12 United States Patent
Wang et al.

US011294792B2

US 11,294,792 B2
*Apr. 5, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

AUTOMATED REVIEW OF SOURCE CODE
FOR STYLE ISSUES

Applicant: Rubrik, Inc., Palo Alto, CA (US)

Inventors: Zhicong Wang, San Francisco, CA
(US); Pranava Adduri, Fremont, CA
(US); Abhinav Adduri, Fremont, CA

(US)
Rubrik, Inc., Palo Alto, CA (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 17/144,443

Filed: Jan. 8, 2021

Prior Publication Data

US 2021/0209000 Al Jul. 8, 2021

Related U.S. Application Data

Continuation of application No. 16/891,986, filed on

Jun. 3, 2020, now abandoned, which 1s a continuation
of application No. 16/196,506, filed on Nov. 20, 2018,

now Pat. No. 10,769,046.

Int. CL.

GOol 11/36 (2006.01)

U.S. CL

CPC ... GO6F 11/3616 (2013.01); GO6F 11/3608
(2013.01)

Field of Classification Search

CPC i, GO6F 11/3616; GO6F 11/3608

U S PO e 717/124-140

See application file for complete search history.

120

code
code
code
code
code
code

hne 1

bW

reference set 1104

‘ reference set 110B

reference set 110A

sample s

SOUIrce code hase

150
compare

sample s2

sample §3

it

sampie sK

(56) References Cited

U.S. PATENT DOCUMENTS

5,768,591 A * 6/1998 Robinson GO6F 9/465
709/201
5,963,739 A * 10/1999 Homeier GO6F 11/3608
714/E11.209
6,473,794 B1* 10/2002 Guheen HO041. 41/22
709/223
7,334,163 Bl 2/2008 Sallam
7,574,704 B2 8/2009 Fulton et al.
7,596,778 B2* 9/2009 Kolawa GO6F 11/3688
717/126
7,627,861 B2 12/2009 Smuth et al.
7,802,493 B2 9/2010 Kubota et al.
7,895,575 B2 2/2011 Yoon et al.
(Continued)

OTHER PUBLICATTONS

Wiese et al, “Replicating Novices’ Struggles with Coding Style”,
IEEE, pp. 13-18 (Year: 2019).*

(Continued)

Primary Examiner — Aml Khatri

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

In one aspect, a computer system automatically identifies
style 1ssues 1n a source code base. A reference set for a
known style issue includes source code examples that
exhibit the style i1ssue. The source code examples in the
reference set are compared to the source code base, for
example using string convolution. Based on the comparison,
locations 1n the source code base that are likely to exhibait the
style 1ssue are 1dentified. Various steps 1n the processing may
be implemented using machine learning models, clustering
or other automated data science techniques.

19 Claims, 6 Drawing Sheets

170J

1708

review vector
170A

192
report

ine 1;

L] 194

suggest fix

196
auto-fix

]l

US 11,294,792 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
7,926,036 B2* 4/2011 Nagappan GO6F 11/3616
717/124
7,950,004 B2* 5/2011 Viewra ... GOO6F 11/3688
717/125
8,205,191 Bl 6/2012 Kolawa et al.
8,270,123 Bl 9/2012 Deng et al.
8,336,028 B2 12/2012 Hinton et al.
8,429,632 Bl 4/2013 Coutant et al.
8,627,287 B2* 1/2014 Fanning GO6F 11/3616
717/124
8,881,112 B2* 11/2014 Corsetti GO6F 11/3616
717/126
9,021,441 B2* 4/2015 Yawalkar GO6F 11/3616
717/125
9,110,770 B 8/2015 Raju et al.
9,430,583 B 8/2016 Flake
9,727,448 Bl 8/2017 Seibert, Ir. et al.
0,727,736 B1* 82017 McClintock GOO6F 8/77
10,089,463 Bl 10/2018 Katz et al.
10,303,517 B1* 5/2019 Sloyan GO6F 8/71
10,769,046 B2 9/2020 Wang et al.
2020/0159643 Al 5/2020 Wang et al.

OTHER PUBLICATIONS

Ueda et al., “Impact of Coding Style Checker on Code Review—A
case study on the OpenStack projects”, IEEE, pp. 31-36 (Year:
2018).*

Ayewah et al., “Using Static Analysis to Find Bugs”, IEEE, pp.
22-29 (Year: 2008).*

Mirza et al, “Suitability of BlackBox Dataset for Style Analysis in
Detection of Source Code Plagiarism”, IEEE, pp. 90-94 (Year:
2017).%

Gall et al., “The Architectural Style of Component Programming™,
IEEE, pp. 18-25 (Year: 1997).*

“U.S. Appl. No. 16/196,506, Non Final Office Action daated Jan. 2,
20207, 19 pgs.

“Automated Review of Source Code for Style Issues™, (Jun. 6,
1996), 17 pgs.

“Automated Review of Source Code for Style Issues™, (1989), 7
pgs.

“U.S. Appl. No. 16/196,506, Response filed Apr. 2, 2020 to Non
Final Office Action dated Jan. 2, 20207, 15 pgs.

“U.S. Appl. No. 16/196,506, Notice of Allowance dated Apr. 22,
20207, 14 pgs.

Kalliamvakou, “Open Source-Style Collaborative Development Prac-
tices in Commercial Projects Using GitHub”, IEEE, (2015), 574-

585.

Martinez, “Automatically Extracting Instances of Code Change
Patterns with AST Analysis”, IEEE, (2013), 388-391.

Ohno, “A Methodology to Teach Exemplary Coding Style Consid-
ering Students” Coding Style Feature Contains Fluctuations™, IEEE,
(2013), 1-3.

Reiss, “Automatic Code Stylizing”, ACM, (2007), 74-83.
Robillard, “Representing Concerns in Source Code”, ACM, (2007),
1-38.

* cited by examiner

US 11,294,792 B2

, 2022 Sheet 1 of 6

S

Apr

U.S. Patent

X1}-0jne
o961

X1} 1s8bbns
761l

1Jodal
col

0 :N aul|

'L 8ul

VO.l
J0)JOBA MBIAS

L Ol

aJjedwod
0G1l

=Tolele
=Tolele

=Tolele
=Tolele
=Tolele
=Tolele aul|

0cl
9seq apoo 82JN0S

YOl | 18S 8oualajal
qdoll 19s a@ouslajal

O] | 1298 @0U=slajal

US 11,294,792 B2

Sheet 2 of 6

Apr. 5, 2022

U.S. Patent

040 |

uoIsSIoap
clC

lspow

buiules)
aulyoew
GOC

¢ Old

WM MIMS = W

LWUM,ES = €]
WM, S = 7]

UM, LS = LI

09¢
oS alnjes)

9AJOAUOD
0GC
WM MOPUIM
cCC

WS s|dwes

oS a|dwes

7S a|dwes

1S a|dwes

R AR PIEIEIEY

US 11,294,792 B2

Sheet 3 of 6

Apr. 5, 2022

U.S. Patent

CLE

€ Old

My CVS My LS

My LS
4104

LM\, LV/S)

L4
&

LM LIS |

S9A|OAUOD
0G¢

oM
ZM
L M\ MOPUIM

0c¢
aseq apoo
90JN0S

evs
CVS
LS

VOlC
}J9s 8ouULsI8)al

US 11,294,792 B2

Sheet 4 of 6

Apr. 5, 2022

U.S. Patent

G 9l v Ol4
apod N aul apo2 N aul|
9p00 g 3 _°POY 8
opoo / / °op0d /|
opod 9 e epoo 9
apod ¢ 8poy ¢ "epoo ¢ |
M spoo] apoo |
| opoo ¢ [euimeu [V epoo £ | opoo_ g |
8p0d 7 BJ)IXd 7 goeds enxe / aul 9p00 7
8poo | aul] SUIIMBU BIIXS {7 aUl apoa | 8ul
clS Ly L LY

9SB(g 8p0o poxi) aseq apoo Joud MBIASJ Jold 8skeq 8po9 Jold

US 11,294,792 B2

Sheet 5 of 6

Apr. 5, 2022

U.S. Patent

Vs sidwes

.lS eidwes |

119 }8s aousls)el

L Ol

/1A

Vs a|dwes

ZS a|dwes

1S sjdwes

019 18s aousis)el

L 19]os =@0Ualsial

9 Ol

WS a|ldwes

7S a|dwes

os g|dwes

1S a|dwes

0L9 1S 8ouslaal

U.S. Patent Apr. 5, 2022 Sheet 6 of 6 US 11,294,792 B2

802

r 804
Chipset
812 - 820 5 806
. Memory
Graphics Adapter Controller Hub Memory
803 E 816
822 .
Storage Device /O Controller Network
Hub ; Adapter
814
%/—
Keyboard - 800 Pointing Device

FIG. 8

US 11,294,792 B2

1

AUTOMATED REVIEW OF SOURCE CODE
FOR STYLE ISSUES

CLAIM OF PRIORITY

This application 1s a continuation of U.S. application Ser.
No. 16/891,986, filed Jun. 3, 2020, which 1s a continuation
of U.S. application Ser. No. 16/196,506, filed Nov. 20, 2018,

cach of which 1s hereby incorporated by reference in 1ts
entirety.

BACKGROUND

Technical Field

The present invention generally relates to reviewing
source code for formatting 1ssues.

Background Information

Traditionally, organizations have software engineers
review source code for formatting errors along with higher-
order logical errors. Countless hours are spent i1dentifying
and fixing code formatting 1ssues (1.e. style 1ssues) instead of
focusing on the higher impact logic 1ssues. This problem 1is
compounded because the desired style may vary by organi-
zation (e.g., by company, by department, or even by project
team), by coding language, and by project. As a result, there
can be a large number of different styles, so that a single
review cannot be blindly applied to all code bases and a
single piece of review solftware cannot be developed to carry
out all reviews. In addition, the style may not be formally
documented 1n a style guide. Rather, it may be defined
primarily 1n the software engineers’ knowledge accumulated
over time on a project or with a team and the eflort required
to formally document a style may not be a good use of
soltware engineers’ time. The styles may also evolve over
time.

Thus, there 1s a need for better approaches to reviewing
source code for style 1ssues.

SUMMARY

In one aspect, a computer system automatically identifies
style 1ssues 1n a source code base. A reference set for a
known style issue includes source code examples that
exhibit that style 1ssue. The source code examples in the
reference set are compared to the source code base, for
example using string convolution. Based on the comparison,
locations 1n the source code base that are likely to exhibit the
style 1ssue are 1dentified. Various steps 1n the processing may
be implemented using machine learning models, clustering
or other automated data science techniques.

Other aspects include components, devices, systems,
improvements, methods, processes, applications, computer

readable mediums, and other technologies related to any of
the above.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a diagram 1llustrating automatic identification of
style 1ssues 1n a source code base.

FI1G. 2 1s a diagram 1llustrating automatic identification of
a single style 1ssue within a single window of source code,
using string convolution.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a diagram 1illustrating an implementation of the
system 1n FIG. 2, extended to automatic identification of
multiple style 1ssues for an entire source code base.

FIGS. 4-5 are diagrams 1llustrating different approaches
to selecting source code samples for use 1n the reference sets
of FIGS. 1-3.

FIGS. 6-7 are diagrams 1llustrating different approaches
for evolving reference sets.

FIG. 8 15 a block diagram of a computer system suitable
for use 1n implementing the automatic 1dentification of style
i1ssues described above.

DETAILED DESCRIPTION

The Figures (FIGS.) and the {following description
describe certain embodiments by way of illustration only.
One skilled 1n the art will readily recognize from the
following description that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles described herein.
Reference will now be made to several embodiments,
examples of which are illustrated 1n the accompanying
figures. It 1s noted that wherever practicable similar or like
reference numbers may be used in the figures and may
indicate similar or like functionality.

FIG. 1 1s a diagram of a system for automatically iden-
tifying style 1ssues 1n a source code base 120. The source
code base 120 has N lines of source code, which 1n FIG. 1
are labelled as line 1 to line N. The system identifies style
1ssues A-J. For each style 1ssue A-J, there 1s a corresponding
reference set 110A-J. Each reference set 110 includes a
number ol source code samples s1-sK. The number K of
samples may be different for each style 1ssue and reference
set. The reference set 110 includes source code examples
that are known to exhibit the style issue. The reference set
110 may also include source code counter-examples that are
known to not exhibit the style 1ssue. If the reference set 110
includes both examples and counter-examples, then the
samples are also marked as being either an example or
counter-example.

Examples of style issues include extra newlines, extra
spaces, missing newlines, missing spaces, unwanted inden-
tation, no space before opening brackets for example
“if (...){”, and no brackets for a switch statement.

Using extra newline as an example, the corresponding
reference set 110A includes source code examples sk known
to have extra newlines and may also include source code
counter-examples sk known to be free from extra newlines,
for example situations 1 which two consecutive newlines
are appropriate and not a style error. Reference set 110B may
be used to detect extra space 1ssues, reference set 110C to
detect missing newlines, and so on. In some sense, each
reference set 110 1s a definition of the corresponding style
1ssue, but 1t 1s a defimtion 1implied by the samples in the
reference set rather than an explicit definition.

The samples skin each reference set 110 are compared
150 to the source code base 120. Based on this comparison,
the locations 1n the source code base that are likely to exhibit
a particular style 1ssue are idenftified. In FIG. 1, this 1s
represented by the “review” vectors 170A-J. “Review” 1s
just a label to 1dentity that this vector is the result of a style
review. Review vector 170A 1s a vector of bits indicating
whether each line 1n the source code base 120 exhibits the
style 1ssue corresponding to reference set 110A. Here, 1
indicates the style 1ssue 1s present and O indicates it 1s not.
In this example, the review vector 170A 1ndicates that lines

US 11,294,792 B2

3

1-3 likely do not have an extra newline error, but line 4 likely
does. Each type of style 1ssue A-J has a corresponding
review vector 170A-].

The review vectors 170 may be used in different ways.
For example, all of the review vectors 170 may be combined
to generate 192 a code review report that lists the locations
in the source code base that are likely to have diflerent style
1ssues. The software engineer can then use this code review
report to review and correct 1ssues 1n the source code base.
Going one step further, the system may automatically sug-
gest 194 corrections for some or all of the identified style
issues. Even one step further, the system may auto-correct
196 the identified style 1ssues.

In some 1mplementations, these actions 192, 194, 196
may take place in real-time as the software engineer 1s
creating the source code base 120. Alternatively, these
actions 192, 194, 196 may occur in batch mode at one time
for the entire source code base 120.

FIG. 2 1s a diagram 1llustrating a particular embodiment
of FIG. 1 1n more detail. FIG. 2 shows automatic 1dentifi-
cation of a single style 1ssue within a single window of
source code, using string convolution. In this example, the
reference set 210 for the style 1ssue of interest includes
samples sk that are all three lines long. For example, these
may be source code examples of the style issue collected
from prior style reviews. Each sample includes the line with
the style error, the line immediately betfore the line with the
error, and the line immediately after the line with the error.
This gives some context for the style error. Whether context
1s required and how much context 1s appropriate will depend
on the type of error. For example, extra newline errors
typically require surrounding lines to positively identily the
error. If no surrounding lines were provided, then every
newline 1n the source code base 120 might be i1dentified as
an extra newline error. On the other hand, errors such as
extra space around comma may have suflicient context
within just the line containing the error so that additional
lines may not be required. In this example, assume that the
samples sk are each three lines long.

Because the samples sk are 3-line samples and because
string convolution 1s used for comparison, the source code
base 1s also evaluated 1n terms of 3-line windows. That 1s,
lines 1-3 (window 1) are evaluated for possible error, lines
2-4 (window 2) are evaluated for possible error, lines 3-5
(window 3) are evaluated for possible error, and so on. FIG.
2 shows the evaluation of a single 3-line window 222.

In this example, string convolution 250 1s used to generate
a feature set 260, which i1s further processed 265 to generate
the single bit 272 that indicates whether the window 222 1s
likely to exhibit this particular style error. Comparing FIG.
2 and FIG. 1, assume that the reference set 1s for style 1ssue
A and that window 222 1s the window for line 4 of the source
code base, then the single bit 272 1s the bit (with value 1 1n
FIG. 1) corresponding to line 4 in the review vector 170A.

The feature set 260 includes features 11-1K, which cor-
respond to the samples s1-sK. The feature 1k for a specific
sample sk 1s based on the string convolution of the sample
sk with the window wm. Use the * symbol to represent the
string convolution. Then feature 1k 1s based on sk*wm. The
string convolution sk*wm 1s 1tself a function. It 1s calculated
by shifting sk relative to wm by a certain number of
characters, making a character-by-character XOR compari-
son between the two (1.e., =1 1f the two characters are the
same, and =0 11 different), and summing the values of the
XOR comparisons. The result 1s a function of the shift
amount, for example 1t sk and wm are aligned or if sk 1s
shifted left or right by x characters. Accordingly, the feature

10

15

20

25

30

35

40

45

50

55

60

65

4

tk could be the entire string convolution function, or 1t could
be reduced to a single number or to a set of numbers. In this
example, 1k 1s calculated as the peak value of the string
convolution, normalized by the number of characters in the
window wm. Examples of sets of numbers that might be
used as the feature 1k include the peak value and second
highest value (and their separation), or the peak value and
the width of the peak, or possibly the peak value and the
minimum value.

In FIG. 2, the peak value 1s used so the feature set 260 1s
a vector of analog values 1k. Each feature 1k is the individual
score for sample sk. These individual scores are combined to
calculate the decision bit 272 for this reference set and
window. In FIG. 2, a machine learning model 265 1s used to
make this decision. In one approach, the individual analog
scores 1k are thresholded to produce binary decisions for
cach sample sk (1.e., whether the sample sk indicates that the
window wm 1s likely to exhibit the particular style error),
and these binary decisions are then combined to determine
the final binary outcome 272 for the reference set. In another
approach, the individual analog scores 1k are combined into
a single aggregate analog score, which 1s then thresholded to
determine the final binary decision 272.

In addition, features may not be of equal importance.
Weights can be used to emphasize more important or more
distinguishing features. That 1s, some features may be
weighted more heavily than others.

A machine learning model 265 may be used for any or all
of the steps described above, including determining the
approprate thresholds and/or weights. The machine learning
model 265 typically 1s trained based on tagged windows, for
example from prior code reviews.

FIG. 3 1s a diagram 1llustrating an implementation of the
system 1n FIG. 2, extended to automatic identification of
multiple style 1ssues for an entire source code base. FIG. 3
1s provided to illustrate that various operations may be
performed 1n different orders to take advantage of compu-
tational efliciencies. In FIG. 3, there are J reference sets
310A-J. Each reference set 310 contains K samples, where
K may be different for each reference set. The samples for
reference set 310A are labelled sAl, sA2 . . . sAK. The
source code base 320 has N lines, which are divided into M
windows labelled wl, w2 . . . wM. Using the above example,
window w1l may be lines 1-3, window w2 may be lines 2-4,
etc.

For computational efliciency, the string convolution 350
for a sample sAk 1s applied to the entire source code base at
once, rather than separately for each window. The result 1s
sAl1*w, sA2*w, etc., where w represents the entire source
code base. In FIG. 3, these results sAk™w are shown side by
side. The left box 1s sAl1*w, the next box 1s sA2*w, and so
on. The first line in the result sA1*w represents sA1*wl, the
second line represents sA1*w2, etc. Conversely, the first line
in the result sA1*w represents sAl1*wl, the first line 1n the
result sA2*w represents sA2*wl, etc. The sAk*wl are
processed 365 to produce the decision bit 372 for reference
set A and window wl. The sAk*w2 are similarly processed
to produce the decision bit for reference set A and window
w2. The decision bits for all windows wm together form the
review vector 370A. Repeating for diflerent reference sets
310B-J produces review vectors 370B-] for the different
style 1ssues.

Because the style 1ssues are defined by the samples 1n
cach reference set, the selection of samples 1s important. In
addition, this selection preferably occurs automatically.
FIGS. 4-5 are diagrams 1llustrating different approaches to
selecting source code samples for use 1n the reference sets of

US 11,294,792 B2

S

FIGS. 1-3. All of these approaches are based on collecting
the samples from prior code reviews. In FIG. 4, sample
selection and extraction 1s based on manual tagging from
prior code reviews. FIG. 4 shows a prior source code base
411 which has been manually reviewed producing the code
review report 412. In this report, line 4 was 1dentified as
having an extra newline error and line 7 was 1dentified as
having an extra space error. The type of error may be
identified based on syntax or labels used in the report 412.
Alternatively, natural language processing or other tech-
niques may be used to identily errors and corresponding
locations.

The system then automatically extracts source code
samples based on the 1dentified errors. Because the error 1n
line 4 1s an extra newline error, the system includes addi-
tional lines betfore and after line 4 for the sample, so lines 3-5
are extracted as a source code sample for the extra newline
error. No extra lines are extracted for the extra space error,
so that source code sample 1s only line 7. The extracted
samples are shown by the dashed boxes.

In FIG. 5, sample selection and extraction i1s based on
comparing the source code base before and after correction
of the style 1ssue. Source code base 511 1s before correction
of style errors, and source code base 513 1s after correction
of style errors. Here, an extra newline has been removed, so
pre-correction line 3 1s the same as post-correct line 3,
pre-correction line 4 1s removed, and pre-correction line 5 1s
the same as post-correction line 4. Automated computer
comparison of the two code bases 511 and 513 reveals the
difference between the two code bases, thus i1dentilying a
style 1ssue 1n code base 511. Further automated analysis may
reveal that the style issue 1s an extra newline 1ssue.

In one variation, the location of the errors may be known,
but the type of error may not be. In that case, samples
extracted from the different locations may be grouped
together based on unsupervised clustering techniques. Each
cluster of samples forms the basis of a reference set.
Alternatively, 1f reference sets already exist, then new
samples of style 1ssues may be added to a reference set based
on similarities with the existing examples 1n that reference
set.

FIGS. 6-7 are diagrams 1llustrating different approaches
for evolving reference sets. For example, in FIG. 6, samples
s1, s2 and s3 1n reference set 610 are similar and somewhat
duplicative. This may be determined using tests based on
correlation or mutual information, for example. Sumilar or
duplicative samples may be removed. Weights could also be
adjusted. If samples sl1, s2 and s3 are very similar but this
type of example occurs more Irequently than other
examples, perhaps samples s2 and s3 are removed as shown
in FIG. 6. Sample s1 is retained and it may be given a higher
weilght to retlect the more frequent occurrence of this class
of sample. Weights could also be used to reflect time aging.
New samples may be mnitialized with a high weight. The
weight 1s then reduced over time as the sample ages.

FIG. 7 shows the creation of “synthetic” samples. These
are samples that are automatically created by combining
other samples. For example, 1f samples sl1, s2 and s3 are
similar, rather than deleting two of the samples and keeping
the third, the samples could be combined into a synthetic
sample that captures the information from all three samples.
Wildcards could be used to capture some of this information.
For example, an automated comparison of samples sl, s2
and s3 may reveal that some characters do not matter or the
number of characters at certain points 1n the sample do not
mattetr.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 8 1s a high-level block diagram illustrating an
example of a computer system 800 for use as one or more
of the components described above, according to one
embodiment. Illustrated are at least one processor 802
coupled to a chipset 804. The chipset 804 includes a memory
controller hub 820 and an 1nput/output (I/0) controller hub
822. A memory 806 and a graphics adapter 812 are coupled
to the memory controller hub 820, and a display device 818
1s coupled to the graphics adapter 812. A storage device 808,
keyboard 810, pointing device 814, and network adapter 816
are coupled to the I/O controller hub 822. Other embodi-
ments of the computer 800 have different architectures. For
example, the memory 806 1s directly coupled to the proces-
sor 802 1n some embodiments.

The storage device 808 includes one or more non-transi-

tory computer-readable storage media such as a hard drive,
compact disk read-only memory (CD-ROM), DVD, or a
solid-state memory device. The memory 806 holds instruc-
tions and data used by the processor 802. The pointing
device 814 1s used in combination with the keyboard 810 to
input data into the computer system 800. The graphics
adapter 812 displays images and other information on the
display device 818. In some embodiments, the display
device 818 includes a touch screen capability for receiving
user mput and selections. The network adapter 816 couples
the computer system 800 to a network. Some embodiments
of the computer 800 have different and/or other components
than those shown in FIG. 8.

The computer 800 1s adapted to execute computer pro-
gram modules for providing functionality described herein.
As used herein, the term “module” refers to computer
program instructions and/or other logic used to provide the
speciflied functionality. Thus, a module can be implemented
in hardware, firmware, and/or software. In one embodiment,
program modules formed of executable computer program
instructions are stored on the storage device 808, loaded nto
the memory 806, and executed by the processor 802.

The above description 1s included to 1llustrate the opera-
tion of certain embodiments and 1s not meant to limit the
scope of the mvention. The scope of the ivention 1s to be
limited only by the following claims. From the above
discussion, many variations will be apparent to one skilled
in the relevant art that would yet be encompassed by the
spirit and scope of the invention.

The mvention claimed 1s:

1. A method implemented on a computer system, the
computer system executing instructions for automatically
identifying style 1ssues in a source code base, the method
comprising;

accessing a reference set for a style 1ssue, the reference set

including source code examples that exhibit the style
issue, the style 1ssue including an error;

generating a feature set using string convolution to evalu-

ate the source code based on a window of the source
code, the window of the source code including or based
on a number of lines, the number of lines including a
line which includes the error;

comparing the source code examples 1n the reference set

to the source code base, the source code examples
including a first source code example comprising a
source code line immediately before a location of the
error and a source code line immediately after the
location of the error;

determining a peak value of the string convolution based

on the feature set;

US 11,294,792 B2

7

calculating and combining individual scores of each
source code examples in the reference set to derive a
likelihood of the style 1ssue for the reference set or the

window:; and

based on the comparison, identitying locations in the
source code base that are likely to exhibit the style 1ssue
within a single window of source code.

2. The computer implemented method of claim 1, wherein
the error 1s a new line error.

3. The computer implemented method of claim 1, wherein
the style 1ssue 1s one of: an extra newline 1ssue, an extra
space 1ssue, a missing newline issue, a missing space 1ssue,
and an unwanted 1ndentation issue.

4. The computer implemented method of claim 1, wherein
the number of lines included 1n the window 1s at least three
lines of source code.

5. The computer-implemented method of claim 1 wherein
the method 1s used by an organization to identify style issues
relative to the orgamization’s desired style, and the method
turther comprises:

collecting the source code examples from the organiza-

tion’s prior style reviews of other source code bases.

6. The computer-implemented method of claim 35,
wherein collecting the source code examples comprises:

accessing the prior style reviews and the prior source code

bases, wherein the prior style reviews 1dentily locations
in the prior source code bases that exhibit the style
1ssue.

7. The computer-implemented method of claim 3,
wherein the source code examples 1n the reference set are
modified over time.

8. The computer-implemented method of claim 5,
wherein the source code examples in the reference set are
combined to produce synthetic source code examples.

9. The computer-implemented method of claim 5,
wherein the synthetic source code examples include wild-
cards.

10. The computer-implemented method of claim 1, fur-
ther comprising:

automatically making suggestions to fix the locations in

the source code base 1dentified as likely to exhibit the
style 1ssue.

11. The computer-implemented method of claim 1,
wherein the reference set further includes source code
counter-examples that do not exhibit the style 1ssue.

12. The computer-implemented method of claim 1,
wherein the method 1s performed for multiple known style
1ssues, each known style 1ssue having a reference set that
includes source code examples that exhibit that style 1ssue.

13. A computing apparatus comprising:

a processor; and

a memory storing instructions that, when executed by the

processor, configure the apparatus to:

access a reference set for a style 1ssue, the reference set
including source code examples that exhibits the
style 1ssue, the style 1ssue including an error;

generate a feature set using string convolution to evalu-
ate the source code based on a window of the source

10

15

20

25

30

35

40

45

50

55

8

code, the window of the source code including a
number of lines, the number of lines including a line
which includes the error;

compare the source code examples 1n the reference set
to the source code base, the source code examples
including a first source code example comprising a
source code line immediately before a location of the
error and a source code line immediately after the
location of the error:

determine a peak value of the string convolution based

on the feature set:;
calculate and combine individual scores of each of the

source code examples in the reference set to derive
a likelihood of the style 1ssue for the reference set or
window; and

based on the comparison, i1dentily locations in the
source code base that are likely to exhibit the style
1ssue within a single window of source code.

14. The computing apparatus of claim 13, wherein the
error 1S a new line error.

15. The computing apparatus of claim 13, wherein the
style 1ssue 1s one of: an extra newline 1ssue, an extra space

1ssue, a missing newline 1ssue, a missing space 1ssue, and an
unwanted indentation 1ssue.

16. The computing apparatus of claim 13, wherein the
number of lines included 1n the window 1s at least three lines
ol source code.

17. A non-transitory computer-readable storage medium,
the computer-readable storage medium including instruc-
tions that when executed by a computer, cause the computer
to:

access a reference set for a style issue, the reference set

including source code examples that exhibits the style
1ssue, the style 1ssue including an error;

generate a feature set using string convolution to evaluate

the source code based on a window of the source code,
the window of the source code including a number of
lines, the number of lines including a line which
includes the error;

compare the source code examples 1n the reference set to

the source code base, the source code examples imnclud-
ing a first source code example comprising a source
code line immediately before a location of the error and
a source code line immediately after the location of the
eIror;

determine a peak value of the string convolution based on

the feature set;

calculate and combine 1ndividual scores of each of the

source code examples in the reference set to derive a
likelihood of the style 1ssue for the reference set or
window:; and

based on the comparison, identify locations 1n the source

code base that are likely to exhibit the style 1ssue within
a single window of source code.

18. The computer-readable storage medium of claim 17,
wherein the error 1s a new line error.

19. The computer-readable storage medium of claim 17,
wherein the number of lines included in the window 1s at
least three lines of source code.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

