12 United States Patent

Gilula et al.

US011301497B2

US 11,301,497 B2
Apr. 12, 2022

(10) Patent No.:
45) Date of Patent:

(54) COMPOSABLE DATA MODEL
(71) Applicant: KeyArk, Inc., Foster City, CA (US)

(72) Inventors: Mikhail Gilula, Foster City, CA (US);
Andrey Belyaev, Milpitas, CA (US)

(73) Assignee: Key Ark, Inc., Foster City, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 66 days.

(21) Appl. No.: 16/840,937

(22) Filed: Apr. 6, 2020

(65) Prior Publication Data
US 2021/0311965 Al Oct. 7, 2021

(51) Int. CL
GOGF 16/00
GOGF 16/28
GO6F 16/23

(52) U.S. CL
CPC ... GO6F 16/285 (2019.01); GO6F 16/2365
(2019.01)

(2019.01)
(2019.01)
(2019.01)

(58) Field of Classification Search
CPC GO6F 16/221; GO6F 16/2282; GO6F 16/24;
GO6F 16/288; GO6F 16/211; GO6F
16/2291; GO6F 16/24575; GO6F 16/248;
GO6F 16/284; GO6F 16/285; GO6F 8/34;
GO6F 16/185; GO6F 21/602; GO6F
21/6245; GO6F 21/6254; GO6F 21/78;
GO6F 40/103; GO6F 40/18; GO6F 8/20;
GO6F 8/71; GO6F 16/212; GO6F 16/2445;
GO6F 16/245; GO6F 11/1438; GO6F
11/25; GO6F 11/3006; GO6F 11/3051;
GO6F 11/3086; GO6F 11/3442; GO6F

2002‘

11/3457; GO6F 17/40; GO6F 2201/815;
GO6F 2201/875; GO6F 16/1774; GO6F
16/2228; GO6F 16/2428; GO6F 16/24554;
GO6F 16/24568; GO6F 16/951; GO6F
9/5072; GO6F 16/2365; GO6F 16/24547;

GO6F 16/28
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,312,039 B2 11/2012 Gilula
2002/0083039 Al 6/2002 Ferran et al.
2004/0143644 Al 7/2004 Berton et al.
2011/0307504 Al 12/2011 Agrawal et al.
2014/0025702 Al 1/2014 Curtiss et al.
2015/0106458 Al* 4/2015 Marovets HO4L 51/066
709/206
2015/0112961 Al 4/2015 Jang et al.
2017/0052766 Al* 2/2017 Garipov GO6F 16/2291

(Continued)
Primary Examiner — Shyue Jiunn Hwa

(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Methods, systems, and apparatus, including computer pro-
grams encoded on computer storage media, for a compos-
able data model. One of the methods includes receiving an
input data file defiming: (1) a catalog that defines one or more
named elements, one or more named compositions, and one
or more named multi-compositions, and (11) a catalog store

that 1s an instance of the catalog; and generating a data
object representing the catalog store in a database, compris-
ing generating data objects respectively representing 1) every
instance of a named element specified by the catalog store
defined 1n the input data file, 11) every instance of a named
composition specified by the catalog store defined in the
input data file, and 111) every instance of a named multi-

composition specified by the catalog defined in the input
data file.

20 Claims, 3 Drawing Sheets

Receive data characterizing a catalog

210

|

Receive data characterizing a catalog store

220

|

Store the catalog store in a database

230

US 11,301,497 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2018/0268062 Al 9/2018 Gilula
2020/0026741 Al 1/2020 Gilula
2020/0327252 Al1* 10/2020 Mctall GO6F 21/602
2021/0004524 Al1* 1/2021 Takahashi GO6F 16/168

* cited by examiner

U.S. Patent

1002‘

ERESRE

CREALOS METE:

Apr. 12, 2022 Sheet 1 of 3 US 11,301,497 B2

Meta-Catalog 110

CATALOG META

CREATE REYOBJIRCT KWAME CHAR IN CATALOG META:
CREATE EEYQORJIBCT ER; SHAR O IN CAaYaLSd %E?ﬁ
CREATE REICBIECT TYPE CHAR IN CATALOG META;
CREATE EETORJIHCT FORMAT OHAR IN CATRLOG METXR;
FEATE RETOLIECT NMULT TIT THAR TN CATALUG NETR.
CREATE REYORJIECT Mmmh [WAME, MULD UNIT} ¥ ﬁﬁ?&mﬂiﬁ MRTRS 112
CREATE KEYORILCY 3»%&?‘{;’?*?2 { &ﬂ’fm MULIIPLEY IM CATRLOG m}‘*il’ﬁ*’“.&*
CREATE REYONJRCT RLam [Hm T TIFE, TOPRMAT! 1N LATRLOG MRTA;
CREATE REYORIEOT BLEMS{ ELEM MULTIPLE} IN CATALOG MRIA 114
CREATE EEYTORJECT Hfﬁ’tﬂ-i&ﬁﬁ:s [NONE MULTIPLE} IN CRTALOG NRTA
CREATE REYORJECT COMP [MAME, MEMBEBRS) IN CATALOG MRTA; 116
CREATE EEVORSECT COMFER { CERF MULTIFLES IN DRTRLOD _METH;
CREATE NETOBIRLT BTORD & Hm-i%‘. CURLEP AN mﬂW&%m :
CREATE KEYOBJECT OCATARLOT { NAME, URL, COMPS, DIEMS, MULTS, 3TORR) 118
TN CATALOG ﬁﬁ:i@:ﬁ,
) { CATALOE @ First Catalgg 120
2 mﬁﬁﬁﬁ ‘Cartoons ',
3 ORI Thidpc s keysrkoossilavioons
COMPS > {_COMP o { WAME:MOVIE', MEMBERS:{ NAME: 'CRGT', WAME: 'DIRECTORS®.
3 - NBME CTIVLR bssx%m EUDRGET ', NAME: R:.,amgmﬂa&m’}“f
5 MULTS @ { MULY :{ MAME: L CRST . MULY UNIT: PERSOR'),
_HULT iﬁmf PDIREOTORS ¢ WL? CINIT P PERSONC Y,
CBELEMS ¢ { BLEM 1§ MRS ‘PRRISON? , "Y% s 7 oharty.
4 | CELEM : { NAME - 'TITLES, TYFR : ' chav'},
L _BLEM WA FBUDGET CTYPE ¢ ' nuwben'l,
L _ BLE¥ o { _Rade TRELEASE &&Th ; TYFE "
F datet, FORMAT P YTYTMM-RD Y}
12 P,
12 { STORS:{ NAMW : "Classicosal Sartonns’,
14 IMOVIE: {CRST: {PRRSON: 'Wise Littls Hon', PRRSON: 'Densld Duek'}, First Catalog Stml—-
17 DIREOTORS: { PERSON: 'Wilfred Jachson'},BELEASE DATE: '1#34-~01~01°,PI0ME: the
Wise Lattlis RHen?ll,
% IMOVIR: {CR8T: {PRRAON . "Mioksy Mouse ' PERESON: *Minnie Mougs ' PEREIN: T Bag=-Tewy
Fata' o,
i DIRBOTORS {PERSIN "1 Iwurks” (PERIMON: "Walt Raizney i},
A RFLE&&F RETE IR0 =017,
13 TITLR: 'Stesnbont Willie!
et BUDEET: 3086Y)
<A b3,
23 f STORE; { HAME . "Qartovns’, URL: hdige Joonc kegack, oand carbosns, asfia’ }}‘(5—149
&3 3

FIG. 1

U.S. Patent Apr. 12, 2022 Sheet 2 of 3 US 11,301,497 B2

2001

Recelve data characterizing a catalog
210

Recelve data characterizing a catalog store
220

Store the catalog store in a database
230

FIG. 2

U.S. Patent Apr. 12, 2022 Sheet 3 of 3 US 11,301,497 B2

3001

Recelve a query
310

|

(Generate a results catalog store from the

query
320

|

Send data characterizing the results catalog
store
330

FIG. 3

US 11,301,497 B2

1
COMPOSABLE DATA MODEL

BACKGROUND

This specification relates to database query languages.
Typically, a database 1s either a relational database or a
non-relational database. A relational database represents and
stores data 1n tables that have defined relationships, and 1s
often queried using a query language, e.g., Structured Query
Language (SQL). A non-relational database does not enforce
relationships between tables, but rather stores data in col-
lections that each have their own namespaces. For example,
the collections of a non-relational database can be stored in
respective documents, e.g. JavaScript Object Notation
(JSON) documents.

Relational databases are highly structured and organized,
but can be overly complex and diflicult to scale, and have
very strict requirements that are incompatible with some
data. Non-relational databases, on the other hand, are a lot
more flexible and scalable, but lack the structure and rela-
tionships of the relational data model.

SUMMARY

This specification describes a composable data model that
can be used to elliciently represent and store data.

Data represented using a composable data model can be
stored as instances of one or more catalogs, where each
catalog defines a particular structure for the data. Fach
catalog 1s composed of one or more key objects of different
types. The types of key object can include “elements,”
“compositions,” and “multi-compositions.” Some types of
key objects, e.g. “compositions” and “multi-compositions,”
are themselves composed of other key objects. Thus, arbi-
trarily large catalog instances can be composed using the
clemental key objects provided by a composable data model.
An 1nstance of a catalog 1s called a “catalog store,” and
includes instances of the key objects defined by the catalog.

The data stored 1n a catalog store of a catalog using a
composable data model can be retrieved by submitting
queries that identily one or more of the key objects instances
of the catalog store. A system can then generate an output
that includes each queried key object istance of the catalog
store, where the output 1s 1tself a new catalog store of the
catalog.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages.

Using techniques described 1n this specification, data can
be represented and stored more efliciently than using some
existing techmiques. In particular, data can be stored in a
more compact representation than i1f the same data were
stored using some existing SQL- and JSON-based systems.
Furthermore, a system can generate new data objects using
a single constructor, which 1s a sparser construction mecha-
nism than many relational and non-relational data models.
The single constructor can include just a few characters,
allowing the representation to have even more informational
capacity per symbol.

A composable data model can have many of the benefits
ol both a relational and non-relational data model without
many of the drawbacks. For example, using catalog defini-
tions, a composable data model can maintain a particular
structure and hierarchy of relationships within catalog
stores, while allowing flexibility and scalability in compos-
ing key objects to generate new catalogs and catalog stores.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Furthermore, a composable data model can be umiversally
applicable to all data. That 1s, the data stored using any
relational or non-relational schema can be compatible with
the composable data model, and thus can be transformed to
fit the composable data model.

The details of one or more embodiments of the subject
matter of this specification are set forth 1n the accompanying
drawings and the description below. Other features, aspects,

and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example mput data file that defines a
composable data model expressed i a composable data
model language.

FIG. 2 1s a flowchart of an example process for storing

data using a composable data model.

FIG. 3 1s a flowchart of an example process for querying
data using a composable data model.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 illustrates an example mput data file 100 that
defines a composable data model expressed 1n a composable
data model language. The input data file 100 has multiple
sections that respectively define a meta-catalog 110 and a
first catalog 120. The meta-catalog 110 defines a structure
that all catalogs, including the first catalog 120, of the
composable data model must have. In general, the mnput data
file 100 can define multiple different catalogs that each have
the structure defined by the meta-catalog 110.

Generally, data represented using a composable data
model 1s stored 1n instances ol one or more catalogs, where
cach catalog defines a particular structure for the data stored
in the mstances of the catalog, which may be referred to as
“catalog stores.” Each catalog includes definitions for 1) one
or more elements, 11) one or more compositions, and 111) one
or more multi-compositions. In this specification, elements,
compositions, and multi-compositions will be collectively
referred to as “key objects,” referencing the fact that each
type of data has a name and corresponding data.

The composable data model of FIG. 1 defines three
different types of key objects: elements, compositions, and
multi-compositions.

An element 1s the lowest-level data object described 1n the
input data file 100. An element defines a single 1tem of data
that has a name. That 1s, each i1nstance of an element 1s a
key-object pair, where the key 1s the name of the element.

A composition defines a named set of key objects. That 1s,
cach 1nstance of a composition 1s a key-object pair where the
key 1s the name of the composition and the object 1s a set of
instances of one or more clements, multi-compositions,
and/or other compositions defined by the composition. Each
key object instance in an instance of a composition 1s
predefined 1n the catalog of the composition.

A multi-composition defines a named set of one or more
instances of the same key object. That 1s, an 1nstance of a
multi-composition 1s a key-object pair where the key 1s the
name of the multi-composition and the object is a set of one
or more instances of the same element, composition, or
multi-composition. There can be arbitrarily many instances
of the respective key object 1n a multi-composition instance.

A catalog store 1s a particular instance of a catalog defined
by a meta-catalog. That 1s, a catalog store 1s a data object that

US 11,301,497 B2

3

includes one or more nstances ol key objects, where the
structure of the catalog store and the names of the key-
objects 1n the catalog store are defined by the corresponding
catalog.

Referring back to FIG. 1, the meta-catalog 110 includes
data that defines elements, compositions, and multi-compo-

sitions.

The data 114 defines a structure for the elements of the
data model described 1n the input data file 100. In particular,
cach element 1n each catalog of the data model can have a
name, a data type, and a predefined data format. In some
implementations, each element defined 1n a catalog of the
data model must have every 1tem that 1s defined 1n the data
114 of the meta-catalog 110, e¢.g., must have all three of: a
name, a data type, and a predefined data format. In some
other implementations, one or more of the items defined 1n
the data 114 can be optional. The ‘name’ item 1s a special
case, as each key object defined 1n a catalog must have a
name. However, the ‘name’ item defined in the data 114 does
not necessarily have to be defined by the “_ NAME” syntax.

The data 116 defines a structure for compositions of the
data model described 1n the input data file 100. In particular,
line 13 of the meta-catalog 110 defines that each composi-
tion of the data model must have a name and a list of
members, and line 12 of the meta-catalog 110 defines that
the list of members will be a set of respective names of the
multiple key objects that can be included in the composition.

The data 112 defines a structure for multi-compositions of
the data model described in the mput data file 100. In
particular, line 8 of the meta-catalog 110 defines that each
multi-composition of the data model must have a name and
a mult-unit, and line 7 of the meta-catalog 110 defines that
a mult-unit 1s the name of a particular key object of the
catalog. That 1s, the multi-composition can include one or
more 1nstances of the key object corresponding to the
mult-unit.

The data 118 defines an overall structure for each catalog
and each catalog store of the data model described 1n the
input data file 100. In particular, lines 16-17 of the meta-
catalog 110 define that each catalog of the data model can
have a name, a URL, one or more compositions, one or more
clements, one or more multi-compositions, and one or more
catalog stores of the catalog. Similarly, line 15 of the
meta-catalog 110 defines that each catalog store of the data
model can have a name and a URL, 1n addition to instances
of the key-objects defined by the corresponding catalog. In
some 1mplementations, one or more of the 1tems defined 1n
the data 118 can be optional, e.g., 1n some 1implementations
not every catalog and catalog store must have a URL. As
before, the ‘name’ 1tem 1s a special case, as each catalog and
catalog store 1n a composable data model must have a name.

As discussed above, the first catalog 120 of the data model
described in the input data file 100 has a structure that 1s
defined by the meta-catalog 110. In thus example, the first
catalog 120 includes all of the 1items defined 1n lines 16-17
of the meta-catalog 110. The name of the first catalog 120 1s
“Cartoons,” as defined 1n line 2 of the first catalog, and the
first catalog 120 has a URL as defined 1n line 3 of the first
catalog.

Lines 8-11 of the first catalog 120 define the elements that
can be mcluded 1n catalog stores of the first catalog 120. In
particular, catalog stores of the first catalog 120 can include
a “person” element, a “title” element, a “budget” element,
and a “release date” element. In this example, each of the
named elements of the first catalog 120 have a data type, but
not every element has a predefined data format. Only the

10

15

20

25

30

35

40

45

50

55

60

65

4

“release date” element 1s constrained to a particular pre-

defined data format, 1in this case ‘YYYY-MM-DD.’

Lines 6-7 of the first catalog 120 define the multi-
compositions that can be included 1n catalog stores of the
first catalog 120. In particular, catalog stores of the first
catalog 120 can include a *cast” multi-composition and a
“directors” multi-composition that are each composed of
one or more istances of the “person” element of the first
catalog 120.

Lines 4-5 of the first catalog 120 define the compositions
that can be 1included 1n catalog stores of the first catalog 120.
In this case, the first catalog 120 only defines one compo-
sition, which 1s a “movie” composition whose members are
the “cast” multi-composition, the “directors” multi-compo-
sition, the “title” element, the “budget element,” and the
“release date” element of the first catalog 120. In some
implementations, each instance of a composition 1s require
to include exactly one instance of each member of the
composition. In some other implementations, one or more
members of a composition can be optional, so that instances
of the composition can include either one or zero of the
optional members of the composition.

The input data file 100 includes two catalog stores cor-

responding to the first catalog 120: a first catalog store 130
and a second catalog store 140.
The first catalog store 130, named “Classical Cartoons,”
includes two 1nstances of the “movie” composition. The first
instance of the “movie” composition includes 1) the “cast”
multi-composition, which 1tself includes two “person”™ ele-
ments, 1) the “directors” multi-composition, which itself
includes one “person” element, 111) the “release date” ele-
ment, and 1v) the “title” element. The first catalog store 130
does not include the “budget” element; that 1s, 1 this
example the “budget” element 1n the members list of the
“movie” composition 1s optional. The second instance of the
“movie” composition 1n the first catalog store 130, corre-
sponding to the movie titled “Steamboat Willie,” includes an
instance of every member of the “movie” composition.

The second catalog store 140 only defines a name and a
URL, and does not include any instances of key objects
defined 1n the first catalog 120. That 1s, 1n this example, each
key object defined 1n the first catalog 1s optional.

Every key object of the first catalog 120 1s defined by the
same constructor, which aftfords the data model described 1n
the input data file 100 a simplicity that can make parsing the
input data file 100 computationally eflicient and universally
adaptable. In this specification, a “constructor” refers to a
character pattern in the composable data model language
that defines key objects.

The constructor that 1s used to define each key object 1n
the first catalog 120 includes a set of four characters: ““{”,
“17,¢” and «,”. The “{” character is an opening constructor
character, which delineates the beginning of the definition of
a particular key object or a particular instance of a key
object. The “}” character is a closing constructor character,
which delineates the end of the definition of a particular key
object or a particular instance of a key object. The “:” 1s a
name definition delimiter, which separates the name of a key
object or key object mstance and the data of the key object
or the key object instance. The *,” 1s a sequence delimiter,
which separates diflerent key objects or key object instances
in a sequence. The fact that the constructor 1s a single set of
a few characters allows the data objects defined in the mput
data file 100 to be efliciently stored, with a high informa-
tional capacity per symbol. That 1s, data objects 1n the data
model can be stored using less memory than equivalent data

US 11,301,497 B2

S

objects, 1.e., data objects representing the same information,
in a relational data model or a non-relational data model.

FIG. 2 1s a flowchart of an example process 200 for
storing data using a composable data model. The process
200 can be implemented by one or more computer programs
installed on one or more computers and programmed 1n
accordance with this specification. For convenience, the
process 200 will be described as being performed by a
system ol one or more computers.

The system receives data characterizing a catalog (step
210). The system can receive the data, for example, from a
user device.

The system receives data characterizing a catalog store
(step 220). The catalog store 1s an instance of the catalog
received 1n step 210; that 1s, the catalog store has a structure
that 1s defined by the catalog. The catalog store specifies
istances of at least one of: 1) a named element defined by
the catalog, 11) a named composition defined by the catalog,
or 111) a named multi-composition defined by the catalog.

In some 1mplementations, the data characterizing the
catalog and the data characterizing the catalog store can be
received at the same time; for example, the system can
receive data characterizing both the catalog and the catalog
store 1n the same 1nput data file, e.g. the mput data file 100
depicted in FIG. 1. In some other implementations, the
system can receive the data characterizing the catalog at a
first time, and the data characterizing one or more catalog
stores that are instances of the catalog at a second time that
1s after the first time. For example, a user can define how
data from a particular source will be structured using the
catalog, and later the data can be received from the particular
source 1n the form of a catalog store corresponding to the
predefined catalog.

The system stores the catalog store in a database (step
230). In order to store the catalog store in the database, the
system can parse the data defining the catalog store and the
data defining the corresponding catalog. For example, the
system can parse an mput data file, e.g. the mput data file
100 depicted 1n FIG. 1, using the predefined constructor of
the iput data file.

Storing the catalog store includes storing 1) every instance
ol a named element specified by the catalog store, 11) every
instance of a named composition specified by the catalog
store, and 111) every 1nstance of a named multi-composition
specified by the catalog.

FIG. 3 1s a flowchart of an example process 300 for
querying data using a composable data model. The process
300 can be implemented by one or more computer programs
installed on one or more computers and programmed 1n
accordance with this specification. For convenience, the
process 300 will be described as being performed by a
system ol one or more computers.

The system receives a query (step 310). The system can
receive the query, for example, from a user device. The
query includes an 1dentification of a particular catalog store
to query, and an identification of one or more of: 1) a
particular element of the catalog store, 1) a particular
composition of the catalog store, or 111) a particular multi-
composition of the catalog store.

For example, the query can include a request to retrieve
every key object that has a particular name. Referring to the
first catalog store 130 depicted 1n FIG. 1, the query might
request to retrieve every multi-composition named “direc-
tors.” In this example, the response would include 1) the
“directors” multi-composition that includes “Wilired Jack-
son”” and 11) the “directors” multi-composition that includes

“Ub Iwerks” and “Walt Disney.”

10

15

20

25

30

35

40

45

50

55

60

65

6

As another example, the query can include a request to
retrieve every key object that has a particular value. Refer-
ring to the first catalog store 130 depicted in FIG. 1, the
query might request to retrieve every “movie” composition
that includes “Donald Duck” 1n the *“cast” multi-composi-
tion of the “movie” composition. In this example, the
response would include the first “movie” composition,
because “Donald Duck” matches the value for the *“cast”
multi-composition.

In some implementations, the query can include an 1den-
tification of multiple different catalog stores. In some such
implementations, each key object 1identified 1n the query can
correspond to a particular one of the identified catalog
stores; that 1s, the query requests the i1dentified key object
only from the corresponding catalog store. In some other
such implementations, each key object identified can be
requested to be retrieved from every 1dentified catalog store.

In some implementations, each identification of a key
object can include data characterizing a location of the key
object 1n the topology of the catalog store. That 1s, the
received query might condition the retrieval of one or more
key objects according to how the key objects are nested
within other key objects 1n the catalog store. For example,
referring to the first catalog store 130 depicted 1n FIG. 1, the
query might request to retrieve every “person” element that
1s 1 a “directors” multi-composition. In this example, the
response would not include the “person” elements that are in
a “cast” multi-composition.

In some other implementations, the query does not
include any information about the topology of the catalog
store. That 1s, a user can construct a query without any
knowledge of the topology of the catalog store.

The system generates a results catalog store from the
query (step 320). The results catalog store 1s a catalog store
that includes every key object of the catalog instance that
was requested 1n the query.

The results catalog store 1s 1tself an 1nstance of the catalog
corresponding to the queried catalog store. This 1s because
the results catalog store 1s entirely composed of key objects
from the queried catalog store, and the key objects of the
queried catalog store necessarily follow the structure of the
catalog corresponding to the queried catalog store. Thus, the
response to a query of a catalog store that 1s an istance of
a catalog 1s 1tself an instance of the catalog.

The results catalog store specifies instances of at least one
of: 1) a named element of the catalog store 1dentified by the
query, 11) a named composition of the catalog store identified
by the query, or 11) a named multi-composition of the
catalog store 1dentified by the query. If the catalog store does
not include any key objects identified by the query, then the
results catalog store can be empty.

In some implementations, each key object instance 1n the
results catalog store can include data characterizing the
location of the corresponding key object instance in the
queried catalog store. For example, referring to the first
catalog store 130 depicted n FIG. 1, 11 the query requested
the system to retrieve every “person’ element instance, then
the results catalog store could include data characterizing,
for each “person” element instance in the results catalog
store, 1) whether the corresponding “person” element
instance 1n the first catalog store 130 was 1 a “cast”
multi-composition instance or a “director” multi-composi-
tion 1nstance and 1) the “movie” composition mstance that
the “person” eclement instance was 1. As a particular
example, each key object instance in the results catalog store
can be associated with an ordered list of other key object
instances that are the “parents” of the corresponding key

US 11,301,497 B2

7

object instance in the catalog store, 1.¢., the other key object
instances that the corresponding key object instance in the
catalog store 1s nested within.

The system sends data characterizing the results catalog
store to the system that submitted the query (step 330). For
example, 1f the query was received from a user device, then
the system sends the results catalog store to the user device.

Embodiments of the subject matter and the functional
operations described 1n this specification can be imple-
mented 1n digital electronic circuitry, i tangibly-embodied
computer soltware or firmware, mm computer hardware,
including the structures disclosed 1n this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus™ refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
turther include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, €.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code) can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing,
environment. A program may, but need not, correspond to a
file 1n a file system. A program can be stored 1n a portion of
a file that holds other programs or data, e.g., one or more
scripts stored 1 a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

For a system of one or more computers to be configured
to perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that 1n operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include

10

15

20

25

30

35

40

45

50

55

60

65

8

instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

As used 1n this specification, an “engine,” or “software
engine,” refers to a software implemented 1mnput/output sys-
tem that provides an output that 1s different from the input.
An engine can be an encoded block of functionality, such as
a library, a platform, a software development kit (“SDK™),
or an object. Each engine can be implemented on any
appropriate type of computing device, e.g., servers, mobile
phones, tablet computers, notebook computers, music play-
ers, e-book readers, laptop or desktop computers, PDAs,
smart phones, or other stationary or portable devices, that
includes one or more processors and computer readable
media. Additionally, two or more of the engines may be
implemented on the same computing device, or on difierent
computing devices.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on 1nput data and generating
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
umt. Generally, a central processing unit will receive
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing 1nstructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receirve data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded 1n another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

Computer-readable media suitable for storing computer
program 1nstructions and data include all forms ol non-
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., imnternal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and
pointing device, e.g., a mouse, trackball, or a presence
sensitive display or other surface by which the user can
provide mput to the computer. Other kinds of devices can be
used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback,
or tactile feedback; and mnput from the user can be received
in any form, including acoustic, speech, or tactile mput. In
addition, a computer can interact with a user by sending

US 11,301,497 B2

9

documents to and receiving documents from a device that 1s
used by the user; for example, by sending web pages to a
web browser on a user’s device 1n response to requests
received from the web browser. Also, a computer can
interact with a user by sending text messages or other forms
of message to a personal device, e.g., a smartphone, running
a messaging application, and receiving responsive messages
from the user 1n return.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a muddleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described 1n this specifica-
tion, or any combination of one or more such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, €.g., a communication network.

Examples ol communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.
The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HIML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.
In addition to the embodiments described above, the
following embodiments are also innovative:
Embodiment 1 1s a method comprising:
receiving an iput data file defining:
(1) a catalog that defines:
(a) one or more named elements,
(b) one or more named compositions, and
(c) one or more named multi-compositions,

wherein each named composition comprises one or more
members, wherein each member 1s 1) a named element
of the catalog, 1) a named composition of the catalog,
or 111) a named multi-composition of the catalog, and

wherein each named multi-composition comprises a

member that 1s 1) a named element of the catalog, 11) a
named composition of the catalog, or 111) a named
multi-composition of the catalog and wherein an
instance of the named multi-composition can have
multiple 1nstances of the member; and

(1) a catalog store that 1s an instance of the catalog,

wherein the catalog store specifies instances of at least
one of: 1) a named element defined by the catalog, 11) a
named composition defined by the catalog, or 111) a
named multi-composition defined by the catalog; and
generating a data object representing the catalog store in
a database, comprising generating data objects respectively
representing 1) every instance ol a named element specified
by the catalog store defined 1n the mput data file, 1) every
instance of a named composition specified by the catalog
store defined 1n the mput data file, and 111) every instance of
a named multi-composition specified by the catalog defined
in the mput data file.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Embodiment 2 i1s the method of embodiment 1, wherein
the mput data file further defines:

a meta-catalog that defines types of elements, composi-
tions, and multi-compositions that can occur 1n the catalog.

Embodiment 3 1s the method of any one of embodiments
1 or 2, wherein every eclement, composition, and multi-
composition 1s defined in the mput data file by a same
constructor.

Embodiment 4 i1s the method of embodiment 3, wherein
the same constructor 1s a same set of characters.

Embodiment 5 i1s the method of embodiment 4, wherein
the mput data file includes only four special characters, the
characters including an opening constructor character, a
closing constructor character, a name definition delimiter,
and a sequence delimaiter.

Embodiment 6 1s the method of embodiment 5, wherein
the opening constructor character is “{”, the closing con-
structor character is “}”, the name definition delimiter is ““:”,
and the sequence delimiter 1s “,”.

Embodiment 7 1s the method of any one of embodiments
1-6, wherein the input data file 1s compatible with the data
model of any relational or key-value schema.

Embodiment 8 1s the method of any one of embodiments
1-7, further comprising:

recerving, from a user device, a query comprising an
identification of the catalog store and a respective 1dentifi-
cation of one or more of: 1) a particular element of the
catalog store, 11) a particular composition of the catalog
store, or 111) a particular multi-composition of the catalog
store;

generating a results catalog store, wherein the results
catalog store specifies mstances of at least one of 1) a named
clement of the catalog store identified by the query, 11) a
named composition of the catalog store identified by the
query, or 111) a named multi-composition of the catalog store
identified by the query; and

sending data characterizing the results catalog store to the
user device.

Embodiment 9 1s the method of embodiment 8, wherein:

the query further comprises an 1dentification of a second
catalog store; and

the results catalog store also specifies instances of at least
one of: 1) a named element of the second catalog store
identified by the query, 1) a named composition of the
second catalog store identified by the query, or 111) a named
multi-composition of the second catalog store i1dentified by
the query.

Embodiment 10 1s the method of any one of embodiments
8 or 9, wherein the query further comprises, for one or more
identified elements, compositions, or multi-compositions of
the catalog store, an identification of a particular location in
a topology of the catalog store.

Embodiment 11 1s the method of any one of embodiments
8-10, wherein the results catalog store comprises, for each
key object instance in the results catalog store, an identifi-
cation of a location of the corresponding key object instance
in the catalog store.

Embodiment 12 1s a system comprising: one or more
computers and one or more storage devices storing mnstruc-
tions that are operable, when executed by the one or more
computers, to cause the one or more computers to perform
the method of any one of embodiments 1 to 11.

Embodiment 13 1s a computer storage medium encoded
with a computer program, the program comprising nstruc-
tions that are operable, when executed by data processing
apparatus, to cause the data processing apparatus to perform
the method of any one of embodiments 1 to 11.

US 11,301,497 B2

11

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any mvention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described 1n this speci-
fication in the context of separate embodiments can also be
implemented in combination 1n a single embodiment. Con-
versely, various features that are described 1n the context of
a single embodiment can also be implemented 1n multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting 1n certain combinations and even imtially be claimed
as such, one or more features from a claimed combination
can 1n some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components i the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged 1mto multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain some cases, multitasking and
parallel processing may be advantageous.

What 1s claimed 1s:

1. A method comprising;

receiving an put data file defining:

(1) a catalog that defines:
(a) one or more named elements,
(b) one or more named compositions, and
(c) one or more named multi-compositions,

wherein each named element defines a data item, and
wherein 1nstances of the named element are
instances of the defined data item,

wherein each named composition defines one or more
members, wherein each member 1s 1) a named ele-
ment of the catalog, 11) a named composition of the
catalog, or 111) a named multi-composition of the
catalog, and wherein istances of the named com-
position include instances of one or more of the
defined members, and

wherein each named multi-composition defines a mem-
ber that 1s 1) a named element of the catalog, 11) a
named composition of the catalog, or 111) a named
multi-composition of the catalog, and wherein
instances, of the named multi-composition can
include multiple instances of the defined member;
and

(11) a named catalog store that 1s an instance of the
catalog, wherein the named catalog store specifies: 1)
an instance of a first named element defined by the
catalog, 1) multiple different instances of a first

10

15

20

25

30

35

40

45

50

55

60

65

12

named composition defined by the catalog, and 111)
an 1nstance of a first named multi-composition
defined by the catalog,

wherein the instance of the first named multi-compo-
sition comprises the multiple different instances of
the first named composition;

generating a data object representing the named catalog
store 1n a database, comprising generating data objects
respectively representing 1) the instance of the first
named element specified by the named catalog store
defined 1n the mput data file, 1) the multiple different
instances of the first named composition specified by
the named catalog store defined in the mput data file,
and 111) the 1nstance of the first named multi-composi-
tion specified by the named catalog store defined 1n the
input data file;

recerving, from a user device, a query for the named
catalog store, wherein the query i1dentifies one or more
of: 1) the mstance of the first named element specified
in the catalog store, 1) one or more of the multiple
different instances of the first named composition
specified 1n the catalog store, or 111) the nstance of the
first named multi-composition specified 1n the catalog
store; and

in response to recerving the query, providing, to the user
device, data representing the respective instances, 1den-
tified by the query, of one or more of the first named
clement, the first named composition, or the first named
multi-composition specified in the catalog store.

2. The method of claim 1, wherein the mput data file

further defines:

a meta-catalog that defines types of elements, composi-
tions, and multi-compositions that can occur in the
catalog.

3. The method of claim 1, wherein every element, com-
position, and multi-composition i1s defined in the mnput data
file by a same constructor.

4. The method of claim 3, wherein the same constructor
1s a same set of characters.

5. The method of claim 4, wherein the mput data file
includes only four special characters, the characters includ-
Ing an opening constructor character, a closing constructor
character, a name definition delimiter, and a sequence delim-
iter.

6. The method of claim 5, wherein the opening construc-
tor character is “{”, the closing constructor character is *“}”,
the name definition delimiter 1s “:”, and the sequence
delimiter 1s «,”.

7. The method of claim 1, wherein the input data file 1s
compatible with the data model of any relational or key-
value schema.

8. The method of claim 1, wherein providing to the user
device, data representing the respective mstances, identified
by the query, of one or more of the first named element, the
first named composition, or the multi-composition specified
in the catalog store comprises:

generating a results catalog store, wherein the results
catalog store specifies the respective mstances, 1denti-
fied by the query, of one or more of the first named
clement, the first named composition or the first named
multi-composition specified in the catalog store; and

providing data representing the results catalog store to the
user device.

9. The method of claim 1, wherein:

the query further comprises an 1dentification of a second
catalog store that 1s a second instance of the catalog;
and

US 11,301,497 B2

13

the method further comprises providing, in response to
receiving the query and to the user device, data repre-
senting at least one of: 1) an instance of a named
clement of the second catalog store identified by the
query, 11) an instance of a named composition of the
second catalog store identified by the query, or 111) an
instance ol a named multi-composition of the second
catalog store i1dentified by the query.

10. The method of claim 1, wherein the query further
comprises, for one or more queried 1nstances of elements,
compositions, or multi-compositions of the catalog store, an
identification of a particular location of the queried instances
in a topology of the catalog store.

11. The method of claim 8, wherein providing, to the user
device, data representing the respective instances, identified
by the query, of one or more of the first named element, the
first named composition, or the first named multi-composi-
tion specified 1n the catalog store comprises:

providing data i1dentifying, for each queried instance, a

location of the queried instance 1n the catalog store.

12. A system comprising one or more computers and one
or more storage devices storing instructions that are oper-
able, when executed by the one or more computers, to cause
the one or more computers to perform operations compris-
ng:

receiving an input data file defining:

(1) a catalog that defines:
(a) one or more named elements,
(b) one or more named compositions, and
(c) one or more named multi-compositions,

wherein each named element defines a data item, and
wherein 1nstances of the named element are
instances of the defined data item,

wherein each named composition defines one or more
members, wherein each member 1s 1) a named ele-
ment of the catalog, 11) a named composition of the
catalog, or 111) a named multi-composition of the
catalog, and wherein istances of the named com-
position 1nclude instances of one or more of the
defined members, and

wherein each named multi-composition defines a mem-
ber that 1s 1) a named element of the catalog, 11) a
named composition of the catalog, or 111) a named
multi-composition of the catalog, and wherein
instances ol the named multi-composition can
include multiple instances of the defined member;
and

(11) a named catalog store that 1s an instance of the
catalog, wherein the named catalog store specifies: 1)
an instance of a first named element defined by the
catalog, 1) multiple different instances of a first
named composition defined by the catalog, and 111)
an 1nstance of a first named multi-composition
defined by the catalog,

wherein the instance of the first named multi-compo-
sition comprises the multiple different instances of
the first named composition;

generating a data object representing the named catalog

store 1n a database, comprising generating data objects
respectively representing 1) the instance of the first
named element specified by the named catalog store
defined 1n the input data file, 1) the multiple different
instances of the first named composition specified by
the named catalog store defined 1n the mput data file,
and 111) the mstance of the first named multi-composi-
tion specified by the named catalog store defined 1n the
input data file;

10

15

20

25

30

35

40

45

50

55

60

65

14

receiving, from a user device, a query for the named
catalog store, wherein the query i1dentifies one or more
of: 1) the mstance of the first named element specified
in the catalog store, 11) one or more of the multiple
different instances of the first named composition
specified 1n the catalog store, or 111) the nstance of the
first named multi-composition specified in the catalog
store, and

in response to recerving the query, providing, to the user
device, data representing the respective mstances, 1den-
tified by the query, of one or more of the first named
clement, the first named composition, or the first named
multi-composition specified in the catalog store.

13. The system of claim 12, wherein the input data file

further defines:

a meta-catalog that defines types of elements, composi-
tions, and multi-compositions that can occur in the
catalog.

14. The system of claam 12, wheremn every element,
composition, and multi-composition 1s defined 1n the mput
data file by a same constructor.

15. The system of claim 12, wherein providing, to the user
device, data representing the respective mstances, identified
by the query, of one or more of the first named element, the
first named composition, or the first named multi-composi-
tion specified 1n the catalog store comprises:

generating a results catalog store, wherein the results
catalog store specifies the respective mstances, 1denti-
fied by the query, of one or more of the first named
clement, the first named composition or the first named
multi-composition specified in the catalog store; and

providing data representing the results catalog store to the
user device.

16. The system of claim 12, wherein:

the query further comprises an 1dentification of a second
catalog store that 1s a second instance of the catalog;
and

the operations further comprise providing, in response to
receiving the query and to the user device, data repre-
senting at least one of: 1) an instance of a named
clement of the second catalog store identified by the
query, 11) an instance ol a named composition of the
second catalog store 1dentified by the query, or 1) an
instance of a named multi-composition of the second
catalog store i1dentified by the query.

17. One or more non-transitory storage media storing
instructions that when executed by one or more computers
cause the one or more computers to perform operations
comprising;

recerving an input data file defining:

(1) a catalog that defines:
(a) one or more named elements,
(b) one or more named compositions, and
(c) one or more named multi-compositions,

wherein each named element defines a data item, and
wherein instances of the named element are
instances of the defined data item,

wherein each named composition defines one or more
members, wherein each member 1s 1) a named ele-
ment of the catalog, 1) a named composition of the
catalog, or 111) a named multi-composition of the
catalog, and wherein instances of the named com-
position nclude instances of one or more of the
defined members, and

wherein each named multi-composition defines a mem-
ber that 1s 1) a named element of the catalog, 11) a
named composition of the catalog, or 111) a named

US 11,301,497 B2

15

multi-composition of the catalog, and wherein
instances of the named multi-composition can
include multiple instances of the defined member;
and

(11) a named catalog store that 1s an instance of the
catalog, wherein the named catalog store specifies: 1)
an instance of a first named element defined by the
catalog, 1) multiple different instances of a first
named composition defined by the catalog, and 111)
an 1nstance of a first named multi-composition
defined by the catalog,

wherein the instance of the first named multi-compo-
sition comprises the multiple different instances of
the first named composition;

generating a data object representing the named catalog

store 1n a database, comprising generating data objects
respectively representing 1) the instance of the first
named element specified by the named catalog store
defined in the input data file, 1) the multiple different
instances of the first named composition specified by
the named catalog store defined 1n the mput data file,
and 111) the mstance of the first named multi-composi-
tion specified by the named catalog store defined 1n the
input data file;

receiving, from a user device, a query for the named

catalog store, wherein the query i1dentifies one or more
of: 1) the 1nstance of the first named element specified
in the catalog store, 11) one or more of the multiple
different instances of the first named composition
specified 1n the catalog store, or 111) the nstance of the
first named multi-composition specified 1n the catalog
store; and

in response to receiving the query, providing, to the user

device, data representing the respective mstances, 1den-
tified by the query, of one or more of the first named

10

15

20

25

30

16

clement, the first named composition, or the first named
multi-composition specified in the catalog store.

18. The non-transitory storage media of claim 17, wherein
the mput data file further defines:

a meta-catalog that defines types of elements, composi-
tions, and multi-compositions that can occur in the
catalog.

19. The non-transitory storage media of claim 17, wherein
providing, to the user device, data representing the respec-
tive mstances, 1dentified by the query, of one or more of the
first named element, the first named composition, or the first
named multi-composition specified 1n the catalog store
COmprises:

generating a results catalog store, wherein the results
catalog store specifies the respective istances, 1denti-
fied by the query, of one or more of the first named
clement, the first named composition or the first named
multi-composition specified in the catalog store; and

providing data representing the results catalog store to the
user device.

20. The non-transitory storage media of claim 17,

wherein:

the query further comprises an 1dentification of a second
catalog store that 1s a second instance of the catalog;
and
the operations further comprise providing, 1n response

to recerving the query and to the user device, data
representing at least one of: 1) an 1nstance of a named
clement of the second catalog store 1dentified by the
query, 11) an mstance of a named composition of the
second catalog store 1dentified by the query, or 111) an

instance ol a named multi-composition of the second
catalog store i1dentified by the query.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

