US011301446B1

a2 United States Patent 10) Patent No.: US 11,301.446 B1

Levari et al. 45) Date of Patent: *Apr. 12, 2022
(54) SYSTEM AND METHOD FOR (56) References Cited
INTERACTING WITH A PLURALITY OF
DATA SOURCES U.S. PATENT DOCUMENTS
(71) Applicant: Ignite ScalAre Solutions, In¢, Austin, 5,075,791 A 10/1997 DBhide et al.
TX (US) 5,799,306 A 8/1998 Sun et al.
6,801,921 B2 10/2004 Tsuchida et al.
6,873,989 Bl 3/2005 Marti
(72) Inventors: D::)ron Levari, Newtopj MA (US); 6:9502848 R1 9/2005 Youslenﬁ’zac_eh
Liran Zelkha, Brookline, MA (US) 7,386,554 B2 6/2008 Ripley et al.
7,644,087 B2 1/2010 Barkai et al.
(73) Assignee: Ignite ScalAre Solutions, Inc., Austin, 7,860,805 B2 12/2010 Uppala
TX (US) 7,890,463 B2 2/2011 Romem et al.

8,055,647 B2 11/2011 Takatsuka et al.
8,996,505 Bl 3/2015 QGarcia-Alvarado

(*) Notice: Subject to any disclaimer, the term of this 2002/0199872 Al 122007 MacNicol et al

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days. (Continued)
Thi.s patent 1s subject to a terminal dis- OTHER PURT ICATIONS
claimer.

Stack Overflow, ‘What 1s the Difference Between Group by and
Order by 1n sql’, Aug. 14, 2009. Retrieved Sep. 26, 2012 fromhttp://

(22) Filed: Aug. 24, 2015 stackoverflow.com/questions/1277460/what-1s-the-difference-between--
; . 24,

(21) Appl. No.: 14/834,237

group-by-and-order-by-in-sql.

Related U.S. Application Data (Continued)

(63) Continuation of application No. 13/077,526, filed on
Mar. 31, 2011, now Pat. No. 9,116,946.

(60) Provisional application No. 61/320,575, filed on Apr. rrimary kxaminer — Etienne P Leroux

2. 2010. Assistant Examiner — Cindy Nguyen
(51) Int. CL
GO6F 17/30 (2006.01) (57) ABSTRACT
GO6E 16/22 (2019'03*) System and method for mteracting with a plurality of data
GO6F 16/955 (2019.01) sources are provided. A request may be parsed and an
(52) US. CL identification parameter identifying a data set may be deter-
CPC GO6F 16/2255 (2019.01); GO6F 16/955 mined. A field included in the request may be designated as
(2019.01) a distribution key. At least one data source may be selected
(58) FKield of Classification Search based on a value associated with the distribution key. At
CPC . GO6F 17/30412; GOOF 17/3033; GOO6F least a portion of the request may be sent to a selected data

17/30876; GO6LF 16/9535; GO6F 16/217; source. Other embodiments are described and claimed.
GO6F 16/2423:; GO6F 16/182; GO6F

16/2471
See application file for complete search history. 14 Claims, 3 Drawing Sheets

SOURCE UNIT |

120

Feeessessls

US 11,301,446 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0023607 Al1* 1/2003 Phelan G06QQ 40/06

2003/0217033 A1 11/2003 Sandler et al.

2004/0117037 Al 6/2004 Hinshaw et al.

2005/0021511 Al 1/2005 Zarom

2006/0129528 Al 6/2006 Miyamoto et al.

2007/0025351 Al 2/2007 Cohen

2007/0203910 Al 8/2007 Ferguson et al.

2007/0288530 A1 12/2007 Romem et al.

2008/0140696 Al 6/2008 Mathuria

2009/0012932 Al 1/2009 Romem et al.

2009/0019007 Al1* 1/2009 Nina GO6F 17/30463

2009/0144632 Al 6/2009 Mendez

2009/0216714 Al 8/2009 Gonzalez et al.

2009/0248753 A1 10/2009 Tsai et al.

2009/0271412 Al1* 10/2009 Lacapra GO6F 17/30206

2009/0319344 A1 12/2009 Tepper et al.

2010/0017395 Al 1/2010 Wayn et al.,

2010/0057745 A1* 3/2010 Li coovvviviiinninnn, GO6F 17/30566

707/E17.032

2010/0082540 Al 4/2010 Isaacson et al.

2010/0088311 Al 4/2010 Du Fosse et al.

2010/0131490 A1* 5/2010 Lamb GO6F 16/24542
707/714

2010/0161593 Al 6/2010 Paulsen et al.

2010/0161651 Al 6/2010 Cras

2010/0223562 Al 9/2010 Carapella et al.

2011/0093499 Al1* 4/2011 Zhou GO6F 17/30445
707/770

2011/0173219 Al 7/2011 Bent et al.

2011/0246480 A1 10/2011 Levan et al.

2012/0109892 Al 5/2012 Novik et al.

2014/0101091 Al 4/2014 Brown et al.

2014/0108421 Al 4/2014 Isaacson et al.

2015/0227521 Al 8/2015 Levar et al.

OTHER PUBLICATIONS

U.S. Appl. No. 13/077,523—Othce Action dated Jun. 27, 2013, 12

pages.
U.S. Appl. No. 13/077,526—O0Ofthce Action dated Oct. 5, 2012, 17
pages.

U.S. Appl. No. 13/077,526—Final Ofhce Action dated Feb. 14,
2013, 18 pages.

U.S. Appl. No. 13/077,526—0Of1hce Action dated Mar. 13, 2014, 17
pages.

U.S. Appl. No. 13/077,526—Final Office Action dated Dec. 18,
2014, 16 pages.

U.S. Appl. No. 13/077,526—Response to Final Office Action dated
Dec. 18, 2014 filed Feb. 25, 2015, 9 pages.

U.S. Appl. No. 13/077,526—Respopnse to Oflice Action dated Mar.
13, 2014 filed Sep. 15, 2014, 10 pages.

U.S. Appl. No. 13/077,526—Response to Final Office Action dated
Feb. 14, 2013 filed May 8, 2013, 9 pages.

U.S. Appl. No. 13/077,526—Response to Office Action dated Oct.
5, 2012 filed Dec. 24, 2012, 10 pages.

U.S. Appl. No. 13/077,526—Othce Action dated Nov. 12, 2015, 24
pages.

Asplund, John S., Masters Thesis, Michigan Technological Univer-
sity, “Edge Coloring BIBDS and constructing MOELRs™ Jan. 2010,
158 pages.

Faultsich et al., “Implementing Linguistic Query Languages Using
Lolos,” Nov. 18, 2005, 30 pages.

Pema, “On the Tractability and Intractability of Consistent Con-
junctive Query Answering,” ACM, Mar. 2011, 7 pages.

Rohlofl et al., High-Performance, Massively Scalable Distributed
Systems Using the MapReduce Software Framework: The SHARD
Triple-Store, Oct. 17, 2010, 5 pages.

U.S. Appl. No. 14/064,210—Final Oflice Action dated Jul. 6, 2015,
21 pages.

U.S. Appl. No. 14/064,210—Response to Oflice Action dated Feb.
6, 2015, filed Apr. 16, 2015, 11 pages.

U.S. Appl. No. 14/064,210—Ofthice Action dated Feb. 6, 2015, 19

pages.
U.S. Appl. No. 14/064,210—Final Oflice Action dated Jul. 2, 2014,
19 pages.

U.S. Appl. No. 14/064,210—Response to Final Office Action dated
Jul. 2, 2014, filed Nov. 11, 2014, 10 pages.

U.S. Appl. No. 14/064,210—Ofhice Action dated Feb. 26, 2014, 14
pages.

U.S. Appl. No. 14/064,210—Response to Oflice Action dated Feb.
26, 2014, filed May 27, 2014, 9 pages.

U.S. Appl. No. 13/077,523—Response to Oflice Action dated Now.
12, 2015, filed Mar. 11, 2016, 8 pages.

U.S. Appl. No. 13/077,523—Final Oflice dated Apr. 2, 2015, 17
pages.

U.S. Appl. No. 13/077,523—Response to Final Oflice dated Apr. 2,
20135, filed Jun. 9, 20135, 10 pages.

U.S. Appl. No. 13/077,523—Response to Oflice Action dated Jun.
27, 2013, filed Sep. 16, 2013, 12 pages.

U.S. Appl. No. 13/077,523—Ofhce Action dated Oct. 8, 2014, 17
pages.

U.S. Appl. No. 13/077,523—Response to Oflice Action dated Oct.
8, 2014, filed Jan. 8, 2015, 6 pages.

U.S. Appl. No. 13/077,523—Fmal Office Action dated Nov. 18,
2013, 12 pages.

U.S. Appl. No. 13/077,523—Response to Final Office Action dated
Nov. 18, 2013, filed Jan. 6, 2014, 14 pages.

U.S. Appl. No, 13/077,523—Advisory Action dated Feb. 6, 2014, 3
pages.

U.S. Appl. No, 13/077,523—Response to Advisory Action dated
Feb. 6, 2014, filed Feb. 18, 2014, 16 pages.

U.S. Appl. No. 13/077,526—Notice of Allowance dated Apr. 23,
2015, 8 pages.

U.S. Appl. No, 13/077,523—Advisory Action dated Nov. 10, 2016,
8 pages.

U.S. Appl. No, 13/077,523—Advisory Action dated Sep. 16, 2016,
3 pages.

U.S. Appl. No. 14/985,277—Preliminary Amendment dated Nov.
18, 2016, 5 pages.

U.S. Appl. No. 13/077,523—Final Oflice Action dated Jul. 8, 2016,
20 pages.

U.S. Appl. No. 13/077,523—Final Oflice Action dated Apr. 2, 2015,
17 pages.

U.S. Appl. No. 14/615,903—Preliminary Amendment dated May
20, 2016, 8 pages.

Sen, “Concentrating Row Values 1n Transact-SQL,” https://www.
simple-talk.com/sql/t-sql-programming/concatenating-row-values-
in-transact-sql/, Jul. 31, 2008, 32 pages.

U.S. Appl. No. 13/077,523—Response to Final Office Action dated
Jul. 8, 2016, filed Aug. 11, 2016, 10 pages.

U.S. Appl. No. 13/077,523—Response to Advisory Action dated
Sep. 16, 2016, filed Oct. 7, 2016, 12 pages.

U.S. Appl. No. 13/077,523—Response to Advisory Action dated
Nov. 10, 2016, filed Dec. 6, 2016, 9 pages.

Request for Continued Examination (RCE) and RCE Submission as
filed in U.S. Appl. No. 13/077,523 dated Jun. 11, 2019, pp. 1-17.
Response to Non-Final Oflice Action dated Nov. 2, 2018, as filed in
U.S. Appl. No. 14/985,277 dated May 2, 2019, pp. 1-6.

Final Rejection dated Jan. 30, 2020, filed in U.S. Appl. No.
13/077,523, pp. 1-20.

Response to Non-Final Office Action dated Dec. 30, 2019, filed in
U.S. Patent Application No. 13/077,523, pp. 1-15.

Non-Final Rejection dated Jun. 28, 2019, filed in U.S. Appl. No.
13/077,523, pp. 1-19.

Notice of Allowance dated Jan. 17, 2019, mailed in U.S. Appl. No.
14/615,903, pp. 1-44.

Response to Non-Final Office Action dated May 30, 2018, as filed
in U.S. Appl. No. 14/615,903 dated Oct. 30, 2018, pp. 1-12.
Non-Final Oflice Action dated May 30, 2018, mailed 1n U.S. Appl.
No. 14/615,903, pp. 1-39.

Request for Continued Examination (RCE) and RCE Submission as
filed in U.S. Appl. No. 14/615,903 dated May 16, 2018, pp. 1-14.
Final Oflice Action dated Nov. 16, 2017, mailed in U.S. Appl. No.
14/615,903, pp. 1-17.

US 11,301,446 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Response to Non-Final Office Action dated Apr. 21, 2017, as filed
in U.S. Appl. No. 14/615,903 dated Jul. 20, 2017, pp. 1-14.
Non-Final Office Action dated Apr. 21, 2017, mailed 1n U.S. Appl.
No. 14/615,903 dated Jul. 20, 2017, pp. 1-18.

Non-Final Office Action dated Nov. 2, 2018, mailed in U.S. Appl.
No. 14/985,277, pp. 1-14.

Final Office Action dated Dec. 11, 2018, mailed in U.S. Appl. No.
13/077,523, pp. 1-19.

Response to Non-Final Office Action dated May 7, 2018, as filed in
U.S. Appl. No. 13/077,523 dated Oct. 3, 2019, pp. 1-22.
Non-Final Office Action dated May 7, 2018, mailed in U.S. Appl.
No. 13/077,523, pp. 1-18.

Request for Continued Examination (RCE) and RCE Submission as
filed in U.S. Appl. No. 13/077,523 Feb. 12, 2018, pp. 1-11.

Final Office Action dated Aug. 11, 2017, mailed in U.S. Appl. No.
13/077,523, pp. 1-14.

Response to Non-Final Oflice Action dated Apr. 11, 2017, as filed
in U.S. Appl. No. 13/077,523, pp. 1-12.

Non-Final Office Action dated Apr. 11, 2017, mailed in U.S. Appl.
No. 13/077,523, pp. 1-15.

Supplemental Response as filed in U.S. Appl. No. 13/077,523 dated
Dec. 6, 2016, pp. 1-9.

* cited by examiner

U.S. Patent Apr. 12, 2022 Sheet 1 of 3 US 11,301,446 B1

US 11,301,446 B1

Sheet 2 of 3

Apr. 12,2022

U.S. Patent

US 11,301,446 B1

Sheet 3 of 3

Apr. 12,2022

U.S. Patent

a

Ll

o3

A

0

US 11,301,446 Bl

1

SYSTEM AND METHOD FOR
INTERACTING WITH A PLURALITY OF
DATA SOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/077,526, filed 31 Mar. 2011, by Doron
Levar1 and Liran Zelkha, entitled “SYSTEM AND
METHOD FOR INTERACTING WITH A PLURALITY
OF DATA SOURCES”, which 1s a non-provisional of U.S.
Provisional Patent Application No. 61/320,573, filed 2 Apr.
2010 by Doron Levar1 and Liran Zelkha, entitled “HARD-
WARE, SOFTWARE, AND METHODS, FOR DISTRIBU-
TION OF DATA IN ACROSS SEVERAL DATA
SOURCES, ENABLING, FROM A SINGLE SOURCE, A
CONSISTENT ACCESS, CONSISTENT MODIFICA-
TION, AND CONSISTENT RECEIPT OF DISTRIBUTED
DATA”, both of which applications are incorporated herein
by reference 1n their entirety.

BACKGROUND OF THE INVENTION

A large and increasing portion of the information handled
in today’s modern environment 1s digital. For example,
many organizations, service providers, institutions, and
establishments store, handle and manipulate most of their
information 1n digital forms. Typically, databases are used to
store and retrieve mformation. Various systems, methods
and/or applications may be used to store, retrieve and/or
manipulate data in databases.

At some point, as the quantity of digital immformation
stored on, and retrieved from a database increases, a capac-
ity of the database may no longer suflice. For example,
storage and/or computational capacities of a database may
be exhausted. In such cases, more databases or other data
sources may be added to a site or system. Typically, infor-
mation may be duplicated on a number of physical or logical
data sources and a request for information may be directed
to a data source that may be selected based on a load
balancing or other scheme.

However, duplicating information on a number of data
sources (also known as mirroring) may have a number of
drawbacks. For example, storage utilization may be far from
optimal when duplicating nformation on several data
sources. Other methods directed to distributing data over a
number of data sources may require clients to determine a
location of a data item prior to requesting the data item, e.g.,
determine which database stores a specific 1tem and 1nteract
with the specific database.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

A system and a method according to embodiments of the
invention may enable interacting with a plurality of data
sources as 11 the plurality of data sources are a single entity.
Data sets (e.g., tables) may be distributed between a number
of data sources (e.g., databases). A parser may parse a
request from a client and extract one or more parameters
from the request. A predefined field or parameter 1n a request
may be designated as a distribution key. A data source may
be selected based on a value of a distribution key, and a
request, or part thereol may be sent to a selected data source
by a distributor. An aggregator may aggregate a number of

10

15

20

25

30

35

40

45

50

55

60

65

2

responses received from a number of data sources to gen-
erate a response that may be sent to a client.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the mvention are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like reference numerals indicate
corresponding, analogous or similar elements, and 1n which:

FIG. 1 shows a block diagram of an exemplary system
according to embodiments of the invention;

FIG. 2 shows a high level block diagram of an exemplary
virtual data source according to embodiments of the present
invention;

FIG. 3 shows a high level block diagram of an exemplary
system according to embodiments of the present invention;
and

FIG. 4 shows a flowchart describing a method of accord-
ing to embodiments of the mvention.

It will be appreciated that for simplicity and clarity of
illustration, elements shown 1n the figures have not neces-
sarily been drawn accurately or to scale. For example, the
dimensions of some of the elements may be exaggerated
relative to other elements for clarity, or several physical
components may be included in one functional block or
clement. Further, where considered appropriate, reference
numerals may be repeated among the figures to indicate
corresponding or analogous elements.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

In the following detailed description, numerous specific
details are set forth 1n order to provide a thorough under-
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, and components, mod-
ules, units and/or circuits have not been described 1n detail
so as not to obscure the ivention.

Although embodiments of the invention are not limited 1n
this regard, discussions utilizing terms such as, for example,
“processing,” “computing,” “calculating,” “determining,”
“establishing”, “analyzing”, “checking”, or the like, may
refer to operation(s) and/or process(es) of a computer, a
computing platform, a computing system, or other electronic
computing device, that manipulates and/or transforms data
represented as physical (e.g., electronic) quantities within
the computer’s registers and/or memories mnto other data
similarly represented as physical quantities within the com-
puter’s registers and/or memories or other information non-
transitory storage medium that may store instructions to
perform operations and/or processes.

Although embodiments of the invention are not limited 1n
this regard, the terms “plurality” and *‘a plurality” as used
herein may include, for example, “multiple” or “two or
more”. The terms “plurality” or “a plurality” may be used
throughout the specification to describe two or more com-
ponents, devices, elements, units, parameters, or the like.
Unless explicitly stated, the method embodiments described
herein are not constrained to a particular order or sequence.
Additionally, some of the described method embodiments or
clements thereol can occur or be performed simultaneously,
at the same point in time, or concurrently.

Reference 1s now made to FIG. 1, which shows a sche-
matic block diagram of an exemplary system 100 according

to embodiments of the mvention. System 100 may include

e N 4 4

US 11,301,446 Bl

3

client devices 110, networks 140A and 140B, a virtual data
source unit 120, and a plurality of data sources 130.

According to embodiments of the present invention, client
devices 110 may be client computing devices, €.g., comput-
ing devices owned and operated by private individuals. For 5
example, client devices 110 may be or may include a
personal computer, a desktop computer, a laptop computer,

a notebook computer, a terminal, a workstation, a server
computer, a tablet computer, a network device, a household
appliance, or any other applicable computing device. Client 10
devices 110 need not necessarily be conventional computers.
For example, any one of client devices 110 may be a
telephone, a cellular phone, a smartphone or another com-
munication device, or 1t may be a Personal Digital Assistant
(PDA) device, an MPEG-1 Audio Layer 3 (MP3) player, a 15
camera, a Global Positioning System (GPS) device and the
like. Generally, any one of client devices 110 may be any
computing device capable of mteracting with a data source,
¢.g., store/retrieve data on/from a database over a network.
For the sake of simplicity, a single client device 110 may be 20
referred to herein, however, 1t will be understood that a large
number of client devices 110 may exist 1n a typical setup
according to embodiments of the mvention.

Any of data sources 130 may be or include any suitable
data source or data storage server, unit or system, imncluding 25
any applicable applications, e.g., database management sys-
tem (DBMS) applications, attached storage systems and the
like. For example, some of data sources 130 may be com-
mercial database systems, while others may be proprietary
systems. Any suitable storage device, system, or unit, may 30
be operatively connected to data sources 130. A storage
connected to a data source may be or may include, for
example, a hard disk drnive, a solid state drive (SSD), a
Compact Disk (CD) drive and/or media, a CD-Recordable
(CD-R) drive and/or media, a Redundant Array of Indepen- 35
dent Disks (RAID) storage systems or any other suitable
removable and/or fixed storage unit. It will be recognized
that the scope of the present mmvention 1s not limited or
otherwise aflected by the type, nature, operational and/or
design aspects of storage devices or systems used for storing 40
information, e.g., by a data source.

Networks 140A and 140B may be, comprise, or be part of
a private or public data network, for example, one commu-
nicating using internet protocol (IP), such as the internet.
Networks 140A and 140B may alternatively or additionally 45
be, comprise, or be part of a cellular network capable of
communicating data (rather than merely voice), for example,

a 3G or 4G network. For example, networks 140A and 1408
may include or comprise an IP network such as the internet,

a cellular network capable of communicating data, and any 50
equipment for bridging or otherwise connecting such net-
works as known 1n the art. In addition, networks 140A and
140B may be, comprise, or be part of an integrated services
digital network (ISDN), a public switched telephone net-
work (PSTN), a public or private data network, a local area 55
network (LAN), a metropolitan area network (MAN), a wide
area network (WAN), a wireline or wireless network, a local,
regional, or global communication network, any combina-
tion of the preceding and/or any other suitable communica-
tion network. It will be recognized that embodiments of the 60
invention are not limited by the nature, number or type of
networks used.

For example, 1n some embodiments, network 140A may
be a public network, e.g., the internet, and network 1408
may be an internal or private network, e.g., internal to a data 65
center and/or maintained by a private entity, e.g., a service
provider. As shown, virtual data source unit 120 may be

4

connected to both 140A and 140B networks. Accordingly,
virtual data source unit 120 may interact with client devices
110 over a public network and with data sources 130 over a
private network. In other embodiments, a single network
may enable communication between components and/or
devices shown 1n FIG. 1. In yet other embodiments, more
networks may be used.

Virtual data source unit 120 may be or may comprise
software, hardware, firmware or any combination thereof.
For example, virtual data source unit 120 may be a soitware
application executed on a suitable, possibly specifically
designed and manufactured computing device. In some
embodiments, virtual data source unmit 120 may be or may
include dedicated hardware that may include a processor or
controller and a non-transitory memory where instructions
may be stored. Other hardware components may be included
in virtual data source unit 120, for example, a network
interface card, and user interface (UIl) components such as
keyboard or a pointing device, and the like.

Reference 1s now made to FIG. 2, which shows a high
level block diagram of an exemplary virtual data source 200
according to embodiments of the present invention. Virtual
data source 200 may include a controller 205, which may be,
for example, a central processing unit processor (CPU), a
chip, or any suitable computing or computational device, an
operating system 215, a memory 220, a storage 230, an input
device 235 and an output device 240. Operating system 215
may be or may include any code segment designed and/or
configured to perform tasks mvolving coordination, sched-
uling, arbitration, supervising, controlling or otherwise man-
aging operation of virtual data source 200, for example,
scheduling execution of programs. Operating system 215
may be a commercial operating system or it may be a
proprietary operating system configured to perform some of
the operations described as performed herein by virtual data
source 200. For example, operating system 2135 may interact
with a server to obtain addresses of data sources 130, (e.g.,
obtain their mternet protocol (IP) addresses), interact with,
or serve as an agent of, a remote management task, or
perform any other management or other tasks.

Memory 220 may be or may include a non-transitory
readable medium, for example, a Random Access Memory

(RAM), a read only memory (ROM), a Dynamic RAM
(DRAM), a Synchronous DRAM (SD-RAM), a double data
rate (DDR) memory chip, a Flash memory, a volatile
memory, a non-volatile memory, a cache memory, a bufler,
a short term memory umit, a long term memory unit, or other
suitable memory units or storage units. Memory 220 may be
or may include a plurality of, possibly different memory
units.

Virtual data source module 225 may be any executable
code, e.g., an application, a program, a process, task or
script. Virtual data source module 2235 may be executed by
controller 205 possibly under control of operating system
215. Storage 230 may be or may include, for example, a hard
disk drive, a floppy disk drive, a Compact Disk (CD) drive,
a CD-Recordable (CD-R) drive, a universal serial bus (USB)
device or other suitable removable and/or fixed storage unat.
Mapping data 226 may include any data, information or
parameters usable, by virtual data source module 225, to
map a request to a data source, e.g., as described herein. For
example, mapping data 226 may include a mapping of a data
set to a master data source or mapping data 226 may include
a mapping of a data set to a set of data sources 1n an array
of data sources. Mapping data 226 may include a mapping
of a parameter to a data source, for example, an i1ndex
associated with a data source may be mapped to a specific

US 11,301,446 Bl

S

data set or to a set of data sets. Mapping data 226 may
include a designation of parameters or fields. For example,
mapping data 226 may include a designation of a field 1n a
request as a data distribution key.

Aggregation parameters 227 may include any data, infor-
mation or parameters usable, by virtual data source module
225, to aggregate responses, €.g., as described herein. For
example, aggregation parameters 227 may include param-
eters related to a number of threads used to send a number
of portions of a request to a number data sources. Aggre-
gation parameters 227 may include parameters indicating
the format of a response that a client expects. For example,
a sort, a merge, average or other calculations or operations
that may be required to be performed, e.g., when aggregat-
ing responses received from data sources 1nto a response to
be sent to a client may all be included 1n aggregation
parameters 227, for example, based on parsing, and/or
extracting information in, a request received from a client.
Aggregation parameters 227 may be updated, modified or
otherwise manipulated by any relevant entity, e.g., any
component or module in system 300. For example, parser
310, mapping module 315, distributor 320, execution mod-
ule 330 and/or aggregator 340 (described herein with respect
to FIG. 3) may all access, read, write or otherwise manipu-
late or use data 1n aggregation parameters 227.

Input devices 235 may be or may include a mouse, a
keyboard, a touch screen or pad or any suitable input device.
It will be recognized that any suitable number of 1nput
devices may be operatively connected to virtual data source
200 as shown by block 235. Output devices 240 may include
one or more displays, speakers and/or any other suitable
output devices. It will be recognized that any suitable
number of output devices may be operatively connected to
virtual data source 200 as shown by block 240. Any appli-
cable mput/output (I/0) devices may be connected to virtual
data source 200 as shown by blocks 235 and 240. For
example, a network interface card (NIC), a printer or fac-
simile machine, a universal serial bus (USB) device or
external hard drive may be included 1in mput devices 235
and/or output devices 240.

Accordingly, some embodiments may be provided 1n a
computer program product that may include a non-transitory
machine-readable medium such as memory 220, stored
thereon instructions (e.g., virtual data source module 225),
which may be used to program a computer, or other pro-
grammable devices, to perform methods as disclosed herein.
Embodiments of the invention may include an article such as
a computer or processor such as controller 205, non-transi-
tory readable medium, or a computer or processor non-
transitory storage medium, such as for example a memory,
a disk drive, or a USB flash memory, encoding, including or
storing 1nstructions, €.g., computer-executable 1nstructions,
which when executed by a processor or controller, carry out
methods disclosed herein. The storage medium may include,
but 1s not limited to, any type of disk including floppy disks,
optical disks, compact disk read-only memories (CD-
ROMs), rewritable compact disk (CD-RWs), and magneto-
optical disks, semiconductor devices such as read-only
memories (ROMs), random access memories (RAMSs), such
as a dynamic RAM (DRAM), erasable programmable read-
only memories (EPROMs), flash memories, electrically
crasable programmable read-only memories (EEPROMs),
magnetic or optical cards, or any type of media suitable for
storing electronic 1nstructions, ncluding programmable
storage devices.

A system according to embodiments of the invention may
include components such as, but not limited to, a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

6

central processing units (CPU) or any other suitable multi-
purpose or specific processors or controllers, a plurality of
input units, a plurality of output units, a plurality of memory
units, and a plurality of storage units. A system may addi-
tionally include other suitable hardware components and/or
soltware components. In some embodiments, a system may
include or may be, for example, a personal computer, a
desktop computer, a mobile computer, a laptop computer, a
notebook computer, a terminal, a workstation, a server
computer, a network device, or any other suitable computing
device.

The below 1s a general description of terms used herein.
Data manipulation language (DML) as used 1n the art 1s a
family of data languages used by computer programs and/or
database users to insert, delete and update data 1n a Data
Source. Non-exclusive examples of DMLs include SQL (for
example, INSERT, UPDATE, and DELETE), IMS, CODA-
SYL, and others. Storage area network (SAN) 1s an archi-
tecture that enables attaching remote computer storage
devices (such as disk arrays, tape libraries, optical juke-
boxes, and the like) to servers 1n a way that the such attached
devices appear, e.g., to an operating system, as locally
attached or connected. A SAN typically uses its own net-
work of storage devices that are generally not accessible
through a regular or common network by regular or common
devices. Cloud computing generally relates to way of com-
puting using a network, e.g., the Internet, that broadly shares
computer resources instead of using software or storage on
a local PC.

A database JOIN operation also known as SQL Join,
combines records from two or more tables in a database. A
JOIN operation creates a set that can be saved as a table or
used as 1s. A JOIN 1s a means for combining fields from two
tables by using values common to each. ANSI standard SQL
specifies four types of JOIN’s: INNER, OUTER, LEFT, and
RIGHT. In special cases, a table (base table, view, or joined
table) can JOIN to 1tself 1n a seli-join.

A transaction or a database transaction may be or may
comprise a unit of work performed with relation to a data
source, €.g., a database. A transactions related to a database
environment may provide reliable units of work that allow
correct recovery from failures and further keeping a data-
base consistent even 1n cases of system failure, e.g., when
execution stops (completely or partially) possibly leaving
uncompleted procedures. A transactions related to a database
environment may provide 1solation between programs
accessing a database concurrently. Such i1solation, may
enable concurrency, e.g., allowing a number of applications
to concurrently access a single database. A database trans-
action 1s typically atomic, consistent, 1solated and durable.
Database practitioners often refer to these properties
(Atomic, Consistent, Isolated, Durable) of database trans-
actions using the acronym ACID.

As referred to herein, a data source may be any source of
data, e.g., a database, a server or a storage system. A data
source may include discrete portions of data from any of a
variety of sources. A database may generally be an inte-
grated collection of logically-related records or files con-
solidated into a common pool. A database may provide data
for one or more multiple uses. The source of data may be any
kind of content. The data in the database may be related
relationally, hierarchically, or 1n any other manner. In some
cases, an array ol data sources may be used to store and/or
mampulate data. According to some embodiments of the
invention, each data source 1n an array of data sources may
be assigned or otherwise associated with an identifier that
may be unique within the array. For example, each data

US 11,301,446 Bl

7

source 1n an array may be assigned an index that may be an
integer number running from zero (*0”) to the number of
data sources 1n the array minus one. For example, data
sources 1n a data source array that includes ten data sources
may be assigned indices from zero (*07) to nine (“97).

As referred to herein, a data set may be a structure that
holds data. A data set may include both metadata (e.g.,
structural information) and actual data. For example, meta-
data may be information related to an arrangement of 1tems
in a structure, e.g., 1n a table or other container of data. Using
metadata, an application may locate specific items 1n a data
set. Typically, a structure or arrangement of a data set 1s
unchanged over long periods of time while actual data or
content may be dynamic. However, metadata may be
changed, for example, a column may be added to an existing
table, such addition may be caused, for example, by a
specific command to a data source that may cause a modi-
fication of a data set structure. Typically though not neces-
sarily, several data sets are included 1n a single data source.
A non-exclusive example for data set 1s a table within a
database.

According to embodiments of the invention, a distributed
data set may be a data set distributed across several data
sources. For example, a first subset of rows 1n a table may
be stored and/or managed by a first data source and a second
subset of rows 1n the same table may be stored and/or
managed by a second data source. Accordingly, 1f a request
or operation 1s related to the first subset, the first data source
may be interacted with and, 1f the request or operation 1s
related to the second subset, the second data source may be
interacted with. Generally, a data set may be distributed,
wherein the content or information 1n the data set 1s distrib-
uted between, among or across a number of data sources or
the data set may be non-distributed. A non-distributed data
set may be stored as a whole or in its entirety on a data
source. It will be noted that a non-distributed data set may
be duplicated (or mirrored) on or at a number of data
sources. However, when a non-distributed data source 1s
duplicated or mirrored, the entire data set content may be
found on each mirrored data source, thus, although dupli-
cated, the data set may still be non-distributed.

In some embodiments, the structure, arrangement or other
attributes or aspects of a data set (e.g., as retlected 1n the
associated metadata) may be left unchanged, e¢.g., when a
non-distributed data set 1s distributed, e.g., when the content
ol the data set 1s divided between a number of data sources.
As referred to herein, a global data set may be a non-
distributed data set. Accordingly, a information or content of
a global data set may reside in one and only one data source,
or, 1n other cases, content of a global data set may reside
equally 1n a set of data sources, e.g., duplicated on a number
of databases. Accordingly, 1n order to generate or obtain an
entire or complete distributed data set, content obtained
from a number of data sources may need to be joined,
merged, concatenated or otherwise combined. In contrast, an
entire or complete non-distributed (e.g., global) data set may
be obtained from a single data source.

A master data source may be a data source that stores
specific information or, 1n some cases, selected data sets. For
example, a master data source may store information related
to metadata even though it may not store the actual data
(which may be stored on regular, non-master data sources).
For example, an application may need to examine metadata
related to a data set prior to generating a request from a
database, e.g., 1n order to determine which fields, rows or
columns 1n a table to request. In order to obtain metadata
related to data sets stored in an array of data sources, an

10

15

20

25

30

35

40

45

50

55

60

65

8

application may interact with a master data source and be
provided, by the master data source, metadata.

Other examples of information that may be maintained
and/or stored by a master data source may be a version of a
database application (e.g., the version of the DBMS appli-
cation used to manage a database). Addresses, e.g., IP
addresses of specific data sources or of a gateway used to
access an array of data sources may be another example of
information, that may be referred to as metadata, that may be
stored 1n, and provided by, a master data source. In some
embodiments, a master data source may store a non-distrib-
uted (global) data set. For example, a global data set may
need to be duplicated on a number of servers or data sources,
however, for various reasons (e.g., maintenance or fault) a
global data set may not be mirrored on all data sources as
configured, planned or desired. In such cases, possibly as a
backup measure, a global data set may be stored on a master
data source.

According to embodiments of the invention, an element,
component or part of a data set may be designated as a data
distribution key. For example, a data set may be a table
having forty (40) rows, and a row number may be defined or
designated as the data distribution key for the table. In such
exemplary case, a mapping between row numbers in the
table and data sources may be created. For example, infor-
mation in rows one to twenty (1 to 20) in the table may be
stored on a first one or set of data sources and information
in rows twenty one to forty (21 to 40) may be stored on a
second one, or set of data sources. Using such mapping,
when a request for information 1n the table i1s received,
embodiments of the invention may examine the request, and
upon determine the data set from which information 1s to be
retrieved 1s the table 1n the current example, a mapping (or
any relevant calculation) may be examined and/or per-
formed to determine the data distribution key.

In the example above, the mapping may be found to be
according to row numbers. Accordingly, a row number
(which will typically appear 1n a request from a table) in the
request will be designated as the data distribution key. For
example, 1 a first query related to the table in the current
example, a row number of fifteen (15) may be indicated. In
such case, 15 may be designated as the data distribution key
value. Accordingly, since rows 1 to 20 are mapped to the first
data source (or the first data sources set), the request may be
forwarded to the indicated first data source or set of data
sources. Accordingly, by designating an element 1n a data set
as a data distribution key and distributing information in the
data set based on values that may be assumed by the
designated element (in 1ts capacity as a data distribution
key), embodiments of the invention may enable efliciently
distributing data sets across multiple data sources.

In some embodiments, the data distribution key may be a
part or an element of a data set, e.g., a column or row 1n a
table and, accordingly, the data distribution key value may
be determined by observing the value of the part or element
in the data set, e.g., the row or column number. Using a
mapping or any calculation, a data source may be picked
based on the value of the data distribution key. In other
embodiments or cases, a complex data distribution key may
be used. For example, the data distribution key may not
necessarily be a part or an element of the related data set. For
example, the data distribution key of data set “A” may be an
clement 1n data set “B” or may be part of, or stored 1n any
storage construct. For example, a mapping related to a first
data set may comprise a pointer or other reference to a
second data set. Accordingly, upon receiving a request
related to the first data set, embodiments of the invention

US 11,301,446 Bl

9

may examine a second data set to determine the data
distribution key and or data distribution key value. For
example, a table may indicate that a value to be used as a
distribution key for a first (distributed) data set 1s to be
determined based on a second data set, the table may further
indicate a field or entry 1n the second data set. Accordingly,
the second data set may be accessed, a value 1in an indicated
field or location may be obtained and used as a value of a
distribution key that may be used to locate distributed data
of the first data set.

A specific data distribution key value may be mapped to

a set of data sources based on various schemes or 1t may be
mapped to a specific data source. A mapping of a data
distribution key value to a specific data source may be based
on any scheme, calculation or computation or 1t may be
straight forward. For example, data sources in a data source
array (e.g., data sources 130) may be assigned indices and a
value of a data distribution key may be used as an index. For
example, 1n a simplified case, a table may have 10 rows and
an array of data sources may include 10 data sources. In such
simple case, a row number may be designated as the data
distribution key, clearly, the values that may be assumed by
the data distribution key are 1 to 10 as there are 10 rows in
the table. Accordingly, a value of the data distribution key
that may be any number between 1 to 10 may be used as an
index of the data source, e.g., without any computation or
calculation.
Clearly, the simple mapping example above may be
insuilicient 1n many cases. Accordingly, embodiments of the
invention may enable various methods or schemes and
relevant devices or systems for determiming or selecting a
data source based on a value of a data distribution key. For
example, distributor 320 (described herein with respect to
FIG. 3) may perform various calculation or computations
based on a value of a data distribution key to determine or
select a data source. For example, a value of a data distri-
bution key may be provided as input to a hash function that
may provide a data source index or other reference or
indication as output.

In one embodiment, a value of a data distribution key may
be normalized and an index of a data source in a data source
array may be calculated, e.g., by distributor 320, based on
the normalized data distribution key value. For example, the
“modulo” function may be used. For example, deriving a
data source index may be according to:

“<data distribution key value>modulo<number of data

sources 1n a data source array>".

For example, 1n an exemplary case where ten (10) data
sources are used, such data sources may be assigned the
indices of zero to 9 (0 to 9) respectively, and the function of:

sources may be assigned the indices of zero to 9 (0 to 9)
respectively, and the function of:

“<data distribution key value>modulo<10>"

may be used to derive an index and/or select a data source.
In this example, the function may yield any number between
zero (0) to nine (9) that may be used as an index to one of
the ten data sources according.

In another embodiment, a mapping table may be used,
¢.g., by distributor 320, to map data distribution key values
to data sources. A simple mapping may map a data distri-
bution key value to a data source, a more complex mapping,
may, for example, map a range of data distribution key
values to a data source or a set of data sources. For example,
a mapping may be according to ranges of data distribution
key values. In such case, portions of a request may be sent
to data sources selected based on the range of data distri-
bution key values. For example, a first portion of a request

10

15

20

25

30

35

40

45

50

55

60

65

10

may be sent to a first data sources selected based on a first
value 1 a range of a data distribution key values and a
second portion of a request may be sent to a second data
sources selected based on a second value 1n a range of a data
distribution key values.

In yet another embodiment, a combination of a hash or
other function and a mapping may be used. For example, a
modulo or other function may produce a value based on a
value of a data distribution key and the value thus produced
may be used, in conjunction with a mapping table or
function to derive an index of, or other reference to, a data
source. For example, rather than using a value produced by
the modulo function as an index of a data source, the value
produced by the modulo function may be provided to a
mapping function or table to produce a reference to a data
source.

Reference 1s now made to FIG. 3 that shows a high level
block diagram of an exemplary system 300 according to
embodiments of the present invention. As shown, system
300 may include a parser 310, a mapping module 315, a
distributor 320, an aggregator 340, an execution module 330
and a thread pool 350. As shown, system 300 may be
operatively connected to a client devices 110 and to data
sources 130, e.g., over a network such as network 140A
and/or 140B.

As shown by 360, system 300 may receive mput from a
client that may be fed to parser 310. Parser 310 may be
configured to parse an incoming request. For example, a
request may be parsed ito tokens. For example, parts,
fields, entries or any relevant structures in a request may be
identified and possibly converted into one or more tokens or
parameters. As shown, output from parser 310 may be
provided to distributor 320 and to mapping module 315. For
example, one or more parameters extracted from a request
may be provided to mapping module 315 and other infor-
mation may be provided to distributor 320. Mapping module
may perform any calculation or computation based on
parameters and data received from parser 310 in order to
determine a mapping as described herein, e.g., a mapping of
a key to a data source, a mapping of a data set to a data
source or a designation of a field 1n a request as a distribution
key, e.g., based on a mapping table. Although not shown,
mapping module 315 may include or may use mapping data.
For example, mapping data 226 may be available to, and
used by mapping module 315, e.g., when performing a
mapping as described herein.

For example, one or more fields or tokens obtained from
a request may be provided, by parser 310 to mapping
module 315 and a payload of the request may be provided
to distributor 320. Based on data or parameters (e.g., tokens)
provided by parser 310, mapping module 315 may map a
request to one or more data sources. Mapping module 315
may provide a mapping parameter to distributor 320 that
may select a data source to which a request or other
information 1s to be forwarded. Accordingly and as shown,
distributor 320 may interact with mapping module 315, e.g.,
in order to receive a destination data source to which a
request received by system 300 1s to be forwarded.

In some embodiments, distributor 320 may include or
may be operatively connected to a distribution engine (e.g.,
mapping module 315) that may be provided with a param-
cter (e.g., a token) and return, 1n response, a reference to a
data source. For example, based on a data distribution key
(further described hereinbelow) a distribution engine may
provide a data source index or other reference enabling an
identification of a data source 1n an array of data sources.
Other modules or components, e.g., a distribution transac-

US 11,301,446 Bl

11

tion manager that may coordinate handling multiple trans-
actions may be included 1n system 300. It will be understood
that various implementations may be applicable, however,
tor the sake of simplicity and clarity, neither all components
nor all possible implementations or designs will be dis-
cussed herein. Accordingly, 1t will be understood that
embodiments of the mvention are not limited by the sim-
plified description provided herein.

Execution module 330 may cause an execution of a task
based. For example, based on data or parameters produced
by parser 310 and/or distributor 320, execution module 330
may cause a transaction. For example, based on a selection
of a data source and provided with at least a portion of a
request, execution module 330 may cause the portion of a
request to be sent to the selected data source and/or cause
execution of any related tasks. Thread Pool 350 may be a
pool of threads that may be executed by execution module
330. For example, a plurality of executions of a code
segment may be executed, simultaneously or 1n parallel. For
example, 1n order to send a request to a data source, a thread
may be spawned and provided with the request and an
identification of the target data source. A thread may send a
request to a data source (e.g., acting as a client), may wait
for a response and may return a received response to
execution module 330 or aggregator 340.

Aggregator 340 may aggregate results arrving from data
sources. For example, distributor 320 may determine that a
first portion of a request 1s to be directed to a first data source
and a second portion of the same request 1s to be sent to a
second data source. For example, based on a number of
values assigned to a data distribution key, a number of data
sources may be selected to receive potions of a request. In
other cases, a request may be used to generate a number of
requests that may differ from one another, e.g., 1n one or
more parameters. Consequently, execution module 330 may
cause two threads 1n thread pool 350 to be executed. The two
threads may each send their respective portions of the
request to the designated data source, wait for and receive a
reply and provide the reply to execution module 330 or to
agoregator 340. Accordingly, aggregator 340 may receive
two parts of a response. Aggregator 340 may aggregate,
merge, combine or join the two parts of a response or
otherwise generate a complete response from parts of a
response. As shown, aggregator 340 may communicate an
aggregated response to a client. Accordingly, system 300
may be transparent 1n the sense that a client or a client device
may be unaware that rather than interacting with a data
source (e.g., one of data sources 130, a database, a web
server and the like) 1t 1s actually interacting with system 300.

An 1nput as shown by 360 may be a request from a client,
¢.g., a request for information from a data source. A request
received as shown by 360 may include a payload. For
example, a payload may be a structured query language
(SQL) command sent to a database. In other cases, a request
may be a request for data results (e.g. an SQL Query) or a
request for data manipulation, e.g. an SQL data manipula-
tion language (DML) command such as UPDATE or
INSERT.

As shown by 361, system 300 may produce output to a
client, ¢.g., send information. For example, information sent
as shown by 361 may be a response provided to a client 1n
relation to a recerved request. A response as shown by 361
may 1nclude or contain a payload For example, in a case
where the related request (as shown by 360) 1s a query
request, a response 361 may be or may include the relevant
queried data. In another case, €.g., a manipulation of 1nfor-
mation 1n a data source, the response may contain informa-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion related to the manipulation, e.g., number of rows
aflected, success or failure indications etc. In yet another
case, €.g., when a request 1s related to a management of a
data source, the response may include any relevant feed-
back, e.g., as expected by a management task.

As shown by 370, output from system 300 may be sent to
a data source. For example, requests or part or portions of
requests may be sent to data sources or servers as shown by
370. As shown by 371, inputs may be received by system
300. For example, in response to requests sent as shown by
370, responses may be received as shown by 371. For the
sake of clarity and simplicity, some components that may be
included 1n system 300 are not shown. For example, a
communication module or unit (e.g., a unit including a NIC
and suitable dnivers) configured to enable system 300 to
communicate with client devices 110 and data sources 130
may be included 1n system 300 but not shown 1n FIG. 3.

Other modules or components that may be included 1n, or
operatively connected to system 300 may be, for example, a
management module. For example, a remote management
application and/or device may interact, e.g., over network
140A, with an agent installed in system 300, e.g., a man-
agement or monitoring agent. For example, a monitoring
agent may interact with other system 300 components to
obtain any relevant information, and may provide monitor-
ing and management information (such as statuses, statistics,
etc.), typically but not exclusively to a management client
that may be executed on a remote computing device. For
example, parser 310, distributor 320, execution module 330
and aggregator 340 may all be monitored by a monitoring or
management agent, module or unit and information related
to their operations may be provided to a (possibly remote)
management or monitoring application or system.

Such configuration may enable an administrator or man-
ager to monitor, control, configure or otherwise supervise or
manage system 300 from a remote location, e.g., by
remotely sending and receiving management requests and
responses. In some embodiments, system 300 may be, may
include or may be implemented by virtual data source 200
described with reference to FIG. 2. Accordingly, any com-
ponents or aspects described as included 1n, or related to
virtual data source 200 may likewise be included 1in, or
related to system 300.

Reference 1s now made to FIG. 4 that shows a tflowchart
describing a method according to embodiments of the inven-
tion. Unless explicitly stated, the method embodiments
described herein are not constrained to a particular order or
sequence, accordingly, embodiments of the invention are not
limited by the order or arrangement of elements or opera-
tions shown in FIG. 4. Additionally, some of the described
method embodiments or elements thereol can occur or be
performed at the same point in time. Furthermore, some of
the elements shown in FIG. 4 may be optional and/or
omitted or, 1n some cases, skipped. In other embodiments,
some of the operations or elements shown may be repeated.
Accordingly, 1t will be understood that the flow and elements
shown 1n FIG. 4 are an exemplary one embodiment, and
various deviations from the flow may be possible without
departing from the scope of the invention.

As shown by block 410, a method or flow may include
receiving a request. For example, virtual data source system
300 may receive a request from one of client devices 110.
Any operation related to a data source and/or database may
be included 1n a request as shown by 410. For example, a
request may be, or may include a request for information
stored 1n a data source, e.g., details regarding an employee,
a price of a product and the like. A request may be related

US 11,301,446 Bl

13

to modilying mformation in a data source, e.g., update a
price of a product. In other cases, a request may be related
to modifying a configuration of a database, e.g., adding a
column or row to a table. In yet other cases, a request may
be related to metadata, e.g., a database software version may
be requested or an IP address and the like.

A request recerved as shown by block 410 may be parsed,
¢.g., by parser 310. Parsing a request may include determin-
ing any relevant parameters or aspects of a request. In some
embodiments, parsing a request received from a client, e.g.,
as shown by 410, may include determining a data set
identification parameter. For example, a data indicated 1n (or
relevant to) a request may be a table and a data set identi-
fication parameter may be a table name or other 1dentifica-
tion parameter that may uniquely or otherwise identity the
table. A mapping or other construct may enable embodi-
ments of the invention to determine on which data source a
specific data set 1s stored. For example, a set of tables may
be stored on a specific, possibly single server or data source.
Accordingly, and as shown by block 415, the flow may
include determining 1f the request relates to a master data
set. For example, global information or metadata such a
version or date of last update of a DBMS application or
administrative personnel contact mmformation and the like
may be stored on a server or data source designated as
master data source. Using parameters extracted from a
request, ¢.g., a table name or a request type, and using a
mapping, €.g., as stored in mapping data 226, mapping
module 315 may determine that information requested 1n the
request received as shown by 410 1s stored in a table (or
other data set) that 1s stored 1n a master server or data source.
For example, mapping data 226 may include a table having
two columns, the first of which stores a table name and the
second stores a server or data source reference, e.g., an
index. Accordingly and as shown by block 420, a request
may be sent to a master data source (indicated as master DS).

As shown by block 425, the flow may include determining
whether the request 1s related to a global configuration
parameter. For example, a global configuration parameter
may be a command related to a data definition language as
known 1n the art, e.g., an addition of a row or column to a
table or another modification of a table. A modification of a
global configuration parameter (e.g., modifying a table) in a
database or array of data sources may need to be reported to,
and/or executed on, all data source which store the table
(c.g., 1iI the table 1s mirrored on several data sources).
Accordingly, a table listing all data sources which may need
to be notified or otherwise interacted with when a global
configuration parameter 1s modified may be examined and,
as shown by block 430, all relevant data sources may be
provided with a request to modily the global configuration
parameter. For example,

mapping data 226 may include a table that maps global
configuration parameters to relevant data sources. Mapping
module 315 may examine such table, based on a parameter
to be modified or manipulated, extract indices of data
sources from the table and provide the 1indices to distributor
320 that may forward the request (e.g., as provided by parser
310) to all relevant data sources.

As shown by block 435, the flow may include determining
whether the data set 1s a distributed data set. As described
herein, a distributed data set may be a data set the content of
which 1s divided or distributed across a number of data
sources or servers as oppose to being stored 1n its entirety on
one data source or duplicated on a number of data sources.
Determining whether a data set 1s distributed may be based
on a table or function, e.g., stored in mapping data 226.

10

15

20

25

30

35

40

45

50

55

60

65

14

Accordingly, provided with a data set 1dentification (e.g., a
table name), mapping module 315 may examine mapping
information and determine whether the data set 1s distrib-
uted.

As shown by block 440, the flow may include determining
the type of request. For example, 11 it was determined that
the data set 1s a non-distributed data set then 1f the request
type 1s a request for mformation (e.g., a query) then, as
shown by block 450, the request may be sent to a data source
based on any suitable load balancing algorithm or scheme,
for example, the least loaded server. In other cases, e.g., 1f
the request type 1s related to an update of information, for

example, updating a price of a product, then, as shown by
block 445, the request may be sent to all relevant data
sources.

As shown by block 4355, the tlow may include determining
whether the request includes a data distribution key. For
example, 11 1t was determined that the data set related to the
request 1s a distributed data set then mapping module 315
may determine, €.g., based on a table, which field in the
request 1s to be designated as a data distribution key and may
further determine whether such field was included in the
request and/or whether the field includes a valid value. For
example, a table or other construct (e.g., a linked list or a set
of crossed referenced files) in mapping data 226 may
indicate that a data distribution key of a specific data set 1s
a column number. Among other information or parameters,
parser 310 may extract from a request related to the specific
data set the column number and table name and provide such
parameters to mapping module 315. Module 315 may use
the table name to determine (e.g., based on an association or
mapping table) that the column number 1s to be used as a
data distribution key. Accordingly, mapping module 315
may examine the provided column number. In some cases,
the column number parameter does not contain a valid value
or contains a predefined value indicating that a valid value
was not found 1n the request.

Embodiments of the invention may distribute a request to
a plurality of data sources. For example and as described
herein, a single request may be sent to a number of data
sources, €.g., when updating a table that 1s cloned, dupli-
cated or mirrored on a number of data sources. In other
cases, a plurality of requests may be generated based on a
respective plurality of data distribution key values and the
plurality of requests may be sent to a plurality of data
sources that may, 1n turn, be selected based on the plurality
of data distribution key values. For example, based on a
number of values assigned to a data distribution key, a
number of data sources may be selected to receive potions
of a request. In other cases, a request may be used to
generate a number of requests that may differ from one
another, e.g., in one or more parameters. In some cases, a
plurality of portions of a request may be sent to a plurality
ol data sources, e.g., based on a mapping of a plurality of
data distribution key values. For example, a data distribution
key may be determined to be a row number and request may
include requesting information in all rows from ten to
twenty (10 to 20). A mapping data may indicate that content
in rows ten to fifteen (10 to 15) 1s stored on a first data source
and content included in rows sixteen to twenty (16 to 20) 1s
stored on a second data source. Accordingly, system 300
may generate two requests that may be portions of an
original request where a first of the two requests or portions
may be a request for mformation included in rows ten to
fifteen and such first request may be sent to the first data
source and a second of the two requests or portions may be

US 11,301,446 Bl

15

a request for mmformation included 1n rows sixteen to twenty
and such second request may be sent to the second data
source.

In some embodiments, 1f parser 310 fails to find a valid
parameter value 1in an mncoming request then parser 310 may
set the parameter value to a predefined value, e.g., NULL.
Accordingly and as shown by block 460, i1 no data distri-
bution key value 1s determined, the request may be sent to
all relevant data sources. For example, the data distribution
key value may iteratively or otherwise set to all values 1n a
range ol possible values, 1n each iteration, a table that maps
data distribution key values to data sources may be exam-
ined and the request may be sent to one or more data sources
based on the mapping or association 1n the table. Accord-
ingly, sending the request to all relevant data sources as
shown by block 460 may be an iterative process.

As shown by block 4635, the flow may include determining
whether the data distribution key wvalue 1s unique. For
example, a data distribution key may be a specific, unique
value or number or it may be a range, e¢.g., 120 to 130 or 1t
may be a logical expression, e.g., all odd numbers from 10
to 30. As shown by block 470, 11 the data distribution key
includes, indicates, represents, or may be substituted by, a
range of values, then the data distribution key may be
substituted by the range or set of values, a respective set of
data sources may be determined and the request may be sent
to the respective set of data sources. For example, an
iterative process of substituting the data distribution key
value, determining a data source and sending the request to
the determined data source may be performed.

As shown by block 475, the flow may include determining
whether the data distribution key value 1s a dynamic value.
For example, rather than indicating a unique value, a range
of values or values based on a logical expression, a data
distribution key or another parameter (that may be included
in the request) may indicate that the data distribution key
value 1s to be dynamically determined as shown by block
485. Any logic, system or module may be used to dynami-
cally determine a data distribution key value. For example,
a module, unit device or system external to system 300 may
be provided with any parameter or information, including a
request, €.g., as received as shown by block 410, and may
return one or more values to be used as a data distribution
key value. Provided with such dynamically generated or
provided data distribution key values, system 300 may select
a destination data source based on the provided values and
torward the request to the selected data sources. As shown
by block 480, the flow may include sending a request to a
specific data source. For example, 11 a data distribution key
value 1s unique then a mapping (e.g., as described herein) of
the unique value may enable selecting a specific, single data
source to receive the request.

According to embodiments of the invention, prior art
systems, configurations or setups may be converted, trans-
formed or ported such that they may operate according to, or
otherwise comply with, embodiments of the mvention. A
data migration process may be designed and performed such
that users or clients of data or information stored on one or
more data sources may maintain their work or usage of
stored data uninterruptedly. For example, an organization
currently using a number of data source may want to switch
to use embodiments of the invention. Such switch may
require a migration of all the data from a first storage to
another storage. In other cases, a system or device such as
system 300 may be placed between users and an existing
setup or array of data sources, tables in such located system
300 may be updated according to the way data 1s stored on

10

15

20

25

30

35

40

45

50

55

60

65

16

an existing array of data sources and users may be caused to
interact with such located system 300 rather than with the
array of data sources.

In some cases however, data may need to be moved from
a source storage to a destination storage (e.g., copied or
duplicated, at least during a first stage). Data copied from a
source storage may be arranged on a destination storage
according to any scheme, logic or parameters. For example,
based on various considerations, some of the data sets
copied may be distributed across a number of data sources,
e.g., to 1increase efliciency, speed etc. Generally, a transition
ol a system or setup from a prior art system to a system and
method of operation according to embodiments of the inven-
tion may include causing users and/or applications 1n an
organization to interact with a system such as system 300
and further configuring the system 300 to operate as
described herein 1f data requested has already been ported
(e.g., copied to a new location and possibly organized, ¢.g.,
distributed according to configuration parameters) and to
forward requests for data not yet ported or copied to old or
existing data sources, namely, data sources used prior to an
introduction of a system or method according to embodi-
ments of the mvention.

As described herein, a request (e.g., as shown by 360)
may be received and processed (e.g., recerved and processed
by system 300, as described herein) and a number of
requests (e.g., as shown by 370) may be sent to a number of
data sources based on the received and processed request. In
some cases, a number of portions of the request may be sent
to a number of data sources. In other cases, a number of
requests may be generated based on processing a recerved
request and the number of such generated requests may be
sent to a respective number of data sources. Accordingly, a
number of responses (e.g., as shown by 371) from one or
more data sources may be received, e.g., by system 300.
Aggregator 340 may aggregate recerved responses nto one
or more responses and send aggregated responses, possibly
as one response, to a client (e.g., as shown by 361).
Accordingly, although a single request recerved from a client
may be broken into a number of requests sent to a number
ol data sources, a single response may be provided to the
client, otherwise described, system 300 may be transparent
to the client.

Aggregation of responses may be based on various
parameters, context or other aspects. For example, aggrega-
tor 340 may examine aggregation parameters (€.g., 1n aggre-
gation parameters 227) that may be provided by parser 310,
mapping module 315, distributor 320 and/or execution mod-
ule 330. Aggregation parameters provided to aggregator 340
may include any parameter, data or information that may be
required 1n order to aggregate or combine a number of
responses 1nto one or more responses. For example, any data
or parameters extracted from a request recerved from a client
may be stored 1in aggregation parameters (e.g., 1n aggrega-
tion parameters 227) and provided to aggregator 340. Other
parameters or data, e.g., stored 1n aggregation parameters
227 may be determined based on processing a request from
a client or based on a distribution of requests to data sources.
Information provided to aggregator 340 may be, for
example, any information related to threads spawned or
executed by execution module 330, e.g., thread 1dentifica-
tion (thread ID), memory location or addresses associated
with a thread (e.g., a location in memory where a thread
stores a response received from a data source) and the like.

In a first case or scenario, aggregator 340 may simply
forward received responses (e.g., as shown by 371) to a
client. For example, aggregation parameters 227 may com-

US 11,301,446 Bl

17

prise an association of a thread (e.g., using a thread ID) and
a client (e.g., an IP address and port number or socket
identification associated with the client node). Aggregation
parameters 227 may further indicate that no special process-
ing or formatting of the response are required. For example,
in the case where an original request (e.g., as shown by 360)
for a list of employees that does not indicate the provided list
1s to be sorted (e.g., by employee name) or that a single list
in a single response 1s expected, aggregator 340 may simply
send (or forward) responses as received (e.g., as shown by
371). For example, using inter process communication (IPC)
or other means or schemes, a thread may notily aggregator
340 that a response (or part thereof) has been received from
a data source. Aggregator 340 may examine aggregation
parameters 227, determine to which client the response 1s to
be sent (e.g., based on an association of thread ID with a
client and/or client parameters) and send the response,
possibly as received, to the client.

In another case or scenario, information 1n a response may
need to be sorted. For example, an original request from a
client may indicate a sort of information in the response 1s
required, e.g., the original request may include an SQL
“ORDER BY?” clause. For example, a request for a list of
employees 1n an organization may indicate the list 1n the
related response 1s to be sorted (e.g., according to an
employee name), accordingly, an indication of a required
sort may be imserted 1into aggregation parameters 227, e.g.,
by parser 310. In such case, multiple requests sent to data
sources based on an original request from a client may all
indicate that a sorted list 1s to be provided as a response.
Accordingly, a number of sorted lists may be received, e.g.,
as shown by 371.

In such case, a sorted response to the client may need to
be compiled based on responses received from a number of
data sources. For example, the request for a sorted list of
employees may be broken into several requests of a sorted
list of employees sent to several data sources, e.g., if the list
or table of employees 1s a distributed data set as described
herein. Accordingly, a number of responses, each compris-
ing sorted information may be received. Based on informa-
tion 1 aggregation parameters 227, aggregator 340 may
determine the number of data sources to which relevant
requests were sent and/or the number and 1dentification of
threads that were invoked 1n relation to the original request.
For example, the number of threads mnvoked with relation to
an original request received from a client may be entered
into aggregation parameters 227. Aggregator 340 may com-
pile a sorted list of employees based on responses (or lists)
provided by a number of data sources, e.g., through or by a
number of threads.

In one embodiment, to generate a sorted list based on a
number of responses (received from a number of data
sources, €.2., by a respective number of threads) aggregator
340 may wait until at least a part of a response was provided
by all threads involved with the original request. Once at
least part of a response was received from all data sources,
agoregator 340 may commence compiling a response.
Aggregator 340 may examine responses from all data
sources and select to isert data from such responses 1nto a
response that will be sent to the client (e.g., as shown by
361) based on the sorting criteria (that may be indicated 1n
aggregation parameters 227). For example, if a sort by an
employee name 1s required, aggregator 340 may perform a
lexicographic compare of entries in responses from a plu-
rality of data sources and select the entry having the minimal
value. For example, a table of employee names may be
distributed, e.g., based on departments, to a number of data

10

15

20

25

30

35

40

45

50

55

60

65

18

sources. Accordingly, a request from a client for a sorted list
of employee names (e.g., as shown by 360) may cause
system 300 to send a number of requests for a sorted list of
employee names (e.g., as shown by 370). In such case, a
number of responses (e.g., as shown by 371) each including
a sorted list of employee names and each related to a
different department may be recerved. Aggregator 340 may
examine the responses and generate a response to the client
by selecting entries 1n the responses according to the sorting
criteria.

For example, a first list received from a first data source,
¢.g., of employees 1n the sales department, may include
Abraham, Brown and Cohen. A second list received from a
second data source, e.g., of employees in the research and
development (R&D) department may include Adrian, Bailey
and Cameron. By lexicographically sorting such two lists,
aggregator 340 may produce the sorted list that may be:
Abraham, Adrian, Bailey, Brown, Cameron and Cohen.
Accordingly, a sorted list, that may be included 1n a response
to a client, may be generated or produced based on a
plurality of sorted lists included in a plurality of responses
received from a plurality of data sources. Otherwise
described, to generate a response to a client, a plurality of
lists recerved from a plurality of data sources, each sorted
based on a criteria may be merged 1nto single list sorted by
the same critera.

In yet another embodiment, a request may indicate a
grouping 1s required or requested. For example, an original
request received from a client (e.g., as shown by 360) for
employee names 1n an organization may indicate the names
provided 1n a response are to be grouped according to
departments, for example, an original request from a client
may include an SQL “GROUP BY™ clause or operator that
indicates the grouping 1s to be done according to depart-
ments. Assuming the list of employees 1s a distributed data
set, requests for employee names grouped by departments
may be sent to data sources associated with the list of
employees. However, 1n order to improve the aggregation
process of responses received from a plurality of data
sources, system 300 may add an operator or clause to an
operator or clause 1 an original request received from a
client.

In other cases, system 300 may replace an operator or
clause 1n an original request received from a client. For
example, 1f the list of employees 1s distributed according to
employee names (e.g., names starting with “A” to “J” are
stored on a first data source and names starting with “K” to
“7Z” are stored on a second) than records of employees from
a number of departments may be stored on both the first and
second data sources. In such case, rather than requesting a
list of employee names grouped by departments from each
of the data sources (namely, using the same operator, clause
or parameter included in an original request from a client),
system 300 (e.g., based on output from mapping module 315
and/or logic 1n distributor 320 or parser 310) may request
lists of employee names from a number of data sources
sorted by department. Accordingly, the clause, parameter or
operator of “GROUP BY” received from a client may be
replaced by “SORT BY” by system 300. Accordingly, lists
of employee names sorted according to departments may be
received from a number of data sources. Aggregator 340
may examine such sorted lists and compile a list of employ-
ces where, 1 the compiled list, employees are grouped by
departments. To do that, aggregator 340 may collect, accord-
ing to the sorting in the responses, entries. For example,
agoregator 340 may extract all employee names of a first
department 1 a first response, then extract all employee

US 11,301,446 Bl

19

names of the first department 1n a second response and so on
and 1nsert such employee names into a list that 1s to be
provided as a response to a client. Next, aggregator 340 may
extract all employee names of a second department 1n the
responses and insert the names into the response list.
Accordingly, by using a plurality of sorted lists aggregator
340 may generate a list according to a grouping. It will be
realized that in other cases, other parameters or operators in
a request received from a client may be replaced or modified
prior to sending the request to one or more data sources. In
other embodiments, a parameter or operator may be added
to an original request 1n order to generate a request to a data
source.

In yet other embodiments, scenarios or cases, a number of
requests for a number of item types or for information in a
number of data sets may be generated based on a request
from a client related to a single 1tem type or related to a
single data set. For example, a client may request a list of
employee names and, for each employee, the name of the
department with which the employee 1s associated. How-
ever, the list or table of employees may be stored on a first
set of data sources and, rather than a department name, only
a department 1dentification code may be associated with
employees 1 such list or table. Another table, possibly
stored on a second set of data sources, may provide a
mapping ol departments identification codes to department
names. Accordingly, to satisfy a request as above (for a list
of employee names and associated department names),
system 300 may generated at least two different types of
requests. A first request (that may be sent to one or more data
sources, €.g., based on the distribution of the relevant data
set) may be a request for a list or table of employee names
or records and second request may be for a table that
provides a mapping ol department identification codes to
department names.

Accordingly, aggregator 340 may be provided with two
types of results, e.g., 1n the example above, one related to
employees and another related to departments. Aggregator
340 may use such two types of responses to generate a
response to a client. For example, aggregator 340 may
substitute the department identification code in the list of
employees by the appropriate name based on the department
list or table.

In another example, a client may request an average salary
of employees 1n an organization. As before, the list or table
of employees and their respective salaries may be distrib-
uted. Data sources may provide, based on a request, an
average salary of employees. However, each one of the data
source may only provide the average salary of employees as
stored on that one data source. Clearly, a straight forward
summation of the averages received from a number of data
sources would result a wrong average, for example, a first
average received from a first data source may be related to
250 employees and a second average received from a second
data source may be related to only 10 employees, accord-
ingly, summing the two averages may not be done to
produce the correct average.

In such case, e.g., based on parsing the request received
from the client and determiming an average i1s required,
system 300 may add an operator to requests sent to data
sources to request, 1n addition to an average, also the number
of employees with which the average 1s associated. Provided
with both a plurality of averages and a respective number of
items (e.g., employees) associated with each of the averages,
aggregator 340 may compute a weighted average (e.g., by
associating each average a weight according to the number
of associated items) and such weighted average may be

10

15

20

25

30

35

40

45

50

55

60

65

20

provided 1n a response to a client. Accordingly, based on
processing a request from a client, system 300 may add an
operator or clause to related requests sent to data sources
and, based on a parameter, operator or clause 1n a request
from a client and information received from data sources,
system 300 may perform a calculation to generate a response
to a client.

While certain features of the invention have been 1llus-
trated and described herein, many modifications, substitu-
tions, changes, and equivalents may occur to those skilled in
the art. It 1s, therefore, to be understood that the appended
claims are itended to cover all such modifications and
changes as fall within the true spirit of the invention.

The mnvention claimed 1s:
1. A method of processing a request, the method com-
prising:
performing, by a computer system programmed with code
stored 1n a memory and executed by a processor of the
computer system that transforms the computer system
into a machine:
parsing a request received from a client to determine a
data set identification parameter;
determining, 1n dependence upon the data set identifi-
cation parameter, whether a data set associated with
the data set identification parameter 1s a distributed
data set or 1s a non-distributed data set;
when the associated data set 1s a distributed data set
then:
selecting, 1n dependence upon a value or values of a
distribution key, at least one target data source, the
distribution key being a field included in the
received request from the client and designated as
the distribution key, and
sending to the at least one target data source a
particular request which 1s dependent upon at least
a portion of the received request; and
when the associated data set 1s a non-distributed data
set then:
when the received request 1s restricted to retrieval of
data, then selecting a particular data source asso-
ciated with the associated data set and sending the
received request to the particular selected data
source, and
when the received request includes an update of
information, then sending the recerved request to
all data sources associated with the associated data
set.
2. The method of claim 1, wherein the associated data set
1s a distributed data set, and wherein:
selecting at least one target data source comprises deter-
mining that the distribution key 1s associated with a
range of values, and
sending to the at least one target data source a particular
request which 1s dependent upon at least a portion of
the recerved request comprises sending the particular
request to a data source associated with the range of
values.
3. The method of claim 1, wherein the associated data set
1s a distributed data set and wherein:
selecting at least one target data source comprises calcu-
lating an index based on the value or values of the
distribution key and
sending to the at least one target data source a particular
request which 1s dependent upon at least a portion of
the received request comprises sending the particular
request to a data source associated with the index.

US 11,301,446 Bl

21

4. The method of claim 3, wherein calculating the index
comprises providing the value or values of the distribution
key as input to a hash function.

5. The method of claim 1, wherein the associated data set
1s a distributed data set and wherein a mapping table 1s used
to select the at least one target data source 1 dependence
upon the value or values of the distribution key.

6. The method of claim 1, wherein the associated data set
1s a distributed data set and wherein sending to the at least
one target data source a particular request which i1s depen-
dent upon at least a portion of the recerved request comprises
generating the particular request by replacing a grouping
operator 1n the at least a portion of the received request with
a sorting operator in the particular request.

7. The method of claim 1 wherein the associated data set
1s a distributed data set and wherein, sending to the at least
one target data source a particular request which 1s depen-
dent upon at least a portion of the recerved request comprises
adding an operator or clause to the at least a portion of the
received request.

8. An article comprising a non-transitory, computer-read-
able storage medium having stored thereon which, when
executed on a computer, cause the computer to carry out a
method, the method comprising;

parsing a request received from a client to determine a

data set identification parameter;

determining, 1n dependence upon the data set identifica-

tion parameter, whether a data set associated with the
data set identification parameter 1s a distributed data set
or 1s a non-distributed data set:;

when the associated data set 1s a distributed data set then:

selecting, in dependence upon a value or values of a
distribution key, at least one target data source, the
distribution key being a field included 1n the received
request from the client and designated as the distri-
bution key; and

sending to the at least one target data source a particular
request which 1s dependent upon at least a portion of
the received request; and

when the associated data set 1s a non-distributed data set

then:

when the received request 1s restricted to retrieval of
data, then selecting a particular data source associ-
ated with the associated data set and sending the
recerved request to the particular data source, and

5

10

15

20

25

30

35

40

22

when the received request includes an update of infor-
mation, then sending the recerved request to all data
sources associated with the associated data set.

9. The article of claim 8, wherein the associated data set
1s a distributed data set and wherein:

selecting at least one target data source comprises deter-

mining that the distribution key 1s associated with a
range of values, and

sending to the at least one target data source a particular

request which 1s dependent upon at least a portion of
the received request comprises sending the particular
request to a data source associated with the range of
values.

10. The article of claim 8, wherein the associated data set
1s a distributed data set and wherein:

selecting at least one target data source comprises calcu-

lating an index based on the value or values of the
distribution key and

sending to the at least one target data source a particular

request which 1s dependent upon at least a portion of
the received request comprises sending the particular
request to a data source associated with the index.

11. The article of claim 10, wherein calculating the index
comprises providing the value or values of the distribution
key as input to a hash function.

12. The article of claim 8, wherein the associated data set
1s a distributed data set and wherein a mapping table 1s used
to select the at least one target data source 1n dependence
upon the value or values of the distribution key.

13. The article of claim 8, wherein the associated data set
1s a distributed data set, and wherein sending to the at least
one target data source a particular request which i1s depen-
dent upon at least a portion of the recerved request comprises
generating the particular request by replacing a grouping
operator 1n the at least a portion of the received request with
a sorting operator in the particular request.

14. The article of claim 8 wherein the associated data set
1s a distributed data set and wherein, sending to the at least
one target data source a particular request which 1s depen-
dent upon at least a portion of the recerved request comprises
adding an operator or clause to the at least a portion of the
received request.

	Front Page
	Drawings
	Specification
	Claims

