## US011290760B2 # (12) United States Patent # Albisu et al. # (10) Patent No.: US 11,290,760 B2 (45) Date of Patent: Mar. 29, 2022 # (54) ALTERNATE CHANNEL FOR COMMAND STREAMING # (71) Applicant: AT&T Intellectual Property I, L.P., Atlanta, GA (US) (72) Inventors: Luis Albisu, Woodbridge, VA (US); Daniel Solero, Rockwall, TX (US) (73) Assignee: AT&T Intellectual Property I, L.P., Atlanta, GA (US) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 16/880,024 (22) Filed: May 21, 2020 ## (65) Prior Publication Data US 2021/0368218 A1 Nov. 25, 2021 (51) Int. Cl. H04N 21/239 (2011.01) H04N 21/436 (2011.01) H04N 21/61 (2011.01) H04N 21/845 (2011.01) H04N 21/472 (2011.01) (52) U.S. Cl. CPC ... *H04N 21/2393* (2013.01); *H04N 21/43615* (2013.01); *H04N 21/47202* (2013.01); *H04N 21/6125* (2013.01); *H04N 21/8456* (2013.01) ### (58) Field of Classification Search CPC ....... H04N 21/2393; H04N 21/43615; H04N 21/47202; H04N 21/6125; H04N 21/8456 See application file for complete search history. ### (56) References Cited #### U.S. PATENT DOCUMENTS | 8,661,487 | B2 * | 2/2014 | Pham H04N 21/23412 | |--------------|------|---------|-----------------------| | | | | 725/107 | | 8,984,568 | B2 * | 3/2015 | Mickelsen H04N 21/233 | | | | | 725/80 | | , , | | | Garner H04N 21/4131 | | , , | | | McRae H04L 41/509 | | 2012/0284764 | A1* | 11/2012 | Ball H04N 21/47202 | | | | | 725/110 | | 2019/0372900 | A1* | 12/2019 | Chen H04L 47/2425 | | | | | | <sup>\*</sup> cited by examiner Primary Examiner — Esther B. Henderson Assistant Examiner — Nazia Naoreen (74) Attorney Agent or Firm — Guntin & G (74) Attorney, Agent, or Firm — Guntin & Gust, PLC; Jay Anderson # (57) ABSTRACT Aspects of the subject disclosure may include, for example, a method in which a processing system actuates a control processor connected to a network, and configures the control processor to receive signals from equipment of a service provider, so that the control processor is enabled to control remote devices. The processing system selects a device, configures the selected device for control by the control processor, and selects a streaming service to be associated with the selected device. The streaming service delivers audiovisual content in a first stream and provides, via an application programming interface of the streaming service, a control command to the control processor in a second stream. The control processor translates the control command to a device command and transmits the device command to control the selected device. Other embodiments are disclosed. ### 20 Claims, 12 Drawing Sheets FIG. 2 204 FIG. 2D 205 FIG. 2E 206 FIG. 2F 207 FIG. 2G FIG. 4 600 FIG. 6 # ALTERNATE CHANNEL FOR COMMAND STREAMING #### FIELD OF THE DISCLOSURE The subject disclosure relates to streaming services for audio/video content, and more particularly to streaming services configured to transmit commands to a processor used to control remote devices. #### **BACKGROUND** Streaming services generally provide audio/video content that is received and presented at various devices (e.g., personal computer, smart phone, display device, etc.), with- 15 out otherwise controlling those devices. #### BRIEF DESCRIPTION OF THE DRAWINGS Reference will now be made to the accompanying draw- 20 ings, which are not necessarily drawn to scale, and wherein: - FIG. 1 is a block diagram illustrating an exemplary, non-limiting embodiment of a communications network in accordance with various aspects described herein. - FIG. 2A schematically illustrates a system in which a <sup>25</sup> streaming platform is enabled to transmit commands to downstream devices, in accordance with embodiments of the disclosure. - FIG. 2B schematically illustrates a process for configuring the system of FIG. 2A, in accordance with an embodi- <sup>30</sup> ment of the disclosure. - FIG. 2C schematically illustrates a command processor providing protocol translation of commands issued to downstream devices, in accordance with an embodiment of the disclosure. - FIG. 2D schematically illustrates an alternate channel service (ACS) with tagged content, in accordance with an embodiment of the disclosure. - FIG. 2E schematically illustrates an embodiment of the disclosure in which alternate channel devices (ACDs) are 40 configured for control by an alternate channel command processor (ACCP) in accordance with user input to an alternate channel mobile app (ACMA). - FIG. 2F schematically illustrates an alternate channel transmission by an ACS to control an ACD via commands 45 from an ACCP, in accordance with embodiments of the disclosure. - FIG. 2G depicts an illustrative embodiment of a method in accordance with various aspects described herein. - FIG. 3 is a block diagram illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein. - FIG. 4 is a block diagram of an example, non-limiting embodiment of a computing environment in accordance with various aspects described herein. - FIG. 5 is a block diagram of an example, non-limiting embodiment of a mobile network platform in accordance with various aspects described herein. - FIG. **6** is a block diagram of an example, non-limiting embodiment of a communication device in accordance with 60 various aspects described herein. #### DETAILED DESCRIPTION The subject disclosure describes, among other things, 65 illustrative embodiments for enabling streaming platforms to transmit commands to downstream devices via an alter- 2 nate communications channel. Other embodiments are described in the subject disclosure. One or more aspects of the subject disclosure include a method in which a processing system including a processor actuates a control processor connected to a network, and configures the control processor to receive signals from equipment of a service provider via the network, so that the control processor is enabled to control at least one of a plurality of remote devices. The processing system also generates a list of devices of the plurality of remote devices controllable by the control processor. The method further includes selecting a device from the list of devices; communicating with the selected device to configure the selected device for control by the control processor; and selecting a streaming service to be associated with the selected device. The selected streaming service delivers audiovisual content including audio content, video content, or a combination thereof in a first stream, and provides, via an application programming interface of the selected streaming service, a control command to the control processor in a second stream for controlling the selected device. The control processor translates the control command to a device command and transmits the device command to control the selected device. One or more aspects of the subject disclosure include a device that includes a processing system and a memory that stores instructions; the instructions, when executed by the processing system, facilitate performance of operations. The operations include actuating a control processor connected to a network and configuring the control processor to receive signals from equipment of a service provider via the network, so that the control processor is enabled to control at least one of a plurality of devices. The operations also include generating a list of devices of the plurality of devices controllable by the control processor; selecting a device 35 from the list of devices; communicating with the selected device to configure the selected device for control by the control processor; and selecting a streaming service from a list of streaming services available from the service provider. The selected streaming service delivers audiovisual content including audio content, video content, or a combination thereof in a first stream and provides, via an application programming interface of the selected streaming service, a control command to the control processor in a second stream for controlling the selected device. The control processor translates the control command to a device command and transmits the device command to control the selected device. One or more aspects of the subject disclosure include a machine-readable medium having executable instructions that, when executed by a processing system including a processor, facilitate performance of operations. The operations include actuating a control processor connected to a network, and configuring the control processor to receive signals from equipment of a service provider via the network, so that the control processor is enabled to control at 55 least one of a plurality of remote devices. The operations also include generating a list of devices of the plurality of remote devices controllable by the control processor; selecting a device from the list of devices; communicating with the selected device to configure the selected device for control by the control processor; and selecting a streaming service from a list of streaming services available from the service provider. The selected streaming service delivers audiovisual content including audio content and/or video content in a first stream and provides, via an application programming interface of the selected streaming service, a control command to the control processor in a second stream for controlling the selected device. The control processor translates the control command to a device command and transmits the device command to control the selected device. Referring now to FIG. 1, a block diagram is shown illustrating an example, non-limiting embodiment of a communications network 100 in accordance with various aspects described herein. For example, communications network 100 can facilitate in whole or in part configuring a control processor to receive signals from a service provider via the network, so that the control processor is enabled to control at least one of a plurality of remote devices, and delivering audiovisual content including audio content and/or video content in a first stream and a control command to the control processor in a second stream for controlling the selected device. In particular, a communications network 125 is presented for providing broadband access 110 to a plurality of data terminals 114 via access terminal 112, wireless access 120 to a plurality of mobile devices 124 and vehicle 126 via base station or access point 122, voice access 130 to a plurality of telephony devices 134, via switching 20 device 132 and/or media access 140 to a plurality of audio/ video display devices 144 via media terminal 142. In addition, communication network 125 is coupled to one or more content sources 175 of audio, video, graphics, text and/or other media. While broadband access 110, wireless access 25 120, voice access 130 and media access 140 are shown separately, one or more of these forms of access can be combined to provide multiple access services to a single client device (e.g., mobile devices 124 can receive media content via media terminal 142, data terminal 114 can be provided voice access via switching device 132, and so on). The communications network **125** includes a plurality of network elements (NE) **150**, **152**, **154**, **156**, etc. for facilitating the broadband access **110**, wireless access **120**, voice access **130**, media access **140** and/or the distribution of content from content sources **175**. The communications network **125** can include a circuit switched or packet switched network, a voice over Internet protocol (VoIP) network, Internet protocol (IP) network, a cable network, a passive or active optical network, a 4G, 5G, or higher generation wireless access network, WIMAX network, UltraWideband network, personal area network or other wireless access network, a broadcast satellite network and/or other communications network. In various embodiments, the access terminal 112 can include a digital subscriber line access multiplexer (DSLAM), cable modem termination system (CMTS), optical line terminal (OLT) and/or other access terminal. The data terminals 114 can include personal computers, laptop 50 computers, netbook computers, tablets or other computing devices along with digital subscriber line (DSL) modems, data over coax service interface specification (DOCSIS) modems or other cable modems, a wireless modem such as a 4G, 5G, or higher generation modem, an optical modem 55 and/or other access devices. In various embodiments, the base station or access point 122 can include a 4G, 5G, or higher generation base station, an access point that operates via an 802.11 standard such as 802.11n, 802.11ac or other wireless access terminal. The 60 mobile devices 124 can include mobile phones, e-readers, tablets, phablets, wireless modems, and/or other mobile computing devices. In various embodiments, the switching device 132 can include a private branch exchange or central office switch, a 65 media services gateway, VoIP gateway or other gateway device and/or other switching device. The telephony devices 4 134 can include traditional telephones (with or without a terminal adapter), VoIP telephones and/or other telephony devices. In various embodiments, the media terminal 142 can include a cable head-end or other TV head-end, a satellite receiver, gateway or other media terminal 142. The display devices 144 can include televisions with or without a set top box, personal computers and/or other display devices. In various embodiments, the content sources 175 include broadcast television and radio sources, video on demand platforms and streaming video and audio services platforms, one or more content data networks, data servers, web servers and other content servers, and/or other sources of media. In various embodiments, the communications network 125 can include wired, optical and/or wireless links and the network elements 150, 152, 154, 156, etc. can include service switching points, signal transfer points, service control points, network gateways, media distribution hubs, servers, firewalls, routers, edge devices, switches and other network nodes for routing and controlling communications traffic over wired, optical and wireless links as part of the Internet and other public networks as well as one or more private networks, for managing subscriber access, for billing and network management and for supporting other network functions. FIG. 2A is a block diagram illustrating an example, non-limiting embodiment of a system 201 functioning within the communication network of FIG. 1, in accordance with various aspects described herein. A content provider system 210 includes an audio/video monitoring platform 211 and a streaming services platform 212 that delivers audio/video content 213 to end user devices, e.g., a video display 215 and/or an audio speaker 216. In this embodiment, the streaming services (SS) provided by the streaming platform are configured to provide commands that are transmitted in a separate stream 214 to a command processor 220. As shown schematically in FIG. 2A, an application programming interface (API) 219 enables the streaming services platform 212 to communicate with the command processor. The command processor transmits device commands 217 to control remote devices 218. Devices 218 are controlled by the device commands according to a variety of protocols; for example, Wi-Fi®, Bluetooth®, Insteon®, Zigbee®, etc. Some examples of remote devices include home heating/cooling controls 218-1, toys 218-2, alarms 218-3, accent lighting 218-4, therapeutic devices 218-5, wearable devices 218-6, etc. According to embodiments of the disclosure, a number of application programming interfaces (APIs) 219 enable communication with the command processor 220, with each of the APIs corresponding to a different device of the group of devices 218. In various embodiments, streaming commands 214 and device commands 217 are provided on an alternate communications channel 250 enabled by an alternate channel service (ACS); the ACS can be tied to various streaming services (e.g., Netflix®, Hulu®, etc.) to control devices that enhance a user's entertainment experience. More generally, the ACS can be configured to control remote equipment that produces light, sound, smell, or other user sensations while streaming content is being delivered. For example, the streaming service can provide a show with audio/video content that includes explosions during a battle scene. In parallel with the streamed content, the ACS can send a command to the alternate channel command processor (ACCP) 220, which then sends commands to lighting devices in the user's home to flash the lights when an explosion is shown. In an embodiment, the ACS service is used in a virtual reality (VR) or gaming environment, enabling physical objects to move, emit sounds, flash lights, etc. in synchronization with the VR presentation or game action. In another embodiment, the ACS service allows com- 5 mands to be embedded in audio/video content being provided by the streaming services. The commands can be any of a wide variety of data types; in a particular embodiment, the commands comprise metadata associated with the audio/ video feed from a streaming service. In a further embodi- 10 ment, the ACS service is a cloud-based service that can analyze the streamed audio/video to obtain data that is transmitted to the command processor and then to a controllable device. FIG. 2B illustrates a procedure 202 for configuring alter- 15 nate channel command processor (ACCP) 220 for use by streaming services 223 to control devices 227, in accordance with embodiments of the disclosure. Command processor 220 can be supported on any of a wide variety of network capable devices; for example, a mobile phone running an 20 ACS app 225. The ACCP 220 can be located anywhere reachable by streaming services 223 (e.g., a user's home, office or vehicle) and can control devices 227 reachable by signals from the ACCP. As shown in FIG. 2B, the ACCP is connected to a network 25 (e.g., Ethernet 221, WiFi 222). In this embodiment, the ACCP is actuated by the alternate channel mobile app (ACMA) 225 executing on a mobile device. The ACCP may itself be a mobile device. The app can scan a barcode on the command processor 220 associated with the media access 30 control (MAC) address to enable the command processor. To set up a service 223 in this embodiment, the app lists services that can utilize the ACCP, and requests credentials to authenticate to the service. Once authenticated, the ACCP can accept commands 224 that target various available 35 devices. To set up a device in this embodiment, the app lists the devices 227 that can be controlled by the ACCP, and determines which device(s) are to be controlled. Each desired device is then configured via the app 225; the app 40 communicates with the device according to the protocol used by that device. In another embodiment, a device is managed by a third-party platform; the third-party platform is supported by configuring the app with the credentials of the platform to permit the platform to control the device. The app then can receive input from a user indicating which device is to be associated with a particular service. The service 223 is then enabled to send a command 224 to the ACCP, which translates the command according to the device protocol and then sends a device command **226** to the 50 device 227. In an embodiment, the ACCP is programmable, thereby allowing commands from the ACS to be customized before being sent to downstream devices. FIG. 2C schematically illustrates a procedure 203 for 55 protocol translation to control a remote device, in accordance with an embodiment of the disclosure. The alternate channel control processor (ACCP) 220 maintains a list of services 231 and devices 235 that have been configured, indicating which device(s) are used by each service. The 60 ACCP is then actuated (step 2704) by the ACS app; in some ACCP communicates the list 232 of available devices to service 231; the service can then send a command 233 for controlling the device. In this embodiment, each device command 238 is assigned a control tag 237. The ACCP maintains a list 236 65 that associates each control tag with a specific device command according to the protocol for that device. For example, command <F> causes device 235 to display a flashing light; the ACCP can receive a tag <flash> transmitted by service 231, perform a protocol translation, and then send a signal **234** with device command <F> to the device. FIG. 2D is a schematic illustration 204 of an alternate channel service (ACS) with tagged content, in accordance with an embodiment of the disclosure. In this embodiment, the ACS is a cloud-based service **240** that includes a website 241, enabling content developers to tag content with commands. In this embodiment, content 242 is retrieved from streaming service 245 and tagged; the tags 246 are saved on the ACS. The tags can be metadata or free-form data. The ACS sends the tags via the alternate communications channel to the ACCP when the content is presented at the audio/video devices 215, 216. In another embodiment, the ACS website **241** can be accessed by end users to customize the ACS commands so that device commands are modified or disabled. For example, in the show having a battle scene discussed above, the ACCP can be configured to disable the command to flash the lights in the user's home; the lights will then operate normally while the battle scene is presented. FIG. 2E is a schematic illustration 205 of an embodiment of the disclosure in which alternate channel devices (ACDs) are configured for control by an alternate channel command processor (ACCP) in accordance with user input to an alternate channel mobile app (ACMA). In this embodiment, the ACMA 251 executes on a user's mobile phone; the user can sign up for the ACS service, and then can configure the ACS and set up the ACCP 252 and one or more ACDs **253**. A barcode on the ACCP and/or the ACD can be used in the setup procedure. In addition, IP addresses can be entered via the mobile phone to identify ACDs. The ACS service can be further configured using the ACMA to turn features of the ACS on and off. The ACMA also enables the user to translate or modify commands sent from the ACS to allow new ACDs to be configured. The ACS thus can provide an open platform for controlling a wide variety of devices FIG. 2F is a schematic illustration of a procedure 206 in which an alternate channel transmission by an ACS controls an ACD via commands from an ACCP, in accordance with embodiments of the disclosure. In step 2061, streaming service 245 delivers a show to a user device (e.g. display 215). In this embodiment, the user selects the show at a website offering ACS-enabled content. The streaming service also initiates an ACS transmission via the alternate channel (step **2062**). The ACS sends content developer tags (e.g., tags 246) to the ACCP (step 2063). The ACCP then processes the tags to execute a command to control an ACD (step 2064). FIG. 2G depicts an illustrative embodiment of a method 207 in accordance with various aspects described herein. In step 2702, the alternate channel service (ACS) control processor (ACCP) is connected to a network over which a user (network subscriber) can receive streaming content from a streaming service; in various embodiments, the ACCP is located in the user's home or workplace. The embodiments, the app executes on the user's mobile phone. The ACS app performs a service setup procedure (step 2706) that includes listing services that can use the ACCP, requesting credentials from the ACCP, and authenticating the ACCP to the streaming service(s). The ACS app also performs a device setup procedure (step 2708) that includes listing devices that can be controlled by the ACCP, and selecting and configuring those devices. In this embodiment, the ACS app communicates with a device according to the protocol used by that device. In an embodiment, the ACS app enables the user to select (step 2710) which devices are to be associated with the service(s). The streaming service is then able to deliver program content (step 2712) and control a device by sending commands in a separate stream (step 2714). In an embodiment, the user can customize commands for controlling a selected device. The ACCP receives the device control stream (step 2716) and translates the device commands to the protocol for that device. In an embodiment, the ACCP maintains a standardized list of control tags associating tags with commands, to provide a protocol translation for each device. The ACCP 15 then transmits the command to control the device (step 2718). Alternatively, the user can configure the ACCP to provide customized commands for a selected device, or to control a new device (step 2717). While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 2G, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein. In a further embodiment, the ACS 250 can function as an open platform that can be coupled to any streaming platform 212 offered by provider system 210. The ACS/streaming 30 platform combination can then enable a marketplace for selling devices that perform functions enhancing the experience of a user receiving streaming content via the streaming platform. Such a device might perform a function specific to the content being streamed, or alternatively be 35 used with different content available from the streaming platform. It will be appreciated that a wide variety of devices can be controlled via the ACS alternate channel in parallel with presentation of streaming content. Some examples are as 40 follows: automated gymnasium (enable a workout video to control gym equipment); bedding or medical equipment (streaming platforms altering bedding and therapeutic devices that might require complex instructions such as for physical therapy); concert/theater venues (enable equipment 45 at a concert to function according to a musical score); dinner parties (stream a pre-programmed evening for a dinner party that automates atmospherics in a home); home spa (play music or video that turns on water and adjusts lights); parties (music controlling lights and/or fog machines); security 50 monitoring (enabling audio/video monitoring to take action based on what is detected); toys (enable toys to follow a video presentation, e.g., a cartoon network transmitting complex instructions to control a toy); video entertainment (enabling a streaming service to control lighting and add 55 other sensory output to the streaming service); wearable devices (e.g., a glove with a sensor that enables the wearer to sense movement or touch). Referring now to FIG. 3, a block diagram 300 is shown illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein. In particular a virtualized communication network is presented that can be used to implement some or all of the subsystems and functions of communication network 100, the subsystems and functions of system 65 201, and method 207 presented in FIGS. 1, 2A, and 2G. For example, virtualized communication network 300 can facili- 8 tate in whole or in part a method that includes actuating a control processor connected to a network; configuring the control processor to receive signals from a service provider via the network; selecting a device from a list of devices; communicating with the selected device to configure the selected device for control by the control processor; and selecting a streaming service to be associated with the selected device. In particular, a cloud networking architecture is shown that leverages cloud technologies and supports rapid innovation and scalability via a transport layer 350, a virtualized network function cloud 325 and/or one or more cloud computing environments 375. In various embodiments, this cloud networking architecture is an open architecture that leverages application programming interfaces (APIs); reduces complexity from services and operations; supports more nimble business models; and rapidly and seamlessly scales to meet evolving customer requirements including traffic growth, diversity of traffic types, and diversity of performance and reliability expectations. In contrast to traditional network elements—which are typically integrated to perform a single function, the virtualized communication network employs virtual network elements (VNEs) 330, 332, 334, etc. that perform some or all of the functions of network elements 150, 152, 154, 156, etc. For example, the network architecture can provide a substrate of networking capability, often called Network Function Virtualization Infrastructure (NFVI) or simply infrastructure that is capable of being directed with software and Software Defined Networking (SDN) protocols to perform a broad variety of network functions and services. This infrastructure can include several types of substrates. The most typical type of substrate being servers that support Network Function Virtualization (NFV), followed by packet forwarding capabilities based on generic computing resources, with specialized network technologies brought to bear when general purpose processors or general purpose integrated circuit devices offered by merchants (referred to herein as merchant silicon) are not appropriate. In this case, communication services can be implemented as cloud-centric workloads. As an example, a traditional network element 150 (shown in FIG. 1), such as an edge router can be implemented via a VNE 330 composed of NFV software modules, merchant silicon, and associated controllers. The software can be written so that increasing workload consumes incremental resources from a common resource pool, and moreover so that it's elastic: so the resources are only consumed when needed. In a similar fashion, other network elements such as other routers, switches, edge caches, and middle-boxes are instantiated from the common resource pool. Such sharing of infrastructure across a broad set of uses makes planning and growing infrastructure easier to manage. In an embodiment, the transport layer 350 includes fiber, cable, wired and/or wireless transport elements, network elements and interfaces to provide broadband access 110, wireless access 120, voice access 130, media access 140 and/or access to content sources 175 for distribution of content to any or all of the access technologies. In particular, in some cases a network element needs to be positioned at a specific place, and this allows for less sharing of common infrastructure. Other times, the network elements have specific physical layer adapters that cannot be abstracted or virtualized, and might require special DSP code and analog front-ends (AFEs) that do not lend themselves to implementation as VNEs 330, 332 or 334. These network elements can be included in transport layer 350. The virtualized network function cloud **325** interfaces with the transport layer 350 to provide the VNEs 330, 332, 334, etc. to provide specific NFVs. In particular, the virtualized network function cloud 325 leverages cloud operations, applications, and architectures to support networking workloads. The virtualized network elements 330, 332 and 334 can employ network function software that provides either a one-for-one mapping of traditional network element function or alternately some combination of network functions designed for cloud computing. For example, VNEs 10 330, 332 and 334 can include route reflectors, domain name system (DNS) servers, and dynamic host configuration protocol (DHCP) servers, system architecture evolution (SAE) and/or mobility management entity (MME) gateways, broadband network gateways, IP edge routers for 15 IP-VPN, Ethernet and other services, load balancers, distributers and other network elements. Because these elements don't typically need to forward large amounts of traffic, their workload can be distributed across a number of servers—each of which adds a portion of the capability, and 20 overall which creates an elastic function with higher availability than its former monolithic version. These virtual network elements 330, 332, 334, etc. can be instantiated and managed using an orchestration approach similar to those used in cloud compute services. The cloud computing environments 375 can interface with the virtualized network function cloud 325 via APIs that expose functional capabilities of the VNEs 330, 332, 334, etc. to provide the flexible and expanded capabilities to the virtualized network function cloud 325. In particular, 30 network workloads may have applications distributed across the virtualized network function cloud 325 and cloud computing environment 375 and in the commercial cloud, or might simply orchestrate workloads supported entirely in NFV infrastructure from these third party locations. Turning now to FIG. 4, there is illustrated a block diagram of a computing environment in accordance with various aspects described herein. In order to provide additional context for various embodiments of the embodiments described herein, FIG. 4 and the following discussion are 40 intended to provide a brief, general description of a suitable computing environment 400 in which the various embodiments of the subject disclosure can be implemented. In particular, computing environment 400 can be used in the implementation of network elements 150, 152, 154, 156, 45 access terminal 112, base station or access point 122, switching device 132, media terminal 142, and/or VNEs 330, 332, 334, etc. Each of these devices can be implemented via computer-executable instructions that can run on one or more computers, and/or in combination with other 50 program modules and/or as a combination of hardware and software. For example, computing environment 400 can facilitate in whole or in part configuring a control processor to receive signals from a service provider via a network, so that the control processor is enabled to control at least one 55 of a plurality of remote devices; selecting a device from a list of devices; communicating with the selected device to configure the selected device for control by the control processor; and selecting a streaming service. The selected streaming service delivers audiovisual content in a first 60 stream and delivers a control command to the control processor in a second stream for controlling the selected device. The control processor translates the control command to a device command and transmits the device command to control the selected device. Generally, program modules comprise routines, programs, components, data structures, etc., that perform par- **10** ticular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the methods can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices. As used herein, a processing circuit includes one or more processors as well as other application specific circuits such as an application specific integrated circuit, digital logic circuit, state machine, programmable gate array or other circuit that processes input signals or data and that produces output signals or data in response thereto. It should be noted that while any functions and features described herein in association with the operation of a processor could likewise be performed by a processing circuit. The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices. Computing devices typically comprise a variety of media, which can comprise computer-readable storage media and/ or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and comprises both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data. Computer-readable storage media can comprise, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms "tangible" or "nontransitory" herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se. Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium. Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and comprises any information delivery or transport media. The term "modulated data signal" or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media comprise wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. With reference again to FIG. 4, the example environment can comprise a computer 402, the computer 402 comprising a processing unit 404, a system memory 406 and a system bus 408. The system bus 408 couples system components including, but not limited to, the system memory 406 to the processing unit 404. The processing unit 404 can be any of various commercially available processors. Dual microprocessors and other multiprocessor architectures can also be employed as the processing unit 404. The system bus **408** can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory **406** comprises ROM **410** and RAM **412**. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer **402**, such as during startup. The RAM **412** can also comprise a 25 high-speed RAM such as static RAM for caching data. The computer **402** further comprises an internal hard disk drive (HDD) 414 (e.g., EIDE, SATA), which internal HDD 414 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 30 **416**, (e.g., to read from or write to a removable diskette **418**) and an optical disk drive **420**, (e.g., reading a CD-ROM disk **422** or, to read from or write to other high capacity optical media such as the DVD). The HDD 414, magnetic FDD 416 and optical disk drive 420 can be connected to the system 35 bus 408 by a hard disk drive interface 424, a magnetic disk drive interface 426 and an optical drive interface 428, respectively. The hard disk drive interface **424** for external drive implementations comprises at least one or both of Universal Serial Bus (USB) and Institute of Electrical and 40 Electronics Engineers (IEEE) 1394 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein. The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, 45 computer-executable instructions, and so forth. For the computer 402, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic 50 diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in 55 the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein. A number of program modules can be stored in the drives and RAM 412, comprising an operating system 430, one or 60 more application programs 432, other program modules 434 and program data 436. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 412. The systems and methods described herein can be implemented utilizing various commercially 65 available operating systems or combinations of operating systems. 12 A user can enter commands and information into the computer 402 through one or more wired/wireless input devices, e.g., a keyboard 438 and a pointing device, such as a mouse 440. Other input devices (not shown) can comprise a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 404 through an input device interface 442 that can be coupled to the system bus 408, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc. A monitor **444** or other type of display device can be also connected to the system bus **408** via an interface, such as a video adapter **446**. It will also be appreciated that in alternative embodiments, a monitor **444** can also be any display device (e.g., another computer having a display, a smart phone, a tablet computer, etc.) for receiving display information associated with computer **402** via any communication means, including via the Internet and cloud-based networks. In addition to the monitor **444**, a computer typically comprises other peripheral output devices (not shown), such as speakers, printers, etc. The computer 402 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 448. The remote computer(s) 448 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically comprises many or all of the elements described relative to the computer 402, although, for purposes of brevity, only a remote memory/storage device 450 is illustrated. The logical connections depicted comprise wired/wireless connectivity to a local area network (LAN) 452 and/or larger networks, e.g., a wide area network (WAN) 454. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet. When used in a LAN networking environment, the computer 402 can be connected to the LAN 452 through a wired and/or wireless communication network interface or adapter 456. The adapter 456 can facilitate wired or wireless communication to the LAN 452, which can also comprise a wireless AP disposed thereon for communicating with the adapter 456. When used in a WAN networking environment, the computer 402 can comprise a modem 458 or can be connected to a communications server on the WAN 454 or has other means for establishing communications over the WAN 454, such as by way of the Internet. The modem 458, which can be internal or external and a wired or wireless device, can be connected to the system bus 408 via the input device interface 442. In a networked environment, program modules depicted relative to the computer 402 or portions thereof, can be stored in the remote memory/storage device 450. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used. The computer 402 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can comprise Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices. Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, ag, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 15 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices. Turning now to FIG. 5, an embodiment 500 of a mobile network platform 510 is shown that is an example of network elements 150, 152, 154, 156, and/or VNEs 330, 332, 334, etc. For example, platform 510 can facilitate in whole or in part configuring a control processor to receive 25 signals from a service provider via a network so that the control processor is enabled to control at least one of a plurality of devices; selecting a device; selecting a streaming service from a list of streaming services available from the service provider, where the selected streaming service delivers audiovisual content in a first stream and delivers a control command to the control processor in a second stream for controlling the selected device, and the control processor translates the control command to a device command and transmits the device command to control the selected device. 35 In one or more embodiments, the mobile network platform 510 can generate and receive signals transmitted and received by base stations or access points such as base station or access point 122. Generally, mobile network platform 510 can comprise components, e.g., nodes, gate- 40 ways, interfaces, servers, or disparate platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data), as well as control generation for networked wireless telecommunica- 45 tion. As a non-limiting example, mobile network platform 510 can be included in telecommunications carrier networks, and can be considered carrier-side components as discussed elsewhere herein. Mobile network platform 510 comprises CS gateway node(s) **512** which can interface CS 50 traffic received from legacy networks like telephony network(s) 540 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a signaling system #7 (SS7) network **560**. CS gateway node(s) 512 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway node(s) 512 can access mobility, or roaming, data generated through SS7 network **560**; for instance, mobility data stored in a visited location register (VLR), which can reside in memory **530**. Moreover, CS gateway node(s) **512** interfaces CS- 60 based traffic and signaling and PS gateway node(s) 518. As an example, in a 3GPP UMTS network, CS gateway node(s) 512 can be realized at least in part in gateway GPRS support node(s) (GGSN). It should be appreciated that functionality and specific operation of CS gateway node(s) 512, PS 65 gateway node(s) **518**, and serving node(s) **516**, is provided and dictated by radio technology(ies) utilized by mobile **14** network platform 510 for telecommunication over a radio access network 520 with other devices, such as a radiotelephone 575. In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 518 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can comprise traffic, or content(s), exchanged with networks external to the mobile network platform 510, like wide area network(s) (WANs) 550, enterprise network(s) 570, and service network(s) 580, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform **510** through PS gateway node(s) 518. It is to be noted that WANs 550 and enterprise network(s) 570 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) or radio access network **520**, PS gateway node(s) **518** can generate packet data protocol contexts when a data 20 session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 518 can comprise a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks. In embodiment **500**, mobile network platform **510** also comprises serving node(s) **516** that, based upon available radio technology layer(s) within technology resource(s) in the radio access network **520**, convey the various packetized flows of data streams received through PS gateway node(s) **518**. It is to be noted that for technology resource(s) that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) **518**; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) **516** can be embodied in serving GPRS support node(s) (SGSN). For radio technologies that exploit packetized communication, server(s) 514 in mobile network platform 510 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can comprise add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by mobile network platform **510**. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 518 for authorization/authentication and initiation of a data session, and to serving node(s) 516 for communication thereafter. In addition to application server, server(s) **514** can comprise utility server(s), a utility server can comprise a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through mobile network platform 510 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 512 and PS gateway node(s) 518 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 550 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to mobile network platform 510 (e.g., deployed and operated by the same service provider), such as the distributed antennas networks shown in FIG. 1 that enhance wireless service coverage by providing more network coverage. It is to be noted that server(s) **514** can comprise one or more processors configured to confer at least in part the 5 functionality of mobile network platform **510**. To that end, the one or more processor can execute code instructions stored in memory **530**, for example. It is should be appreciated that server(s) **514** can comprise a content manager, which operates in substantially the same manner as 10 described hereinbefore. In example embodiment **500**, memory **530** can store information related to operation of mobile network platform **510**. Other operational information can comprise provisioning information of mobile devices served through mobile 15 network platform **510**, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flatrate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; 20 and so forth. Memory **530** can also store information from at least one of telephony network(s) **540**, WAN **550**, SS7 network **560**, or enterprise network(s) **570**. In an aspect, memory **530** can be, for example, accessed as part of a data store component or as a remotely connected memory store. 25 In order to provide a context for the various aspects of the disclosed subject matter, FIG. 5, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the 30 subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that the disclosed subject matter also can be implemented in combination with other 35 program modules. Generally, program modules comprise routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types. Turning now to FIG. 6, an illustrative embodiment of a 40 communication device 600 is shown. The communication device 600 can serve as an illustrative embodiment of devices such as data terminals 114, mobile devices 124, vehicle 126, display devices 144 or other client devices for communication via either communications network **125**. For 45 example, computing device 600 can facilitate in whole or in part actuating a control processor connected to a network and configuring the control processor to receive signals from a service provider via the network, so that the control processor is enabled to control at least one of a plurality of 50 devices; and selecting a device and a streaming service, where the selected streaming service delivers audiovisual content in a first stream and delivers a control command to the control processor in a second stream for controlling the selected device, and the control processor translates the 55 control command to a device command and transmits the device command to control the selected device. The communication device 600 can comprise a wireline and/or wireless transceiver 602 (herein transceiver 602), a user interface (UI) 604, a power supply 614, a location 60 receiver 616, a motion sensor 618, an orientation sensor 620, and a controller 606 for managing operations thereof. The transceiver 602 can support short-range or long-range wireless access technologies such as Bluetooth®, ZigBee®, WiFi, DECT, or cellular communication technologies, just 65 to mention a few (Bluetooth® and ZigBee® are trademarks registered by the Bluetooth® Special Interest Group and the **16** ZigBee® Alliance, respectively). Cellular technologies can include, for example, CDMA-1×, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, as well as other next generation wireless communication technologies as they arise. The transceiver **602** can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCP/IP, VoIP, etc.), and combinations thereof. The UI **604** can include a depressible or touch-sensitive keypad 608 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 600. The keypad 608 can be an integral part of a housing assembly of the communication device 600 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth®. The keypad 608 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI **604** can further include a display 610 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 600. In an embodiment where the display **610** is touch-sensitive, a portion or all of the keypad 608 can be presented by way of the display 610 with navigation features. The display 610 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 600 can be adapted to present a user interface having graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The display 610 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 610 can be an integral part of the housing assembly of the communication device 600 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface. The UI 604 can also include an audio system 612 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 612 can further include a microphone for receiving audible signals of an end user. The audio system 612 can also be used for voice recognition applications. The UI 604 can further include an image sensor 613 such as a charged coupled device (CCD) camera for capturing still or moving images. The power supply 614 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 600 to facilitate long-range or short-range portable communications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies. The location receiver 616 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 600 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 618 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 600 in three-dimensional space. The orientation sensor 620 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 600 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics). The communication device 600 can use the transceiver 10 602 to also determine a proximity to a cellular, WiFi, Bluetooth®, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller **606** can utilize 15 computing technologies such as a microprocessor, a digital signal processor (DSP), programmable gate arrays, application specific integrated circuits, and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 600. Other components not shown in FIG. 6 can be used in one or more embodiments of the subject disclosure. For instance, 25 the communication device 600 can include a slot for adding or removing an identity module such as a Subscriber Identity Module (SIM) card or Universal Integrated Circuit Card (UICC). SIM or UICC cards can be used for identifying subscriber services, executing programs, storing subscriber 30 data, and so on. The terms "first," "second," "third," and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and doesn't otherwise indicate or imply any order in mination," and "a third determination," does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc. In the subject specification, terms such as "store," "storage," "data store," data storage," "database," and substan- 40 tially any other information storage component relevant to operation and functionality of a component, refer to "memory components," or entities embodied in a "memory" or components comprising the memory. It will be appreciated that the memory components described herein can be 45 either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory, non-volatile memory, disk storage, and memory storage. Further, nonvolatile memory can be included in read only memory 50 (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, 55 RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SL-DRAM), and direct Rambus RAM (DRRAM). Additionally, 60 the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory. Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system con- 65 figurations, comprising single-processor or multiprocessor computer systems, mini-computing devices, mainframe **18** computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, smartphone, watch, tablet computers, netbook computers, etc.), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices. In one or more embodiments, information regarding use of services can be generated including services being accessed, media consumption history, user preferences, and so forth. This information can be obtained by various methods including user input, detecting types of communications (e.g., video content vs. audio content), analysis of content streams, sampling, and so forth. The generating, obtaining and/or monitoring of this information can be responsive to an authorization provided by the user. In one or more embodiments, an analysis of data can be subject to authorization from user(s) associated with the data, such as an opt-in, an opt-out, acknowledgement requirements, notifications, selective authorization based on types of data, and so forth. Some of the embodiments described herein can also employ artificial intelligence (AI) to facilitate automating one or more features described herein. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to time. For instance, "a first determination," "a second deter- 35 determine a ranking or priority of each cell site of the acquired network. A classifier is a function that maps an input attribute vector, $\mathbf{x}=(\mathbf{x}1,\ \mathbf{x}2,\ \mathbf{x}3,\ \mathbf{x}4,\ \ldots,\ \mathbf{x}n)$ , to a confidence that the input belongs to a class, that is, f(x)= confidence (class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to determine or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches comprise, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority. As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc. As used in some contexts in this application, in some embodiments, the terms "component," "system" and the like are intended to refer to, or comprise, a computer-related 5 entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running 10 on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may 15 reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The 20 components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with 25 other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor 30 can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components 35 can comprise a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a 40 single component, or a single component can be implemented as multiple components, without departing from example embodiments. Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard 45 programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term "article of manufacture" as used herein is intended to encompass a computer program accessible from 50 any computer-readable device or computer-readable storage/ communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital ver- 55 satile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments. In addition, the words "example" and "exemplary" are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as "example" or "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or designs. 65 Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this **20** application, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". That is, unless specified otherwise or clear from context, "X employs A or B" is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then "X employs A or B" is satisfied under any of the foregoing instances. In addition, the articles "a" and "an" as used in this application and the appended claims should generally be construed to mean "one or more" unless specified otherwise or clear from context to be directed to a singular form. Moreover, terms such as "user equipment," "mobile station," "mobile," subscriber station," "access terminal," "terminal," "handset," "mobile device" (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings. Furthermore, the terms "user," "subscriber," "customer," "consumer" and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth. As employed herein, the term "processor" can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantumdot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units. As used herein, terms such as "data storage," data storage," "database," and substantially any other information storage component relevant to operation and functionality of a component, refer to "memory components," or entities embodied in a "memory" or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory. What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term "includes" is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term "comprising" as 5 "comprising" is interpreted when employed as a transitional word in a claim. In addition, a flow diagram may include a "start" and/or "continue" indication. The "start" and "continue" indications reflect that the steps presented can optionally be 10 incorporated in or otherwise used in conjunction with other routines. In this context, "start" indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the "continue" indication reflects that the steps presented may be performed 15 multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained. As may also be used herein, the term(s) "operably coupled to", "coupled to", and/or "coupling" includes direct coupling between items and/or indirect coupling between items via one or more intervening items. Such items and intervening items include, but are not limited to, junctions, communi- 25 cation paths, components, circuit elements, circuits, functional blocks, and/or devices. As an example of indirect coupling, a signal conveyed from a first item to a second item may be modified by one or more intervening items by modifying the form, nature or format of information in a 30 signal, while one or more elements of the information in the signal are nevertheless conveyed in a manner than can be recognized by the second item. In a further example of indirect coupling, an action in a first item can cause a reaction on the second item, as a result of actions and/or 35 reactions in one or more intervening items. Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement which achieves the same or similar purpose may be substituted for the embodiments described or shown by the 40 subject disclosure. The subject disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, can be used in the subject disclosure. For instance, one or more 45 features from one or more embodiments can be combined with one or more features of one or more other embodiments. In one or more embodiments, features that are positively recited can also be negatively recited and excluded from the embodiment with or without replacement 50 by another structural and/or functional feature. The steps or functions described with respect to the embodiments of the subject disclosure can be performed in any order. The steps or functions described with respect to the embodiments of the subject disclosure can be performed alone or in combi- 55 nation with other steps or functions of the subject disclosure, as well as from other embodiments or from other steps that have not been described in the subject disclosure. Further, more than or less than all of the features described with respect to an embodiment can also be utilized. What is claimed is: 1. A method comprising: actuating, by a processing system including a processor, a control processor connected to a network; configuring, by the processing system, the control processor to receive signals from equipment of a service **22** provider via the network, the control processor thereby enabled to control at least one of a plurality of remote devices; determining, by the processing system, one or more devices of the plurality of remote devices controllable by the control processor; communicating, by the processing system, with the one or more devices to configure each of the one or more devices for control by the control processor, resulting in configured devices; generating, by the processing system, a list of streaming services and the configured devices, the list indicating devices used by each streaming service; selecting, by the processing system, a streaming service from the list; and communicating, by the processing system, the list to the selected streaming service, to identify configured devices available to the selected streaming service, wherein the selected streaming service delivers audiovisual content including audio content, video content, or a combination thereof in a first stream to an audiovisual presentation device, separate from the remote devices, for presenting the audiovisual content and provides, via an application programming interface of the selected streaming service, a control command to the control processor in a second stream separate from the first stream for controlling a selected configured device to perform an operation other than the presenting the audiovisual content, wherein the control processor translates the control command to a device command according to a protocol for the selected configured device, and transmits the device command to control the selected configured device. - 2. The method of claim 1, wherein the actuating is performed using an application executing on a mobile communication device. - 3. The method of claim 2, wherein the mobile communication device comprises the control processor. - 4. The method of claim 2, wherein the selected streaming service is associated with the selected configured device in accordance with user input to the mobile communication device. - 5. The method of claim 1, wherein the control command comprises metadata embedded in the audiovisual content. - 6. The method of claim 1, further comprising: requesting, by the processing system, a credential from the control processor; and - authenticating, by the processing system, the control processor to the selected streaming service using the credential. - 7. The method of claim 1, wherein the control processor communicates with the selected configured device according to the protocol. - **8**. The method of claim **7**, further comprising; - assigning, by the processing system, tags to device commands for controlling the selected configured device; and - generating, by the processing system, a control tag list associating the tags with the device commands, thereby facilitating a protocol translation procedure for the selected configured device. - 9. The method of claim 1, wherein the operation other than the presenting the audiovisual content comprises producing a light, a sound, a smell, or a combination thereof. - 10. The method of claim 1, wherein the control command actuates a heating control, a cooling control, an alarm, a lighting display, a toy, a therapeutic device, a wearable device, or a combination thereof. - 11. The method of claim 1, further comprising: analyzing, by the processing system, the audiovisual content to obtain data related to the selected device; and 5 transmitting, by the processing system, the data to the control processor. - 12. The method of claim 1, wherein presentation of the audiovisual content is synchronized with the operation performed by the selected configured device in a virtual reality 10 environment. - 13. A device comprising: - a processing system including a processor; and - a memory that stores executable instructions that, when executed by the processing system, facilitate perfor- 15 mance of operations, the operations comprising: actuating a control processor connected to a network; configuring the control processor to receive signals from equipment of a service provider via the network, the control processor thereby enabled to control at least one 20 of a plurality of devices; determining one or more devices of the plurality of devices controllable by the control processor; communicating with the one or more devices to configure each of the one or more devices for control by the 25 control processor, resulting in configured devices; generating a list of streaming services and the configured devices, the list indicating devices used by each streaming service; selecting a streaming service from the list; and communicating the list to the selected streaming service, to identify configured devices available to the selected streaming service, wherein the selected streaming service delivers audiovisual content including audio content, video content, or a combination thereof in a first stream to an audiovisual presentation device, separate from the devices, for presenting the audiovisual content and provides, via an application programming interface of the selected streaming service, a control command to the control 40 processor in a second stream separate from the first stream for controlling a selected configured device to perform an operation other than the presenting the audiovisual content, wherein the control processor translates the control com- 45 mand to a device command according to a protocol for the selected configured device, and transmits the device command to control the selected configured device. - 14. The device of claim 13, wherein the actuating is performed using an application executing on a mobile 50 communication device. - 15. The device of claim 13, wherein the operations further comprise: requesting a credential from the control processor; and authenticating the control processor to the selected 55 streaming service using the credential. **24** 16. The device of claim 13, wherein the operations further comprise: analyzing the audiovisual content to obtain data related to the selected configured device; and transmitting the data to the control processor. of a plurality of remote devices; 17. A non-transitory machine-readable medium comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations, the operations comprising: actuating a control processor connected to a network; configuring the control processor to receive signals from equipment of a service provider via the network, the control processor thereby enabled to control at least one determining one or more devices of the plurality of remote devices controllable by the control processor; communicating with the one or more devices to configure the one or more devices for control by the control processor, resulting in configured devices; generating a list of streaming services and the configured devices, the list indicating devices used by each streaming service; selecting a streaming service from the list; and communicating the list to the selected streaming service, to identify configured devices available to the selected streaming service, wherein the selected streaming service delivers audiovisual content including audio content, video content, or a combination thereof in a first stream to an audiovisual presentation device, separate from the remote devices, for presenting the audiovisual content and provides, via an application programming interface of the selected streaming service, a control command to the control processor in a second stream separate from the first stream for controlling a selected configured device to perform an operation other than the presenting the audiovisual content, wherein the control processor translates the control command to a device command according to a protocol for the selected configured device, and transmits the device command to control the selected configured device. - 18. The non-transitory machine-readable medium of claim 17, wherein the actuating is performed using an application executing on a mobile communication device. - 19. The non-transitory machine-readable medium of claim 17, wherein the control processor communicates with the selected configured device according to the protocol. - 20. The non-transitory machine-readable medium of claim 17, wherein the operations further comprise: - assigning tags to device commands for controlling the selected configured device; and, - generating a list associating the tags with the device commands, thereby facilitating a protocol translation procedure for the selected configured device. \* \* \* \* \*