data structure may be a write bufler
that accumulates data 1n memory before committing the
data, for example. In some embodiments, this data structure
may correspond to an 1nitial stage of a log-structured merge
(LSM) tree.

Example Multi-Tenant Index

FIG. 8 1s a block diagram illustrating an example multi-

tenant database system 800 that includes a multi-tenant

US 11,321,294 B2

9

index with incorrect entries for one or more tenants, accord-
ing to some embodiments. Multi-tenant database system
800, 1n the 1illustrated embodiment, includes a multi-tenant
index 820 with entries 822A-822D for database records
associated with different tenants.

In some embodiments, a computing system that includes
multi-tenant index 820 processes requests for a great number
of customers, and a database table may store rows for a
potentially greater number of customers. In various embodi-
ments, data for different tenants may be securely stored such
that other tenants cannot access the data absent permission.
For example, a first application process 140 associated with
a first tenant may not access data within database table 110
for a second tenant and vice versa.

In the 1illustrated embodiment, multi-tenant index 820
includes two incorrect entries 802 and two correct entries
804. In some embodiments, repair process 130 1dentifies the
two 1ncorrect entries 802 within multi-tenant index 820.
Specifically, repair process 130 may 1dentify that entry 822A
for a first tenant and entry 822B for a second tenant need
repair. Repair process 130 places data locks 138 on respec-
tive database records corresponding to the identified incor-
rect entries 802. In the illustrated embodiment, correct
entries 804 for a third tenant, 822C and 822D, are not
repaired by repair process 130 and, therefore, repair process
130 does not hold a data lock 138 for database records
corresponding to these entries. Accordingly, one or more
application processes 140 may modily content of database
records corresponding to entries 822C and 822D {for the
third tenant during the repair of index 820. In addition, one
or more application process 140 may use index 820 to locate
records corresponding to entries 822C and 822D during the
repair. The following 1s one example command that mitiates
repair process 130 for one or more entries 1n multi-tenant
index 820 corresponding to the first tenant:

REPAIR INDEX multi-tenant index [FOR TENANT first
tenant]

In some embodiments, repairing index entries for one or
more tenants only may advantageously decrease the number
ol index entries for repair relative to traditional techniques.
For example, an index includes 1 million entries for multiple
different tenants and repair process 130 repairs entries for
only one the different tenants. In this example, the one tenant
1s associated with 300 entries. Accordingly, 1n this example,
only 300 of the 1 million entries will be unavailable to other
processes (e.g., application process(es) 140) during all or a
portion of the repair.

Example Method

Turning now to FIG. 9, a flow diagram illustrating a
method 900 for repairing a database index, according to
some embodiments. The method shown 1n FIG. 9 may be
used 1n conjunction with any of the computer circuitry,
systems, devices, elements, or components disclosed herein,
among other devices. In various embodiments, some of the
method elements shown may be performed concurrently, in
a different order than shown, or may be omitted. Additional
method elements may also be performed as desired.

At 910, in the 1llustrated embodiment, a computing sys-
tem repairs a database index for a database table. In some
embodiments, the database table includes records for a
plurality of tenants. In some embodiments, the computing,
system repairs index entries for database records of one or
more of the plurality of tenants.

At 920, the computing system places a first structural lock
on the database table to prevent modifications to the struc-
ture of the database table. In some embodiments, the system
acquires a first structural lock on the database table.

10

15

20

25

30

35

40

45

50

55

60

65

10

At 930, the computing system scans the database table to
determine a plurality of database records included in the
database table. In some embodiments, the computing system
scans a primary database index for the database table to
identify one or more duplicate keys. In some embodiments,
the computing system outputs a report that specifies one or
more 1dentified duplicate keys. In some embodiments, the
database index for the database table i1s a secondary index.

At 940, the computing system probes the database index
for the plurality of database records to identily database
records having missing entries 1n the database index.

At 950, based on the probing, the computing system
places a first data lock on a record of the database table
corresponding to a missing index entry to prevent modifi-
cation of data in the record. In some embodiments, 1n
response to placement of a data lock failing, the computing
system omits, from consideration during the repairing, a
record of the database table corresponding to an i1dentified
missing index entry. In some embodiments, the computing
system acquires a first data lock on a record of the database
table.

At 960, in response to placing the first record lock, the
computing system adds an index entry for the locked data-
base record to the database index. In some embodiments, the
computing system places a second structural lock on the
database index to prevent modifications to the structure of
the database index. In some embodiments, the computing
system scans the database index to determine a plurality of
index entries. In some embodiments, the computing system
places data locks on respective database records correspond-
ing to the determined plurality of index entries. In some
embodiments, in response to placing the data locks on
respective database records, the computing system probes
the database table for the plurality of index entries to identify
incorrect index entries. In some embodiments, based on
identifying an incorrect index entry, the computing system
removes the incorrect entry from the database index. In
some embodiments, during repair of the database index, one
or more application processes modily one or more records of
the database table.

In some embodiments, 1n response to placement of a data
lock failing, the computing system releases one or more
previously-placed data locks. In some embodiments, the
computing system performs another scan of the database
index at a location corresponding to the record associated
with the failed data lock placement. In some embodiments,
prior to adding an index entry for the locked database record
to the database 1index, the computing system stores a gen-
erated index entry in a data structure for storing transactions
awaiting commitment, where the adding the index entry
includes sending the generated index entry from the data
structure to the database index. In some embodiments, the
computing system releases the first record lock on the record
of the database table based on adding an imndex entry to the
database for the record.

At 970, during the repair, one or more application pro-
cesses used the database index to locate one of the plurality
ol database records included 1n the database table. In some
embodiments, the computing system performs a first trans-
action that includes repairing one or more index entries. In
some embodiments, after completing the first transaction
and before beginning a second transaction, the computing
system releases one or more data locks on respective data-
base records corresponding to the one or more index entries.

Repairing an index by placing locks on only errored index
entries may reduce the amount of both storage space and
processing time used in repairing an index. In addition,

US 11,321,294 B2

11

repairing errored index entries only may be performed
without sorting operation. In some embodiments, indexes
with immutable, sorted index records may advantageously
reduce or remove the need for sorting before repairing an
index. Repairing an index without sorting may advanta-
geously reduce processing time during repair.

Example Computing Device

Turning now to FIG. 10, a block diagram of a computing
device (which may also be referred to as a computing
system) 1010 1s depicted, according to some embodiments.
Computing device 1010 may be used to implement various
portions of this disclosure. Computing device 1010 is one
example of a device that may be used as a mobile device, a
server computer system, a client computer system, or any
other computing system implementing portions of this dis-
closure.

Computing device 1010 may be any suitable type of
device, including, but not limited to, a personal computer
system, desktop computer, laptop or notebook computer,
mobile phone, mainframe computer system, web server,
workstation, or network computer. As shown, computing,
device 1010 includes processing umt 1050, storage subsys-
tem 1012, and input/output (I/O) intertace 1030 coupled via
interconnect 1060 (e.g., a system bus). I/O mtertace 1030
may be coupled to one or more I/O devices 1040. Comput-
ing device 1010 further includes network interface 1032,
which may be coupled to network 1020 for communications
with, for example, other computing devices.

Processing unit 1050 includes one or more processors
and, 1n some embodiments, includes one or more coproces-
sor units. In some embodiments, multiple instances of
processing unit 1050 may be coupled to mterconnect 1060.
Processing unit 1050 (or each processor within processing
unit 1050) may contain a cache or other form of on-board
memory. In some embodiments, processing unit 1050 may
be implemented as a general-purpose processing unit, and in
other embodiments 1t may be implemented as a special
purpose processing unit (e.g., an ASIC). In general, com-
puting device 1010 1s not limited to any particular type of
processing unit or processor subsystem.

As used herein, the terms “processing unit” or “process-
ing element” refer to circuitry configured to perform opera-
tions. Accordingly, a processing unit may be implemented as
a hardware circuit implemented 1n a varniety of ways. The
hardware circuit may include, for example, custom very-
large-scale integration (VLSI) circuits or gate arrays, ofl-
the-shelf semiconductors such as logic chips, transistors, or
other discrete components. A processing unit may also be
implemented in programmable hardware devices such as
field programmable gate arrays, programmable array logic,
programmable logic devices, or the like.

Storage subsystem 1012 1s usable by processing unit 1050
(e.g., to store instructions executable by and data used by
processing unit 1050). In addition, storage subsystem 1012
may include one or more repair processes 130 usable by
processing unit 1050. In some embodiments, storage 1012
may 1nclude one or more other processes, such as one or
more of application processes 140. Storage subsystem 1012
may be mmplemented by any sutable type of physical
memory media, including hard disk storage, floppy disk
storage, removable disk storage, flash memory, random
access memory (RAM-SRAM, EDO RAM, SDRAM, DDR
SDRAM, RDRAM, etc.), ROM (PROM, EEPROM, eftc.),
and so on. Storage subsystem 1012 may consist solely of
volatile memory 1n some embodiments. Storage subsystem
1012 may store program instructions executable by com-
puting device 1010 using processing unit 1050, including

10

15

20

25

30

35

40

45

50

55

60

65

12

program 1instructions executable to cause computing device
1010 to implement the various techniques disclosed herein.

I/0 1nterface 1030 may represent one or more interfaces
and may be any of various types of interfaces configured to
couple to and communicate with other devices, according to
various embodiments. In some embodiments, I/O interface
1030 1s a bridge chip from a front-side to one or more
back-side buses. I/O iterface 1030 may be coupled to one
or more I/O devices 1040 via one or more corresponding
buses or other interfaces. Examples of I/O devices include
storage devices (hard disk, optical drive, removable flash
drive, storage array, SAN, or an associated controller),
network interface devices, user interface devices or other
devices (e.g., graphics, sound, etc.).

It 1s noted that the computing device of FIG. 10 1s one
embodiment for demonstrating disclosed concepts. In other
embodiments, various aspects of the computing device may
be different. For example, 1n some embodiments, additional
components, or multiple mstances of the illustrated compo-
nents may be mcluded.

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment 1s described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be 1llustrative rather than restrictive unless stated other-
wise. The above description 1s mtended to cover such
alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.

The scope of the present disclosure includes any feature
or combination of features disclosed herein (either explicitly
or implicitly), or any generalization thereol, whether or not
it mitigates any or all of the problems addressed herein.
Accordingly, new claims may be formulated during pros-
ecution of this application (or an application claiming pri-
ority thereto) to any such combination of features. In par-
ticular, with reference to the appended claims, features from
dependent claims may be combined with those of the
independent claims and features from respective indepen-
dent claims may be combined 1n any appropriate manner and
not merely in the specific combinations enumerated in the
appended claims.

What 1s claimed 1s:
1. A method, comprising:
performing, by a computing system, a repair process on a
database index for a database table, wherein the data-
base index and the database table are data structures
maintained by the computing system, and wherein
performing the repair process includes:
placing a first structural lock on the database table,
wherein the first structural lock prevents other pro-
cesses from modifying the structure of the database
table;
scanning the database table to determine a plurality of
database records included 1n the database table;
probing the database index for the plurality of database
records to identily database records existing in the
database table that are missing corresponding entries
in the database index;
based on the probing, placing a first data lock that 1s
different from the first structural lock on an identified
record ol the database table corresponding to a
missing index entry, wherein the first data lock
prevents other processes from moditying data in the
record; and

US 11,321,294 B2

13

in response to placing the first data lock, adding an
index entry for the locked database record to the
database index; and

during performance of the repair process, using the data-

base index to locate one of the plurality of database
records included 1n the database table.

2. The method of claim 1, wherein performing the repair
process further includes:

placing a second structural lock on the database index to

prevent modifications to the structure of the database
index;

scanning the database index to determine a plurality of

index entries;

placing data locks on respective database records corre-

sponding to the determined plurality of index entries;
probing the database table for the plurality of index
entries to 1dentily incorrect index entries;

based on identilying an incorrect index entry, removing

the 1ncorrect entry from the database index; and
during performance of the repair process, modifying one
or more records of the database table.
3. The method of claim 2, turther comprising;:
in response to placement of a data lock failing, releasing
one or more previously placed data locks; and

performing another scan of the database index at a loca-
tion corresponding to the record associated with the
falled data lock placement.

4. The method of claim 1, further comprising:

in response to placement of a data lock failing, omitting,

from consideration during performance of the repair
process, a record of the database table corresponding to
an 1dentified missing index entry.

5. The method of claim 1, wherein performing the repair
process includes:

performing a first transaction that includes repairing one

or more index entries, wherein the repairing further
includes:

after completing the first transaction and before beginning,

a second transaction, releasing one or more data locks
on respective database records corresponding to the one
or more dex entries.
6. The method of claim 1, wherein the database table
includes records for a plurality of tenants, and wherein the
repairing the database index includes repairing index entries
for database records of one or more of the plurality of
tenants.
7. The method of claim 1, further comprising;:
scanning a primary database index for the database table
to 1dentily one or more duplicate keys; and

outputting, by the computing system, a report that speci-
fies one or more 1dentified duplicate keys, wherein the
database index for the database table 1s a secondary
index.

8. The method of claim 1, wherein performing the repair
process further includes:

prior to adding an index entry for the locked database

record to the database 1index, storing a generated 1index
entry in a data structure for storing transactions await-
ing commitment, wherein the adding the index entry
includes sending the generated index entry from the
data structure to the database index.

9. A non-transitory computer-readable medium having
instructions stored thereon that are capable of execution by
a computing device to perform operations comprising:

performing, a repair process on a database index for a

database table, wherein the database index and the

10

15

20

25

30

35

40

45

50

55

60

65

14

database table are data structures maintained by the

computing device, and wherein performing the repair

process 1ncludes:

acquiring {irst and second structural locks on respective
ones of the database table and the database index,
wherein the first and second structural locks prevent
other processes from modifying the structure of the
database table and the database index;

scanning the database index to determine a plurality of
index entries;

acquiring data locks that are different from the first and
second structural locks on respective database

records corresponding to the determined plurality of
index entries, wherein the data locks prevent other
processes from modifying data i the respective
database records;
1in response to acquisition of a data lock failing, releas-
ing one or more previously acquired data locks;
probing the database table for the plurality of index
entries to 1dentily incorrect index entries; and
based on 1dentifying an incorrect index entry, removing
the icorrect entry from the database index; and
during performance of the repair process, modifying one
or more records of the database table.

10. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise:

performing another scan of the database index at a loca-

tion corresponding to the record associated with the
failed data-lock acquisition.
11. The non-transitory computer-readable medium of
claim 9, wherein the 1incorrect index entry 1s an index entry
that 1s inconsistent with a corresponding record in the
database table.
12. The non-transitory computer-readable medium of
claiam 9, wherein performing the repair process further
includes:
scanning the database table to determine a plurality of
database records included in the database table;

probing the database index for the plurality of database
records to identity database records having missing
entries 1n the database index;
based on the probing, acquiring a first data lock on a
record of the database table corresponding to a missing
index entry to prevent modification of the record; and

in response to placing the first data lock, adding an index
entry for the locked database record to the database
index.

13. The non-transitory computer-readable medium of
claim 12, wherein the operations further comprise:

in response to acquisition of the first data lock failing,

omitting the record of the database table corresponding
to the 1dentified missing index entry from consideration
during performance of the repair process.

14. The non-transitory computer-readable medium of
claim 12, wherein the repair process 1s performed using one
or more transactions that include one or more 1index entries
for repair, wherein the repairing further icludes:

releasing one or more data locks on respective database

records corresponding to the one or more 1ndex entries
in a first transaction after completing the first transac-
tion and before beginning a second transaction.

15. The non-transitory computer-readable medium of
claim 12, wherein the database table includes records for a
plurality of tenants, and wherein the repairing the database
index includes repairing index entries for database records
of one or more of the plurality of tenants.

US 11,321,294 B2

15

16. A system, comprising;
one or more processors; and
one or more storage elements having program instructions
stored thereon that are executable by the one or more
processors to cause the system to perform operations
comprising:
performing a repair process on a database index for a
database table, wherein the database index and the
database table are data structures maintained by the
system, and wherein performing the repair process
includes:
placing a first table lock on the database table,
wherein the first table lock prevents other pro-
cesses from modifying the structure of the data-
base table:
scanning the database table to determine a plurality
of database records included 1n the database table:
probing the database index for the plurality of data-
base records to 1dentily database records existing
in the database table that are missing correspond-
ing entries 1n the database index;
based on the probing, placing a first record lock that
1s different from the first table lock on an identified
record of the database table corresponding to a
missing index entry, wherein the first record lock
prevents other processes from modifying data in
the record; and
in response to placing the first record lock, adding an
index entry for the locked database record to the
database index; and
during performance of the repair process, using the
database index to locate one of the plurality of
database records included 1n the database table.
17. The system of claim 16, wherein performing the repair
process further includes:

10

15

20

25

30

16

placing a second structural lock on the database index to
prevent modifications to the structure of the database
index:

scanning the database index to determine a plurality of

index entries;

placing record locks on respective database records cor-

responding to the determined plurality of index entries;
probing the database table for the plurality of index
entries to 1dentily incorrect index entries;

based on 1dentifying an incorrect index entry, removing

the incorrect entry from the database index; and
during performance of the repair process, modifying one
or more records of the database table.
18. The system of claim 17, wherein the operations further
comprise:
in response to placement of a record lock failing, releasing
one or more previously placed record locks; and

performing another scan of the database index at a loca-
tion corresponding to the record associated with the
failed record-lock placement.

19. The system of claim 16, wherein the operations further
comprise:

in response to placement of the first record lock failing,

omitting the record of the database table corresponding,
to the 1dentified missing index entry from consideration
during performance of the repair process.

20. The system of claim 16, wherein the repair process 1s
performed using one or more transactions that include one or
more index entries for repair, wherein the repairing further
includes:

releasing one or more record locks on respective database

records corresponding to the one or more 1ndex entries
in a first transaction after completing the first transac-
tion and before beginning a second transaction.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

