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ANOMALY DETECTION OF MODEL
PERFORMANCE IN AN MLOPS PLATFORM

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to anomaly detection of
model performance 1 a machine learning operations

(MLOps or ML Ops) platiorm.

BACKGROUND

Networks are large-scale distributed systems governed by
complex dynamics and very large number of parameters. In
general, network assurance involves applying analytics to
captured network information, to assess the health of the
network. For example, a network assurance service may
track and assess metrics such as available bandwidth, packet
loss, jitter, and the like, to ensure that the experiences of
users ol the network are not impinged. However, as net-
works continue to evolve, so too will the number of appli-
cations present 1n a given network, as well as the number of
metrics available from the network.

With the recent proliferation of machine learning tech-
niques, new opportunities have arisen with respect to moni-
toring a network. Indeed, machine learning has proven quite
capable of analyzing complex network patterns and ident-
tying problems that might otherwise be missed by a network
administrator. In some cases, a machine learning-based
network assurance system may even be able to predict
problems before they occur, allowing for corrective mea-
sures to be taken 1n advance.

Unfortunately, machine learming-based systems are
unavoidably complex in that they typically ingest data that
can change over time and from any number of different
sources, which can also change over time (e.g., as the
network evolves). This makes i1t challenging to discern
whether any 1ssue detected 1n the network by such a system
1s truly a network issue or 1s, instead, attributable to poor
performance of the machine learning model assessing the

network or problems in the data ingested by the model.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B illustrate an example communication net-
work;

FIG. 2 1illustrates an example network device/node;

FIG. 3 illustrates an example network assurance system
that uses machine learning to monitor a network;

FI1G. 4 illustrates an example machine learning operations
(ML Ops) architecture;

FIG. § illustrates an example architecture for assessing
machine learning model performance;

FIGS. 6 A-6B 1illustrate example plots of the per-tunnel
throughput distributions;

FIG. 7 illustrates an example plot comparing event-
fractions between training and inference phases of a model;

FIG. 8 illustrates an example plot showing the drift in
inference accuracy of a model over time; and

FIG. 9 illustrates an example simplified procedure for
performing anomaly detection of model performance of a
machine learning model.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
a service tracks performance of a machine learning model
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2

over time. The machine learning model 1s used to monitor
one or more computer networks based on data collected

from the one or more computer networks. The service also
tracks performance metrics associated with training of the
machine learning model. The service determines that a
degradation of the performance of the machine learning
model 1s anomalous, based on the tracked performance of
the machine learning model and performance metrics asso-
ciated with tramning of the model. The service initiates a
corrective measure for the degradation of the performance,
in response to determining that the degradation of the
performance 1s anomalous.

DESCRIPTION

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available, with
the types ranging from local area networks (LLANs) to wide
area networks (WANs). LANs typically connect the nodes
over dedicated private communications links located 1n the
same general physical location, such as a building or cam-
pus. WANSs, on the other hand, typically connect geographi-
cally dispersed nodes over long-distance communications
links, such as common carrier telephone lines, optical light-
paths, synchronous optical networks (SONET), or synchro-
nous digital hierarchy (SDH) links, or Powerline Commu-
nications (PLC) such as IEEE 61334, IEEE P1901.2, and
others. The Internet 1s an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-
defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
consists of a set of rules defiming how the nodes interact with
cach other. Computer networks may be further intercon-
nected by an intermediate network node, such as a router, to
extend the eflective ““size” of each network.

Smart object networks, such as sensor networks, 1n par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
ctc., that cooperatively momitor physical or environmental
conditions at different locations, such as, €.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects imnclude actua-
tors, e.g., responsible for turning on/ofl an engine or perform
any other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less or PLC networks. That 1s, in addition to one or more
sensors, each sensor device (node) 1n a sensor network may
generally be equipped with a radio transceiver or other
communication port such as PLC, a microcontroller, and an
energy source, such as a battery. Often, smart object net-
works are considered field area networks (FANs), neighbor-
hood area networks (NANs), personal area networks
(PANSs), etc. Generally, size and cost constraints on smart
object nodes (e.g., sensors) result in corresponding con-
straints on resources such as energy, memory, computational
speed and bandwidth.

FIG. 1A 1s a schematic block diagram of an example
computer network 100 1illustratively comprising nodes/de-
vices, such as a plurality of routers/devices interconnected
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by links or networks, as shown. For example, customer edge
(CE) routers 110 may be interconnected with provider edge
(PE) routers 120 (e.g., PE-1, PE-2, and PE-3) 1n order to
communicate across a core network, such as an 1illustrative
network backbone 130. For example, routers 110, 120 may
be interconnected by the public Internet, a multiprotocol
label switching (MPLS) virtual private network (VPN), or
the like. Data packets 140 (e.g., trathc/messages) may be
exchanged among the nodes/devices of the computer net-
work 100 over links using predefined network communica-
tion protocols such as the Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP),
Asynchronous Transier Mode (ATM) protocol, Frame Relay
protocol, or any other suitable protocol. Those skilled in the
art will understand that any number of nodes, devices, links,
ctc. may be used 1n the computer network, and that the view
shown herein 1s for simplicity.

In some implementations, a router or a set of routers may
be connected to a private network (e.g., dedicated leased
lines, an optical network, etc.) or a virtual private network
(VPN), such as an MPLS VPN thanks to a carrier network,
via one or more links exhibiting very diflerent network and
service level agreement characteristics. For the sake of
illustration, a given customer site may fall under any of the
tollowing categories:

1.) Site Type A: a site connected to the network (e.g., via
a private or VPN link) using a single CE router and a single
link, with potentially a backup link (e.g., a 3G/4G/SG/LTE
backup connection). For example, a particular CE router 110
shown 1n network 100 may support a given customer site,
potentially also with a backup link, such as a wireless
connection.

2.) Site Type B: a site connected to the network using two
MPLS VPN links (e.g., from different Service Providers),
with potentially a backup link (e.g., a 3G/4G/5G/LTE con-
nection). A site of type B may itsell be of different types:

2a.) Site Type Bl: a site connected to the network using
two MPLS VPN links (e.g., from different Service Provid-

ers), with potentially a backup link (e.g., a 3G/4G/5G/LTE
connection).

2b.) Site Type B2: a site connected to the network using
one MPLS VPN link and one link connected to the public
Internet, with potentially a backup link (e.g., a 3G/4G/5G/
LTE connection). For example, a particular customer site
may be connected to network 100 via PE-3 and via a
separate Internet connection, potentially also with a wireless
backup link.

2¢.) Site Type B3: a site connected to the network using
two links connected to the public Internet, with potentially

a backup link (e.g., a 3G/4G/5G/LTE connection).

Notably, MPLS VPN links are usually tied to a committed
service level agreement, whereas Internet links may either
have no service level agreement at all or a loose service level
agreement (e.g., a “Gold Package” Internet service connec-
tion that guarantees a certain level of performance to a
customer site).

3.) Site Type C: a site of type B (e.g., types B1, B2 or B3)
but with more than one CE router (e.g., a first CE router
connected to one link while a second CE router 1s connected
to the other link), and potentially a backup link (e.g., a
wireless 3G/4G/5G/LTE backup link). For example, a par-
ticular customer site may include a first CE router 110
connected to PE-2 and a second CE router 110 connected to
PE-3.

FIG. 1B 1llustrates an example of network 100 in greater
detail, according to various embodiments. As shown, net-
work backbone 130 may provide connectivity between
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4

devices located 1n different geographical areas and/or dii-
ferent types of local networks. For example, network 100
may comprise local/branch networks 160, 162 that include
devices/nodes 10-16 and devices/nodes 18-20, respectively,
as well as a data center/cloud environment 150 that includes
servers 152-154. Notably, local networks 160-162 and data
center/cloud environment 150 may be located 1n different
geographic locations.

Servers 152-154 may include, in various embodiments, a
network management server (NMS), a dynamic host con-
figuration protocol (DHCP) server, a constrained application
protocol (CoAP) server, an outage management system
(OMS), an application policy mirastructure controller
(APIC), an application server, etc. As would be appreciated,
network 100 may include any number of local networks,
data centers, cloud environments, devices/nodes, servers,
etc.

In some embodiments, the techniques herein may be
applied to other network topologies and configurations. For
example, the techniques herein may be applied to peering
points with high-speed links, data centers, etc.

In various embodiments, network 100 may include one or
more mesh networks, such as an Internet of Things network.
Loosely, the term “Internet of Things” or “loT” refers to
unmiquely 1dentifiable objects (things) and their virtual rep-
resentations in a network-based architecture. In particular,
the next frontier in the evolution of the Internet 1s the ability
to connect more than just computers and communications
devices, but rather the ability to connect “objects” 1n gen-
cral, such as lights, appliances, vehicles, heating, ventilating,
and air-conditioning (HVAC), windows and window shades
and blinds, doors, locks, etc. The “Internet of Things™ thus
generally refers to the interconnection of objects (e.g., smart
objects), such as sensors and actuators, over a computer
network (e.g., via IP), which may be the public Internet or
a private network.

Notably, shared-media mesh networks, such as wireless or
PLC networks, etc., are often on what 1s referred to as
Low-Power and Lossy Networks (LLNs), which are a class
ol network 1n which both the routers and their interconnect
are constrained: LLN routers typically operate with con-
straints, €.g., processing power, memory, and/or energy
(battery), and their interconnects are characterized by, 1llus-
tratively, high loss rates, low data rates, and/or instability.
LLNs are comprised of anything from a few dozen to
thousands or even millions of LLN routers, and support
point-to-point traflic (between devices inside the LLN),
point-to-multipoint traflic ({rom a central control point such
at the root node to a subset of devices mside the LLN), and
multipoint-to-point traflic (from devices inside the LLN
towards a central control point). Often, an IoT network 1s
implemented with an LLN-like architecture. For example, as
shown, local network 160 may be an LLN 1n which CE-2
operates as a root node for nodes/devices 10-16 1n the local
mesh, 1n some embodiments.

In contrast to traditional networks, LI.Ns face a number of
communication challenges. First, LLNs communicate over a
physical medium that 1s strongly affected by environmental
conditions that change over time. Some examples include
temporal changes 1n interference (e.g., other wireless net-
works or electrical appliances), physical obstructions (e.g.,
doors opening/closing, seasonal changes such as the foliage
density of trees, etc.), and propagation characteristics of the
physical media (e.g., temperature or humidity changes, etc.).
The time scales of such temporal changes can range between
milliseconds (e.g., transmissions from other transceivers) to
months (e.g., seasonal changes of an outdoor environment).
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In addition, LLN devices typically use low-cost and low-
power designs that limit the capabilities of their transceivers.
In particular, LLN transceivers typically provide low
throughput. Furthermore, LLN transceivers typically sup-
port limited link margin, making the effects of interference
and environmental changes visible to link and network
protocols. The high number of nodes in LLNs in comparison
to traditional networks also makes routing, quality of service
(Q0S), security, network management, and traflic engineer-
ing extremely challenging, to mention a few.

FIG. 2 1s a schematic block diagram of an example
node/device 200 that may be used with one or more embodi-
ments described herein, e.g., as any of the computing
devices shown in FIGS. 1A-1B, particularly the PE routers
120, CE routers 110, nodes/device 10-20, servers 152-154
(e.g., a network controller located 1n a data center, etc.), any
other computing device that supports the operations of
network 100 (e.g., switches, etc.), or any of the other devices
referenced below. The device 200 may also be any other
suitable type of device depending upon the type of network
architecture in place, such as IoT nodes, etc. Device 200
comprises one or more network interfaces 210, one or more
processors 220, and a memory 240 interconnected by a
system bus 230, and 1s powered by a power supply 260.

The network interfaces 210 include the mechanical, elec-
trical, and signaling circuitry for communicating data over
physical links coupled to the network 100. The network
interfaces may be configured to transmit and/or receive data
using a variety of different communication protocols. Nota-
bly, a physical network interface 210 may also be used to
implement one or more virtual network interfaces, such as
for virtual private network (VPN) access, known to those
skilled 1n the art.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor(s) 220 and the
network intertaces 210 for storing software programs and
data structures associated with the embodiments described
herein. The processor 220 may comprise necessary elements
or logic adapted to execute the software programs and
manipulate the data structures 245. An operating system 242
(c.g., the Internetworking Operating System, or IOS®, of
Cisco Systems, Inc., another operating system, etc.), por-
tions of which are typically resident in memory 240 and
executed by the processor(s), functionally orgamizes the
node by, inter alia, invoking network operations 1n support
of software processors and/or services executing on the
device. These software processors and/or services may coms-
prise¢ a machine learning operations (ML Ops or MLOps)
process 248, as described herein, any of which may alter-
natively be located within individual network interfaces.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it 1s
expressly contemplated that various processes may be
embodied as modules configured to operate 1n accordance
with the techniques herein (e.g., according to the function-
ality of a stmilar process). Further, while processes may be
shown and/or described separately, those skilled in the art
will appreciate that processes may be routines or modules
within other processes.

ML Ops process 248 includes computer executable
instructions that, when executed by processor(s) 220, cause
device 200 to perform ML Ops functions as part of a
network monitoring inirastructure for one or more networks.
In general, ML Ops refers to the mechanisms by why
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machine learning models are created, deployed, and moni-
tored over time. More specifically, 1in various embodiments,
ML Ops process 248 may oversee the operations of one or
more network monitoring services that utilize machine
learning, such as a network assurance service, a device
classification service, a network security service, or the like.

In some embodiments, ML Ops process 248 may itsell
utilize machine learning techniques, to monitor and adjust
the operations of any number of ML-based network ser-
vices. In general, machine learning 1s concerned with the
design and the development of techniques that take as mput
empirical data (such as network statistics and performance
indicators), and recognize complex patterns in these data.
One very common pattern among machine learning tech-
niques 1s the use of an underlying model M, whose param-
cters are optimized for minimizing the cost function asso-
ciated to M, given the input data. For instance, 1n the context
of classification, the model M may be a straight line that
separates the data mto two classes (e.g., labels) such that
M=a*x+b*y+c and the cost function would be the number of
misclassified points. The learning process then operates by
adjusting the parameters a, b, ¢ such that the number of
misclassified points 1s minimal. After this optimization
phase (or learning phase), the model M can be used very
casily to classily new data points. Often, M 1s a statistical
model, and the cost function i1s inversely proportional to the
likelihood of M, given the input data.

In various embodiments, ML Ops process 248 may
employ one or more supervised, unsupervised, or semi-
supervised machine learming models. Generally, supervised
learning entails the use of a training set of data, as noted
above, that 1s used to train the model to apply labels to the
input data. For example, the training data may include
samples of ‘good’ operations and ‘bad’ operations and are
labeled as such. On the other end of the spectrum are
unsupervised techniques that do not require a training set of
labels. Notably, while a supervised learning model may look
for previously seen patterns that have been labeled as such,
an unsupervised model may instead look to whether there
are sudden changes 1n the behavior. Semi-supervised leam-
ing models take a middle ground approach that uses a greatly
reduced set of labeled training data.

Example machine learning techniques that ML Ops Pro-
cess 248 can employ may include, but are not limited to,
nearest neighbor (NN) techniques (e.g., K-NN models, rep-
licator NN models, etc.), statistical techniques (e.g., Bayes-
1an networks, etc.), clustering techniques (e.g., k-means,
mean-shift, etc.), neural networks (e.g., reservoir networks,
artificial neural networks, etc.), support vector machines
(SVMs), logistic or other regression, Markov models or
chains, principal component analysis (PCA) (e.g., for linear
models), singular value decomposition (SVD), multi-layer
perceptron (MLP) ANNs (e.g., for non-linear models), rep-
licating reservoir networks (e.g., for non-linear models,
typically for time series), random forest classification, deep
learning models, or the like.

The performance of a machine learning model can be
evaluated 1n a number of ways based on the number of true
positives, Talse positives, true negatives, and/or false nega-
tives of the model. For example, consider the case of a
machine learning model that predicts whether a network
tunnel 1s likely to fail. In such ca case, the false positives of
the model may refer to the number of times the model
incorrectly predicted that the tunnel would fail. Conversely,
the false negatives of the model may refer to the number of
times the model 1incorrectly predicted that the tunnel would
not fail. True negatives and positives may refer to the
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number of times the model correctly predicted whether the
tunnel would operate as expected or 1s likely to fail, respec-
tively. Related to these measurements are the concepts of
recall and precision. Generally, recall refers to the ratio of
true positives to the sum of true positives and false nega-
tives, which quantifies the sensitivity of the model. Simi-
larly, precision refers to the ratio of true positives the sum of
true and false positives.

FIG. 3 illustrates an example network assurance system
300 that uses machine learnming to monitor a network,
according to various embodiments. In general, network
assurance refers to the branch of networking concerned with
ensuring that the network provides an acceptable level of
quality 1n terms of the user experience. For example, 1n the
case of a user participating in a videoconiference, the infra-
structure may enforce one or more network policies regard-
ing the videoconference traflic, as well as monitor the state
of the network, to ensure that the user does not perceive
potential 1ssues 1n the network (e.g., the video seen by the
user Ireezes, the audio output drops, etc.).

As shown, at the core of network assurance system 300
may be a cloud-based network assurance service 302 that
leverages machine learning 1n support of cognitive analytics
for the network, predictive analytics (e.g., models used to
predict user experience, etc.), troubleshooting with root
cause analysis, and/or trending analysis for capacity plan-
ning. Generally, network assurance system 300 may support
monitoring for both wireless and wired networks, as well as
LLNs/IoT networks.

In various embodiments, cloud service 302 may oversee
the operations of the network of an entity (e.g., a company,
school, etc.) that includes any number of local networks. For
example, cloud service 302 may oversee the operations of
the local networks of any number of branch oflices (e.g.,
branch oflice 306) and/or campuses (e.g., campus 308) that
may be associated with the entity. Data collection from the
various local networks/locations may be performed by a
network data collection platform 304 that communicates
with both cloud service 302 and the monitored network of
the enfity.

The network of branch office 306 may include any num-
ber of wireless access points 320 (e.g., a first access point
AP1 through nth access point, APn) through which endpoint
nodes may connect. Access points 320 may, 1n turn, be in
communication with any number of wireless LAN control-
lers (WLCs) 326 (e.g., supervisory devices that provide
control over APs) located in a centralized datacenter 324.
For example, access points 320 may communicate with
WLCs 326 via a VPN 322 and network data collection
plattorm 304 may, 1n turn, communicate with the devices in
datacenter 324 to retrieve the corresponding network feature
data from access points 320, WLCs 326, etc. In such a
centralized model, access points 320 may be flexible access
points and WLCs 326 may be N+1 high availability (HA)
WLCs, by way of example.

Conversely, the local network of campus 308 may instead
use any number of access points 328 (e.g., a first access point
AP1 through nth access point APm) that provide connec-
tivity to endpoint nodes, 1n a decentralized manner. Notably,
instead of maintaining a centralized datacenter, access points
328 may 1nstead be connected to distributed WLCs 330 and
switches/routers 332. For example, WLCs 330 may be 1:1
HA WLCs and access points 328 may be local mode access
points, 1n some 1mplementations.

To support the operations of the network, there may be
any number of network services and control plane functions
310. For example, functions 310 may include routing topol-
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ogy and network metric collection functions such as, but not
limited to, routing protocol exchanges, path computations,
monitoring services (e.g., NetFlow or IPFIX exporters), etc.
Further examples of functions 310 may include authentica-
tion functions, such as by an Identity Services Engine (ISE)
or the like, mobility functions such as by a Connected
Mobile Experiences (CMX) function or the like, manage-
ment functions, and/or automation and control functions
such as by an APIC-Enterprise Manager (APIC-EM).

During operation, network data collection platform 304
may receive a variety of data feeds that convey collected
data 334 from the devices of branch oflice 306 and campus
308, as well as from network services and network control
plane functions 310. Example data feeds may comprise, but
are not limited to, management information bases (MIBS)
with Simple Network Management Protocol (SNMP)v2,
JavaScript Object Notation (JSON) Files (e.g., WSA wire-
less, etc.), NetFlow/IPFIX records, logs reporting in order to
collect rich datasets related to network control planes (e.g.,
Wi-F1 roaming, join and authentication, routing, QoS, PHY/
MAC counters, links/node failures), trathic characteristics,
and other such telemetry data regarding the monitored
network. As would be appreciated, network data collection
plattorm 304 may receive collected data 334 on a push
and/or pull basis, as desired. Network data collection plat-
form 304 may prepare and store the collected data 334 for
processing by cloud service 302. In some cases, network
data collection platform may also anonymize collected data
334 before providing the anonymized data 336 to cloud
service 302.

In some cases, cloud service 302 may include a data
mapper and normalizer 314 that receives the collected
and/or anonymized data 336 from network data collection
platform 304. In turn, data mapper and normalizer 314 may
map and normalize the received data mto a unified data
model for further processing by cloud service 302. For
example, data mapper and normalizer 314 may extract
certain data features from data 336 for input and analysis by
cloud service 302.

In various embodiments, cloud service 302 may include a
machine learning (ML )-based analyzer 312 configured to
analyze the mapped and normalized data from data mapper
and normalizer 314. Generally, analyzer 312 may comprise
a power machine learning-based engine that 1s able to
understand the dynamics of the monitored network, as well
as to predict behaviors and user experiences, thereby allow-
ing cloud service 302 to identily and remediate potential
network 1ssues betfore they happen.

Machine learning-based analyzer 312 may include any
number of machine learning models to perform the tech-
niques herein, such as for cognitive analytics, predictive
analysis, and/or trending analytics as follows:

Cognitive Analytics Model(s): The aim of cognitive ana-
lytics 1s to find behavioral patterns in complex and
unstructured datasets. For the sake of illustration, ana-
lyzer 312 may be able to extract patterns of Wi-F1
roaming in the network and roaming behaviors (e.g.,
the “stickiness” of clients to APs 320, 328, “ping-pong”
clients, the number of visited APs 320, 328, roaming
triggers, etc.). Analyzer 312 may characterize such
patterns by the nature of the device (e.g., device type,
OS) according to the place 1n the network, time of day,
routing topology, type of AP/WLC, etc., and potentially
correlated with other network metrics (e.g., application,
oS, etc.). In another example, the cognitive analytics
model(s) may be configured to extract AP/WLC related
patterns such as the number of clients, traflic through-
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put as a function of time, number of roaming processed,
or the like, or even end-device related patterns (e.g.,
roaming patterns of 1Phones, IoT Healthcare devices,
etc.).

Predictive Analytics Model(s): These model(s) may be
configured to predict user experiences, which 1s a
significant paradigm shift from reactive approaches to
network health. For example, 1n a Wi-F1 network,
analyzer 312 may be configured to build predictive
models for the joining/roaming time by taking into
account a large plurality of parameters/observations
(e.g., RF varniables, time of day, number of clients,
tratlic load, DHCP/DNS/Radius time, AP/WLC loads,
etc.). From this, analyzer 312 can detect potential
network 1ssues before they happen. Furthermore,
should abnormal joining time be predicted by analyzer
312, cloud service 312 will be able to identify the major
root cause of this predicted condition, thus allowing
cloud service 302 to remedy the situation before it
occurs. The predictive analytics model(s) of analyzer
312 may also be able to predict other metrics such as
the expected throughput for a client using a specific
application. In yet another example, the predictive
analytics model(s) may predict the user experience for
voice/video quality using network variables (e.g., a
predicted user rating of 1-5 stars for a given session,
etc.), as function of the network state. As would be
appreciated, this approach may be far superior to tra-
ditional approaches that rely on a mean opinion score
(MOS). In contrast, cloud service 302 may use the
predicted user experiences from analyzer 312 to pro-
vide information to a network administrator or architect
in real-time and enable closed loop control over the
network by cloud service 302, accordingly. For
example, cloud service 302 may signal to a particular
type of endpoint node 1n branch office 306 or campus
308 (e.g., an 1Phone, an IoT healthcare device, etc.) that
better QoS will be achieved 11 the device switches to a
different AP 320 or 328.

Trending Analytics Model(s): The trending analytics
model(s) may include multivariate models that can
predict future states of the network, thus separating
noise from actual network trends. Such predictions can
be used, for example, for purposes of capacity planning
and other “what-11" scenarios.

Machine learning-based analyzer 312 may be specifically
tailored for use cases in which machine learning 1s the only
viable approach due to the high dimensionality of the dataset
and patterns cannot otherwise be understood and learned.
For example, finding a pattern so as to predict the actual user
experience ol a video call, while taking into account the
nature of the application, video CODEC parameters, the
states of the network (e.g., data rate, RF, etc.), the current
observed load on the network, destination being reached,
etc., 1s simply impossible using predefined rules 1n a rule-
based system.

Unfortunately, there 1s no one-size-fits-all machine learn-
ing methodology that 1s capable of solving all, or even most,
use cases. In the field of machine learning, this 1s referred to
as the “No Free Lunch” theorem. Accordingly, analyzer 312
may rely on a set of machine learning processes that work
in conjunction with one another and, when assembled,
operate as a multi-layered kernel. This allows network
assurance system 300 to operate 1n real-time and constantly
learn and adapt to new network conditions and traflic
characteristics. In other words, not only can system 300
compute complex patterns in highly dimensional spaces for
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prediction or behavioral analysis, but system 300 may
constantly evolve according to the captured data/observa-
tions from the network.

Cloud service 302 may also include output and visual-
1ization interface 318 configured to provide sensory data to a
network administrator or other user via one or more user
interface devices (e.g., an electronic display, a keypad, a
speaker, etc.). For example, interface 318 may present data
indicative of the state of the monitored network, current or
predicted issues in the network (e.g., the violation of a
defined rule, etc.), msights or suggestions regarding a given
condition or i1ssue in the network, etc. Cloud service 302
may also receive mput parameters from the user via inter-
face 318 that control the operation of system 300 and/or the
monitored network 1tself. For example, interface 318 may
receive an instruction or other indication to adjust/retrain
one of the models of analyzer 312 from interface 318 (e.g.,
the user deems an alert/rule violation as a false positive).

In various embodiments, cloud service 302 may further
include an automation and feedback controller 316 that
provides closed-loop control instructions 338 back to the
various devices 1n the momtored network. For example,
based on the predictions by analyzer 312, the evaluation of
any predefined health status rules by cloud service 302,
and/or 1nput from an administrator or other user via mput
318, controller 316 may instruct an endpoint client device,
networking device in branch office 306 or campus 308, or a
network service or control plane function 310, to adjust its
operations (e.g., by signaling an endpoint to use a particular
AP 320 or 328, etc.).

As noted above, systems/services that use machine learn-
ing to momtor a network, such as service 302, are unavoid-
ably complex, ingest data from multiple sources, and may
rely on multiple versions of a trammed model to make
inferences about the network. Indeed, such a monitoring
system/service may collect and analyze data from any
number ol network elements with different configurations
(e.g., OS versions, software, etc.), endpoints, servers such as
Authentication, Authorization and Accounting (AAA) and
DHCP servers, and the like. As a consequence, the data that
1s consumed by the ML models of the monitoring service
(e.g., the models of machine learning-based analyzer 312,
etc.) 1s dynamic and usually varies over time across difierent
networks, as the configurations of the networks change. This
makes it challenging to discern between actual problems in
the network and 1ssues 1n the collected data and/or perfor-
mance 1ssues exhibited by the machine learning model
assessing the network. This can lead to the monitoring
system needlessly initiating corrective measures in the net-
work (e.g., rerouting traflic, raising alerts, applying a secu-
rity policy, etc.) and unintentionally impacting the perfor-
mance of the network.

—Anomaly Detection of Model Performance in an ML
Ops Platform—

The techniques herein introduce a unified methodology,
architecture, and momnitoring service for machine learning-
based systems, to ensure their proper operation. In some
aspects, the techniques herein dynamically learn the behav-
1oral patterns of data used to train a machine learning model,
allowing for the detection of anomalies 1n both the input data
to the model and the performance of the model. In further
aspects, the techniques herein introduce mechanism to 1den-
tify the root causes of these types of problems, as well as the
next-best action, by jointly correlating the training metrics,
inference metrics, and data distributions, across any number
of different networks. In doing so, corrective measures can
be itiated automatically, such as raising alerts, adjusting,
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the operations of the machine learning-based analyzer/in-
ference engine of the monitoring service (e.g., by sending
inference rules, pausing the model based on local observa-
tions, etc.), or even nitiating model retraining when the data
distributions and model accuracy are not 1n alignment with
what was observed during model training.

Specifically, according to one or more embodiments of the
disclosure as described i1n detail below, a service tracks
performance of a machine learning model over time. The
machine learning model 1s used to monitor one or more
computer networks based on data collected from the one or
more computer networks. The service also tracks perior-
mance metrics associated with tramning of the machine
learning model. The service determines that a degradation of
the performance of the machine learning model 1s anoma-
lous, based on the tracked performance of the machine
learning model and performance metrics associated with
tramning of the model. The service imtiates a corrective
measure for the degradation of the performance, in response
to determining that the degradation of the performance 1s
anomalous.

[lustratively, the techniques described herein may be
performed by hardware, software, and/or firmware, such as
in accordance with the ML Ops process 248, or another
process, which may include computer executable instruc-
tions executed by the processor 220 (or independent pro-
cessor of mterfaces 210) to perform functions relating to the
techniques described herein.

Operationally, FIG. 4 illustrates an example ML Ops
architecture 400, according to various embodiments. At the
core of architecture 400 1s a machine learning (ML) opera-
tions (Ops) service 408 (e.g., as provided by one or more
devices executing ML Ops process 248) that oversees the
operations of any number ol machine learning-based ser-
vices/systems that each monitor one or more computer
networks.

For example, as shown, ML Ops service 408 may oversee
the operation of a wireless network assurance service 402
that uses machine learning to monitor a wireless network, a
soltware-defined wide area network (SD-WAN) assurance
service 404 that uses machine learning to monitor an SD-
WAN (e.g., to predict tunnel failures, etc.), a device classi-
fication service 406 that uses machine learning to classily
devices 1n a network by device type, based on their behav-

1ors, and/or any other machine learning-based network ser-
VICES.

During operation, a given network monitoring service
may provide to ML Ops service 408 data regarding the
telemetry data that it collects and 1s ingested by 1ts machine
learning model(s), as well as performance data regarding the
performance of the model(s). For example, as shown, wire-
less network assurance service 402 may provide telemetry
and performance data 410 to ML Ops service 408. In tumn,
ML Ops service 408 may assess the provided data, to
determine whether there are any 1rregularities or other 1ssues
present in the ingested data and/or performance issues
associated with the machine learning model. If ML Ops
service 408 detects either condition, service 408 may 1nitiate
corrective measures such as sending an alert to a user
interface (UI) or mstructions back to the monitoring service.
For example, service 408 may send instructions 412 to
wireless network assurance service 402 that adjust how or
when its machine learming model assesses 1ts collected data
(e.g., by disabling the model under certain conditions, etc.).
In further cases, mstructions 412 may even trigger model
retraining.
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More specifically, ML Ops service 408 may manage the
various stages of the lifecycles of the machine learning
models employed by a network monitoring service. These
stages generally include the following:

1. The data ingestion stage logs data indicative of the
quality of the data ingested by the monitoring service,
which 1s provided to ML Ops service 408 for analysis
(e.g., on a daily basis). For example, the data quality
information may summarize the number of different
entity types observed in the network (e.g., number of
radios, APs, tunnels, etc.), failures or other events
observed 1n the network, etc., for a given time period.
ML Ops service 408 may use this information to detect
problems related to the collection of network data by
the monitoring service.

2. Similarly, the data from the extract, transform, and load

(E'TL) functions of the monitoring service 1s collected
and sent to ML Ops service 408 for analysis (e.g.,
weekly records). For example, this information may be
indicative of an average throughput for the network,
onboarding times, onboarding failures, tunnel down-
times, throughputs during tunnel failures, etc. ML Ops
service 408 may analyze the distributions and changes
in these metrics, to detect skewed data that can lead to
poor model performance.

3. The accuracy and other metrics regarding the machine
learning models executed by the monitoring service 1s
also sent to ML Ops service 408 for analysis (e.g., on
a daily basis). For example, such information may be
indicative of the width of the anomaly band of an
anomaly detector, relevancy scores for detected anoma-
lies, information regarding false positives or negatives
by the model, true positives or negatives by the model,
the recall or precision of the model, or the like. ML Ops
service 408 may use this information to track changes
in the performance of the model over time and other
model-related 1ssues, so as to initiate corrective mea-
sures.

4. In many cases, experimentation 1s also performed over
time to select the ‘best’” model(s) for use by a moni-
toring service in production. ML Ops service 408 may
further oversee this activity, to provide insights into the
performance of a given model with respect to difierent
datasets, networks, and/or time ranges.

The unified architecture 400 shown allows ML Ops
service 408 to oversee the operations of multiple machine
learning-based network monitoring services at once. In other
words, ML Ops service 408 may itself be a standalone
service that interfaces with any number of network moni-
toring services, such as services 402-406, to manage the
lifecycles and health of their machine learning models.

FIG. 5 1llustrates an example architecture 500 for assess-
ing machine learming model performance, according to
various embodiments. Continuing the example of FIG. 4,
architecture 500 may comprise any or all of the following
components: a model performance analyzer (MPA) 502, a
training accuracy detector 504, a model selection engine
506, a distribution change detector 522, an inference ana-
lyzer 524, and/or a model inference engine 526. In some
embodiments, some or all of the components 502-506 and
522-526 of architecture 500 may be implemented as part of
a machine learning-based network momitoring service 520
itsell (e.g., any of services 402-406 in FIG. 4) or, alterna-
tively, as part of a stand-alone service ML Ops service 408
that 1s 1n communication therewith. For example, service
520 may leverage application programming interfaces

(APIs) of ML Ops service 408, thereby allowing service 408
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to oversee the operations of the machine learning compo-
nents of network monitoring service 502.

In general the various components ol architecture 500
operate 1n conjunction with one another to provide an ML
Ops platform that can: 1.) dynam1cally detect 1ssues with the
accuracy ol traiming and inference in production machine
learning models, 2.) find anomalous performance degrada-
tions and determine their root causes, such as when the
performance degradation 1s due to the model consuming
different patterns of data than the ones on which the model
was trained, 3.) send alerts to the appropriate downstream
systems/services or personnel, and 4.) automatically take
corrective action on the observed issues.

As shown, assume that network monitoring service 520
executes a model inference engine 526 (e.g., machine leamn-
ing-based analyzer 312 1n FIG. 3, etc.) that comprises one or
more machine learning models trained to make inferences
about a network momtored by service 520. In various
embodiments, network momtoring service 520 may also
execute a distribution change detector (DCD) 522 that 1s
responsible for detecting significant changes in the distri-
bution of data mput to the model(s) of model inference
engine 526 and providing data distribution change metrics

528 to model performance analyzer (MPA) 502 of ML Ops
Service 408. As would be appreciated, DCD 3522 can be
hosted by any suitable component of network monitoring,
service 520, such as on one or more network entities that
export telemetry data, as part of the network data collection
platiorm for service 3520, or even in the cloud.

By way of example, FIGS. 6 A-6B illustrate example plots
of the per-tunnel throughput distributions (in kbps) over
time for two networks. Assume, for example, that the
machine learning model of the monitoring service predicts
tunnel failures 1n an SD-WAN, based 1n part on the through-
puts of the tunnels. In such a case, the performance of the
model may be negatively impacted, 1t the distributions
change dramatically.

Plot 600 1n FIG. 6 A shows the throughput distributions for
the tunnels (e.g., tunnels A-J) over time for a first network
as boxplots, where only the 257, 50” and 75" percentiles are
shown. As can be seen, the distributions are relatively
unchanged over time. In contrast, plot 610 in FIG. 6B shows
the throughput distributions for tunnels (e.g., tunnels A-J)
over time for a second network.

In contrast to plot 600, the second network experienced a
significant change in its tunnel throughput distributions
starting on J anuary 20" (e.g., distribution change pomt 612).
This change in the throughput distributions can aflect the
performance of the machine learning model assessing the
throughput metrics and may necessitate corrective measures,
such as retraining the model. By providing the detected
distribution changes to the ML Ops service, the model
management functions of the service can initiate the correc-
tive measures, automatically.

Referring again to FIG. 5, DCD 522 may use any number
ol techniques, to determine that a distribution change in the
data has occurred. In one embodiment, DCD 522 measures
the empirical distribution of the data, perniodically (e.g.,
every week), and computes the distribution of the current
and prior time periods (e.g., for the current week and the past
week). For each feature, DCD 522 can then use two-sample
tests such as the Kolmogorov-Smirnov (KS) test, a Wasser-
stein distance, or a Cramer-von Mises distance for continu-
ous features. Each of these tests will output the distribution
difference metric, as specified by the test, and the p-value. In
this case, the p-value ranks the confidence with which the
two distributions are alike. Usually, 11 the p-value 1s less
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(generally, p-value<0.05), then the two distributions can be
considered to be diflerent with a high degree of significance/
confidence. Hence, DCD 522 may use one the above test,
and assess the result<distribution difference metric, confi-
dence>, where confidence may be (1-p-value), to detect a
distribution change. For categorical variables, DCD 522
could also employ a chi-squared test, to provide a similar
output.

In another embodiment, DCD 522 may suppress the data
features that are constantly changing from use by the model
of model mference engine 526. This can be done by DCD
522 keeping track of the time-series of distribution changes
over time (e.g., 1n the last n training cycles). For example,
DCD 522 may store the “distribution difference” (d) metrics
as a proxy for distribution change metric, 1.e., [d,, d,, . . .,
desrys d,]. DCD 522 may then call a time-series forecasting
algorithm with all previous values, to predict the uncertainty
of difference at time t, given an iput of the past [d,,
ds, ..., dq ] distribution changes. If the uncertainty 1s high
(e.g., the uncertainty band>threshold), then DCD 522 may
conclude that the data distribution has high-vanance, and
forcefully set the distribution-diflerence metric to zero.
DCD 522 can also leverage change point detection tech-
niques, to detect “when” the data changed significantly.

DCD 522 may regularly compute the data distribution
change metrics 528 for the data consumed by model infer-
ence engine 526 and transmit metrics 528 to model pertor-
mance analyzer (MPA) 502 on a push, pull, or periodic basis.
For example, data distribution change metrics 528 may be of
the form <customer, timestamp, feature, distribution-difler-
ence, confidence, min, percentile-25, percentile-30, percen-
tile-75, max>, where the last few metrics showcase the
approximate distribution of the variables by using the 257,
507 and 75" percentiles with the maximum and minimum
values of the data feature.

Another component of architecture 500 may be inference
analyzer (IA) 524, according to various embodiments. Dur-
ing execution, 1A 524 may be responsible for measuring and
tracking the accuracy of the inferences made by the model(s)
of model inference engine 526. In turn, IA 524 may provide
the inference accuracy metrics 330 to MPA 502, such as
when the performance of the model crosses a predefined
threshold (e.g., the performance dips below a certain thresh-
old). For example, assume that model inference engine 526
uses a machine learming model to detect anomalous condi-
tions in the monitored network. In such a case, 1A 524 may
capture and assess the performance metrics for the model
(e.g., anomaly margins, etc.) and/or other aggregate system
metrics (e.g., the number of raised anomalies, etc.). In turn,
IA 524 may report such inference accuracy metrics 530 to
MPA 502 periodically, in response to one or more of the
metrics crossing a predefined threshold, or on a push or pull
basis.

In one embodiment, 1A 524 uses timeseries algorithms to
detect the change in inference performance metrics of the
model(s) of model inference engine 524. This can be done
using various statistical techmiques such as change point
detection (e.g., Bayesian, CumSum, etc.) or by just com-
paring the statistical metrics (e.g., mean, median, etc.) of
inference over time. The significant changes in inference
(e.g., sudden decrease 1n inierence accuracy, etc.) are then
sent by IA 524 to MPA 502 via inference accuracy metrics
530.

Another component of architecture 500 may be training
accuracy detector (TAD) 504. In various embodiments, TAD
504 1s responsible for identifying sudden changes and
anomalies 1n the training of the model(s) of model inference
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engine 526. The model(s), when registered with ML Ops
service 408, will be associated with the model performance
metrics to be momitored during model training. For example,
in the case of a classification model, the model may be
registered with service 408 to monitor 1ts precision, recall,
area under curve (AUC). Similarly, 11 the model 1s a regres-
sion model, 1t may be registered with service 408 to monitor
its R-squared, root means square error (RMSE), or quantile
loss. A complex model may register with service 408 to
monitor multiple metrics. For example, if two models of
model inference engine 526 are used to predict the anomaly
bands (e.g., top and bottom prediction bands), then quantile
loss and R-squared metrics can be monitored for each
regressor. In addition to model metrics, TAD 504 can also be
instructed to measure other system performance metrics, as
well, such as the percentage of the records that are tagged as
anomalies 1n the test set for the model.

Said differently, TAD 504 may monitor the performance/
accuracy-related metrics associated with the training and
testing of a machine learning model deployed to network
monitoring service 520. For example, such metrics may take
the form: <customer, timestamp, model, metric, change-
score, change-confidence>, which are tracked by TAD 504
during model traiming and validation. In turn, TAD 504 may
provide the resulting training accuracy metrics 316 across
training and/or validation sessions to MPA 502, periodically,
on a push or pull basis, or 1n response to TAD 504 detecting
sudden changes 1n the metrics. In one embodiment, TAD
504 may assess each model and/or system performance
metric as a time-series. In a further embodiment, TAD 504
may leverage change point detection, to detect sudden
increase or decrease in the metrics, triggering TAD 504 to
notily MPA 502 of the changes.

In various embodiments, architecture 500 may also
include MPA 502 which acts as a central engine to gather the
data and events sent by the other components of architecture
500 detailed above. In turn, MPA 502 intelligently correlates
the inference performance (e.g., the inference accuracy
metrics 530 sent by 1A 524) with that of the data distribution
changes (e.g., the data distribution change metrics 528 sent

by DCD 522) and the training metrics (e.g., training accu-
racy metrics 516 sent by TAD 504 ). To do so, MPA 502 may
comprise the following sub-components: a training vs. infer-
ence comparator 508, an abnormal inference drift detector
510, a long-term training drift detector 512, and/or a data-
caused inference degradation analyzer 514. These sub-com-
ponents 508-512 may be combined, omitted, or 1mple-
mented 1n a centralized or distributed manner, as desired.
During execution, training vs. inference comparator 508
1s responsible for identifying whether an inference model of
model inference engine 526 1s being used as trained, and to
trigger downstream processes to fix the problem, if any
arise. Note that the model has been trained on a certain
pattern of data and has certain performance metrics such as
accuracy, RMSE, percentage of records triggered as anoma-
lies, etc. In a stable scenario, the inference statistics and
performance measures should ideally match the ones 1n the
training. For example, 11 the anomaly detection engine has
been trained to detect 2% of the records (outliers) as
anomalies, then the inference usually, over a long enough
time, should also flag 2% of records as anomalous. 1T the
model tlags a much larger or smaller percentage of records
as anomalous, then this may be an 1indication that the model
1s misbehaving. Comparator 508 may make similar analysis
with respect to classification models, such as by determining,
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whether the model 1s misbehaving with respect to 1ts distri-
bution of losses or detection probability (probability of
positives).

In one embodiment, training vs. mnference comparator 508
will correlate the tramning metrics with their respective
inference accuracy metrics (e.g., metrics 516 and 530), and
will raise an anomaly of 1t detects a significant shiit. For
example, consider plot 700 in FIG. 7 that shows the event-
fraction (e.g., the fraction of records flagged by a model as
anomalous) observed for the model during both its training
phase and inference/deployment phase. Assume now that the
anomaly detection model i1s retrained every week and 1ts
inference metrics captured and reported to ML Ops service
408 on a daily basis. In such a case, training vs. inference
comparator 308 of service 408 may compare the two event-
fraction timeseries shown 1n plot 700, to detect deviations
and, 1 any deviations are detected, trigger further processing
by MPA 502.

Referring again to FIG. 5, when training vs. inference
comparator 308 detects a deviation between the performance
of the model during its training and deployment/inference
phases, comparator 508 may raise a °‘relative inference
deviation’ event. In one embodiment, comparator 508 may
report such an event to model inference engine 526 (e.g., via
model inference actions 532) and/or the networking devices
associated with network monitoring service 520, to stop
using the model to make inferences and avoid any 1ll-eflects
ol 1naccurate inferences.

In another embodiment, training vs. inference comparator
508 may send an indication of the relative inference devia-
tion event to model selection engine 506, to trigger retrain-
ing of the model or selection of another model to take 1ts
place.

In cases i which ML Ops service 408 and network
monitoring service 520 are associated with multiple net-
works, training vs. inference comparator 308 may further
assess whether any model accuracy deviations are localized
to a specific network or present across multiple networks. If,
for example, a majority of networks all exhibit such devia-
tions, this may indicate that a more serious i1ssue exists that
requires a system-wide {ix. In this case, comparator 508 may
send a more severe alarm via the Ul, to alert developers and
administrators as to the problem.

During execution, abnormal inference drift detector 510
may determine whether any drift in the performance of the
model of model inference engine 526 over time 1s normal or
anomalous (e.g., drifts 1n inference accuracy metrics 330).
Indeed, 1t 1s to be expected that the accuracy of the model
will drop somewhat over time, especially when the inter-
training periods are long (e.g., one month). If drnift detector
510 determines that this drift 1s anomalous, 1t may 1nitiate
similar corrective measures as that of comparator 508, such
as pausing use of the model by model inference engine 526
(c.g., by sending a model inference action 532 to engine
526), initiating model retraining (e.g., by sending an action
518 to model selection engine 506), and/or sending an alert
to the UL

Plot 800 in FIG. 8 shows a plot of the inference accuracy
metric for a model over time. More specifically, assume that
the model associated with the accuracy metric 1s retraimned
periodically every n-number of days and 1ts inference accu-
racy metric 1s measured on a daily basis. Accordingly, each
line plotted 1n plot 800 represents the decay of the inference
accuracy ol the model 1n between training phases.

As can be seen 1n plot 800, some decay of the inference
accuracy ol the model during the inter-training periods 1s
somewhat normal. However, one driit 1s clearly abnormal 1n
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comparison to the other observed drifts and may be flagged
by abnormal inference drift detector 510 as anomalous.

Referring again to FIG. 5, abnormal inference drift detec-
tor 510 may compute the ‘normal’ drift of the inference
performance metric of the model of model inference engine
526 using a timeseries clustering algorithm, 1n one embodi-
ment. In turn, abnormal inference drift detector 510 may
assess the results for outliers/anomalies. In another embodi-
ment, abnormal inference drift detector 510 may assess the
relative drift of multiple inference accuracy metrics (e.g.,
event-fraction and quantile loss) by forming a multivariate
timeseries and apply a sequence-to-sequence autoencoder
model to the timeseries, to cluster and detect outliers that
exhibit degraded driits.

Note that the only a short amount of time may have passed
since the model was last trained (e.g., a few days) and the
above approaches that abnormal inference drift detector 510
may use are applicable only after an entire timeseries for the
inter-training time has been built. In further embodiments,
these approaches can also be adapted for early detection of
severe inference accuracy drifts. For example, 11 the infer-
ence accuracy metric(s) of the model are only available for
the past m-number of days and the inter-traiming period 1s
n-number of days, the clustering algorithm of abnormal
inference drift detector 510 can still be trained using metrics
for all 0-m days and used to detect any abnormal drops 1n the
inference accuracy metric(s) during this timeframe, as well.

In various embodiments, MPA 502 may further comprise
a long-term training drift detector 512 that 1s responsible for
detecting when the training accuracy metrics 516 are slowly
dropping over longer periods of time. To do so, long-term
training drift detector 512 may evaluate timeseries of train-
ing accuracy metrics 516 from TAD 504. In a simple
embodiment, long-term training drift detector 512 may
determine the trend of the training accuracy metrics 516
using a timeseries decomposition approach. If the trend 1s
decreasing with a significant slope, then long-term training
drift detector 512 may initiate corrective measures, such as
raising an alert to the Ul, pausing inierences by the model
(c.g., via model inference actions 532), iitiate model
retraining or reselection (e.g., via action 518), etc.

In another embodiment, long-term training driit detector
512 may assess whether similar long-term training driits
occur across a plurality of networks. If such a slow dnfit
occurs, this may indicate that simply retraiming the model
may not be eflective and that the machine learning engineers
responsible for the model may need to redesign the model
(e.g., by using a diflerent model architecture). Thus, in these
cases, long-term training drift detector 512 may raise a
corresponding alert to the Ul, to alert the engineers as to this
condition.

With respect to determining the root cause of any model
performance 1ssues, the actual root cause may be due to data
quality 1ssues, data distribution changes, or 1ssues related to
the training of the model.

To help discern the root cause of such 1ssues, MPA 502
may correlate the inference accuracy metric for the model
with the distribution difference observed in several features.
The highest correlated feature can then be tagged as the
probable cause for the inference drift. In such cases, MPA
502 may request refined data from the networking devices
for the data. Note that simple correlation of continuous
variables 1s not sensitive to extreme values and that they are
equally sensitive all range of values that a vanable (e.g.,
distribution difference metric) might take.

In a further embodiment, MPA 302 may also include
data-caused 1inference degradation analyzer 514 that 1is
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responsible for determining whether any data distribution
changes (e.g., as indicated by metrics 328 from DCD 522)
are responsible for any degradation in the inference accuracy
metrics 530 from IA 524. For example, analyzer 514 may
discretize the inference accuracy metrics 530 (e.g., across all
deployments) mto ‘Positive” and ‘Negative” classes, where
the ‘Positive’ class indicates severe drops in the inference
accuracy metric(s) and the ‘Negative’ class indicates normal
changes. In turn, analyzer 514 may train a decision tree
using the classes and the data distribution change metrics
528 (e.g., median, 75” percentile, etc.) to identify rules that
can be used for purposes of root-causing model performance
1SSuUes.

For example, if the severe inference accuracy drop occurs
when the data distribution exhibits a median>threshold 1
AND 757 percentile>threshold_2, then analyzer 514 may
infer that the model of engine 526 may not be effective to use
under such situations. In turn, analyzer 514 may propagate
such a rule to model inference engine 526 as data check
actions 534, which engine 526 uses to assess the distribution
characteristics of the data and determines whether or not to
pause use of the model (e.g., on a daily basis). Other
corrective measures that analyzer 514 may initiate could
also entail raising an alert to the Ul or initiating model
retraining or reselection (e.g., by sending an action 518 to
model selection engine 506).

FIG. 9 1illustrates an example simplified procedure for
performing anomaly detection of model performance of a
machine learning model, 1n accordance with one or more
embodiments described herein. For example, a non-generic,
specifically configured device may perform procedure 900
by executing stored instructions, to provide an ML Ops
service to one or more networks. The procedure 900 may
start at step 905, and continues to step 910, where, as
described 1n greater detail above, the service may track
performance of a machine learning model over time. In
various embodiments, the machine learming model 1s used to
monitor one or more computer networks based on data
collected from the one or more computer networks. For
example, the model may be configured to detect problems 1n
a wireless network, predict tunnel failures in an SD-WAN or
other network, classily devices 1n the network(s) by device
type, or the like. In further embodiments, the model may
take the form of an anomaly detector, a classifier, or other
form of machine learning model. Accordingly, the tracked
performance may be indicative of a percentage of anomalies
raised by the anomaly detector for the one or more networks,
indicative of a detection probability of the classifier, a recall
or precision ol the model, etc.

At step 915, as detailed above, the service may track
performance metrics associated with training of the machine
learning model. In general, the performance metrics asso-
ciated with the training may be indicative of the accuracy of
the model as observed during training and testing of the
model, prior to deployment to make inferences about the one
or more networks. For example, in the case 1n which the
model comprises an anomaly detector, the performance
metrics may 1indicate the percentage of records that the
model was trained to identify as anomalous (e.g., the 2%
most anomalous records).

At step 920, the service may determine that a degradation
of the performance of the machine learning model 1s anoma-
lous, as described in greater detail above. In various embodi-
ments, the service may base this determination on the
tracked performance of the machine learning model and
performance metrics associated with training of the model.
For example, in one embodiment, the service may detect an
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anomaly 1n a correlation between the tracked performance of
the machine learning model and the performance metrics
associated with traiming of the machine learning model. In
another embodiment, the service may determine whether a
drift 1 the performance of the machine learning model
between times at which the model the model 1s trained 1s
anomalous. In further embodiments, the service may further
track distribution changes 1n the data collected from the one
or more networks (e.g., the data from the one or more
networks consumed by the model) and base the determina-
tion on these tracked changes. For example, the service may
determine whether the degradation of the performance of the
machine learning model 1s correlated to a distribution
change 1n the data collected from the one or more networks.

At step 925, as detailed above, the service may 1nitiate a
corrective measure for the degradation of the performance of
the machine learning model, 1n response to determining that
the degradation of the performance 1s anomalous. For
example, 1n various embodiments, the corrective measure
may entail pausing use of the machine learning model to
monitor the one or more computer networks, retraining the
machine learning model, or sending an alert regarding the
anomalous degradation of the performance of the model to
a user mterface. Procedure 900 then ends at step 930.

It should be noted that while certain steps within proce-
dure 900 may be optional as described above, the steps
shown 1n FIG. 9 are merely examples for illustration, and
certain other steps may be included or excluded as desired.
Further, while a particular order of the steps 1s shown, this
ordering 1s merely illustrative, and any suitable arrangement
of the steps may be utilized without departing from the scope
of the embodiments herein.

The techniques described herein, therefore, allow for the
continuous monitoring ol the performance of a machine
learning model used to monitor a network, so as to detect
performance anomalies. Indeed, 1t 1s to be expected that the
performance of such a model may degrade over time for
various reasons such as data quality 1ssues (e.g., data dis-
tribution changes in the data ingested by the model), traiming,
1ssues, or the like. Accordingly, the techniques herein intro-
duce a number of mechanisms to detect anomalous degra-
dations 1n the performance of the model and 1nitiate correc-
tive measures, such as adjusting the data collection
mechanism in the monitored network(s), 1nitiate retraining
of the model, pausing use of the model under certain
circumstances, or the like.

While there have been shown and described illustrative
embodiments that provide for detecting model performance
anomalies 1 an ML Ops system, 1t 1s to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the embodiments herein. For
example, while certain embodiments are described herein
with respect to using certain models for purposes of network
monitoring, the models are not limited as such and may be
used for other functions, 1n other embodiments. In addition,
while certain protocols are shown, other suitable protocols
may be used, accordingly.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, 1t 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
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thereof. Accordingly, this description 1s to be taken only by
way ol example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the
appended claims to cover all such varnations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

What 1s claimed 1s:

1. A method, comprising:

tracking, by a service, performance of a machine learning

model over time, wherein the machine learning model
1s used to monitor one or more computer networks
based on data collected from the one or more computer
networks:

tracking, by the service, performance metrics associated

with training of the machine learning model, wherein
the performance metrics are indicative of accuracy of
the machine learning model as observed during training
and testing prior to deployment;

tracking, by the service, changes in the data collected

from the one or more networks;

determining, by the service, that a degradation of the

performance of the machine learming model 1s anoma-
lous by correlating the performance of the machine
learning model over time with the performance metrics
associated with training of the machine learning model
and the tracked changes i the data collected from the
one or more networks; and

imtiating, by the service, a corrective measure for the

degradation of the performance, 1n response to deter-
mining that the degradation of the performance 1s
anomalous.

2. The method as in claim 1, wherein the corrective
measure comprises at least one of: pausing use of the
machine learning model to monitor the one or more com-
puter networks or retraining the machine learning model.

3. The method as 1n claim 1, wherein determining that the
degradation of the performance of the machine learning
model 1s anomalous comprises:

detecting an anomaly 1n a correlation between the tracked

performance of the machine learning model and the
performance metrics associated with training of the
machine learning model.

4. The method as 1n claim 1, wherein determining that the
degradation of the performance of the machine learning
model 1s anomalous comprises:

determining whether a dnit in the performance of the

machine learning model between times at which the
model the model 1s trained 1s anomalous.

5. The method as 1n claim 1, wherein the machine learning,
model comprises an anomaly detector, and wherein the
tracked performance 1s indicative of a percentage of anoma-
lies raised by the anomaly detector for the one or more
networks.

6. The method as 1n claim 1, wherein the machine learning
model comprises a classifier, and wherein the tracked per-
formance 1s indicative of a detection probability of the
classifier.

7. The method as in claim 6, wherein the classifier 1s
configured to classily devices 1n the one or more networks
by device type.

8. The method as 1n claim 1, wherein the machine learning
model 1s configured to predict a tunnel failure 1n the one or
more networks.

9. The method as in claim 1, further comprising:

detecting a drift 1in the performance metrics associated

with training the machine learning model.
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10. An apparatus, comprising;
one or more network interfaces;
a processor coupled to the network interfaces and con-
figured to execute one or more processes; and
a memory configured to store a process executable by the
processor, the process when executed configured to:
track performance of a machine learming model over
time, wherein the machine learning model 1s used to
monitor one or more computer networks based on
data collected from the one or more computer net-
works:
track performance metrics associated with training of
the machine learning model, wherein the perfor-
mance metrics are indicative of accuracy of the

machine learning model as observed during training
and testing prior to deployment;

track changes 1n the data collected from the one or more
networks:

determine that a degradation of the performance of the
machine learming model 1s anomalous by correlating
the performance of the machine learning model over
time with the performance metrics associated with
training ol the machine learning model and the
tracked changes 1n the data collected from the one or
more networks:; and

initiate a corrective measure for the degradation of the
performance, in response to determining that the
degradation of the performance 1s anomalous.

11. The apparatus as in claim 10, wherein the corrective
measure comprises at least one of: pausing use of the
machine learning model to monitor the one or more com-
puter networks or retraining the machine learning model.

12. The apparatus as in claim 10, wherein the apparatus
determines that the degradation of the performance of the
machine learning model 1s anomalous by:

detecting an anomaly 1n a correlation between the tracked

performance of the machine learning model and the
performance metrics associated with training of the
machine learning model.
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13. The apparatus as 1n claim 10, wherein the apparatus
determines that the degradation of the performance of the
machine learning model 1s anomalous by:

determining whether a dnft in the performance of the

machine learning model between times at which the
model the model 1s trained 1s anomalous.

14. The apparatus as in claim 10, wherein the process
when executed 1s further configured to:

detect a drift in the performance metrics associated with

training the machine learning model.

15. The apparatus as in claim 10, wherein the machine
learning model 1s configured to detect a problem in a
wireless network.

16. A tangible, non-transitory, computer-readable medium
storing program 1instructions that cause a service to execute
a process comprising:

tracking, by the service, performance of a machine leamn-

ing model over time, wherein the machine learning
model 1s used to monitor one or more computer net-
works based on data collected from the one or more
computer networks;

tracking, by the service, performance metrics associated

with training of the machine learning model, wherein
the performance metrics are indicative of accuracy of
the machine learning model as observed during training
and testing prior to deployment;

tracking, by the service, changes in the data collected

from the one or more networks;

determiming, by the service, that a degradation of the

performance of the machine learming model 1s anoma-
lous by correlating the performance of the machine
learning model over time with the performance metrics
associated with training of the machine learning model
and the tracked changes 1n the data collected from the
one or more networks; and

imitiating, by the service, a corrective measure for the

degradation of the performance, 1n response to deter-
mining that the degradation of the performance 1s
anomalous.
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