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METHOD AND SYSTEM FOR
RECOMMENDING CONTENT ITEMS TO A

USER BASED ON TENSOR FACTORIZATION

BACKGROUND
1. Technical Field

The present teaching relates to methods, systems, and
programming for Internet services. Particularly, the present
teaching 1s directed to methods, systems, and programming,
for recommending content items to a user based on tensor
factorization.

2. Discussion of Technical Background

Recommendation techniques are increasingly being used
to provide relevant and enjoyable information to users based
on users’ feedback and stated preferences. Existing systems
applied either standard logistic regression or collaborative
filtering (CF) based approaches to predict proper ads/news
for a given user. Existing approaches require special process
for the cold-start problem, which may be caused by the
system’s incapability of dealing with new items or new users
due to the lack of relevant transaction history.

For a recommendation system, user data and content data
may be represented by tensors, or multidimensional arrays,
that are generalizations of matrices (from binary interac-
tions) to high-order interactions between multiple entities.
Tensor factorization 1s a powerful tool to analyze multi-way
data. Recently proposed tensor factorization methods are
computationally expensive and may sufler a severe learning
bias 1n case of extreme data sparsity.

Therefore, there 1s a need to provide an improved solution
for recommending content items to a user based on tensor
factorization to solve the above-mentioned problems and
avoid the above-mentioned drawbacks.

SUMMARY

The present teaching relates to methods, systems, and
programming for Internet services. Particularly, the present
teaching 1s directed to methods, systems, and programming,
for recommending content items to a user based on tensor
factorization.

In one example, a method, implemented on a machine
having at least one processor, storage, and a communication
platform capable of connecting to a network for recom-
mending content items to a user 1s disclosed. A request 1s
received for recommending content items to the user. Tensor
data related to a plurality of users and a plurality of content
items are obtained based on the request. The tensor data 1s
decomposed into a plurality of sub-tensors based on a prior
probability distribution. At least one bound 1s determined for
a tensor factorization model that 1s generated based on the
prior probability distribution. One or more 1tems 1nteresting,
to the user are predicted based on the at least one bound and
the plurality of sub-tensors. At least one of the one or more
items 1s recommended to the user as a response to the
request.

In a different example, a system having at least one
processor, storage, and a communication platform capable
ol connecting to a network for recommending content 1tems
to a user 1s disclosed. The system includes: a recommenda-
tion request analyzer configured for recerving a request for
recommending content 1tems to the user; a user tensor data
retriever configured for obtaining tensor data related to a
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2

plurality of users and a plurality of content items based on
the request; a model bound generator configured for deter-
mining at least one bound for a tensor factorization model
that 1s generated based on a prior probability distribution; a
distributed inference engine configured for decomposing the
tensor data mto a plurality of sub-tensors based on the prior
probability distribution and predicting one or more 1tems
interesting to the user based on the at least one bound and the
plurality of sub-tensors; and a content recommendation
engine configured for recommending at least one of the one
or more 1tems to the user as a response to the request.

Other concepts relate to software for implementing the
present teaching on recommending content items to a user
based on tensor factorization. A soitware product, 1n accord
with this concept, includes at least one machine-readable
non-transitory medium and information carried by the
medium. The information carried by the medium may be
executable program code data, parameters 1n association
with the executable program code, and/or information
related to a user, a request, content, or information related to
a social group, etc.

In one example, a machine-readable, non-transitory and
tangible medium having information recorded thereon for
recommending content items to a user 1s disclosed. The
information, when read by the machine, causes the machine
to perform the following: receiving a request for recom-
mending content i1tems to the user; obtaining tensor data
related to a plurality of users and a plurality of content 1tems
based on the request; decomposing the tensor data nto a
plurality of sub-tensors based on a prior probability distri-
bution; determining at least one bound for a tensor factor-
1zation model that 1s generated based on the prior probabaility
distribution; predicting one or more 1tems interesting to the
user based on the at least one bound and the plurality of
sub-tensors; and recommending at least one of the one or
more items to the user as a response to the request.

Additional novel features will be set forth in part 1n the
description which follows, and 1n part will become apparent
to those skilled 1n the art upon examination of the following
and the accompanying drawings or may be learned by
production or operation of the examples. The novel features
of the present teachings may be realized and attained by

practice or use of various aspects of the methodologies,
instrumentalities and combinations set forth in the detailed

examples discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods, systems, and/or programming described
herein are further described in terms of exemplary embodi-
ments. These exemplary embodiments are described in
detail with reference to the drawings. These embodiments
are non-limiting exemplary embodiments, in which like
reference numerals represent similar structures throughout
the several views of the drawings, and wherein:

FIG. 1 1s a high level depiction of an exemplary net-
worked environment for recommending content items to a
user based on tensor factorization, according to an embodi-
ment of the present teaching;

FIG. 2 1s a high level depiction of another exemplary
networked environment for recommending content 1tems to
a user based on tensor factorization, according to an embodi-
ment of the present teaching;

FIG. 3 illustrates exemplary tensor formats for represent-
ing data related to users and 1tems, according to an embodi-
ment of the present teaching;
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FIG. 4 illustrates components of a multi-order tensor,
according to an embodiment of the present teaching;

FIG. 5 1llustrates an exemplary process for a distributed
flexible nonlinear tensor {factorization, according to an
embodiment of the present teaching;

FIG. 6 1llustrates a decomposition on a 3-mode tensor,
according to an embodiment of the present teaching;

FIG. 7 illustrates an exemplary diagram of a tensor
factorization based recommendation engine, according to an
embodiment of the present teaching;

FIG. 8 1s a flowchart of an exemplary process performed
by a tensor factorization based recommendation engine,
according to an embodiment of the present teaching;

FIG. 9 illustrates an exemplary diagram of a tensor
factorization model generator, according to an embodiment
of the present teaching;

FI1G. 10 15 a flowchart of an exemplary process performed
by a tensor factorization model generator, according to an
embodiment of the present teaching;

FIG. 11 illustrates an exemplary diagram of a model
bound generator, according to an embodiment of the present
teaching;

FIG. 12 1s a flowchart of an exemplary process performed
by a model bound generator, according to an embodiment of
the present teaching;

FIG. 13 depicts the architecture of a mobile device which
can be used to implement a specialized system incorporating
the present teaching; and

FIG. 14 depicts the architecture of a computer which can
be used to implement a specialized system incorporating the

present teaching.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide
a thorough understanding of the relevant teachings. How-
ever, 1t should be apparent to those skilled 1n the art that the
present teachings may be practiced without such details. In
other nstances, well known methods, procedures, systems,
components, and/or circuitry have been described at a rela-
tively high-level, without detail, 1n order to avoid unneces-
sarily obscuring aspects of the present teachings.

The present disclosure describes method, system, and
programming aspects of efliciently and eflectively recom-
mending content items to a user based on tensor factoriza-
tion. The method and system as disclosed herein aim at
improving users’ online experience by recommending most
proper items to the users.

The present teaching discloses a distributed, flexible
nonlinear tensor factorization model, which avoids expen-
stve computations and structural restrictions of Kronecker-
product in Tensor-variate Gaussian process (1GP) formula-
tions, and allows an arbitrary subset of tensor entries to be
selected for training. The present teaching also discloses a
tractable and tight variational evidence lower bound (ELBO)
that enables highly decoupled, parallel computations and
high-quality inference. Based on the new bound, the present
teaching discloses a distributed, key-value-free inference
algorithm in the MAP-REDUCE framework, which can
tully exploit the memory cache mechanism 1n fast MAP-
REDUCE systems such as SPARK. The disclosed approach
1s a unified approach that can handle sparse mnput data
without special treatment. All side imformation or extra
features can be easily added to the disclosed approach with
simple extension.

10

15

20

25

30

35

40

45

50

55

60

65

4

Tensors, or multidimensional arrays, are generalizations
of matrices (from binary interactions) to high-order interac-
tions between multiple entities. For example, one can extract
a three-mode tensor (user, advertisement, context) from
online advertising logs. To analyze tensor data, people
usually turn to factorization approaches, which use a set of
latent factors to represent each entity and model how the
latent factors interact with each other to generate tensor
clements. Classical tensor factorization models assume mul-
tilinear interactions and hence are unable to capture more
complex, nonlinear relationships. A recently proposed Infi-
nite Tucker decomposition (InfTucker) generalizes existing,
model to infinite feature space using a Tensor-variate Gauss-
1an process ( 1GP) and 1s hence more powerful 1n modeling
intricate nonlinear interactions. However, Inf'Tucker and its
variants are computationally expensive, because the Kro-
necker product between the covariances of all the modes
requires the TGP to model the entire tensor structure. In
addition, InfTucker and 1ts variants may sufler from the
extreme sparsity of real-world tensor data, i.e., when the
proportion of the nonzero entries 1s extremely low. As 1s
often the case, most of the zero elements 1n real tensors are
meaningless: they simply indicate missing or unobserved
entries. Incorporating all of them 1n the training process may
ailect the factorization quality and lead to biased predictions.

To address these 1ssues, the present teaching discloses a
distributed, flexible nonlinear tensor factorization model,
which has several important advantages. First, 1t can capture
highly nonlinear interactions in the tensor, and 1s flexible
enough to mcorporate arbitrary subset of (meaningtul) ten-
sor entries for the traiming. This 1s achieved by placing a
(Gaussian process prior over tensor entries, where the mput
1s constructed by concatenating the latent factors from each
mode and the intricate relationships are captured by using
the kernel function. By using such a construction, the
covariance function 1s then free of the Kronecker-product
structure, and as a result users can freely choose any subset
of tensor elements for the training process and incorporate
prior domain knowledge. For example, one can choose a
combination of balanced zero and nonzero elements to
overcome the learning bias. Second, the tight variational
evidence lower bound (ELBO) dernived using functional
derivatives and convex conjugates subsumes optimal varia-
tional posteriors, thus evades inellicient, sequential E-M
updates and enables highly eflicient, parallel computations
as well as improved inference quality. Moreover, the new
bound helps to develop a distributed, gradient-based opti-
mization algorithm. Finally, the present teaching develops a
simple yet very eflicient procedure to avoid the data shui-
fling operation, a major performance bottleneck in the
(key-value) sorting procedure in MAP-REDUCE. That 1s,
rather than sending out key-value pairs, each mapper simply
calculates and sends a global gradient vector without keys.
This key-value-iree procedure 1s general and can effectively
prevent massive disk I/Os and fully exploit the memory
cache mechanism 1n fast MAP-REDUCE systems, such as
SPARK.

Evaluations using small real-world tensor data have fully
demonstrated the superior prediction accuracy of the dis-
closed system 1in comparison with existing works. On large
tensors with millions of nonzero elements, the disclosed
approach 1s significantly better than, or at least as good as
popular large-scale nonlinear factorization methods based
on TGP. In addition, the disclosed method achieves a faster
training speed and enjoys almost linear speedup with respect
to the number of computational nodes. The disclosed model
can be applied to click-through-rate (CTR) prediction for
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online advertising and achieve a significant 20% i1mprove-
ment over the popular logistic regression and linear support
vector machine (SVM) approaches.

The distributed, flexible nonlinear tensor factorization
model disclosed in the present teaching can improve the
accuracy 1n several different recommendation tasks; can
significantly boost campaign performance in both Gemini
and DSP+; and can easily handle data with extreme sparsity
and cold-start problem.

The terms “content items”
interchangeably herein.

Additional novel features will be set forth in part in the
description which follows, and in part will become apparent
to those skilled 1n the art upon examination of the following
and the accompanying drawings or may be learned by
production or operation of the examples. The novel features
of the present teachings may be realized and attained by
practice or use of various aspects of the methodologies,
instrumentalities and combinations set forth in the detailed
examples discussed below.

FIG. 1 1s a high level depiction of an exemplary net-
worked environment 100 for recommending content 1items to
a user based on tensor factorization, according to an embodi-
ment of the present teaching. In FIG. 1, the exemplary
networked environment 100 includes one or more users 110,
a network 120, a publisher 130, a tensor factorization based
recommendation engine 140, a user tensor database 145, one
or more advertisers 150, and content sources 160. The
network 120 may be a single network or a combination of
different networks. For example, the network 120 may be a
local area network (LLAN), a wide area network (WAN), a
public network, a private network, a proprietary network, a
Public Telephone Switched Network (PSTN), the Internet, a
wireless network, a virtual network, or any combination
thereol. The network 120 may also include various network
access points, e.g., wired or wireless access points such as
base stations or Internet exchange points 120-1 . . . 120-2,
through which a data source may connect to the network 120
in order to transmit information via the network 120.

Users 110 may be of different types such as users con-
nected to the network 120 via desktop computers 110-4,
laptop computers 110-3, a built-in device 1n a motor vehicle
110-2, or a mobile device 110-1. In one embodiment, users
110 may be connected to the network 120 and able to
interact with the publisher 130 and the tensor factorization
based recommendation engine 140 through wired or wire-
less technologies and related operating systems imple-
mented within user-wearable devices (e.g., glasses, wrist
watch, etc.).

A user, e.g., the user 110-1, may access and/or view
content 1tems published by the publisher 130 and perform
online activities with respect to those content items. In one
embodiment, the publisher 130 may represent data related to
these content items and/or user activities based on tensors,
and store these user tensor data into the user tensor database
145.

The tensor factorization based recommendation engine
140 may access information stored in the user tensor data-
base 145 via the network 120. The information in the user
tensor database 145 may be generated by one or more
different applications (not shown), which may be running on
the publisher 130, at the backend of the publisher 130, or as
a completely standalone system capable of connecting to the
network 120, accessing information from different sources,
analyzing the information, generating structured informa-
tion, and storing such generated information in the user
tensor database 145. The user tensor database 145 may
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6

include tensor data of different users of the publisher 130.
For example, the user tensor database 145 may store per-
sonal information of the users and features of different
content 1tems of the publisher 130, both in form of tensors.

The tensor factorization based recommendation engine
140 may receive a request for recommending content items
to a user, either from the publisher 130 or directly from the
user. Based on the request, the tensor factorization based
recommendation engine 140 may obtain tensor data from the
user tensor database 145. The tensor factorization based
recommendation engine 140 can decompose the tensor data
into a plurality of sub-tensors based on a prior probability
distribution. In one embodiment, the tensor factorization
based recommendation engine 140 may determine at least
one bound for a tensor factorization model that 1s generated
based on the prior probability distribution, predict one or
more 1tems interesting to the user based on the at least one
bound and the plurality of sub-tensors, and recommend at
least one of the one or more 1tems to the user as a response
to the request.

The content sources 160 1n the exemplary networked
environment 100 1nclude multiple content sources
160-1 . . . 160-2. A content source 160 may correspond to a
website hosted by an entity, whether an individual, a busi-
ness, or an organization such as USPTO.gov, a content
provider such as cnn.com and Yahoo.com, a social network
website such as Facebook.com, or a content feed source
such as tweeter or blogs. The publisher 130 may access
information from any of the content sources 160-1 . .. 160-2.
For example, the publisher 130 may fetch content items
from a content source and publish the content 1tems to users,
either based on a user request or based on recommendation
determination from the tensor factorization based recom-
mendation engine 140.

FIG. 2 1s a high level depiction of another exemplary
networked environment 200 for recommending content
items to a user based on tensor factorization, according to an
embodiment of the present teaching. The exemplary net-
worked environment 200 1n this embodiment 1s similar to
the exemplary networked environment 100 in FIG. 1, except
that the tensor factorization based recommendatlon engine
140 serves as a backend system for the publisher 130.

FIG. 3 1llustrates exemplary tensor formats for represent-
ing data related to users and 1tems, according to an embodi-
ment of the present teaching. As shown in FIG. 3, while a
matrix 310 can represent binary interactions between user
and 1tem; a tensor 320 can represent triple or higher order
interactions among user, item, and e.g. time, location, price,
etc. As such, a tensor 1s a more general representation of data
compared to a matrix. In this big data era, more and more
data have multiple aspects and include very high order
interactions and relationships among different aspects, and
are thus proper to be represented by tensors, especially when
the relationships are complex and nonlinear. For example,
tensor data (user, ad, publisher, page section) can represent
online ads click logs; tensor data (person, medicine, bio-
marker, time) can represent drug tests; tensor data (user,
source file, action) can represent code repository; tensor data
(people, product, time) can represent online transactions.

FIG. 4 1llustrates components of a multi-order tensor 410,
according to an embodiment of the present teaching. As
shown 1n FIG. 4, the multi-order tensor 410 1ncludes com-
ponents like user, publisher, and advertiser. In one embodi-
ment, the multi-order tensor 410 may decomposed into
multiple sub-tensors 412, 414, 416. For example, the sub-
tensor 412 includes components of user, time, i1tem; the

sub-tensor 414 includes components of advertiser, location,
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advertisement; and the sub-tensor 416 includes components
of 1tem, publisher, and advertisement. It can be understood
that the sub-tensors 412, 414, 416 may be further decom-
posed 1n various situations.

FIG. S illustrates an exemplary process for a distributed
flexible nonlinear tensor {factorization, according to an
embodiment of the present teaching. As shown 1n FIG. 5, the
process may include generating latent factors based on a
multi-mode tensor and choose a set of tensor entries of the
multi-mode tensor, at 510. Then, for each entry in the chosen
set, the system can construct an mput at 520 by concatenat-
ing latent factors corresponding to the entry from all modes/
matrices of the multi-mode tensor. Then, the system can
estimate a nonlinear function at 530 by assigning a Gaussian
process as the prior probability distribution over the non-
linear function. As such, the system can determine a multi-
variate Gaussian distribution of function values calculated
based on the nonlinear function and the multi-mode tensor.
The system may sample observed entries at 540 based on a
noise model to generate observed data that follows a flexible
Gaussian process (GP) tensor factorization model.

FI1G. 6 1llustrates a decomposition on a 3-mode tensor M,
according to an embodiment of the present teaching. As
shown 1n FIG. 6, the core tensor W 1s multiplied by matrices
U1, U2 and U3 on different dimensions to obtain the tensor

M. In turn, the 3-mode tensor M can be decomposed or
factorized into the core tensor W, and the matrices U1, U2,
U3.

FIG. 7 illustrates an exemplary diagram of a tensor
factorization based recommendation engine 140, according
to an embodiment of the present teaching. The tensor
factorization based recommendation engine 140 in this
example includes a tensor factorization model generator
710, one or more tensor factorization models 715, a model
bound generator 720, a distributed inference engine 730, a
recommendation request analyzer 740, a user tensor data
retriever 750, and a content recommendation engine 760.

The tensor factorization model generator 710 in this
example may generate and store the tensor factorization
models 715, e.g. following the process shown 1n FIG. 5. This
may be performed oflline based on large scale of tensor data.

The model bound generator 720 1n this example may
retrieve one of the tensor factorization models 715 and
generate one or more bounds for the tensor factorization
model. In one embodiment, a bound may be a tractable
variational evidence lower bound that has a closed-form
expression. The model bound generator 720 may send the
bound to the distributed inference engine 730 for predicting,
items 1nteresting to a user.

The recommendation request analyzer 740 1n this
example may receive and analyze a recommendation
request, either from the publisher 130 or directly from a user.
The recommendation request 1s a request for recommending
one or more content 1tems to the user. The recommendation
request analyzer 740 may send the analyzed request to the
user tensor data retriever 750 for obtaining tensor data
related to the user.

The user tensor data retriever 750 1n this example may
receive the analyzed request from the recommendation
request analyzer 740 and retrieve user tensor data of the user
from the user tensor database 145. The user tensor data
retriever 750 may send the retrieved user tensor data to the
distributed inference engine 730 for predicting items inter-
esting to the user; and to the content recommendation engine
760 for recommending content items to the user as a
response to the request.
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The distributed inference engine 730 1n this example may
receive the bound for the tensor factorization model from the
model bound generator 720; and receive the retrieved user
tensor data from the user tensor data retriever 750. The
distributed inference engine 730 can predict 1tems interest-
ing to the user based on the bound of the tensor factorization
model and the retrieved user tensor data. This prediction can
be simple and eflicient by making use of the closed-form
expression of the bound. This prediction may be more
accurate when the bound is tighter, 1.e. having a closer
performance to the real performance of the tensor factor-
ization model. The distributed inference engine 730 may
send the predicted items to the content recommendation
engine 760 for recommending content 1tems to the user as a
response to the request.

The content recommendation engine 760 1n this example
may receive the predicted items from the distributed infer-
ence engine 730, and receive the retrieved user tensor data
from the user tensor data retriever 750. The content recom-
mendation engine 760 can select one or more of the pre-
dicted 1tems based on the retrieved user tensor data, e.g.
based on the user’s personal information, the user’s histori-
cal online activities, etc. The content recommendation
engine 760 may then recommend the selected content 1tem
(s) to the user as a response to the request.

FIG. 8 1s a flowchart of an exemplary process performed
by a tensor factorization based recommendation engine, e.g.
the tensor factorization based recommendation engine 140
in FIG. 7, according to an embodiment of the present
teaching. As shown 1 FIG. 8, a recommendation request 1s
received and analyzed at 802. User tensor data of a user 1s
retrieved at 804 from a database. The process then moves to
816.

In parallel to steps 802 and 804, the tensor factorization
based recommendation engine 140 can perform oflline
operations 810-814. At 810, tensor factorization models are
generated and stored. A tensor factorization model 1s
retrieved at 812. One or more bounds for the tensor factor-
ization model can be generated at 814. Then, the process
moves to 816. It can be understood that 1n some embodi-
ments, the tensor {factorization based recommendation
engine 140 may also perform the operations 810-814 online
or perform some updates of the tensor factorization model
and/or i1ts bounds online.

At 816, items interesting to the user are predicted. Then
at 818, one or more 1tems are recommended to the user as
a response to the request.

FIG. 9 illustrates an exemplary diagram ol a tensor
factorization model generator 710, according to an embodi-
ment of the present teaching. As shown 1n FIG. 9, the tensor
factorization model generator 710 1n this example includes
a latent factor generator 910, a nonlinear function mnput
constructor 920, a Gaussian process prior assigner 930, a
nonlinear function mapper 940, a domain knowledge
obtainer 950, a balanced entry selector 960, an observed
tensor data sampler 970, one or more noise models 965, and
a jointly traimned model generator 980.

The latent factor generator 910 in this example may
generate latent factors based on a tensor and send the latent
factors to the nonlinear function mmput constructor 920 for
constructing mnputs. The nonlinear function mput construc-
tor 920 1n this example may construct inputs for a nonlinear
function based on the latent factors, for each tensor entry of
the tensor. The nonlinear function mput constructor 920 can
send the inputs for the nonlinear function to the Gaussian
process prior assigner 930 for assigning a (Gaussian process
prior.
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The Gaussian process prior assigner 930 1n this example
may assign a (Gaussian process as a prior probability distri-
bution over the nonlinear function, and send the mputs as
well as the Gaussian process prior to the nonlinear function
mapper 940 for generating the nonlinear function. The
nonlinear function mapper 940 1n this example may estimate
or learn the nonlinear function based on the inputs con-
structed by the nonlinear function mput constructor 920 and
the Gaussian process prior assigned by the Gaussian process
prior assigner 930, and map each mmput nonlinearly to a
corresponding tensor entry.

The domain knowledge obtainer 950 1n this example may
obtain domain knowledge about meaningful entries and send
the domain knowledge to the balanced entry selector 960 for
entry selection. The balanced entry selector 960 in this
example may select entries based on the domain knowledge.
As details discussed below, due to the construction of mputs
and assignment ol Gaussian process prior, the covariance
function 1s free of Kronecker-product structure, and as a
result the balanced entry selector 960 can freely choose any
subset of tensor eclements for the training process and
incorporate prior domain knowledge. For example, the bal-
anced entry selector 960 can select a combination of bal-
anced zero and nonzero elements to overcome the learning
bias. Then, the balanced entry selector 960 can send the
selected entries to the observed tensor data sampler 970 for
data sampling.

The observed tensor data sampler 970 1n this example
may sample observed tensor entries based on one of noise
models 965 and send the sampled tensor entries to the jointly
trained model generator 980. The jointly trained model
generator 980 1n this example may generate a tensor factor-
ization model that 1s jointly trained based on all selected
tensor entries. The jointly trained model generator 980 may
store each generated tensor factorization model for future
content item recommendation.

According to one embodiment, one can denote a K-mode
tensor by MER “* - - - *% where the k-th mode is of
dimension d,. The tensor entry at location 1 (1=(1, . . ., 1))
1s denoted by m,. To generalize matrix-matrix products to
tensor-matrix products, a tensor WE R ™™ - "% can multiply
with a matrix UE R *** at mode k when its dimension at
mode-k 1s consistent with the number of columns 1n U, 1.e.,
r,=t. The product 1s a new tensor, with size r;x . . .
XTI, XSXI; X ... XIr Bach element 1s calculated by

WX Uiy iy iy o ig

"k
= Z Wi ig Uiy, -
i =1

A Tucker decomposition model uses a latent factor
matrix U,E R %% in each mode k and a core tensor

wWe R ™ % and assumes the whole tensor M is generated
by M=Wx, UM, . .. x U¥) This is a multilinear function
of Wand {U,, ..., Uz} It can be further simplified by

restricting r, =r,= . . . =t-and the ofl-diagonal elements ot W
to be 0. In this case, the Tucker model becomes CANDE-
COMP/PARAFAC (CP).

The infinite Tucker decomposition (InfTucker) general-
1zes the Tucker model to infinite feature space via a tensor-
variate Gaussian process (1GP). In a probabilistic frame-
work, one can assign a standard normal prior over each
clement of the core tensor W, and then marginalize out W to
obtain the probability of the tensor given the latent factors:

pMIU, . .., UM)=N(vec(M);0,Z V@ . . . =W (1)
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where vec(M) 1s the vectorized whole tensor, > @y
and & is the Kronecker-product. Next, one may apply the
kernel trick to model nonlinear interactions between the
latent factors: Each row u” of the latent factors U™ is
replaced by a nonlinear feature transformation ¢(u*) and
thus an equivalent nonlinear covariance matrix Z(k)—k(U 2
U(k)) 1s used to replace U(k)U(k) where k(+,*) 1s the cova-
riance function. After the nonllnear feature mapping, the
original Tucker decomposition 1s performed in an (un-
known) infinite feature space. Further, since the covariance

of vec(M) is a function of the latent factors U ={U" . ..
U™ Equation (1) actually defines a Gaussian process (GP)
on tensors, namely tensor-variate GP (T'GP), where the input

are based on U . Finally, one can use different noisy models
p(YIM) to sample the observed tensor Y. For example, one
can use Gaussian models and Probit models for continuous
and binary observations, respectively.

Despite being able to capture nonlinear interactions,
InfTucker may sufler from the extreme sparsity issue 1n
real-world tensor data sets. The reason 1s that its full
covariance 1s a Kronecker-product between the covariances

over all the modes—{=", , 2™ (see Equation (1)).
Each 2® is of size d,xd, and the full covariance is of size

IT, d xII, d,. Thus TGP 1s projected onto the entire tensor

with respect to the latent factors U , including all zero and
nonzero elements, rather than a (meaningftul) subset of them.
However, the real-world tensor data are usually extremely
sparse, with a huge number of zero entries and a tiny portion
of nonzero entries. On one hand, because most zero entries
are meamngless-they are either missing or unobserved,
using them can adversely afl

ect the tensor factorization
quality and lead to biased predictions; on the other hand,
incorporating numerous zero entries into GP models will
result 1n large covariance matrices and high computational
COsts.

The present teaching discloses a tlexible Gaussian process
tensor factorization model to address the above 1ssue. While
inheriting the nonlinear modeling power, the disclosed
model disposes of the Kronecker-product structure in the
tull covariance and can therefore select an arbitrary subset of
tensor entries for training.

Specifically, given a tensor ME R 4% for each
tensor entry m,(1=(1,, . . . , 1)), the disclosed system can
construct an mput X, by concatenating the corresponding
latent factors from all the modes: x, [ull(l) u, ®,
where u,, * is the 1,-th row in the latent factor matrix U(E) for
mode k. One can assume that there is an underlying function

f:

di=x . . .

K .
Rzi:ldj - R su

such that m~f(x,)=f([u, " uI.K(K)]). This function 1s
unknown and can be complex and nonlinear. To learn the
function, the system can assign a (Gaussian process prior
over f: for any set of tensor entries S={i,, . . . , i,}, the
function values f={f(x; ). , f(x; )} are distributed
according to a multivariate Gaussian distribution with mean
0 and covariance determined by XS:{XI.H ces Xy

p(fsl UH=N(f10 k(X5 X))

where k(.,.) 1s a (nonlinear) covariance function.
Because k(x;, x,)=k([u, R T L A L

i L
u, (K)) there 1s no Kronecker-product structure constraint

and so any subset of tensor entries can be selected for
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training. To prevent the learning process to be biased toward
zero, one can use a set of entries with balanced zeros and
nonzeros. Furthermore, useful domain knowledge can also
be incorporated to select meaningful entries for training.
From the modeling perspective, the disclosed model 1s more
general than InfTucker.

The system can further assign a standard normal prior

over the latent factors U . Given the selected tensor entries
m=[m, , ..., m, |, the observed entries y=|y,, ..., y, | are
sampled from a noise model p(ylm). In this paper, one can
deal with both continuous and binary observations. For
continuous data, the system can use the Gaussian model,
p(ylm)=N(ylm), 7'1) and the joint probability is

K (2)
p(y, m, W) = | | Nee(U™)I0, DN(mI0, k(Xs, Xs)N(ylm, B~ 1)
=1

where S=[1,, . . ., 1,]. For binary data, the system can use
the Probit model 1n the following manner. One can introduce
augmented variables z=[z,, . . ., z,,] and then decompose the
Probit model into p (z,/m, )—N (z; m, , 1) and p (yI 1Z,)=
1 (yI =0)1(z,=0)+1 (yI 1) 1 (’z >(0) wheré 1(*) 1s the indicator
function. Then the 30111‘[ probablhty 1S

K (3)
p(y, 2, m, U) = ]—[ N(vec(U™ |0, DN(m| 0, k(Xs, Xs))

=1

N(z|m, I)- ]_[]1 0Lz =0 +1(y:; =11 >0,

FI1G. 10 1s a flowchart of an exemplary process performed
by a tensor factorization model generator, e.g. the tensor
factorization model generator 710 1n FI1G. 9, according to an
embodiment of the present teaching. As shown in FIG. 10,
latent factors are generated at 1002 based on a tensor. An
input 1s constructed at 1004 based on the latent factors for
cach tensor entry. A Gaussian process prior 1s assigned at
1006 over a nonlinear function. At 1008, each input 1s
mapped nonlinearly to a corresponding tensor entry accord-
ing to the nonlinear function.

Domain knowledge about meaningful entries may be
obtained at 1010. Balanced entries are selected at 1012
based on the domain knowledge. Observed tensor entries are
sampled at 1014 based on a noise model. A tensor factor-
1ization model 1s jointly trained and stored at 1016 for future
content item recommendation.

FIG. 11 1illustrates an exemplary diagram of a model
bound generator 720, according to an embodiment of the
present teaching. As shown in FIG. 11, the model bound
generator 720 1n this example includes an inducing point
generator 1110, a latent target generator 1120, a joint mul-
tivariate Gaussian distribution determiner 1130, an evidence
lower bound generator 1140, an expectation maximization
updater 1150, and a tighter lower bound generator 1160.

The inducing point generator 1110 1n this example may
generate a set ol inducing points and send them to the joint
multivariate Gaussian distribution determiner 1130 for
determining a joint multivariate Gaussian distribution. The
latent target generator 1120 1n this example may generate
latent targets and send them to the joint multivariate Gauss-
ian distribution determiner 1130 for determining a joint
multivariate Gaussian distribution.

12

The joint multivariate Gaussian distribution determiner
1130 1n this example may receive the inducing points from
the inducing point generator 1110 and receive the latent
targets from the latent target generator 1120. In addition, the

> joint multivariate Gaussian distribution determiner 1130
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may retrieve one of the tensor factorization models 715 to
augment the model with a joint multivariate Gaussian dis-
tribution of latent tensor entries and targets. The joint
multivariate Gaussian distribution determiner 1130 may

send the joint multivariate Gaussian distribution, which may
be a conditional Gaussian distribution, to the evidence lower
bound generator 1140 for generating a tractable evidence
lower bound for the model.

The evidence lower bound generator 1140 1n this example

may construct the tractable evidence lower bound for the
model based on the conditional Gaussian distribution
received from the joint multivariate Gaussian distribution
determiner 1130, e.g. by using Jensen’s mequality. In one
embodiment, the lower bound for the model generated at the
evidence lower bound generator 1140 has a closed-form
expression, which enables eflicient update and optimization
for the bound. The evidence lower bound generator 1140
may also determine whether a tighter bound 1s needed for the
model or not. In one embodiment, the tighter bound for the
tensor factorization model can avoid a sequential expecta-
tion-maximization updates to perform decoupled, highly
ellicient parallel inference.

When the evidence lower bound generator 1140 deter-
mines that no tighter bound 1s needed, the evidence lower
bound generator 1140 may send the lower bound to the
expectation maximization updater 1150 for expectation-
maximization optimization. The expectation maximization
updater 1150 1n this example may optimize parameters
related to the lower bound for model inference. Then, the
expectation maximization updater 1150 may send the opti-
mized model bound to the distributed inference engine 730
for predicting or inferring i1tems interesting to a user.

When the evidence lower bound generator 1140 deter-
mines that a tighter bound 1s needed, the evidence lower
bound generator 1140 may send the lower bound to the
tighter lower bound generator 1160 for generating a tighter
tractable bound for the model. As discussed below 1n detail,
in one embodiment, the tighter bound generated at the
tighter lower bound generator 1160 may include additive
forms of terms, which enables eflicient computation of the
tighter tractable evidence lower bounds and their gradients
performed in parallel. Then, the tighter lower bound gen-
crator 1160 may send the tighter model bound to the
distributed inference engine 730 for predicting or inferring
items interesting to a user.

In some embodiments, tensors may comprise a large
number of entries, say, millions of non-zeros and billions of
zeros, making exact inference of the above model intrac-
table. To address this 1ssue, the present teaching discloses a
distributed variational inference algorithm, presented as
follows.

Since the GP covariance term—k(X ., X.) (see Equations
(2) and (3)) intertwines all the latent factors, exact inference
in parallel 1s quite diflicult. Therefore, one can first derive a
tractable varniational evidence lower bound (ELBO). The key
idea 1s to troduce a small set of inducing points
B={b,, ..., b,} and latent targets v={v,, . .., v, } (p<<N).
Then one can augment the original model with a joint
multivariate Gaussian distribution of the latent tensor entries

m and targets v, p(m, vl U , B)=N([m, v]*1[0,0]%, [K., Kz
Kzs Kgzl) where K k(XS: Xs)s Kgs=Kk(B, B), K=k(Xs,
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B) and K, ~k(B, X.). One can use Jensen’s inequality and
conditional Gaussian distributions to construct the ELLBO.

One can obtain a tractable ELBO for the above tensor

factorization model on continuous data, log(p(y, U IB))=L,(
U, B, q(v)), where

L{(U, B, g(v)) = (4)

B
sty + [ aonogZ v 3 [ar (. B
J

Here p(vIB)=N(vI0, K;z), q(v) 1s the variational posterior
for the latent targets vand F (*,*)=/log (N ('}Imi_,*))N(mI}I 1L,
0;)dm,, where p=k(x,, B)Kz;™'v and 0,=2(. j)=k(x,,
x,)-k(x,, B)K, . 'k(B, x,). Note that L, is decomposed into
a summation of terms iﬁvolving individual tensor entries
1,(1=)=N). The additive form enables the system to distribute
the computation across multiple computers.

For binary data, one can introduce a variational posterior
q(z) and make the mean-field assumption that q(z)=ILq(z,).
Following a similar dertvation to the continuous case, one

can obtain a tractable ELBO for binary data, log(p(y, U B))
=[,(U, B, q(v), q(z)), where

p(v|B) (3)

g(v)

P\Yi: | <;
Zq(Zj)lﬂe( (q(‘;‘_)J)]+Z f qgv) | g(z;)Fy(z;, 1)dz;dv.
. Jf ;

J

Ly(U, B, g(v), g(z)) = log(p(U)) + f g(v)lo )dv +

One can simply use the standard Expectation-maximiza-
tion (EM) framework to optimize (4) and (5) for model
inference, 1.e., the E step updates the varnational posteriors

1q(v), q(z)} and the M step updates the latent factors U , the
inducing points B and the kernel parameters. However, the
sequential E-M updates cannot fully exploit the paralleling
computing resources. Due to the strong dependencies
between the E step and the M step, the sequential E-M
updates may take a large number of iterations to converge.
Things become worse for binary case: in the E step, the
updates of q(v) and q(z) are also dependent on each other,
making a parallel inference even less eflicient.

As such, one can further derive tight or tighter ELBOs
that subsume the optimal variational posteriors for q(v) and
q(z). Thereby one can avoid the sequential E-M updates to
perform decoupled, highly eflicient parallel inference.
Moreover, the inference quality 1s very likely to be improved
using tighter bounds.

For a tight ELBO for continuous tensors, one can take
functional derivative of L, with respect to gq(v) i (4). By
setting the denivative to zero, one can obtain the optimal q(v)
(which 1s a Gaussian distribution) and then substitute 1t 1nto

L., manipulating the terms to achieve the following tighter
ELBO.

log(p(y, U | B) = Li(U, B) = (0)

| | | |
zlﬂgmﬂm — Elﬂgm,eﬂ + BA| - E,Bﬂz — E,Bﬂ?; + gfr(f‘:ﬁéﬂl) —
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-continued

1KU“”2 L 2ok A+ Mool L
§Z|| |r + 5,3 ay (Kpgp + PA1) 614"'503(5)3.

k=1

where ||| 1s Frobenius norm, and A =X k(B, x,)k(x;, B).
a,= jylf, ay=2 K(X,, ng): a,—2 Kk(B, xl.j)yl.j. "T j

For a tight ELBO for binary tensors, it is more difficult
because q(v) and q(z) are coupled together (see (5)). One can
use the following steps: first fix q(z) and plug the optimal
q(v) 1n the same way as the continuous case; then obtain an
intermediate ELBO ]:2 that only contains q(z). A quadratic
term 1n L.,

1
5 (Kps{2)) (Kpp + A1) (Kps{2)),

intertwines all {q(z,)}, in [.,, making it infeasible to ana-
lytically dertve or parallelly compute the optimal {q(zj) ! o To
overcome this difliculty, one may use the convex conjugate
of the quadratic term, and introduce a varnational parameter
A to decouple the dependences between {q(z,)},. After that,
one can derive the optimal {q(z,)}, using functional deriva-
tives and obtain the following tight/tighter ELBO.

! 7
log(p(y, U| B) = Ly(U, B, A) = 5loglKps| - (7)

J

%lﬂglKBB + Ayl - %ﬂg * Z mg(@((zﬁi- - 1)”1%(3’ Yj ))) -
J

1 1 1 & )
S A Kppd + zrr(KﬂéAl)— E;”Um”*“

where ®(*) 1s the cumulative distribution function of the
standard Gaussian.

As one can see, due to the additive forms of the terms in
L,* and L,*, such as A, a,, a, and a,, the computation of
the tight ELBOs and their gradients can be efliciently
performed 1n parallel.

Given the tighter ELBOs 1n (6) and (7), the system can
utilize a distributed algorithm to optimize the latent factors

U , the inducing points B, the variational parameters A (for
binary data) and the kernel parameters. One can distribute
the computations over multiple computational nodes (Map
step) and then collect the results to calculate the ELBO and
its gradient (Reduce step). A standard routine, such as
gradient descent and L-BFGS, may be used to solve the
optimization problem.

For binary data, one can further find that A can be updated
with a simple fixed point 1iteration:

AD = (K + ADTHA LAY +a5) (8)

N(k(B, x;;) 27| 0, 1)

where as = Z k(B, xi-j)(zﬂj — 1)@(2

J

- 1)1’((3, x;, ) AD

Apparently, the updating can be efliciently performed 1n
parallel (due to the additive structure of A, and a.). More-
over, the convergence 1s guaranteed by the following lemma:

given U and B, L,*(U, B, A H=L_*(U, B, 1Y) and the
fixed point iteration (8) always converges.
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To use the fixed point iteration, before the system calcu-

lates the gradients with respect to U and B, the system can
first optimize A via (8) 1n an inner loop. In the outer control,
the system may then employ gradient descent or L-BFGS to

optimize ‘U and B. This will lead to an even tighter bound
for the disclosed model: L,**(U, B)=max,L,*(U, B,

AM=max ., o L.(U, B, q(v), q(z)). Empirically, this con-
verges can be faster than feeding the optimization algo-

rithms with dA, 3 U and cB altogether, especially for large
data.

The present teaching also presents a detailed design of
MapReduce procedures to fulfill the above distributed infer-
ence. Basically, the system can first allocate a set of tensor
entries on each Mapper t such that the corresponding com-
ponents of the ELBO and the gradients are calculated; then
the Reducer aggregates local results from each Mapper to
obtain the integrated, global ELBO and gradient.

One can first consider the standard (key-value) design.
For brevity, one can take the gradient computation for the
latent factors as an example. For each tensor entry 1 on a
Mapper, the system can calculate the corresponding gradi-
ents {3u, ", ..., du, '} and then send out the key-value
pairs {(k, i,)—=3u, ®!,, where the key indicates the mode
and the index of the latent factors. The Reducer may
agoregate gradients with the same key to recover the full
gradient with respect to each latent factor.

Although the (key-value) MapReduce has been success-
tully applied in numerous applications, i1t relies on an
expensive data shuflling operation: the Reduce step has to
sort the Mappers’ output by the keys belore aggregation.
Since the sorting 1s usually performed on disk due to
significant data size, intensive disk I/Os and network com-
munications will become serious computational overheads.
To overcome this deficiency, the present teaching devises a
key-value-free Map-Reduce scheme to avoid on-disk data
shuflling operations. Specifically, on each Mapper, a com-
plete gradient vector may be maintained for all the param-

eters, including ‘U, B and the kernel parameters; but only
relevant components of the gradient, as specified by the
tensor entries allocated to this Mapper, will be updated.
After updates, each Mapper will then send out the full
gradient vector, and the Reducer will simply sum them up
together to obtain a global gradient vector without having to
perform any extra data sorting. A similar procedure can also
be used to perform the fixed point iteration for A in binary
tensors.

Eflicient MapReduce systems, such as SPARK, can fully
optimize the non-shuflling Map and Reduce, where most of
the data are builered 1n memory and disk I/Os are circum-
vented to the utmost. By contrast, the performance with data
shuflling degrades severely. This can be verified 1n evalua-
tions: on a small tensor of size 100x100x100, the disclosed
key-value-free MapReduce 1n the present teaching gains 30
times speed acceleration over a traditional key-value pro-
cess. Therefore, the disclosed algorithm 1n the present teach-
ing can fully exploit the memory-cache mechanism to
achieve fast inference.

The disclosed method also has a lower algorithm com-
plexity than existing methods. Suppose there are N tensor
entries for training, with p mducing points and T MAPPER,
the time complexity for each Mapper node 1s
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Since p<<N 1s a fixed constant (p=100 1n the experiments),
the time complexity 1s linear in the number of tensor entries.

The space complexity for each Mapper node 1s

in order to store the latent factors, their gradients, the
covariance matrix on inducing points, and the indices of the
latent factors for each tensor entry. Again, the space com-
plexity 1s linear 1n the number of tensor entries. In compari-
son, InfTucker utilizes the Kronecker-product properties to
calculate the gradients and has to perform eigenvalue
decomposition of the covarlance matrices 1 each tensor
mode. Therefore 1t has a higher time and space complexity
and 1s not scalable to larger dimensions.

FIG. 12 1s a flowchart of an exemplary process performed
by a model bound generator, e.g. the model bound generator
720 1n FIG. 11, according to an embodiment of the present
teaching. As shown 1n FIG. 12, a set of inducing points are
generated at 1202. Latent targets are generated at 1204. A
tensor factorization model 1s retrieved at 1206. A joint
multivariate Gaussian distribution 1s determined at 1208. A
tractable evidence lower bound 1s generated at 1210 for the
model.

At 1212, 1t 1s determined whether a tighter bound 1is
needed. If so, the process goes to 1214 to generate a tighter
tractable bound for the model, and the tighter tractable
bound 1s sent at 1216 for distributed inference. Otherwise,
the process goes to 1220 to optimize and update the bound
with an expectation-maximization framework, and the
updated bound 1s sent at 1222 for distributed inference.

It can be understood that the order of the steps shown 1n
FIG. 8, FIG. 10, and FIG. 12 may be changed according to
different embodiments of the present teaching.

FIG. 13 depicts the architecture of a mobile device which
can be used to realize a specialized system implementing the
present teaching. In this example, the user device on which
a recommended 1tem 1s presented and interacted-with 1s a
mobile device 1300, including, but i1s not limited to, a smart
phone, a tablet, a music player, a handled gaming console,
a global positioning system (GPS) receiver, and a wearable
computing device (e.g., eyeglasses, wrist watch, etc.), or 1n
any other form factor. The mobile device 1300 in this
example includes one or more central processing units
(CPUs) 1340, one or more graphic processing units (GPUs)
1330, a display 1320, a memory 1360, a communication
plattorm 1310, such as a wireless communication module,
storage 1390, and one or more mput/output (I/O) devices
1350. Any other suitable component, including but not
limited to a system bus or a controller (not shown), may also
be included 1n the mobile device 1300. As shown 1n FIG. 13,
a mobile operating system 1370, e.g., 10S, Android, Win-
dows Phone, etc., and one or more applications 1380 may be
loaded into the memory 1360 from the storage 1390 1n order
to be executed by the CPU 1340. The applications 1380 may
include a browser or any other suitable mobile apps for
receiving content i1tem recommendations on the mobile
device 1300. User interactions with the recommended 1tems
may be achieved via the I/O devices 1350 and provided to
the tensor factorization based recommendation engine 140
and/or other components of systems 100 and 200, e.g., via
the network 120.
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To implement various modules, units, and their function-
alities described 1n the present disclosure, computer hard-
ware platforms may be used as the hardware platform(s) for
one or more of the elements described herein (e.g., the tensor
factorization based recommendation engine 140, the pub-
lisher 130 and/or other components of systems 100 and 200
described with respect to FIGS. 1-12). The hardware ele-
ments, operating systems and programming languages of
such computers are conventional in nature, and 1t 1s pre-
sumed that those skilled in the art are adequately familiar
therewith to adapt those technologies about recommending,
content items to a user based on tensor factorization as
described herein. A computer with user interface elements
may be used to implement a personal computer (PC) or other
type of work station or terminal device, although a computer
may also act as a server i appropriately programmed. It 1s
believed that those skilled 1n the art are famihar with the
structure, programming and general operation of such com-
puter equipment and as a result the drawings should be
self-explanatory.

FIG. 14 depicts the architecture of a computing device
which can be used to realize a specialized system 1mple-
menting the present teaching. Such a specialized system
incorporating the present teaching has a functional block
diagram 1llustration of a hardware platform which includes
user interface elements. The computer may be a general
purpose computer or a special purpose computer. Both can
be used to implement a specialized system for the present
teaching. This computer 1400 may be used to implement any
component of the techmiques of recommending content
items to a user based on tensor factorization, as described
herein. For example, the publisher 130, the tensor factor-
ization based recommendation engine 140, etc., may be
implemented on a computer such as computer 1400, via 1ts
hardware, soltware program, firmware, or a combination
thereol. Although only one such computer 1s shown, for
convenience, the computer functions relating to recom-
mending content items to a user based on tensor factoriza-
tion as described herein may be implemented 1n a distributed
fashion on a number of similar platforms, to distribute the
processing load.

The computer 1400, for example, includes COM ports
1450 connected to and from a network connected thereto to
facilitate data communications. The computer 1400 also
includes a central processing umt (CPU) 1420, 1n the form
of one or more processors, for executing program instruc-
tions. The exemplary computer platform includes an internal
communication bus 1410, program storage and data storage
of different forms, e.g., disk 1470, read only memory (ROM)
1430, or random access memory (RAM) 1440, for various
data files to be processed and/or communicated by the
computer, as well as possibly program instructions to be
executed by the CPU. The computer 1400 also includes an
I/O component 1460, supporting input/output flows between
the computer and other components therein such as user
interface elements 1480. The computer 1400 may also
receive programming and data via network communications.

Hence, aspects of the methods of recommending content
items to a user based on tensor factorization, as outlined
above, may be embodied 1n programming. Program aspects
of the technology may be thought of as “products” or
“articles of manufacture” typically in the form of executable
code and/or associated data that 1s carried on or embodied 1n
a type of machine readable medium. Tangible non-transitory
“storage” type media include any or all of the memory or
other storage for the computers, processors or the like, or
associated modules thereof, such as various semiconductor
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memories, tape drives, disk drives and the like, which may
provide storage at any time for the software programming.

All or portions of the software may at times be commu-
nicated through a network such as the Internet or various
other telecommunication networks. Such communications,
for example, may enable loading of the software from one
computer or processor into another, for example, from a
management server or host computer mnto the hardware
platform(s) of a computing environment or other system
implementing a computing environment or similar function-
alities 1n connection with recommending content 1tems to a
user based on tensor factorization. Thus, another type of
media that may bear the software elements includes optical,
clectrical and electromagnetic waves, such as used across
physical interfaces between local devices, through wired and
optical landline networks and over various air-links. The
physical elements that carry such waves, such as wired or
wireless links, optical links or the like, also may be consid-
ered as media bearing the software. As used herein, unless
restricted to tangible “storage” media, terms such as com-
puter or machine “readable medium” refer to any medium
that participates 1n providing istructions to a processor for
execution.

Hence, a machine-readable medium may take many
forms, including but not limited to, a tangible storage
medium, a carrier wave medium or physical transmission
medium. Non-volatile storage media include, for example,
optical or magnetic disks, such as any of the storage devices
in any computer(s) or the like, which may be used to
implement the system or any of 1ts components as shown 1n
the drawings. Volatile storage media include dynamic
memory, such as a main memory of such a computer
plattorm. Tangible transmission media include coaxial
cables; copper wire and fiber optics, including the wires that
form a bus within a computer system. Carrier-wave trans-
mission media may take the form of electric or electromag-
netic signals, or acoustic or light waves such as those
generated during radio frequency (RF) and infrared (IR) data
communications. Common forms of computer-readable
media therefore include for example: a floppy disk, a flexible
disk, hard disk, magnetic tape, any other magnetic medium,
a CD-ROM, DVD or DVD-ROM, any other optical
medium, punch cards paper tape, any other physical storage
medium with patterns of holes, a RAM, a PROM and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave transporting data or instructions,
cables or links transporting such a carrier wave, or any other
medium from which a computer may read programming
code and/or data. Many of these forms of computer readable
media may be involved 1n carrying one or more sequences
of one or more instructions to a physical processor for
execution.

Those skilled 1n the art will recogmize that the present
teachings are amenable to a variety of modifications and/or
enhancements. For example, although the implementation of
various components described above may be embodied 1n a
hardware device, 1t may also be implemented as a software
only solution—=e.g., an installation on an existing server. In
addition, recommending content i1tems to a user based on
tensor factorization as disclosed herein may be implemented
as a hirmware, firmware/software combination, firmware/
hardware combination, or a hardware/firmware/software
combination.

While the foregoing has described what are considered to
constitute the present teachings and/or other examples, 1t 1s
understood that various modifications may be made thereto
and that the subject matter disclosed herein may be imple-
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mented 1n various forms and examples, and that the teach-
ings may be applied 1n numerous applications, only some of
which have been described herein. It 1s intended by the
following claims to claim any and all applications, modifi-
cations and variations that fall within the true scope of the
present teachings.

We claim:

1. A method, implemented on a machine having at least
one processor, storage, and a communication platform con-
nected to a network for recommending content items to a
user, the method comprising:

receiving a request for recommending content items to the

user;
obtaining tensor data related to a plurality of users and a
plurality of content 1items based on the request;

decomposing the tensor data into a plurality of sub-
tensors based on a prior probability distribution;

determining at least one bound for a tensor factorization
model that 1s generated based on the prior probability
distribution, wherein a balanced combination of zero
and non-zero elements 1s selected for the tensor fac-
torization model to prevent learming bias, wherein the
tensor factorization model 1s jointly trained based on at
least some of the zero and non-zero elements sampled
based on a noise model, and wherein at least one of zero
clements indicating missing or unobserved tensor
entries ol a multi-mode tensor 1s excluded from being
used for training the tensor factorization model;

predicting one or more content items interesting to the
user based on the at least one bound and the plurality
of sub-tensors; and

recommending, to the user as a response to the request, at

least one of the one or more content items selected
based on user tensor data related to the user.

2. The method of claim 1, turther comprising;:

generating the tensor factorization model based on a

nonlinear function, wherein the nonlinear function i1s
estimated by assigning a Gaussian process as the prior
probability distribution over the nonlinear function.
3. The method of claim 2, wherein generating the tensor
factorization model comprises:
generating latent factors based on the multi-mode tensor;
constructing an input, for each entry of the multi-mode
tensor, by concatenating latent factors corresponding to
the entry from all modes of the multi-mode tensor;

determining the nonlinear function by assigning the
(Gaussian process as the prior probability distribution
over the nonlinear function;

determining a multivariate Gaussian distribution of func-

tion values calculated based on the nonlinear function
and the multi-mode tensor; and

generating the tensor factorization model based on the

multivariate Gaussian distribution.

4. The method of claim 3, wherein generating the tensor
factorization model further comprises:

obtaining domain knowledge about entries of the multi-

mode tensor;

selecting balanced entries based on the domain knowl-

edge, wherein the balanced entries comprise the bal-
anced combination of zero and non-zero elements,
wherein the at least some of the zero and non-zero
clements comprise observed entries of the multi-mode
tensor sampled based on the noise model to generate
observed data.

5. The method of claim 1, wherein the at least one bound
includes a variational evidence lower bound that has a
closed-form expression.
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6. The method of claim 5, further comprising:

generating a plurality of inducing points;
obtaining latent tensor entries and latent targets;
augmenting the tensor factorization model with a condi-
tional Gaussian distribution of the latent tensor entries
and the latent targets, based on the plurality of inducing
points; and
generating the varnational evidence lower bound for the
tensor factorization model based on the conditional
(Gaussian distribution.
7. The method of claim 5, further comprising:
generating, based on the variational evidence lower
bound, a tighter bound than the vanational evidence
lower bound for the tensor {factorization model,
wherein the one or more content items are predicted
based on the tighter bound and the plurality of sub-
tensors.
8. A system having at least one processor, storage, and a
communication platform connected to a network for recom-
mending content items to a user, comprising;:
a recommendation request analyzer configured for recerv-
ing a request for recommending content items to the
user;
a user tensor data retriever configured for obtaining tensor
data related to a plurality of users and a plurality of
content items based on the request;
a model bound generator configured for determining at
least one bound for a tensor factorization model that 1s
generated based on a prior probability distribution,
wherein a balanced combination of zero and non-zero
clements 1s selected for the tensor factorization model
to prevent learming bias, wherein the tensor factoriza-
tion model 1s jointly trained based on at least some of
the zero and non-zero clements sampled based on a
noise model, and wherein at least one of zero elements
indicating missing or unobserved tensor entries of a
multi-mode tensor 1s excluded from being used for
training the tensor factorization model;
a distributed inference engine configured for:
decomposing the tensor data into a plurality of sub-
tensors based on the prior probability distribution,
and

predicting one or more content 1tems interesting to the
user based on the at least one bound and the plurality
of sub-tensors; and

a content recommendation engine configured for recom-
mending, to the user as a response to the request, at
least one of the one or more content items selected
based on user tensor data related to the user.

9. The system of claim 8, further comprising:

a tensor factorization model generator configured for
generating the tensor factorization model based on a
nonlinear function, wherein the nonlinear function i1s
estimated by assigning a Gaussian process as the prior
probability distribution over the nonlinear function.

10. The system of claim 9, wherein the tensor factoriza-
tion model generator comprises:

a latent factor generator configured for generating latent

factors based on the multi-mode tensor:

a nonlinear function input constructor configured for
constructing an 1put, for each entry of the multi-mode
tensor, by concatenating latent factors corresponding to
the entry from all modes of the multi-mode tensor;

a (Gaussian process prior assigner configured for deter-
mining the nonlinear function by assigning the Gauss-
1an process as the prior probability distribution over the
nonlinear function;
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a nonlinear function mapper configured for determining a
multivariate Gaussian distribution of function values
calculated based on the nonlinear function and the
multi-mode tensor; and

a jointly trained model generator configured for generat-
ing the tensor factorization model based on the multi-
variate Gaussian distribution.

11. The system of claim 10, wherein the tensor factoriza-

tion model generator further comprises:

a domain knowledge obtainer configured for obtaiming
domain knowledge about entries of the multi-mode
tensor;

a balanced entry selector configured for selecting bal-
anced entries based on the domain knowledge, wherein
the balanced entries comprise the balanced combina-
tion of zero and non-zero elements; and

an observed tensor data sampler configured for sampling
observed entries of the multi-mode tensor based on the
noise model to generate observed data, wherein the at
least some of the zero and non-zero elements comprise
the observed entries.

12. The system of claim 8, wherein the at least one bound
includes a variational evidence lower bound that has a
closed-form expression.

13. The system of claim 12, wherein the model bound
generator comprises:

an inducing point generator configured for generating a
plurality of inducing points;

a latent target generator configured for obtaining latent
tensor entries and latent targets;

a joint multivanate Gaussian distribution determiner con-
figured for augmenting the tensor factorization model
with a conditional Gaussian distribution of the latent
tensor entries and the latent targets, based on the
plurality of mnducing points; and

an evidence lower bound generator configured for gener-
ating the variational evidence lower bound for the
tensor factorization model based on the conditional
Gaussian distribution.

14. The system of claim 12, wherein the model bound

generator comprises:

a tighter lower bound generator configured for generating,
based on the wvanational evidence lower bound, a
tighter bound than the wvariational evidence lower
bound for the tensor factorization model, wherein the
one or more content items are predicted based on the
tighter bound and the plurality of sub-tensors.

15. A non-transitory machine-readable medium having
information recorded thereon for recommending content
items to a user, wherein the information, when read by a
machine, causes the machine to perform operations com-
prising:

receiving a request for recommending content items to the
user;

obtaining tensor data related to a plurality of users and a
plurality of content 1items based on the request;

decomposing the tensor data into a plurality of sub-
tensors based on a prior probability distribution;

determining at least one bound for a tensor factorization
model that 1s generated based on the prior probability
distribution, wherein a balanced combination of zero
and non-zero elements 1s selected for the tensor fac-
torization model to prevent learming bias, wherein the
tensor factorization model 1s jointly trained based on at
least some of the zero and non-zero elements sampled
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based on a noise model, and wherein at least one of zero
clements indicating missing or unobserved tensor
entries of a multi-mode tensor 1s excluded from being
used for training the tensor factorization model;
predicting one or more content items interesting to the
user based on the at least one bound and the plurality
of sub-tensors; and
recommending, to the user as a response to the request, at
least one of the one or more content items selected
based on user tensor data related to the user.
16. The medium of claim 15, wheremn the operations
further comprise:
generating the tensor factorization model based on a
nonlinear function, wherein the nonlinear function i1s
estimated by assigning a Gaussian process as the prior
probability distribution over the nonlinear function.
17. The medium of claam 16, wherein generating the
tensor factorization model comprises:
generating latent factors based on the multi-mode tensor;
constructing an input, for each entry of the multi-mode
tensor, by concatenating latent factors corresponding to
the entry from all modes of the multi-mode tensor;
determining the nonlinear function by assigning the
(Gaussian process as the prior probability distribution
over the nonlinear function;
determining a multivariate Gaussian distribution of func-
tion values calculated based on the nonlinear function
and the multi-mode tensor; and
generating the tensor factorization model based on the
multivariate Gaussian distribution.
18. The medium of claam 17, wherein generating the
tensor factorization model further comprises:
obtaining domain knowledge about entries of the multi-
mode tensor;
selecting balanced entries based on the domain knowl-

edge, wherein the balanced entries comprise the bal-
anced combination of zero and non-zero elements,
wherein the at least some of the zero and non-zero
clements comprise observed entries of the multi-mode
tensor sampled based on the noise model to generate
observed data.

19. The medium of claim 15, wherein the at least one
bound includes a variational evidence lower bound that has
a closed-form expression.

20. The medium of claam 19, wherein the operations
further comprise:

generating a plurality of inducing points;

obtaining latent tensor entries and latent targets;

augmenting the tensor factorization model with a condi-

tional Gaussian distribution of the latent tensor entries
and the latent targets, based on the plurality of inducing
points; and

generating the varnational evidence lower bound for the

tensor factorization model based on the conditional
Gaussian distribution.

21. The medium of claam 19, wherein the operations
further comprise:

generating, based on the variational evidence lower

bound, a tighter bound than the vanational evidence
lower bound for the tensor {factorization model,
wherein the one or more content items are predicted
based on the tighter bound and the plurality of sub-
tensors.



	Front Page
	Drawings
	Specification
	Claims

