USO011301579B1

12 United States Patent 10) Patent No.: US 11,301,579 B1

Mwaura et al. 45) Date of Patent: Apr. 12, 2022
(54) SELECTIVELY ENCRYPTING COMMIT LOG 10,372,935 Bl 8/2019 Mwaura et al.
ENTRIES 2003/0041063 Al 2/2003 Brady
2003/0120684 Al* 6/2003 Zutltoocovvvivinnnn, HO4L 63/08
(71) Applicant: Google LLC, Mountain View, CA (US) 2003/0163431 Al 82003 Ginter
2003/0163433 Al 8/2003 Lam
(72) Inventors: David Wanyoike Mwaura, San 38(1)8//81;(55;312 : g/// gg?g }S)LOHEH
Francisco, CA (US); Dmitry N. Orlov,) _ ashd
Castro Valley, CA (US) (Continued)
(73) Assignee: Google LLC, Mountain View, CA (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Chang et al. “Bigtable: A Distributed Storage System for Structured

patent 1s extended or adjusted under 35 Data,” To appear in OSDI 2006, 14 pages.
U.S.C. 154(b) by 401 days. (Continued)

(21) Appl. No.: 16/531,498
Primary Examiner — Sakinah White Taylor

(22) Filed: Aug. 5, 2019 _ _
(74) Attorney, Agent, or Firm — Honigman LLP; Brett A.

Related U.S. Application Data Krueger
(63) Continuation of application No. 15/348,254, filed on
Nov. 10, 2016, now Pat. No. 10,372,935. (57) ABSTRACT
(60) Provisional application No. 62/255,322, filed on Nov. _ _ _
13, 2015. Methods and systems for selectively encrypting commit log
entries 1n a distributed database system are described. One
(51) Int. C. example method includes determining that a commit log for
GO6F 21/62 (2013.01) a particular server 1n the distributed database system 1s to be
Go6l' 11/14 (2006.01) updated based on a data operation performed on a tablet
GO6F 16/23 (2019.01) managed by the server, the tablet including at least a portion
(52) U.S. CL. of the data from a table 1n the distributed database system,
CPC ... GO6F 21/6227 (2013.01); GO6F 11/1464 and wherein the data from the table 1s stored in multiple

(2013.01); GO6F 16/2379 (2019.01); GO6F tablets; determining that the tablet managed by the particular
2201/84 (2013.01); GO6F 2221/2107 (2013.01) server is an encrypted tablet; in response to determining that

(58) Field of Classification Search the tablet 1s an encrypted tablet, generating an encrypted log
U S P e e et et earaeanan, 713/165 entry represen‘[ing the data operation perfomled on the tablet
See application file for complete search history. including an encrypted payload including information rep-
_ resenting the data operation and an unencrypted header
(56) References Cited including information about the encrypted log entry; and
U.S PATENT DOCUMENTS updating the commit log to include the encrypted log entry.
5,696,967 A 12/1997 Hayashi
6,446,092 Bl 9/2002 Sutter 14 Claims, 7 Drawing Sheets
100
2‘ Key Manager 130

I

Tablet Server 110

Encrypted Tablets 112

Unencrypted Tablets 114

}
R
\ L

Persistent Storage 140

Server Commit Log 150

Committed Tablets 142

S g

US 11,301,579 B1
Page 2

(56)

2012/0011596 Al*

2013/0227303

2014/0245025
2014/0297608

2014/0314233

20
20

|5/0186668
15/0304282

20

2017/0046234 Al

15/0326540

References Cited

U.S. PATENT DOCUM]

1/2012 Kim

Al* 82013 Kadatch

Al 8/2014 Fairless

Al* 10/2014 Larson

Al* 10/2014 Evans

Al 7/2015 Whaley

Al 10/2015 Xu

Al* 11/2015 Hamburg
2/2017 Yang

iiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiii

tttttttttttttttttttt

tttttttttttttttttt

iiiiiiiiiiii

OTHER PUBLICATIONS

HO4L 63/0428

726/30

GOO6F 21/6218

713/193

GOOF 9/466

707/695

HO4N 21/443

380/210

HO4L 63/0853

713/168

Ferrett1 et al. “Distributed, Concurrent, and Independent Access to
Encrypted Cloud Databases,” Feb. 2014, vol. 25, No. 2, IEEE

Transactions on Parallel and Distributed Systems (Year: 2014).

* cited by examiner

US 11,301,579 B1

Sheet 1 of 7

Apr. 12,2022

U.S. Patent

Crl Si9jge L papiwwo)

0¢7 Do Nwwon) Janisg

[LLTEERLECE Trs O

rLLY] ELTLY] [LLLEE [ty

p1 obel0o)g Jus)sisied

yLL S1o|qe] paydAlousun

EERLLYPELEr]

[EESCTEEELEreELEre) o At

ZLL S19|qe | paydAious

0F1 1ansg J9|qe |

0¢L

[LEFErE

abeuep Asy

P et [EETETIEFr TS

AW 00}

US 11,301,579 B1

Sheet 2 of 7

Apr. 12,2022

U.S. Patent

8¢Z peojfed paraAiouaup

9¢Z Joluap| asegele(FEZ JaquunN aousnbag

TERELEEEE e e o P o et P I

917 Loy paddeipn

917 Januap| eseqele(Lz JoquinN sousnbeg

ZL¢ JapesH pardAiousun

S e P e

0€C
AU3 18|0e | padAiousun

1J¥4
Aug 18j0e | pajdAioug

AN 00¢

00¢

0cs L1 J1oAI9S 19]ge) 40} HOj Nwwod 0) Aljus Boj wwod mau puaddy

US 11,301,579 B1

Japeay
Aus oy ur Aoy
— ¢z \ ~ peddeim paiojg A
> |
e, - . —
= Aoy paddeim
>
= Uim peojAed
2 028 \%ﬁ@m:m poj JdAIou3
m cLE Aijus bo| Jwwod Joj Aey paddeim 189
o
~]
.ml AJjua DO| JWIWOD
M8U 8)elausn)
0LE \ -

[

19]qe} pajdAious o)
cos \ S)1IM [BOO] WIOHS

0F L 2belo)S Jus)sisiad 051 1abeuejy Aoy 011 JoAlag 18j0e |

U.S. Patent

US 11,301,579 B1

Sheet 4 of 7

Apr. 12,2022

U.S. Patent

ADIE
I

19|98} J0 Adoo
1200| 0} peojAed Anus Boj Ul
0vY \ 09Q1I9S8p Uonelsdo z%@

{ _

L peojhed Ajue 6o 10A109Q |

00¥

1% 4

0sy < | jspeay Ajjus wouy Asy desmun

}o|qe) paubisse Joj Ajjus
CZr \ 60| paydAious Apuap

L i i A e e B

 Jepeay pajdAiousun Ag
$a1us BOj HUWo9 1o
0z¥ \ A Rl HOS M
CLY JOAIBS SNoIASId 10} DOJ HWWOD BABL}EY
1194 _ 19|qe] PajILUWLIOD SABLISY
% fionooas
cob e o) poubisse oldeL
0P obeio}s Jussisiad 0SL Jabeuepy Aoy 0L1 Jenieg 19|qe |

G 9Old

009

US 11,301,579 B1

A

I~ ettt R ettt At
Qo
S Ajus Doy pardAious ay)
" INOge uoewloul buipnjour sepesy paydAiousun ue pue uonessdo
O elep au) bunuasaidas uonewsour Buipniour peojked pedAious |
h 2 E 5 2 .
7 GIG ue Buipnjour Anua Boj pardAIous sy 18|ge) aUY) U0 PauLIoLad

uonelado elep auyj bunuasaidas Ajus boj peydAious ue sjelausn
~ T Y I
-
—
2 —— S — :
- 1o|qe1 paidAious |
ml 0LC .m/ Ue SI JaAIas Jeinoiled au) Ag pabeuew 19|ge)] au) 1Byl aullulala(W

WB)SAS asege)ep pajngLisip
ay) Ul 8|ge] B wol) ejep ay) Jo uonod e 1ses) e buipnjoul 19|gel sy)
um/ 18IS Jeinanied ay) Aq pabeuew 19jge) e uo pawlousd uoielsdo
505 BJep B U0 paseq pajepdn aq 0 SI Wa)SAS asegelep painguisip
oy} Ul J8AIBS Jejnoiied e Joj HOoj HWWOoI B 1BU) aullisla(]

1

i

U.S. Patent

US 11,301,579 B1

Sheet 6 of 7

Apr. 12,2022

U.S. Patent

9 Ol

19|0e) JS)SEW PaAsLl}al oY) uo Ajjus

ceg lm/ bo| Jejnoiled ay) Aq pajussaldal uonelado elep syl buiwiopsd

e Lt e LT - - *’%%%%%%%%%% P

Ajjus 6o _mso_tmaml& AQ 8&%..9&_ -

:w/ uonesado ejep syl buthiuapi peojAed pardAiosp sy Aoy
0€9

[EETTEEEITEIT RTE rrar ar [ETECELEErY .

papoosp ay) buisn Anus Boj Jenoiued sy} jo peojAed e bundAioag

Ajus Doy Jeinoiued ay) Jo Jepesy paydAiousun syl

69 |m/ LI0J} A9y pPapooue ue 0) Buipuodssiod Asy papodep e bulnsLley

X ll
salljus bo| Jenoned sy} Jo yoes Jo-
|

[EER LI ETTELS e e e Al e L A P R [EETELTECEEr R [RETETTEEEIF e P A P P M P R Rt

pawopad aq 0} St A1ar00al Blep Yolym Joj 1ejge) paydiious

029 |M/ 3oy} 10 UOISioA PalIUILIOS B m:wcmw@_am‘_ }o|ge] o]SBlU B @E)@E@I

e o A I N A [EETES [[EEELECEIELIPE i (X

10[0e) paydAious au) Joj Jaiuapi aseqeiep ay) buipnpoul
Saljus bo| palios ay) WoJj seus boj Jejnoned buiAyusp

Pl R P ol e Pl e Pl el R P el P P PP PP, PP L. REEUTRETE PR, A P e P e PP M P Lo P,

>bcm
foj yoes ui papnjoul Japeay pajdAiousun ue ul papnjoul siaiuspl
9Seqelep pue siaguinu adusnbas uo paseq salijus 60j ay) buiniog

ﬂ‘ o 8 8 L 1 0) 1) 1 8 e Y

JaAI8S Jejnailed au) Aq pabeuew)ojge) pajdAious
Ue 10} Salus Buipnioul Boj W09 8y} ‘Wa)sAs asegelep
PAINQLISIP BU) Ul JBAIBS Jejnailed e 1o} DOJ JILUWO0I B bulrsiey

TLTETLLEVELEELEEEY TIT PECELEECELEY T} FEPEEELECEE TE [TELELS [LTETEERLELE | [LECERELEETE [LTETEERLEL 1] [LELILELE [LELEEELELE]

009

U.S. Patent Apr. 12, 2022 Sheet 7 of 7 US 11,301,579 B1

US 11,301,579 Bl

1

SELECTIVELY ENCRYPTING COMMIT LOG
ENTRIES

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. application Ser.
No. 15/348,254, filed Nov. 10, 2016, which claims the

benefit of U.S. Application No. 62/255,322, filed Nov. 13,
20135, the contents of each are mcorporated by reference.

BACKGROUND

This specification generally relates to selectively encrypt-
ing commit log entries i a distributed database system.

In database systems, operations that change data (e.g.,
writes) may be performed on copies of the data that are
stored 1n a high speed, volatile storage (e.g., random access
memory (RAM)). This may be done to improve performance
by avoiding accessing slower, persistent storage (e.g., disk)
every time data 1s changed. The database system may keep
a record of the operations performed on the data 1n a log file,
and the copies of the data in volatile storage may be written
to persistent storage at regular intervals 1n a process referred
to as checkpointing.

SUMMARY

In general, one aspect of the subject matter described in
this specification may be embodied 1n systems, and methods
performed by data processing apparatuses that include the
actions of determining that a commit log for a particular
server 1n the distributed database system 1s to be updated
based on a data operation performed on a tablet managed by
the server, the tablet including at least a portion of the data
from a table 1n the distributed database system, and wherein
the data from the table 1s stored i multiple tablets; deter-
mimng that the tablet managed by the particular server 1s an
encrypted tablet; in response to determining that the tablet 1s
an encrypted tablet, generating an encrypted log entry rep-
resenting the data operation performed on the tablet includ-
ing an encrypted payload including information representing
the data operation and an unencrypted header including
information about the encrypted log entry; and updating the
commit log to include the encrypted log entry.

Details of one or more implementations of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other

features, aspects, and potential advantages of the subject
matter will become apparent from the description, the draw-
ings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example environment for
selectively encrypting commit log entries.

FIG. 2 1s a diagram of an example commit 1including an
encrypted entry and an unencrypted entry.

FIG. 3 1s a swim lane diagram of an example process for
selectively encrypting commit log entries.

FIG. 4 1s a swim lane diagram of an example process of
performing tablet recovery based on a commit log including,
encrypted and unencrypted entries.

FIG. 5 1s a flow chart of an example process for selec-
tively encrypting commit log entries.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a flow chart of an example process of performing,
tablet recovery based on a commit log including encrypted

and unencrypted entries.

FIG. 7 1s a diagram of computing devices that may be
used to implement the systems and methods described 1n this
document.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

In a distributed database system, the management of data
in a particular database may be distributed across a plurality
of servers. In some cases, each server may be assigned
particular portions of the data in the database to manage.
These individual portions of the database may be referred to
as “tablets” or “shards,” and may include a portion of the
data from a table or tables in the distributed database. When
a client requests an operation on particular data 1n the
distributed database (e.g., reading the particular data, writing
the particular data, etc.), the tablet (or 1n some cases tablets)
containing the particular data 1s identified, and the server
assigned the tablet 1s instructed to perform the requested
operation of the data 1n the tablet. Each server may keep a
local copy of each tablet 1n memory or other storage, and
perform operations on this copy to improve performance.
These changes may be committed to persistent storage at
regular intervals (e.g., checkpoints). When each server per-
forms an operation of 1ts copy of the tablet, 1t may write an
entry to a commit log stored in persistent storage with
information about the operation performed. In the event the
server fails and 1ts copy of the tablet including uncommaitted
changes to the data 1s lost (due to the local storage being
volatile), the commit log may be used to recover the lost
changes to the data. In some cases, operations are written to
a commit log before they are applied to the underlying data
in order to recover from the situation where a server fails
while processing a particular operation.

In some cases, such as where the distributed database
includes sensitive iformation and the distributed database
system 1s publicly accessible, 1t may be desirable to encrypt
the data 1n the database. In such a case, the tablets 1n the
database may be stored 1n an encrypted form both 1n volatile
and persistent storage. Because the commit log provides
information about operations performed to the data (includ-
ing nserts of new data) that could allow an attacker to derive
at least a portion of the data in the distributed data, the
commit log may also be stored 1n an encrypted form.

In some cases, a particular server may manage both
encrypted and unencrypted tablets. In order to avoid
encrypting log entries for unencrypted tablets (where such
encryption 1s unnecessary) the server may store unencrypted
log entries for these tablets.

The present disclosure describes techniques for selec-
tively encrypting commit log entries 1 a distributed data-
base system. One example method includes, for a data
operation on an encrypted tablet, generating an encrypted
log entry representing the data operation performed on the
tablet. The encrypted log entry mncludes an encrypted pay-
load including information representing the data operation
and an unencrypted header including information about the
encrypted log entry, such as a sequence number indicating
the order 1n which the entries were performed and a database
identifier associated with the tablet on which the operations
was performed. The unencrypted header may also include a
“wrapped” (e.g., encrypted or encoded) key to be used to
decrypt the encrypted payload. For a data operation on an

US 11,301,579 Bl

3

unencrypted tablet, the log entry may include an unen-
crypted header in the same format as a log entry for an
encrypted tablet, but the header may not include the wrapped
key and the payload may be stored unencrypted.

The present disclosure also describes techniques for per-
forming data recovery in the distributed database system.
One example method includes retrieving a commit log for a
particular server that manages an encrypted tablet for which
data recovery 1s to be performed. Data recovery may be
iitiated, for example, 1n response to a failure of the par-
ticular server leading to data loss. The particular server may
manage other tablets 1n addition to the encrypted tablet. In
such a case, the log entries 1n the commit log may be sorted
based on sequence numbers and database i1dentifiers in the
unencrypted headers. Sorting by the sequence numbers and
database 1dentifiers allows operations to be arranged in the
order 1n which they were performed, and grouped based on
the databases (and thus the tablets) on which they were
performed. After sorting, log entries associated with the
database identifier for the encrypted tablet to be recovered
are 1dentified. A master tablet 1s retrieved (e.g., from per-
sistent storage) that represents a committed version of the
encrypted tablet for which data recovery 1s to be performed
1s retrieved. For each log entry with the database 1dentifier
for the encrypted tablet to be recovered, a decoded key
corresponding to an encoded key from the unencrypted
header of the particular log entry 1s retrieved used to decrypt
the payload of the particular log entry. The data operation
represented by the particular log entry 1s then performed on
the retrieved master tablet.

The techniques described herein may provide the follow-
ing advantages. The unencrypted header allows entries in the
log to be sorted without decrypting the payload of the

encrypted entries, which may improve performance during
data recovery. Further, this log entry format allows log
entries for encrypted and unencrypted tablets to be stored 1n
the same commit log. Because a particular server may
manage both encrypted and unencrypted tablets, the ability
to store the log entries for both 1n the same log file may
simplily the operations of the distributed database system by
climinating the need to maintain multiple commit logs per
SErver.

FIG. 1 1s a diagram of an example environment 100 for
selectively encrypting commit log entries. As shown, the
environment 100 includes a tablet server 110. A key manager
130, and persistent storage 140. In operation, the tablet
server 110 manages encrypted tablets 112 and unencrypted
tablets 114. The tablet server 110 process 1s a request that
causes a change to the encrypted to either an encrypted tablet
112 or an unencrypted tablet 114, tablet server 110 writes an
entry to the server commit log 150. As described 1n greater
detail below, each entry in the server commit log includes an
unencrypted header allowing certain information about the
entry to be read regardless of whether the payload of the
entry 1s encrypted. If the entry represents a change to an
unencrypted tablet 114, the payload of the entry (which
includes details information about the change) 1s stored 1n
unencrypted form. If the entry represents a change to an
encrypted tablet 112, the tablet server 110 retrieves an
encryption key from the key manager 130, and encrypts the
payload of the entry using this encryption key. A represen-
tation ol the encryption key i1s stored in the header of the
entry, as described below.

The tablet server 110 may be one of a plurality of servers
in a distributed database system. In some 1mplementations,
the tablet server 110 may communicate with other servers in
the distributed database system over a network. In some

10

15

20

25

30

35

40

45

50

55

60

65

4

implementations, each tablet server 110 may include persis-
tent storage 140, such as a disk or other nonvolatile storage
resource. In some cases, the tablet server 110 may use a
common storage resource shared with other tablet servers,
such as a distributed file system. The tablet server 110 may
also 1include volatile storage, such as random access memory
(RAM) or flash memory. The tablet server 110 may use this
volatile storage to store the encrypted tablets 112 and the
unencrypted tablets 114, and may write changes to the
tablets to persistent storage (as committed tablets 142) at
regular 1ntervals to improve performance.

The key manager 130 may be a computing device oper-
able to provide encryption keys to the tablet server 110 upon
request. In some cases, the key manager 130 provides
“wrapped” encryption keys to the tablet server 110. Such
wrapped keys are themselves encrypted, and are thus suit-
able for storage 1n the unencrypted headers of the commut
log entries. This process 1s described 1n greater detail below.

FIG. 2 1s a diagram of an example commit log 200
including an encrypted entry 210 and an unencrypted entry
230. As shown, the encrypted tablet entry 210 and the
unencrypted tablet entry 230 unencrypted headers 212, 232.
Both unencrypted headers 212, 232 include a sequence
number 214, 234 indicating 1n order 1n which the operation
represented by the entry was performed. Both unencrypted
headers 212, 232 also include a database 1dentifier 216, 236
indicating a database to which the tablet changed by the
operation represented by the entry belongs. The unencrypted
header 212 the encrypted tablet entry 210 also includes a
wrapped key 218, which 1s the encryption key recerved from
the key manager 130 discussed above.

FIG. 3 1s a swim lane diagram of an example process 300
for selectively encrypting commit log entries. At 305, the
tablet server 110 performs a local write to an encrypted
tablet. In some cases, this includes the tablet server 110
changing the version of the encrypted tablet 1n 1ts volatile
storage. At 310, the tablet server 110 generates a new
commit log entry of the form shown 1n FIG. 2 representing
the change to the encrypted tablet. At 315, the tablet server
gets a wrapped key for the new commit log entry from the
key manager 130. At 320, the tablet server 110 encrypts the
payload for the log entry with the wrapped key received
from the key manager 130. At 325, the wrapped keys stored
in the commuit log entries header, as shown in FIG. 2. At 330,
the new commit log entry 1s appended to the commit log in
the persistent storage 140.

FIG. 4 1s a swim lane diagram of an example process 400
of performing tablet recovery based on a commit log includ-
ing encrypted and unencrypted entries. At 405, the tablet
server 110 1s assigned a tablet during a recovery process. For
example, the tablet may have been previously managed by
another tablet server that failed. At 410, the tablet server 110
retrieves the committed version of the tablet from the
persistent storage 140. In some implementations, the tablet
server 110 may retrieve the tablet sign for recovery from
another tablet server within the distributed database system
that 1s also assigned to manage the tablet. At 415, the tablet
server 110 retrieves the commit log for the server that
previously managed the tablet. At 420, the tablet server 110
sorts the entries 1n the commit log using the unencrypted
header. In some implementations, the tablet server 110 a sort
the entries by sequence number and database identifier, such
that the entries 1n the commit log are grouped by database
and ordered sequentlally At 425, an encrypted log entry 1n
the commit log 1s identified for the assigned tablet. For
example, the tablet server 110 may determine that the
commit log entry as a database 1dentifier that matches that of

US 11,301,579 Bl

S

the assigned tablet. At 430, the tablet server 110 retrieves an
unwrapped key corresponding to the wrapped key from the
commit log entry header. At 435, the tablet server 110
decrypts the log entry payload. At 440, the tablet server 110
applies the operation 1n the log entry payload to its retrieved
copy of the tablet for recovery. During a recovery process,
the tablet server 110 may apply the log entries from the
commit log sequentially to the committed copy of the tablet
to return the tablet to the state 1t was in in the previous
servers memory before the failure.

FIG. 5 1s a flow chart of an example process 500 for
selectively encrypting commit log entries. At 505, 1s deter-
mined that a commit log for particular server 1n the distrib-
uted database system 1s to be updated based on the data
operation performed on the tablet managed by the particular
server. The tablet includes at least a portion of the data from
a table 1n the distributed database system.

As 510, it 1s determined that the tablet managed by the
particular server 1s an encrypted tablet.

At 515, an encrypted log entry 1s generated representing
the data operation performed on the tablet. The encrypted
log entry may include encrypted payload including infor-
mation representing the data operation in an unencrypted
header including information about the encrypted log entry.
In some cases, the unencrypted header 1includes an encoded
key for decrypting the encrypted payload. Generating the
encrypted log entry may include recerving the encoded key
from a key manager and encrypting the encrypted payload
using the encoded key. In some cases, the received encoded
key 1s encrypted using an encryption key associated with the
key manager. At 520, the commuit log 1s updated to include
the encrypted log entry. In some cases, the commit log
includes a plurality of encrypted log entries and a plurality
of unencrypted log entries. In some 1mplementations, the
unencrypted header for the encrypted log entry and the
unencrypted log entry includes a sequence number for the
particular log entry and a database identifier associated with
the particular tablet on which the data operation represented
by the particular log entry was performed.

In some cases, the encrypted log entry 1s a first encrypted
log entry, the encoded key 1s a first encoded key, the data
operation 1s a first data operation, and the process includes
generating a second encrypted log entry representing a
second data operation performed on the tablet, the second
encrypted log entry including an encrypted payload includ-
ing information representing the second data operation and
an unencrypted header including information about the
second encrypted log entry, wherein the unencrypted header
of the second encrypted log entry includes a second encoded
key different than the first encoded key for decrypting the
encrypted payload.

In some 1implementations, the data operation 1s a first data
operation, the tablet 1s a first tablet, and the method further
comprises: determining that the commit log for the particu-
lar server 1s to be updated based on a second data operation
performed on a second tablet managed by the particular
server, wherein the second tablet 1s diflerent than the first
tablet; determining that the second tablet managed i1s an
unencrypted tablet; in response to determiming that the
second tablet 1s an unencrypted tablet, generating an unen-
crypted log entry representing the second data operation, the
unencrypted log entry including an unencrypted payload
including information representing the second data opera-
tion and an unencrypted header including information about
the unencrypted log entry; and updating the commit log to
include the unencrypted log entry. In some cases, the data

10

15

20

25

30

35

40

45

50

55

60

65

6

operation performed on the tablet 1s performed on a local
copy of the tablet stored by the particular server.

FIG. 6 1s a flow chart of an example process 600 of
performing tablet recovery based on a commit log including
encrypted and unencrypted entries. At 605, the commit log
1s a treat for a particular server in the distributed database
system, the commit log including entries for encrypted tablet
managed by the particular server.

At 610, the log entries are sorted based on sequence
numbers and database 1dentifiers included in an unencrypted
header included in each log entry. In some cases, the commit
log 1includes one or more encrypted log entries each includ-
ing an encrypted payload, and sorting the log entries based
on the sequence numbers and the database identifiers
included in the unencrypted header included in each log
entry 1s performed without decrypting the encrypted pay-
loads of the one or more encrypted log entries.

At 615 particular log entries are 1dentified from the sorted
log entries including the database 1dentifier for the encrypted
tablet.

At 620, a master tablet is retrieved representing a com-
mitted version of the encrypted tablet for which data recov-
ery 1s to be performed.

The remaining operations are performed for each of the
particular log entries. At 625, a decoded key 1s retrieved
corresponding to an encoded key from the unencrypted
header of the particular log entry. In some cases, the encoded
key 1s encrypted using an encryption key associated with a
key manager. The decoded key may be retrieved from the
key manager. In some cases, before retrieving the commit
log, 1t 1s determined that data recovery 1s to be performed on
the encrypted tablet based on a failure of the particular
server. In some cases, the steps of the method are performed
by a server diflerent than the particular server.

FIG. 7 1s a block diagram of computing devices 700, 750
that may be used to implement the systems and methods
described 1n this document, as either a client or as a server
or plurality of servers. Computing device 700 1s intended to
represent various forms of digital computers, such as lap-
tops, desktops, workstations, personal digital assistants,
servers, blade servers, mainirames, and other appropnate
computers. Computing device 750 1s mtended to represent
various forms of mobile devices, such as personal digital
assistants, cellular telephones, smartphones, and other simi-
lar computing devices. Additionally computing device 700
or 750 can include Unmiversal Serial Bus (USB) flash drives.
The USB flash drives may store operating systems and other
applications. The USB flash drives can include input/output
components, such as a wireless transmitter or USB connec-
tor that may be 1nserted into a USB port of another com-
puting device. The components shown here, their connec-
tions and relationships, and their functions, are meant to be
exemplary only, and are not meant to limit implementations
of the mnventions described and/or claimed 1n this document.

Computing device 700 includes a processor 702, memory
704, a storage device 706, a high-speed interface 708
connecting to memory 704 and high-speed expansion ports
710, and a low speed intertace 712 connecting to low speed
bus 714 and storage device 706. Each of the components
702, 704, 706, 708, 710, and 712, are interconnected using
various busses, and may be mounted on a common moth-
erboard or 1n other manners as appropriate. The processor
702 can process instructions for execution within the com-
puting device 700, including instructions stored in the
memory 704 or on the storage device 706 to display graphi-
cal information for a GUI on an external input/output device,
such as display 716 coupled to high speed interface 708. In

US 11,301,579 Bl

7

other implementations, multiple processors and/or multiple
buses may be used, as appropriate, along with multiple
memories and types of memory. Also, multiple computing
devices 700 may be connected, with each device providing
portions of the necessary operations (e.g., as a server bank,
a group of blade servers, or a multi-processor system).

The memory 704 stores information within the computing,
device 700. In one implementation, the memory 704 1s a
volatile memory unit or units. In another implementation,
the memory 704 1s a non-volatile memory unit or units. The
memory 704 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 706 1s capable of providing mass
storage for the computing device 700. In one implementa-
tion, the storage device 706 may be or contain a computer-
readable medium, such as a floppy disk device, a hard disk
device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an
array ol devices, including devices 1n a storage area network
or other configurations. A computer program product can be
tangibly embodied 1n an information carrier. The computer
program product may also contain instructions that, when
executed, perform one or more methods, such as those
described above. The mformation carrier 1s a computer- or
machine-readable medium, such as the memory 704, the
storage device 706, or memory on processor 702.

The high speed controller 708 manages bandwidth-inten-
s1ve operations for the computing device 700, while the low
speed controller 712 manages lower bandwidth-intensive
operations. Such allocation of functions 1s exemplary only.
In one implementation, the high-speed controller 708 1is
coupled to memory 704, display 716 (e.g., through a graph-
ics processor or accelerator), and to high-speed expansion
ports 710, which may accept various expansion cards (not
shown). In the implementation, low-speed controller 712 1s
coupled to storage device 706 and low-speed expansion port
714. The low-speed expansion port, which may include
various communication ports (e.g., USB, Bluetooth, Ether-
net, wireless Ethernet) may be coupled to one or more
input/output devices, such as a keyboard, a pointing device,
a scanner, or a networking device such as a switch or router,
¢.g., through a network adapter.

The computing device 700 may be implemented in a
number of different forms, as shown in the figure. For
example, 1t may be implemented as a standard server 720, or
multiple times 1 a group of such servers. It may also be
implemented as part of a rack server system 724. In addition,
it may be implemented 1n a personal computer such as a
laptop computer 722. Alternatively, components from com-
puting device 700 may be combined with other components
in a mobile device (not shown), such as device 750. Each of
such devices may contain one or more of computing device
700, 750, and an entire system may be made up of multiple
computing devices 700, 750 communicating with each
other.

Computing device 750 includes a processor 752, memory
764, an mput/output device such as a display 754, a com-
munication interface 766, and a transceiver 768, among
other components. The device 750 may also be provided
with a storage device, such as a microdrive or other device,
to provide additional storage. Each of the components 750,
752, 764, 754, 766, and 768, are interconnected using
vartous buses, and several of the components may be
mounted on a common motherboard or in other manners as
appropriate.

The processor 752 can execute instructions within the
computing device 750, including instructions stored in the

10

15

20

25

30

35

40

45

50

55

60

65

8

memory 764. The processor may be implemented as a
chipset of chips that include separate and multiple analog
and digital processors. Additionally, the processor may be
implemented using any of a number of architectures. For
example, the processor 710 may be a CISC (Complex
Instruction Set Computers) processor, a RISC (Reduced
Instruction Set Computer) processor, or a MISC (Minimal
Instruction Set Computer) processor. The processor may
provide, for example, for coordination of the other compo-
nents of the device 750, such as control of user interfaces,
applications run by device 750, and wireless communication
by device 750.

Processor 732 may communicate with a user through
control interface 758 and display interface 756 coupled to a
display 754. The display 754 may be, for example, a TFT
(Thin-Film-Transistor Liquid Crystal Display) display or an
OLED (Organic Light Emitting Diode) display, or other
appropriate display technology. The display interface 756
may comprise appropriate circuitry for driving the display
754 to present graphical and other information to a user. The
control interface 758 may receive commands from a user
and convert them for submission to the processor 752. In
addition, an external interface 762 may be provided in
communication with processor 752, so as to enable near area
communication of device 750 with other devices. External
interface 762 may provide, for example, for wired commu-
nication in some implementations, or for wireless commu-
nication 1n other implementations, and multiple interfaces
may also be used.

The memory 764 stores information within the computing
device 750. The memory 764 can be implemented as one or
more ol a computer-readable medium or media, a volatile
memory unit or units, or a non-volatile memory unit or units.
Expansion memory 774 may also be provided and connected
to device 750 through expansion interface 772, which may
include, for example, a SIMM (Single In Line Memory
Module) card interface. Such expansion memory 774 may
provide extra storage space for device 750, or may also store
applications or other information for device 750. Specifi-
cally, expansion memory 774 may include instructions to
carry out or supplement the processes described above, and
may 1include secure information also. Thus, for example,
expansion memory 774 may be provide as a security module
for device 750, and may be programmed with 1nstructions
that permit secure use of device 750. In addition, secure
applications may be provided via the SIMM cards, along
with additional information, such as placing identifying
information on the SIMM card 1n a non-hackable manner.

The memory may include, for example, flash memory
and/or NVRAM memory, as discussed below. In one imple-
mentation, a computer program product 1s tangibly embod-
ied 1n an information carrier. The computer program product
contains instructions that, when executed, perform one or
more methods, such as those described above. The infor-
mation carrier 1s a computer- or machine-readable medium,
such as the memory 764, expansion memory 774, or
memory on processor 752 that may be received, for
example, over transceiver 768 or external interface 762.

Device 750 may communicate wirelessly through com-
munication interface 766, which may include digital signal
processing circuitry where necessary. Communication inter-
face 766 may provide for communications under various
modes or protocols, such as GSM voice calls, SMS, EMS,

or MMS messaging, CDMA, TDMA, PDC, WCDMA,
CDMAZ2000, or GPRS, among others. Such communication
may occur, for example, through radio-frequency trans-
ceiver 768. In addition, short-range communication may

US 11,301,579 Bl

9

occur, such as using a Bluetooth, WiFi, or other such
transceiver (not shown). In addition, GPS (Global Position-
ing System) receiver module 770 may provide additional
navigation- and location-related wireless data to device 750,
which may be used as appropriate by applications runmng,
on device 750.

Device 750 may also communicate audibly using audio
codec 760, which may receive spoken information from a
user and convert 1t to usable digital information. Audio
codec 760 may likewise generate audible sound for a user,
such as through a speaker, e.g., in a handset of device 750.
Such sound may include sound from voice telephone calls,
may include recorded sound (e.g., voice messages, music
files, etc.) and may also iclude sound generated by appli-
cations operating on device 750.

The computing device 750 may be implemented in a
number of different forms, as shown in the figure. For
example, 1t may be implemented as a cellular telephone 780.
It may also be implemented as part of a smartphone 782,
personal digital assistant, or other similar mobile device.

Various implementations of the systems and techmiques
described here can be realized 1n digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific mtegrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more
computer programs that are executable and/or interpretable
on a programmable system 1ncluding at least one program-
mable processor, which may be special or general purpose,
coupled to recerve data and 1nstructions from, and to trans-
mit data and instructions to, a storage system, at least one
input device, and at least one output device.

These computer programs (also known as programs,
soltware, software applications or code) include machine
instructions for a programmable processor, and can be
implemented 1 a high-level procedural and/or object-ori-
ented programming language, and/or in assembly/machine
language. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any
computer program product, apparatus and/or device (e.g.,
magnetic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/
or data to a programmable processor, including a machine-
readable medium that recerves machine instructions as a
machine-readable signal. The term “machine-readable sig-
nal” refers to any signal used to provide machine nstruc-
tions and/or data to a programmable processor.

To provide for interaction with a user, the systems and
techniques described here can be implemented on a com-
puter having a display device (e.g., a CRT (cathode ray tube)
or LCD (liqud crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
teedback provided to the user can be any form of sensory
teedback (e.g., visual feedback, auditory feedback, or tactile
teedback); and input from the user can be received in any
form, including acoustic, speech, or tactile mput.

The systems and techniques described here can be imple-
mented 1n a computing system that includes a back end
component (e.g., as a data server), or that includes a middle-
ware component (e.g., an application server), or that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination

10

15

20

25

30

35

40

45

50

55

60

65

10

of such back end, middleware, or front end components. The
components of the system can be interconnected by any
form or medium of digital data communication (e.g., a
communication network). Examples of communication net-
works include a local area network (“LAN"), a wide area
network (“WAN™), peer-to-peer networks (having ad-hoc or
static members), grid computing inirastructures, and the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

Although a few implementations have been described 1n
detail above, other modifications are possible. In addition,
the logic flows depicted 1n the figures do not require the
particular order shown, or sequential order, to achieve
desirable results. Other steps may be provided, or steps may
be eliminated, from the described flows, and other compo-
nents may be added to, or removed from, the described
systems. Accordingly, other implementations are within the
scope of the following claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

obtaining, at a server that manages multiple tablets, a first

log entry that includes both a first unencrypted header
that 1dentifies a particular tablet of the multiple tablets
and an encrypted payload that represents an operation
performed on the particular tablet;

obtaining a commit log that includes the first log entry and

a second log entry for an unencrypted tablet, wherein
the second log entry includes both a second unen-
crypted header and an unencrypted payload that repre-
sents a second operation performed on the unencrypted
tablet;

obtaining a committed version of the particular tablet;

generating, based on the first unencrypted header, a

decrypted payload that corresponds to the encrypted
payload of the first log entry;

performing, based on the decrypted payload, the operation

on the committed version of the particular tablet; and
performing the second operation on a committed version
of the unencrypted tablet.

2. The method of claim 1, wherein obtaining a commuitted
version of the particular tablet comprises:

identilying the particular tablet from the first unencrypted

header,

wherein obtaiming the committed version of the particular

tablet 1s 1n response to identifying the particular tablet
from the first unencrypted header.

3. The method of claim 1, wherein generating, based on
the first unencrypted header, a decrypted payload that cor-
responds to the encrypted payload of the first log entry
COmMprises:

obtaining an encoded key from the first unencrypted

header:;

retrieving a decoded key that corresponds to the encoded

key; and

decrypting the encrypted payload of the first log entry

with the decoded key.

4. The method of claim 3, wherein retrieving the decoded
key that corresponds to the encoded key comprises:

providing the encoded key to a key manager; and

recerving the decoded key from the key manager 1n
response to providing the encoded key.

US 11,301,579 Bl

11

5. The method of claim 1, further comprising:

sorting the log entries based on sequence indicators 1n the
unencrypted headers that indicate a sequence of opera-
tions that correspond to the log entries were performed.

6. A system comprising;:

one or more computers and one or more storage devices

storing instructions that are operable, when executed by

the one or more computers, to cause the one or more

computers to perform operations comprising:

obtaining, at a server that manages multiple tablets, a
first log entry that includes both a first unencrypted
header that identifies a particular tablet of the mul-
tiple tablets and an encrypted payload that represents
an operation performed on the particular tablet;

obtaining a commit log that includes the first log entry
and a second log entry for an unencrypted tablet,
wherein the second log entry includes both a second
unencrypted header and an unencrypted payload that
represents a second operation performed on the
unencrypted tablet;

obtaining a committed version of the particular tablet;

generating, based on the first unencrypted header, a
decrypted payload that corresponds to the encrypted
payload of the first log entry;

performing, based on the decrypted payload, the opera-
tion on the commutted version of the particular tablet;
and

performing the second operation on a committed ver-
sion of the unencrypted tablet.

7. The system of claim 6, wherein obtaining a committed
version of the particular tablet comprises:

identifying the particular tablet from the first unencrypted

header,

wherein obtaining the committed version of the particular

tablet 1s 1n response to 1dentifying the particular tablet
from the first unencrypted header.

8. The system of claim 6, wherein generating, based on
the first unencrypted header, a decrypted payload that cor-
responds to the encrypted payload of the first log entry
COmMprises:

obtaining an encoded key from the first unencrypted

header:

retrieving a decoded key that corresponds to the encoded

key; and

decrypting the encrypted payload of the first log entry

with the decoded key.

9. The system of claim 8 wherein retrieving the decoded
key that corresponds to the encoded key comprises:

providing the encoded key to a key manager; and

receiving the decoded key from the key manager in
response to providing the encoded key.

10

15

20

25

30

35

40

45

50

12

10. The system of claim 6, wherein the operations further
COmprise:

sorting the log entries based on sequence indicators 1n the

unencrypted headers that indicate a sequence of opera-
tions that correspond to the log entries were performed.

11. A non-transitory computer-readable medium storing
soltware comprising 1nstructions executable by one or more
computers which, upon such execution, cause the one or
more computers to perform operations comprising;:

obtaining, at a server that manages multiple tablets, a first

log entry that includes both a first unencrypted header
that 1dentifies a particular tablet of the multiple tablets
and an encrypted payload that represents an operation
performed on the particular tablet;

obtaining a commit log that includes the first log entry and

a second log entry for an unencrypted tablet, wherein
the second log entry includes both a second unen-
crypted header and an unencrypted payload that repre-
sents a second operation performed on the unencrypted
tablet;

obtaining a committed version of the particular tablet;

generating, based on the first unencrypted header, a

decrypted payload that corresponds to the encrypted
payload of the first log entry;

performing, based on the decrypted payload, the operation

on the committed version of the particular tablet; and
performing the second operation on a committed version
of the unencrypted tablet.

12. The medium of claim 11, wherein obtaiming a com-
mitted version of the particular tablet comprises:

identilying the particular tablet from the first unencrypted

header,

wherein obtaiming the committed version of the particular

tablet 1s 1n response to 1dentifying the particular tablet
from the first unencrypted header.

13. The medium of claim 11, wherein generating, based
on the first unencrypted header, a decrypted payload that
corresponds to the encrypted payload of the first log entry
COmMprises:

obtaining an encoded key from the {first unencrypted

header;

retrieving a decoded key that corresponds to the encoded

key; and

decrypting the encrypted payload of the first log entry

with the decoded key.

14. The medium of claim 13, wherein retrieving the
decoded key that corresponds to the encoded key comprises:

providing the encoded key to a key manager; and

receiving the decoded key from the key manager in
response to providing the encoded key.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

