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MOTION ROBUST RECONSTRUCTION OF
MULITI-SHOT DIFFUSION-WEIGHTED
IMAGES WITHOUT PHASE ESTIMATION
VIA LOCALLY LOW-RANK
REGULARIZATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from U.S. Provisional
Patent Application 62/674,217 filed May 21, 2018, which 1s
incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This mnvention was made with Government support under

contract P41 EBO015891, RO1 EBO009035, and ROl
EB009690 awarded by the National Institutes of Health. The
Government has certain rights in the mvention.

FIELD OF THE INVENTION

The 1nvention relates generally to methods for magnetic
resonance i1maging. More specifically, 1t relates to high-
resolution diffusion-weighted 1imaging.

BACKGROUND OF THE INVENTION

As a non-invasive mmaging method, diffusion-weighted
MRI has been widely used in clinical applications and
neuroscience applications. Single-shot echo planar imaging,
(EPI) 1s the most commonly used method because of 1ts fast
acquisition speed and immunity to motion. It 1s, however,
limited by image blurring and distortion due to the long
readout window. Multi-shot EPI can provide high-resolution
diffusion-weighted 1mages (DWIs) with reduced distortion.
Unfortunately, significant aliasing artifacts and signal can-
cellation may exist due to the mismatch of the motion-
induced phase between diflerent shots. The reconstruction
becomes non-convex and inftractable to solve when this
phase 1s included 1n the forward model.

Many methods have been developed to estimate the
motion-induced phase. These methods can be classified mnto
two categories. One uses a self-navigator or extra-navigators
to estimate the phase of each individual shot. Unfortunately,
acquisition of the navigator data increases scan time. Fur-
thermore, there might be a mismatch between the extra-
navigator and the data to be reconstructed. The other cat-
cgory uses parallel 1maging to reconstruct each shot
separately, and the low-resolution results are used as phase
estimation. This approach was further developed to jointly
estimate the phase and the 1mage. The phase estimation with
these methods becomes very challenging when the number
of shots 1s high and performance tends to depend on the
geometry of the array coil used for signal reception. The
phase estimation might fail in case of high-frequency phase
variations due to large motion.

BRIEF SUMMARY OF THE INVENTION

Disclosed herein 1s a motion-robust reconstruction
method for diffusion-weighted MRI that resolves shot-to-
shot phase mismatches without using phase estimation. This
approach solves the motion-induced phase mismatch prob-
lem for multi-shot diffusion-weighted 1maging (DWI), so
that high resolution diffusion-weighted 1mages can be recon-
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structed with fewer distortions and higher SNR. This
approach bypasses the challenging phase estimation step by
using a relaxed model while still exploiting inter-shot depen-
dencies. Specifically, locally low-rank multi-shot matrices
are constructed to make use of the relationship between
different shots for reconstruction of a multi-shot DWI image
without phase estimation. The spatial multi-shot matrices
are Tormed using a local group of pixels to form columuns,
where each column 1s from a different shot (excitation). A
convex model with a locally low-rank constraint on the
spatial-shot matrices 1s used for iterative reconstruction.

Compared with state-of-the-art reconstruction methods
for multi-shot DWI, such as POCSMUSE and POCSICE,
instead of solving a non-convex optimization problem, this
approach avoids the challenging phase estimation step by
using a relaxed model while still exploiting inter-shot depen-
dencies. This approach does not need an extra navigator to
estimate the motion-induced phase thus the acquisition time
and SAR 1s reduced.

The motion robustness of the technique has the capability
of handling big phase variations and shows significant
benelits when the motion 1s severe, such as 1n neuroimaging
and body 1imaging.

Compared with k-space-based block-Hankel low-rank
matrix completion, the approach has a computational advan-
tage since the spatial-shot matrices are small and non-
overlapping.

Further, the reconstructed images using this technique can
be used for reliable phase estimation in the context of
phase-estimation-based methods to achieve even higher
image quality.

In one aspect, the invention provides a method for multi-
shot diffusion-weighted magnetic resonance imaging, the
method comprising a) acquiring with a magnetic resonance
imaging system multiple k-space segments of diffusion-
weighted MRI data; b) estimating reconstructed multi-shot
diffusion weighted images by iteratively performing steps
comprising: 1) calculating updated multi-shot 1mages from
the multiple k-space segments and current multi-shot 1images
using a convex model without estimating motion-induced
phase; 1) constructing multiple locally low-rank spatial-shot
matrices from the updated multi-shot 1mages; and 111) cal-
culating the current multi-shot 1images from the spatial-shot
matrices; and c¢) combining the reconstructed multi-shot
diffusion weighted 1mages to obtain a reconstructed MRI
image.

The diffusion-weighted MRI data 1s preferably acquired
in response to an echo planar imaging sequence after apply-
ing diffusion encoding gradients. The echo planar imaging
sequence 1s preferably a 2D single-refocused Stejskal-Tan-
ner spin-echo planar 1imaging sequence.

Constructing each of the spatial-shot matrices from the
updated multi-shot 1image preferably comprises calculating a
low-rank approximation by doing singular value decompo-
sition (SVD) and soft-thresholding.

Each of the spatial-shot matrices preferably corresponds
to a spatial block 1n an 1maging plane, where each column
of the matrix corresponds to a different shot of the multiple
k-space segments.

Calculating updated multi-shot images preferably uses a
sampling operator, a Fourier transform, and an encoding
operator constructed from sensitivity maps, and their con-
jugate operators, and the acquired data, where the sensitivity
maps prelferably are estimated from T2 i1mages acquired
without applying diffusion encoding gradients.

The method may further comprise flipping and conjugat-
ing the multiple k-space segments of diffusion-weighted
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MRI data and treating them as virtual shots. The method
may further comprise estimating sensitivity maps for virtual
shots from conjugated T2 1mages.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a flowchart 1llustrating an overview of a method
for MRI 1imaging according to an embodiment of the inven-
tion.

FIG. 2 1s a flowchart illustrating steps of MRI image
acquisition for a patient scan according to an embodiment of
the 1nvention.

FIG. 3 1s a flowchart illustrating steps of iterative recon-
struction of multi-shot images according to an embodiment
of the invention.

FIG. 4 shows multi-shot data including a collection of N
shots from each of N_ coils, for a total of N _xIN . shots
according to an embodiment of the invention.

FIG. 5 shows a collection of multi-shot images having N
shots according to an embodiment of the invention.

FIG. 6 shows a corresponding matrix whose N_ columns
correspond to the N_ shots according to an embodiment of
the 1nvention.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Embodiments disclose a locally low-rank reconstruction
approach to reconstruct images in multi-shot diffusion-
weilghted imaging (DWI). Locally low-rank (LLR) regular-
ization takes advantages of the smoothness of sensitivity
maps for calibration-less parallel imaging reconstruction, or
similarities between images at diflerent time points for
dynamic imaging. In the present approach, we use locally
low-rank regularization to reconstruct multi-shot DWI based
on the assumption that the motion-induced phase 1s spatially
smooth 1n most regions. The 1mage 1s parameterized by
multiple 1mages from each shot rather than motion-induced
phase and one single 1mage, so that the phase estimation 1s
not necessary. This enables the reconstruction to be formu-
lated as a convex optimization problem which 1s easy to
solve and guaranteed to converge to the global minimum.

FIG. 1 1s a flowchart 1llustrating an overview of a method
for MRI imaging according to an embodiment of the inven-
tion. In step 100, an MRI system acquires k-space data
including T2 imaging data 102 and diffusion-weighted (high
b-value) multi-shot data 108. In step 104 sensitivity maps
106 are estimated from the low-Irequency components of
the T2 data 102 using ESPIR1T. The acquisition 100 also
produces sampling operator 110.

Step 112 uses a convex model to iteratively estimate
multi-shot 1mages 114 from the multi-shot data 108, sensi-
tivity maps 106, and sampling operator 110, where the
challenging phase estimation step 1s bypassed by treating
cach 1mage segment (1.¢., shot) as a separate 1mage.

In step 116, the multi-shot 1mages 114 reconstructed by
iterative estimation 112 are combined to produce a final
diffusion-weighted image 118. The multi-shot 1mages may
be combined, for example, by removing the low-resolution
phase of each image, and performing a complex sum of the
resulting 1mages. Alternatively, the multi-shot 1mages may
be combined by taking the root sum of square of 1images of
all shots.

The acquisition 100 and 1terative reconstruction 112 wall
now be described in further detail 1n relation to FIG. 2 and
FIG. 3, respectively.
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FIG. 2 1s a flowchart illustrating steps of MRI 1mage
acquisition for a patient scan according to an embodiment of
the mvention. The MRI acquisition 200 produces 12 data
210, multi-shot data 212, and sampling operator 208.

In step 202, the MRI system generates a 2D multi-shot
single-refocused Stejskal-Tanner spin-echo planar imaging
sequence within 1imaging region. In response to excitations
of the imaging sequence, RF coils of the MRI system are
used 1n step 206 to acquire T2 data 210 which have a b-value
of 0. This T2 data 1s acquired without applying diffusion
encoding gradients. In step 204, diflusion-encoding gradi-
ents are added and the RF coils are used to acquire diffusion-

weighted (high b-value, 1.e., b>100) multi-shot MRI data
212. The multi-shot data 212 includes a collection of N_

shots from each of N_ coils, for a total of N_xN . shots, as
illustrated by the multi-shot data 400 1n FI1G. 4. Step 204 also

produces sampling operator 208.

Optionally, using a virtual conjugate shot concept, the
acquired data 210 and 212 may be flipped and conjugated
and then treated as virtual shots. Corresponding virtual
sensitivity maps can be estimated from the conjugated 12
data.

FIG. 3 1s a flowchart illustrating steps of iterative recon-
struction of multi-shot images according to an embodiment
of the invention. The 1terative reconstruction 300 uses
multi-shot data 302, sampling operator 304, and sensitivity

map 306 to reconstruct a collection of multi-shot 1mages
312.

Each iteration includes the following steps: In step 308,
updated multi-shot 1images 310 are calculated from current
multi-shot images 324 based on the acquired multi-shot data
302, sampling operator 304, and sensitivity maps 306. The
update uses a convex model, as will be described 1n more
detail below.

The updated multi-shot 1mages 310 are then used to
generate current multi-shot 1images 324 for use in the next
iteration. First, in step 314, the updated multi-shot 1images
310 are used to construct spatial-shot matrices 316. There
are multiple non-overlapped matrices to cover the whole
field of view. Each of the spatial-shot matrices 316 corre-
sponds to a spatial block 1n the imaging plane, where each
column of each matrix corresponds to a different shot. This
1s 1llustrated 1in FIG. 5 and FIG. 6, where FIG. 5§ shows a
collection of multi-shot 1mages 500 having N_ shots, and
FIG. 6 shows a corresponding matrix whose N_ columns
correspond to the N_ shots. Each column 1s formed from the
data 1n a block of pixels (e.g., 8x8 pixels) 1n one of the
multi-shot 1images. Thus, the resulting spatial-shot matrix,
denoted R,, contains information from a spatial block at
pixel index b 1n the image domain. With n pixels in one
block, and N_ shots, an nxN_ spatial-shot matrix 1s con-
structed, so that element R, {x, ~.fi, Tepresents the
image at the i pixel and j” shot. 5

Because the motion-induced phase 1s slowly varying in
the 1mage domain, the spatial-shot matrices are low-rank.
This can be seen by decomposing the spatial-shot matrix
into the product of two matrices (Eq. 1). Each element of the
diagonal matrix I represents the target complex image with-
out motion-induced phase. Matrnx ¢ contains the motion-
induced phase 0 of each shot.

(1)

Rpix1,.. wn )=
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If the motion-induced phase 0O 1s spatially smooth, the
rank of matrix p is low. Consequently, R, 1x, ~.f» which
1s the product of a diagonal matrix and a low-rank matrix, 1s
also low-rank. Therefore, constraints on the rank of these
matrices can be used to remove the phase inconsistency. So,
returning to FIG. 3, 1n step 318, low-rank approximation 1s
used to calculate updated low-rank spatial-shot matrices
320. This can be calculated for each matrix, for example,
using singular value decomposition (SVD) to find the eigen-
values and soft-thresholding on the eigenvalues to get a
low-rank approximation of the original matrix.

In step 322, these updated low-rank matrices are then
reshaped 1nto 1mage blocks and concatenated to produce the
current multi-shot 1images 324 for use in the next iteration
where the multi-shot images are again updated by estimation

step 308.

The updating of each multi-shot image in step 308 uses a
gradient based on an encoding operator (i.e., data fidelity
term) constructed from the sensitivity map, Fourier trans-
form, and sampling operator. Given the current multi-shot
image and acquired multi-shot data, the gradient can be
calculated, and the images are updated by adding a scaling
of the gradients to the current image.

In the present approach to reconstruction, the forward
encoding model 1s combined with a constraint on the rank of
_____ jVS} The high computational complexity of the
conventional non-convex rank penalty 1s reduced by replac-
ing the rank constraint with 1ts convex envelope, the nuclear
norm, to make the optimization problem convex. The recon-
struction may be formulated as the following optimization
problem,

(2)
Pl:

on

N.S
min |D; FSx; — yill5 + A I1Rp{x1, . w I
X1,... N ; i Zben

where D,, 1s the sampling operator, x,, 1s the image shot 1 to
be reconstructed, y,, 1s the acquired k-space data ot shot 1, F
1s Fourier transform, S 1s the sensitivity map, A 15 a regu-
larization parameter, and £2 1s the set of all non-overlapping
blocks indexed by b which uniformly tile the image domain.

Some embodiments may use a decomposition of the
spatial-shot matrix with virtual couch shift (VCS). With
virtual shots, the total number of shots 1s doubled, and the
new low-rank matrix can be formed and decomposed as
follows:

SO tBLL) Ef’(ﬁ,zwﬁﬁl,zm)_

... 0

Rpixi,. . 2w =

0 .|

_ EI(HH,I +ﬁﬂ,l ) L EE(QH,Z*NS—F‘BH,ZNS)

where 0 and p represent the motion-induced phase during
diffusion encoding and the phase induced from B_ inhomo-
genelty and other factors, respectively. Under the assump-
tion that 3 1s also spatially smooth, the low-rank property of
Roaxy -+ which includes both real and virtual shots
still holds. This way, the final results will tend to have a
smooth phase by adding a constraint on the rank of these
matrices, and no other partial Fourier reconstruction 1s
needed.
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Using VCS, the reconstruction problem 1s formulated as
follows:

2N

. , . . ' — .2
P2 min Y IDFSx =yl +A) IR,

*1,... 2Ng ‘53

Note that in this formulation there are 2N _ shots 1n total,
including N_ original shots and N_ virtual conjugate shots.
Sensitivity maps of real shots are the same as 1n P1, and for
virtual shots, the maps are calculated from the flipped and
conjugated reference data.

In this formulation of the reconstruction, coil sensitivity
information 1s used to combine multi-channel 1images within
one shot before forming the low-rank matrices, and the
difference between different coil-combined images comes
from the motion-induced phase instead of coil sensitivity
encoding. As described above, Eq. 2 1s solved using an
iterative thresholding algorithm. The estimated images from
all shots are then combined using complex averaging or root
sum ol square.

Embodiments of the invention may use virtual conjugate
shots for shot-LLR with partial Fourier. Partial Fourier 1s
commonly used i EPI to accelerate the acquisition or to
acquire the central k-space earlier in the echo train. Partial
Fourier reconstruction methods can be used to fill in the
missing phase encoding lines after the shot-LLR reconstruc-
tion by employing the conjugate symmetric property of the
k-space. Similar to the 1dea of virtual conjugate coils, which
1s an alternative way of exploiting this property, we generate
virtual conjugate shots (VCS) by thpping and conjugating
the acquired data, and treat them as additional shots to avoid
the estimation of the low-resolution phase from the central
k-space data.

As an 1illustrative example of the technique, data were
acquired on a 3 Tesla (T) MRI system (Discovery MR730,
GE Healthcare) using a 2D single-refocused to Stejskal-
Tanner diffusion-weighted spin-echo EPI sequence. The
number of shots may be 4 and 8, for example, and the
b-value may be, for example, 1000 s/mm~* or 600 s/mm?~.

The reconstruction technique of the present invention was
implemented based on the open-source Berkeley Advanced
Reconstruction Toolbox (BART) with a block size of 8x8.
For comparison, the reconstruction results were compared to
conventional POCS-MUSE and POCS-ICE techniques,
which solved the following problem:

(3)
min

Ns
> D FSPx — yill3
%P1 N S

where P, 1s the phase of shot 1, and x 1s the final 1mage to be
reconstructed.

The number of iterations in the reconstruction was 200 for
all methods 1n these examples. More generally, the number
of iterations may be chosen empirically, to make sure all
methods converge. For MRI reconstruction, this number
usually ranges from 100 to 400. The k-space data were
normalized first. The regularization parameter for the nor-

malized data was 0.0008 for shot-LLR and 0.0004 for
shot-LLR with VCS.

The 1mage quality was evaluated visually based on the
existence of aliasing artifacts, shading artifacts, and our
knowledge of brain anatomy. It was found that shot-LLR
and shot-LLR with VCS provided comparable image quality
to POCS-MUSE and POCS-ICE for 4-shot acquisitions and

markedly reduced aliasing artifact in comparison to POCS-
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MUSE and POCS-ICE for 8-shot acquisitions. All methods
work similarly on 4-shot data, which demonstrates the
capability of shot-LLR to solve the motion-induced phase

mismatch problem without phase estimation. For 8-shot
data, shot-LLR and shot-LLR with VCS significantly reduce

aliasing artifacts compared with POCS-MUSE and POCS-
ICE, despite the presence of areas of signal loss 1n shot-LLR
and shot-LLR with VCS.

The results demonstrate that the techniques of the present
invention are more motion robust compared to POCS-
MUSE and POCS-ICE. If the data are not motion corrupted,
all these methods work well and images from different
acquisitions look consistent. Shot-LLR has significantly
fewer artifacts, especially after averaging the resultant
image from six acquisitions, which implies that 1t can handle
more complicated phase variations between shots.

The increased SNR and reduced aliasing artifact achueved
with shot-LLR are pronounced in the 8-shot images. Shot-
LLR provides improved image quality and respective higher
resolution, as well as decreased ghost artifacts versus POCS-
MUSE and POCS-ICE. Compared with the single-shot
image, the 8-shot acquisition and shot-LLR reconstruction
together provide higher in-plane resolution (1 mm) and
sharper boundaries for clinical evaluation.

In conclusion, embodiments provide a method for multi-
shot diffusion-weighted MRI reconstruction. Spatial-shot
matrices are constructed, and a convex model with a low-
rank constraint on these matrices 1s used to avoid the
challenging phase-estimation step. The method 1s shown to
have the capability to reconstruct data from acquisitions
with relatively high numbers of shots.

In some embodiments, external phase information can be
also 1incorporated by including 1t in the sensitivity map, and
this can further improve the performance. The following 1s
one approach to implementing this. If we have some prior
knowledge of the shot-to-shot phase varnations, we can add
a linear operator about those variations in the data fidelity
term, 1.¢., 1n Eq. 2 above using D.FSP x. mstead of D, FSx,
and P 1s about the phase variations. This way, the spatial-shot
matrices constructed from x after removing some phase
variations can have better low-rank property.

It 1s envisioned that NUFFT or gridding may be used in
some embodiments to make the method work with non-
Cartesian data. This can be done by changing original
Fourier transform operator F 1n the data consistency term to
NUFFT.

It 1s envisioned that, 1n some embodiments, the methods
may be extended to multi-slice or 3D data. For reconstruc-
tion of multi-slice data, one operator 1s added in the data
fidelity term between sensitivity encoding operator S and
Fourier transform operator F, which 1s about how different
slices are combined 1n data acquisition. For reconstruction
of multi-slice data, we use 3D Fourier transform instead of
2D 1n the data fidelity term.

For both, we extend the construction of spatial-shot
matrices to 3D blocks (we are using 2D spatial blocks now).
But this 1s optional.

It 1s envisioned that, 1n some embodiments, other con-
straints, such as 1,-norm, l,-norm, or TV regularization
terms may be added. This can be achieved by adding other
regularization terms 1nto our cost function. When the opti-
mization problem 1s solved, the low-rank updated 1mages
are updated further based on those constraints.

It 1s envisioned that, 1n some embodiments, the techniques
may be combined with navigator echo for increased robust-
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ness. The navigator may not be pertect, but 1t may be a good
starting estimate or may be used 1n a regularization penalty.
Navigator echo can be used to provide “external phase
information”.

It 1s envisioned that, in some embodiments, the technique
can be combined with reduced motion sensitivity encoding

methods such as CODE. Convex optimized diflusion encod-
ing (CODE) can be used for diffusion encoding in data

acquisition to reduce inter-shot variation. This way, the
low-rank property of the spatial-shot matrices can be also
improved.

It 1s envisioned that, in some embodiments, the technique
can be applied to non-EPI methods such as diffusion-
prepared spin-echo-train or other diffusion-prepared acqui-
sitions. For reconstruction of data from other acquisition
methods, like spin-echo train, only the sampling operator
needs to be redefined based on the actual acquisition pattern.

The mvention claimed 1s:

1. A method for multi-shot diffusion-weighted magnetic
resonance 1maging, the method comprising:

a) acquiring with a magnetic resonance imaging system
multiple k-space segments of diffusion-weighted MRI
data;

b) estimating reconstructed multi-shot diffusion weighted
images by iteratively performing steps comprising:

1) calculating updated multi-shot 1images from the mul-
tiple k-space segments and current multi-shot images
using a convex model without estimating motion-
induced phase;

11) constructing multiple locally low-rank spatial-shot
matrices from the updated multi-shot 1mages;

111) calculating the current multi-shot 1images from the
spatial-shot matrices;

¢) combining the reconstructed multi-shot diffusion
welghted 1mages to obtain a reconstructed MRI image.

2. The method of claim 1 wherein the diffusion-weighted
MRI data 1s acquired in response to an echo planar imaging
sequence after applying diffusion encoding gradients.

3. The method of claim 2 wherein the echo planar imaging,
sequence 1s a 2D single-refocused Stejskal-Tanner spin-echo
planar 1maging sequence.

4. The method of claam 1 wherein constructing the
spatial-shot matrices from the updated multi-shot 1mage
comprises calculating a low-rank approximation by doing
singular value decomposition (SVD) and soft-thresholding.

5. The method of claim 1 where each of the spatial-shot
matrices corresponds to a spatial block 1n an 1maging plane,
where each column of the matrix corresponds to a diflerent
shot of the multiple k-space segments.

6. The method of claam 1 where calculating updated
multi-shot 1mages uses a sampling operator, a Fourier trans-
form, and an encoding operator constructed from sensitivity
maps, and their conjugate operators, and the acquired data.

7. The method of claim 6 where the sensitivity maps are
estimated from T2 1mages acquired without applying diffu-
sion encoding gradients.

8. The method of claim 1 further comprising flipping and
conjugating the multiple k-space segments of diffusion-
weighted MRI data and treating them as virtual shots.

9. The method of claim 8 further comprising estimating
sensitivity maps for the virtual shots from conjugated 12
1mages.
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