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1
REDUCED INTERACTION CT SCANNING

FIELD

The present embodiments relate to medical therapy or
imaging.

BACKGROUND

In existing computer tomography (CT) scanners, an
operator helps a patient onto the scanning table and operates
the CT scanner. A scout scan 1s performed of the patient. The
scout scan generates a preliminary image used to make sure
the region of interest 1s mncluded in the field of view of the
tull scan, to check the exposure techmique, and/or as a
baseline prior to administration of contrast material. After
the scout scan 1s performed, the operator sets the scanning,
parameters as dictated or verified by the scout scan and
performs the full scan. The generated image 1s then looked
at by a radiologist who analyzes the 1image and creates a
radiology report based on the observed findings. The entire
worktlow can take several minutes or longer depending on
the complexity of the scan. In time-critical settings such as
that of trauma, this forces the physician or the surgeon in a
difficult position where the physician or surgeon has to make
a decision whether to first get a scout scan, full scan, and
report before looking at the patient or to use that invaluable
time to directly begin the procedure. Without a scan, how-
ever, the surgeon would not have any prior imaging to plan
the procedure and would have to risk making observations
only during the procedure.

In addition, different patients differ significantly in size,
height, and weight, which can make manual positioning by
the operator diflicult and time-consuming. And, operators
themselves have different body heights, which can impact
table height and vantage points. In many cases, the patient
1s not located at an 1socenter of the CT scanner, which leads
to increased dose, aflects image quality, and can potentially
lead to rescans.

[l

SUMMARY

Systems, methods, and computer readable media are
provided for a reduced interaction CT scanning workflow. A
tull CT scan 1s performed without first performing a scout
scan by estimating scan parameters from surface data of a
patient acquired by a sensor. During the full CT scan, the
scan parameters are adjusted as a function of the raw C'T data
from the scan. A radiology report 1s automatically generated
from the results of the CT scan.

In a first aspect, a method 1s provided for reduced inter-
action medical imaging. The method includes capturing,
with a camera, surface data representing a patient; register-
ing, by a processor, the surface data to a model of the patient;
estimating, by the processor, scan parameters for a CT
scanner from the registered 1image data; 1nitiating a scan by
the CT scanner with the scan parameters without performing
a scout scan; adjusting, during the scan, the scan parameters
as a function of acquired scan data during the scan; and
outputting a radiology report aifter completing the scan.

In one embodiment, the scan parameters are estimated
using a network trained using machine training.

In one embodiment, the scan parameters comprise at least
one of a start slice position, an end slice position, an
expected absorption curve, or dose. The start slice position
and the end slice position may correspond to anatomical
landmarks i1dentified on the registered surface data.
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2

In one embodiment, estimating the scan parameters com-
prises: estimating a three-dimensional model of the patient;
and using markers on the three-dimensional model and a
selected protocol to estimate the scan parameters.

In one embodiment, wherein the scan parameters are
estimated by registering a prior CT scan of the patient to the
surface data and using the prior CT scan to estimate the scan
parameters.

In one embodiment, the adjustment of scan parameters
using machine training comprises comparing the predicted
scan parameters with current measurements from the CT
scanner as the scan 1s being generated and setting the scan
parameters based on the comparison. An end slice position
of the scan parameters may be adjusted as a function of
current measurements indicating an unexpected change 1n
density values 1n raw data from the CT scanner.

In one embodiment, one or more uncertainty measures are
calculated during registration of the surface data to the
model of the patient; wherein the one or more uncertainty
measures are propagated through the estimating and adjust-
ing of the scan parameters.

In one embodiment, the method further comprises stop-
ping the scan when an estimate for the scan parameters with
the one or more uncertainty measures are outside a range of
CITors.

In one embodiment, the radiology report 1s generated
using a machine trained network trained to process one or
more regions of interest and classify any pathologies pres-
ent.

In a second aspect, a medical system for reduced inter-
action CT scanning without preforming a scout scan
includes a sensor, a Ct scanner, and a processor. The sensor
1s configured to capture surface data of a patient. The CT
scanner 1s configured to scan the patient using one or more
scan parameters and generate C'T scan data. The processor 1s
configured to estimate the one or more scan parameters
using machine tramning, initialize the CT scanner with the
estimated one or more scan parameters, and adjust the one
or more scan parameters during a scan of the patient by the
CT scanner as a function of recerved CT scan data.

In one embodiment, the processor 1s further configured to
automatically generate a radiology report from an output of
the CT scanner.

In one embodiment, the system further includes a display
configured to display the radiology report.

In a third aspect, a method 1s provided for reduced
interaction medical imaging. The method includes captur-
ing, with a three-dimensional camera, surface data repre-
senting an outer surface of a patient; generating a synthetic
topogram Irom the surface data; generating, by dose modu-
lation software, one or more scan parameters from the
synthetic topogram without performing a scout scan; 1niti-
ating a scan by a CT scanner with the one or more scan
parameters; adjusting, during the scan, the one or more scan
parameters as a function of acquired scan data during the
scan; and outputting a radiology report after completing the
scan.

In one embodiment, the synthetic topogram includes
uncertainty measures calculated as a function of a range of
possible error values during generation.

In one embodiment, estimating the scan parameters with
uncertainty estimates comprises using a machine trained
network trained to obtain a generalized probability distribu-
tion of the scan parameters.

In one embodiment, adjusting the scan comprises: adjust-
ing the scan parameters constrained by the range of error
values.
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In one embodiment, the method further includes register-
ing the surface data to a patient model as a function of a prior
scan. The synthetic topogram 1s generated from the regis-
tered surface data.

In one embodiment, outputting the radiology report
includes generating the radiology report using a machine
trained model trained to classily one or more pathologies in
a CT 1mage.

Any one or more of the aspects described above may be
used alone or in combination. These and other aspects,
features and advantages will become apparent from the
following detailed description of preferred embodiments,
which 1s to be read in connection with the accompanying,
drawings. The present mvention 1s defined by the following
claims, and nothing 1n this section should be taken as a
limitation on those claims. Further aspects and advantages
of the invention are discussed below 1n conjunction with the
preferred embodiments and may be later claimed indepen-
dently or 1n combination.

BRIEF DESCRIPTION OF THE DRAWINGS

The components and the figures are not necessarily to
scale, emphasis instead being placed upon illustrating the
principles of the embodiments. Moreover, 1n the figures, like
reference numerals designate corresponding parts through-
out the different views.

FI1G. 1 depicts a flow chart diagram of one embodiment of
a method for reduced interaction scanning.

FIGS. 2A and 2B respectiully depict an example of
surface data acquired by a sensor and a fit model based on
the surface data.

FIG. 3 depicts an example of a CT 1image.

FI1G. 4 depicts a flow chart diagram of one embodiment of
a method for reduced interaction scanning.

FIG. S depicts an example of a synthetic topogram.

FIG. 6 depicts a system for reduced interaction scanning,
according to an embodiment.

DETAILED DESCRIPTION

Embodiments provide a CT scanning workflow where a
sensor 1s used to capture an 1mage of a patient on the table.
Scan parameters are automatically set. The full CT scan 1s
performed without a scout scan. During the full CT scan, the
scan parameters are adjusted based on the raw CT measure-
ments from the full CT scan. A radiology report 1s then
automatically generated from the results of the tull CT scan.

Embodiments significantly boost the scanning workflow
elliciency. In certain time-critical settings 1including trauma
or emergency settings, a scout scan may not need to be used
as a larger tolerance to scan parameter estimates may be
allowed 11 1t can significantly speed up the scanning work-
flow. Such a speed up might be the difference between
whether a surgeon requests a scan, especially in trauma
settings, or decides to go without any prior imaging (due to
the additional time that 1t takes to perform a scout scan and
configure the scanner). In addition to saving time, by skip-
ping the scout scan, the patient may receive less radiation
dose and may be more comiortable due to less time on the
table. Further, automation of the scanning workflow limits
user or operator errors due to poor training or misunder-
standings.

In certain embodiments, the imitial setting of the scanning,
parameters and adjustments may be within a margin of error
for the scanning system. However, outliers 1n patient types
may result 1n poor outcomes. In an embodiment, an uncer-
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tainty measure may be associated with each step of the
worktlow. The uncertainty measure represents a possible
range ol errors in the calculations. The uncertainty measure
may be subsequently propagated through the entire work-
flow. The uncertainty measure may be used as a confidence
measure, for example, of whether the scans and results are
sulliciently usable (which may not be the case 1n unexpected
scenar1os) and may also be used as a threshold to determine
if the operator should step in, stop the scan and perform a
manual procedure.

FIG. 1 1s a flow chart diagram of one embodiment of a
method for reduced interaction CT 1maging. The method of
FIG. 1 1s performed by a medical system 100, such as the
medical system 100 of FIG. 6. FIG. 6 depicts one embodi-
ment of a medical system 100 for reduced interaction
medical imaging. The medical system 100 of FIG. 6 includes
the display 102, memory 106, image processor 104, sensor
108, and medical scanner 110. A patient 120 1s depicted as
being prepared to be or being scanned by the medical
scanner 110. The medical system 100 may be a medical
imaging system (e.g., C'1 scanner, magnetic resonance (MR)
scanner, positron emission tomography (PET) scanner,
single photon emission computed tomography (SPECT)
scanner, ultrasound scanner, x-ray scanner, or other diag-
nostic 1imaging scanner 110) and/or a medical therapy sys-
tem (e.g., x-ray therapy system). The sensor 1s provided to
capture data of the patient surface. The 1mage processor 104
determines scan parameters based on the output of the
camera 108 and configures and controls the medical system
100. Other devices may be used to perform any of the acts.

The method of FIG. 1 1s performed 1n the order shown
(e.g., top to bottom or numerical), but other orders may be
used. Act A150 may be repeated over the length of a scan.
Additional, different or fewer acts may be provided. For
example, act A120 may not be used or may be altered 11 there
1s prior scan data.

The method of FIG. 1 1s performed without requiring a
preliminary or scout image or film of the patient. A prelimi-
nary or scout image 1s normally taken of a body region
before a definitive 1maging study—e.g., a scout scan before
a CT scan. “Scouts” serve to establish a baseline and may be
used before performing angiography, CT, or MRI. A scout
scan or f1lm 1s a preliminary image obtained prior to per-
forming the major portion of a particular study. There may
be one or more reasons to get a scout scan: to make sure the
region of 1nterest 1s included 1n the field of view, to check the
exposure technique, or as a baseline prior to administration
ol contrast material. In the case of a typical CT study, the
scout scan 1s used to plot the locations where the subsequent
slice 1mages will be obtained. The scout scan may also be
typically used as mput for dose modulation software. The
proposed workilow obviates the need for a scout scan and
thus results 1n a significant boost 1n efliciency.

At act A110, a sensor captures an outer surface of a
patient. The sensor 1s directed at a patient. The sensor
captures the outer surface of the patient from one or more
perspectives. Any portion ol the outer surface may be
captured, such as the entire patient viewed from one side
from head to toe and hand to hand or just the torso. The
sensor captures the outer surface with the patient in a
particular position, such as capturing a front facing surface
as the patient lies 1 a bed or on a table for treatment or
imaging. FIG. 2A depicts surface data of a patient acquired
from a depth sensor.

The outer surface i1s the skin of the patient. In other
embodiments, the outer surface includes clothing. The sen-
sor may use a frequency that passes through clothing and
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detects skin surface. Alternatively, the outer surface is the
clothing and the fitting of the patient model accounts for the

clothing.
The outer surface 1s captured as depths from the sensor to

different locations on the patient, an image or photograph of 5

the outside of the patient, or both. The sensor outputs the
sensed 1image and/or depths. The measurements of the outer
surface from the sensor are surface data for the patient. FIG.
2 shows an example image from surface data where the
intensity 1 grayscale 1s mapped to the sensed depth. Alter-
natively, the sensor measurements are processed to deter-
mine the outer surface information, such as stereoscopically
determining the outer surface from camera images from
different angles with 1mage processing.

In one embodiment, the surface data may include different
representations of the patient. Two or more channels are
created. For example, two images have pixel intensity
modulated by the amplitude of the information for the
channel (e.g., one by depth and the other by color). In one
embodiment, given a three-dimensional surface of the
patient’s body (skin surface), two-dimensional projections
of the data—skin surface image (e.g., height of the surface
from the scanner table at each location 1in the image) and
depth 1mage (e.g., measure the thickness of the person at
cach location 1n the image)—are formed by 1mage process-
ing from the output of the sensor. Each channel provides
different information. One channel provides a distance or
height of front surface locations to a bed or table on which
the patient lies, to the sensor, and/or relative to another
location. The outer surface as sensed and the known location
ol the sensor to the bed are used to determine the distance.
Another channel 1s a thickness of the patient. The thickness
may be a diflerence of a given depth from the maximum and
mimmum depth. Other thickness may be used. The first
channel stores the depth of the body surface as observed
from the front or looking at the patient resting on the patient
bed, and second channel stores the thickness computed by
measuring the distance between the closest and furthest
point as observed from the front. Other channels may be
used, such as one channel for depth from the sensor and
another channel for optical 1image of the patient. Other
surface data may be used.

The surface data 1s used at the resolution of the sensor. For
example, the surface data 1s at 256x256 pixels. Other sizes
may be used, including rectangular fields of view. The
surface data may be filtered and/or processed. For example,
the surface data i1s altered to a given resolution. As another
example, the surface data 1s down sampled, such as reducing
256x256 to 64x64 pixels. Fach pixel may represent any
area, such as each pixel as down sampled to 64x64 repre-
senting 1 cm” or greater. Alternatively, the sensor captures at
this lower resolution. The surface data may be cropped, such
as limiting the field of view. Both cropping and down
sampling may be used together, such as to create 64x64
channel data from 256x312 or other mput channel data.
Greater or lower resolution may assist 1n regression. In
another approach, the surface data 1s normalized prior to
input. The surface data 1s rescaled, resized, warped, or
shifted (e.g., interpolation). The surface data may be filtered,
such as low pass filtered.

The camera 108 may capture surface data from before the
patient 1s placed on the bed, such as starting to capture upon
power-up, triggered by the user, or triggered by an appoint-
ment 1n a schedule. In an embodiment, a stream of data 1s
captured over time. Since a stream 1s captured, a sequence
of frames of surface data representing the bed without and
with the patient 1s acquired. Once the patient 1s placed or
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starts to lay upon the bed, the surface data reflects the patient
on the bed. The table (bed) occupancy detection stage
detects 11 the table 1s occupied by the patient and accordingly
notifies to system to proceed to a body detection stage. The
detection of the patient may or may not continue once the
patient 1s detected.

At act A120, the processor 104 fits a patient model to the
surface data. The patient model 1s a generic representation of
surface of a human or part of a human. FIG. 2B depicts a fit
model of the patient. Different models may be used for
different body types, such as a male or female model. The
patient model 1s not specific to the patient. For example, the
patient model 1s a statistical shape model. The patient model
1s not specific to any other patient or 1s specific to a patient
meeting a norm. Any representation may be used for the
model. In one embodiment, the model 1s formed from a
mesh, such as a mesh of triangles. Other meshes may be
used. Other representations of a three-dimensional surface
may be used.

Any now known or later developed fit of a body surface
model to captured surface data for a patient may be used. For
example, a SCAPE model 1s {it to the surface data based on
minimization of differences. In one embodiment, the depth
camera 1mage ol a subject 1s converted to a three-dimen-
sional point cloud. A plurality of anatomical landmarks 1s
detected in the three-dimensional point cloud. A three-
dimensional avatar mesh 1s initialized by aligning a template
mesh to the three-dimensional point cloud based on the
detected anatomical landmarks. A personalized three-dimen-
sional avatar mesh of the subject 1s generated by optimizing
the three-dimensional avatar mesh using a traimned paramet-
ric deformable model (PDM). The optimization 1s subject to
constraints that consider clothing worn by the subject and
the presence ol a table on which the subject 1 lying.

In an embodiment, a statistical shape model 1s {it to the
depths as the surface data. The statistical shape model 1s a
mesh or other representation of an average or other statis-
tical representation of an outside of a human or part of a
human. The statistical shape model includes probabilities or
other constraints on alteration, so that the fitting maintains
the shape based on statistics.

In another embodiment, a personalized three-dimensional
mesh of a person 1s generated by a model-based approach to
fit a human skeleton model to depth image data of the
person. The estimated pose skeleton 1s then used to 1mtialize
a detailed parametrized deformable mesh (PDM) that was
trained 1 an oflline training phase. The PDM 1s then
optimized to fit the input depth data by perturbing the body
pose and shape. A sampling-based optimization procedure
fits the PDM to the depth data. Unlike the shape completion
and amimation of people (SCAPE) model, which 1s only
applied to data with a skin clad subject, the sampling-based
approach deals with clothing variations of the subject.
Furthermore, the sampling-based approach also enables
embodiments to deal with bias introduced due to sensor
noise.

At act A130, the processor 104 estimates scan parameters
using machine training. The registered patient model and/or
surface data may be used as iputs. The scan parameters may
include start and end slice positions, detector configuration,
tube current, tube potential, reconstruction algorithm,
patient positioning, scan range, reconstructed slice thick-
ness, pitch, among others. The medical system 100 and scan
parameters are configured, at least in part, based on the
patient model as fit to the patient. The 1mage processor 104
or a controller of the medical system 100 sets one or more
values of programmable variables for imaging or treating the
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patient. The medical scanner 110 may configure itself. The
image processor 104 may directly configure the medical
scanner 110. The configured medical system 100 and medi-
cal scanner 110 may then treat or image the patient using the
determined scan parameter values.

The scan parameters may be determined using a machine
trained model/network that iputs the fit patient model and
outputs one or more scan parameters. A fully connected
neural network, convolutional neural network, or another
neural network may be used. A support vector machine,
clustering based machine training, Bayesian, or other
machine trained model may be used. For training the
machine trained model, the machine trained model arrange-
ment or architecture 1s defined. The definition 1s by con-
figuration or programming of the training. The number of
layers or units, type of training/learning, and other charac-
teristics of the network are controlled by the programmer or
user. In other embodiments, one or more aspects (e.g.,
number of nodes, number of layers or units, or type of
training) are defined and selected by the machine during the
training. Training data, including many samples of frames of
surface data and the corresponding ground truth (i.e., accu-
rate or verified scan parameters), 1s used to train the model.
The relationship of the input surface data to the output scan
parameters 1s machine trained. Once trained, the machine
trained model may be applied to the CT scanning workflow
after acquisition of the surface data and generation of the {it
patient model. Training and application may be used for any
of the machine tramned models for generating scan param-
cters, fitting the patient model, generating the surface data,
or adjusting the scan parameters during the scan. Diflferent
machine trained models are configured, trained using dif-
ferent training data, and applied for different purposes.

The fit patient model of act A120 may indicate the
locations of start and end points for a range of scanning
along a torso of the patient. Based on the reason for the scan
(e.g., region to diagnose and/or to treat), the fit patient model
may be used to configure parameters that control the move-
ment of the gantry or range of scanning. The intensity used
(e.g., dose) may be set, such as based on a size of the patient
determined from the fit model. The patient model as fit may
define a field of view and/or x-ray intensity to control dose
or scan range. The fit model may be usetful for positioning
the scanner and controlling the x-ray source. Any setting or
parameter of the medical scanner 110 may be determined or
configured based on the fit model or a value (e.g., estimated
weight or height) derived from the fit model. The pose, scan
range and/or 1so-center of the scan range may be based on
the fit model.

In an embodiment, the scan parameters may be estimated
using a process that estimates a three-dimensional model of
the patient and uses markers on the model to determine the
scan range based on selected protocol. The process may also
provide the correct 1socenter position, enabling the right
dose modulation and consistent images, support scanning
the correct body region with no truncation by aligning the
automatically identified anatomical position with the proto-
col and may help sateguard the right scan direction, which
may be crucial when moving the table with infused patients.
In an embodiment, the scan parameters may be directly
regressed as the start and end slice positions may correspond
to estimated anatomical landmarks.

In an embodiment, the scan parameters may be estimated
by registering a prior CT scan of the patient to the sensor
data and using the prior scan to estimate the scan parameters.
In trauma situations, for example, multiple scans may be
performed over a period of time to check on the status of a
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patient. The prior scans may be used as an input for fitting
the surface data to a patient model and/or setting the scan
parameters. For example, i a prior scan has been performed,
the system may be able to more accurately predict the
location of 1nternal organs or objects based on the prior scan
data.

In an embodiment, the scan parameters may include an
uncertainty measure. The uncertainty measure corresponds
to a level or range of error that may be included with any of
the calculations. For example, the registration of the body
surface to the patient model may include some level of
uncertainty or error that may be propagated through the
setting of the scan parameters and further though throughout
the method. For instance, the start and end slice position may
include a measure of uncertainty in position due to the
differences between the patient model and the actual patient.
The predicted absorption curve may similarly include an
estimate ol uncertainty based on the uncertainty in the
prediction of anatomical structures. The uncertainty measure
may be obtained by generating multiple output estimates by
small perturbations of the mput data (e.g. small geometric
perturbation which are within the sensor noise range) and
computing the measure and variance of the estimates. Alter-
natively, a deep network may be used such as a Variational
deep network that models the weights as a generalized
probability distribution, and the weights are sampled from
the Gaussian during the inference process. Multiple esti-
mates are obtained by running the inference multiple times,
and mean and variance of the output 1s obtained. Scan
parameters may have an allowable range. When estimating
and adjusting with the uncertainty measures, values for the
scan parameters may end up outside of the allowable range.
This may indicate that the system cannot accurately estimate
or adjust the scan parameters and thus the scan should be
halted.

At act A140, the scan 1s mitialized using the scan param-
cters. If an uncertainty measure 1s included, the scan may use
mean values and predicted values. At act A1350, the scan
parameters are adjusted. Adjustment of scan parameters may
use machine training including comparing the predicted scan
parameters with current measurements from a real time CT
scan and adjusting the scan parameters based on the com-
parisons. The adjustments to the scan parameters may
include changes to the end slice position, detector configu-
ration, tube current, tube potential, reconstruction algorithm,
patient positioning, scan range, reconstructed slice thick-
ness, pitch, or other parameters as a function of raw CT data
that 1s acquired during then CT scan. CT 1s based on the
principle that the density of the tissue passed by the x-ray
beam can be measured from the calculation of the attenua-
tion coellicient. Using this principle, CT allows the recon-
struction of the density of the body, by two-dimensional
section perpendicular to the axis of the acquisition system.
The emitter of x-rays rotates around the patient and the
detector, placed 1n a diametrically opposite side, picks up the
image of a body section (beam and detector move 1n
synchrony). The detectors of the CT scanner 110 do not
produce an 1mage but rather measure the transmission of a
thin beam (1-10 mm) of x-rays through a full scan of the
body. The image of that section 1s taken from diflerent
angles, and this allows tomography to retrieve the informa-
tion on the depth (in the third dimension). In order to obtain
tomographic images of the patient from the data 1n “raw”
scan, the computer uses complex mathematical algorithms
for 1mage reconstruction. This raw data may be used to
adjust the scan parameters without requiring the complex
mathematical algorithms.




US 11,284,850 B2

9

The inherent differences 1n density 1n some structures may
be used to discern the structures from other types of tissues
or material. For example, air in the bowel lumen or the thin
sleeve of fat surrounding the psoas muscles will provide
different raw data, allowing the system to delineate the
structures from the soft tissue shadows surrounding them
without a full image reconstruction. The system may only
need to 1dentify that certain densities (e.g. raw data values)
have changed by a threshold amount during the scan. Most
of the abdominal organs and structures are of soft tissue
(water) density, and so the images of contiguous structures
merge with each other. The raw data may be used to quickly
identily breakpoints or changes between such densities. This
data may then be compared to the expected breakpoints or
thresholds. For instance, during a thorax scan, a sharp
unexpected increase 1n the absorption near the lower thorax
region may suggest the lower edge of lungs/diaphragm and
may be used to stop the tull CT scan.

FIG. 3 depicts an example CT image. In the CT 1mage,
different tissues are depicted with different greyscales. As
can be seen in FIG. 3, there are distinct breaks between
certain areas, for example at the lower thorax region where
the anatomy transitions between the lungs and other organs.
C'T data 1s acquired 1n slices as the scanner moves (or patient
moves). In FIG. 3, 1f the scanner started at the left (neck of
the body) and acquired slices from through the lungs to the
lower thorax region, the raw data would indicate a sharp
increase in absorption between, for example, slice 301 and
slice 303. The changes may result in the CT scanner 110
adjusting the start and end slice positions, detector configu-
ration, tube current, tube potential, reconstruction algorithm,
patient positioning, scan range, reconstructed slice thick-
ness, pitch, or other parameters.

If uncertainty measures are used, the updates may be
performed within the estimate of uncertainty. If the uncer-
tainty estimates of the scan parameters are too high, then the
patient should not be scanned using the proposed worktlow.
In an example, a patient may have an oddly shaped body, 1n
which case the location of the internal organs 1s diflicult to
estimate. If the surface data cannot be {it to a patient model
without too large an error margin, the scan parameters may
be far ofl and may indicate that a manual scanning may be
required, or a scout scan performed.

The scan parameters may be adjusted multiple times
during a scan. The adjustments may continue until the scan
has finished. The output of the scan 1s CT data that may be
stored for later use or converted into a readable format for
an operator or physician to review.

Atact A160, a radiology report 1s generated from the scan
data. The radiology report may be generated using a model
that uses expert system rules and/or machine trained models
to generate a set of findings. As an example, the findings
may cover hemorrhage, bleeding, calcifications 1n the coro-
naries, organ abnormalities, among others. The model 1s
trained on prior scan data and prior ground truth findings.
After being trained using a set of training data, the model 1s
used to generate findings in real time from scan data. The
findings may then be summarized into a radiology report
using natural language processing tools. Natural language
processing uses one or more classifications that are gener-
ated using 1mage processing of a radiology image from the
scan. The one or more classifications are analyzed using a
computer implemented text analysis process to generate a
natural language sentence representing the radiology image.
The 1mage processing may include Artificial Intelligence
(Al)-based 1image processing. For example, the radiology
image may be a Coronary CT Angilography. A Recurrent
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Neural Network (RNN) Long Short-Term Memory (LSTM)
based plaque detection Al algorithm may be applied to
Coronary CT Angiography 1mages to detect plaques. The
output of this algorithm may be a classification result, which
may be a multi-class label e.g., for plaque type classification
(e.g., calcified, non-calcified, mixed), and/or a continuous
value, e.g., for stenosis grading regression. Diflerent net-
works may be used for diflerent scan protocols or classifi-
cations.

The radiology report may include detection and highlight-
ing of anomalies, cinematic rendering, enhanced clinical
imaging, etc. The radiology report may include all volumet-
ric analyses included with deviations from the normative
database marked or highlighted. The radiology report may
be provided to an operator or physician or transierred to
PACS for later use. The radiology reports may be validated
by radiologists before being archived and used for subse-
quent decision making and training data for the machine
trained model. In an embodiment, the radiology report may
be generated from an annotation table of various clinically
relevant findings, and the annotation table may be populated
using systems that parse the generated CT scans and use
machine training to process the regions of the interest to
detect any pathologies.

The data acquired or generated during the method of FIG.
1 may be stored and used as feedback in the various machine
trained networks/models. For example, the output of the
processes, (the fit model, scan parameters, radiology report)
may be graded or scored by operators on their accuracy or
usefulness. The scores and feedback may be used to further
train the models.

FIG. 4 depicts another method for automated medical
imaging. The method of FIG. 4 1s performed by a medical
system 100, such as the medical system 100 of FIG. 6. The
method 1s performed 1n the order shown (e.g., top to bottom
or numerical), but other orders may be used. Additional,
different or fewer acts may be provided. The method of FIG.
4 1s performed without requiring a preliminary or scout
image or film of the patient. The scout scan may also be
typically used as iput for dose modulation software. The

proposed worktlow obviates the need for a scout scan by
generating a synthetic topogram which 1s used as an 1nput
for dose modulation software and thus results in a significant
boost 1n efliciency.

At act A210, a camera 108 captures surface data repre-
senting an outer surface of a patient. The camera 108 1s
directed at the patient. The camera may capture two-dimen-
sional data or three-dimensional data. The camera 108
captures the outer surface of the patient from one or more
perspectives. Any portion ol the outer surface may be
captured, such as the entire patient viewed from one side
from head to toe and hand to hand or just the torso. The
camera 108 captures the outer surface with the patient 1n a
particular position, such as capturing a front facing surtace
as the patient lies 1n a bed or on a table for treatment or
imaging.

In an embodiment, a patient model may be fit to the
surface data. The patient model 1s a generic representation of
surface of a human or part of a human. Different models may
be used for different body types, such as a male or female
model. The patient model 1s not specific to the patient. For
example, the patient model 1s a statistical shape model. The
patient model 1s not specific to any other patient or 1s specific
to a patient meeting a norm. Any representation may be used
for the model. In one embodiment, the model 1s formed from
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a mesh, such as a mesh of triangles. Other meshes may be
used. Other representations of a three-dimensional surface
may be used.

In an embodiment, surface data may include an uncer-
tainty measure. The registration of the body surface to the
patient model may include some level of uncertainty that

may be propagated through the setting of the scan param-
cters and further though throughout the method. For
instance, start and end slice positions may include a measure
of uncertainty in position due to the diflerences between the
patient model and the actual patient. A predicted absorption
curve may similarly include an estimate of uncertainty based
on the uncertainty 1n the prediction of anatomical structures.
The uncertainty measure may be obtained by generating
multiple output estimates by small perturbations of the input
data (e.g. small geometric perturbation which are within a
sensor noise range) and computing the measure and variance
of the estimates. Alternatively, a deep network may be used
such as a vanational deep network that models the weights
as a generalized probability distribution. The weights are
sampled during an inference process. Multiple estimates
may be obtained by running an inference process multiple
times to obtain mean and variance values.

At act A220, a synthetic topogram 1s generated from the
surface data. A scout image may not only conventionally
used for region of interest specification but also may be used
by dose modulation software. To expediate the workilow, a
scout 1mage 1s not acquired, instead, the workflow uses a
synthetic topogram that approximates the true internal
anatomy ol the patient and 1s used as an mput for compo-
nents such as the dose modulation software.

Dose modulation software uses a scout image as input.
Since there 1s not a scout 1image, the synthetic topogram 1s
used. The synthetic topogram 1s generated from the surface
data acquired by the sensor that is fit to the patient model.
The synthetic topogram, e.g. a two-dimensional projection
of the internal anatomy of a patient, 1s predicted from
geometric measurements on the patient’s body surface using
deep machine training models. For example, a generative
adversarial network (GAN) may generate a topogram rep-
resenting 1nterior organs based on the outside surface of the
patient. To further adapt to specific patients, internal land-
marks may be used in the topogram prediction. The syn-
thetic topogram generated by the generator of the GAN may
be altered based on landmarks generated by another gen-
erator.

The machine trained network 1s an image-to-image net-
work, such as a generative adversarial network, trained to
convert surface data to a topogram. For example, the trained
convolution units, weights, links, and/or other characteris-
tics of the network are applied to the surface data and/or
derived feature values to extract the corresponding features
through a plurality of layers and output the topogram. The
features of the input images (e.g., surface data) are extracted
from the images. Other more abstract features may be
extracted from those extracted features using the architec-
ture. Depending on the number and/or arrangement of units
or layers, other features are extracted from the input. For
training the machine trained network, the machine training
network arrangement 1s defined. The definition 1s by con-
figuration or programming of the training. The number of
layers or units, type of training, and other characteristics of
the network are controlled by the programmer or user. In
other embodiments, one or more aspects (e.g., number of
nodes, number of layers or units, or type of training) are
defined and selected by the machine during the trainming.
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In an embodiment, the machine trained network 1s an
image-to-1mage network. Any machine training architecture
for outputting a spatial distribution from an mput spatial
distribution may be used. For example, U-Net 1s used. A
convolutional-to-transposed-convolutional network 1s used.
One segment of layers or units applies convolution to
increase abstractness or compression. The most abstract
teature values are then output to another segment. The other
segment of layers or units then applies transposed convo-
lution to decrease abstractness or compression, resulting 1n
outputting of a topogram or 1ndication of class membership
by location.

In an embodiment, the network 1s a GAN that may include
convolutional neural network (CNN) or deep beliel nets
(DBN). Other deep networks may be used. CNN learns
feed-forward mapping functions while DBN learns a gen-
crative model of data. In addition, CNN uses shared weights
for all local regions while DBN 1s a fully connected network
(1.e., having different weights for all regions of an 1mage).
The training of CNN 1s entirely discriminative through
backpropagation. DBN, on the other hand, employs the
layer-wise unsupervised training (e.g., pre-training) fol-
lowed by the discriminative refinement with backpropaga-
tion if necessary.

The network 1s defined as a plurality of sequential feature
units or layers. Sequential 1s used to indicate the general
flow of output feature values from one layer to input to a
next layer. The information from the next laver 1s fed to a
next layer, and so on until the final output. The layers may
only feed forward or may be bi-directional, including some
teedback to a previous layer. The nodes of each layer or unit
may connect with all or only a sub-set of nodes of a previous
or subsequent layer or unit.

Rather than pre-programming the features and trying to
relate the features to attributes, the deep architecture i1s
defined to learn the features at diflerent levels of abstraction
based on an input 1image with or without pre-processing. The
features are trained to reconstruct lower level features (i.e.,
features at a more abstract or compressed level). For
example, features for reconstructing an 1mage are trained.
For a next unit, features for reconstructing the features of the
previous unit are trained, providing more abstraction. Each
node of the unit represents a feature. Diflerent units are
provided for training different features.

Within a unit or layer, any number of nodes 1s provided.
For example, 100 nodes are provided. Later or subsequent
units may have more, fewer, or the same number of nodes.
In general, for convolution, subsequent units have more
abstraction. For example, the first unit provides features
from the image, such as one node or feature being a line
found 1n the image. The next unit combines lines, so that one
of the nodes 1s a corner. The next unit may combine features
(e.g., the corner and length of lines) from a previous unit so
that the node provides a shape or building indication. For
transposed convolution to reconstruct, the level of abstrac-
tion reverses. Each unit or layer reduces the level of abstrac-
tion or compression.

The features of the nodes are trained by the machine using,
any building blocks. For example, auto-encoder (AE) or
restricted Boltzmann machine (RBM) approaches are used.
AE transforms data linearly, and then applies a non-linear
rectification, like a sigmoid function. The objective function
of AE 1s the expected mean square error between the mput
image and reconstructed 1images using the trained features.
AE may be trained using stochastic gradient descent or other
approach to learn, by the machine, the features leading to the
best reconstruction. The objective function of RBM 1s an
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energy function. Exact computation of the likelihood term
associated with RBM 1is intractable. Therefore, an approxi-
mate algorithm, such as contrastive-divergence based on
k-step Gibb sampling or other, 1s used to train the RBM to
reconstruct the image from features.

Tramming of AE or RBM 1is prone to over-fitting for
high-dimensional input data. Sparsity or denoising tech-
niques (e.g., sparse denoising AE (SDAE)) are employed to
constrain the freedom of parameters and force learning of
interesting structures within the data. Enforcing sparsity
within hidden layers (1.e., only a small number of units in
hidden layers are activated at one time) may also regularize
the network. In other embodiments, at least one unit 1s a
convolution with ReLLU activation or 1s a batch normaliza-
tion with a ReL. U activation followed by a convolution layer
(BN+LeakyRU+convolution). Max pooling, upsampling,
downsampling, and/or softmax layers or units may be used.
Different units may be of the same or different type.

A machine trained network as described may be used for
different acts in the method of FIGS. 1 and 4. Diilerent
networks may be configured differently and tramned with
different ground truth data or training data. The output of the
machine traimned network that 1s trained to generate a syn-
thetic topogram 1s depicted in FIG. 4.

In addition, 11 uncertainty measures are calculated at act
A210, the uncertainty measures may be propagated though
the rest of the method including during creation of the
synthetic 1mage, when generating scan parameters, and
when 1mitializing and adjusting the scan. In an embodiment
where a patient has been previously scanned, a prior scan
may be used as the basis for the synthetic topogram.

FIG. 5 depicts examples of a synthetic topogram. FIG. 5
deplcts two diflerent patients (top and bottom) with fit model
images on the left and synthetic topograms on the right.
While the fit models only include external features, the
synthetic topograms includes depict approximations of
internal features of the patients. As an example, i the
synthetic topograms, the location of the lungs can be dis-
tinguished.

At act A230, the synthetic topogram is mnput into the dose
modulation software, and the dose modulation software
generates scan parameters. The scan parameters may include
start and end slice positions, detector configuration, tube
current, tube potential, reconstruction algorithm, patient
positioning, scan range, reconstructed slice thickness, pitch,
among others.

Dose modulation software may be used to automatically
configure the scan parameters. The dose modulation sofit-
ware attempts to accurately set the scan parameters so that
the dose of radiation 1s appropriate for the scan. As an
example, increases 1n tube current or the product of tube
current and scan time (mAs) result in 1mproved image
quality, decreased 1mage noise, but increase patient dose.
The relationship between tube current and patient dose 1s
essentially linear, with increases in mAs resulting in a
comparable percentage increase in patient dose. Automated
tube current modulation (also known as automated exposure
control) 1s performed by the dose modulation software so
that patient dose 1s kept to an appropriate level during the
scan. Dose modulation software may be included with
different scanners or software packages such as CARE Dose
4D on Siemens, Dose-Right on Phillips, Auto mA/Smart mA
on GE, and SUREExposure three-dimensional on Toshiba
among others. The dose modulation software automatically
increases the mAs in those parts of the body with the greatest
attenuation and decreases the mAs 1n those parts of the body
with lower attenuation. As an example, the software
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increases the mAs i1n the shoulder and hips (that have
relatively more attenuation) and decreases the mAs in the
abdomen and thorax (that have relatively less attenuation).

At act A240, the scan 1s mitialized by the CT scanner 110
with the scan parameters provided by the dose modulation
software. At act A250, the scan parameters are adjusted
during the scan as a function of acquired scan data during the
scan. The predicted scan parameters may be compared with
the current measurements as CT scan 1s being generated and
setting the scan parameters based on the comparisons. A
machine learning model may also be used that estimates or
suggests scan parameters based on the current measure-
ments. The adjustments to the scan parameters may include
changes to the start and end slice positions, detector con-
figuration, tube current, tube potential, reconstruction algo-
rithm, patient positioning, scan range, reconstructed slice
thickness, pitch, or other parameters as a function of raw CT
data that 1s acquired during then CT scan.

In an embodiment, the dose modulation software may
perform on-line attenuation-based tube current-modulation
which fine-tunes the predicted optimal tube current values
(estimated from the synthetic topogram data) according to
the actual attenuation measured 180 degrees earlier in the
tube rotation. This allows the CT scanner 110 to adapt to
temporally varying levels of attenuation, such as from the
injection of contrast media or due to patient motion between
the acquisition of the sensor data and actual scan acquisition,
as well as to optimally modulate tube current 1n extremely
clliptical regions, such as the shoulders. A feedback system
included with the dose modulation software i1dentifies the
transmission values at a given angle and uses the data to
predict an optimal tube current for the projection that wall
occur 180 degrees later in the tube rotation. The dose
modulation soitware lowers the tube current through areas
of the body that have a decreased attenuation relative to the
“reference attenuation level” of a standard-sized patient and
raises the tube current where the anatomy i1s more attenu-
ating.

If uncertainty measures are used, the adjustments may be
performed within the estimate of uncertainty. If the uncer-
tainty estimates of the scan parameters are too high, then the
patient should not be scanned using the proposed worktlow.
In such a case, a manual scanning may be required.

The scan parameters may be adjusted multiple times
during a scan. The adjustments may continue until the scan
has fimshed. The output of the scan 1s CT data that may be
stored for later use or converted into a readable format for
an operator or physician to review.

At act A260, a radiology report 1s output after completing
the scan. The radiology report may include detection and
highlighting of anomalies, cinematic rendering, enhanced
clinical imaging, etc. The radiology report may include all
volumetric analyses mcluded with deviations from the nor-
mative database marked or highlighted. The radiology report
may be provided to an operator or physician or transierred
to PACS for later use. The radiology reports may be vali-
dated by radiologists before being archived and used for
subsequent decision making and training data for the
machine trained models. In an embodiment, the radiology
report may be generated from an annotation table of various
clinically relevant findings and the annotation table may be
populated using systems that parse the generated CT scans
and use machine training to process the regions of the
interest to detect any pathologies. All the data acquired or
generated during the method of FIG. 4 may be stored and
used as feedback in the various machine trained networks/
models.
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FIG. 6 shows one embodiment of a medical system 100
for reduced interaction medical imaging. The medical sys-
tem 100 includes the display 102, memory 106, image
processor 104, sensor 108, and medical scanner 110. The
display 102, image processor 104, and memory 106 may be
part of the medical system 100, a computer, server, work-
station, or other system for diagnosis or treatment. A work-
station or computer without the medical system 100 may be
used with the medical system 100. Additional, different, or
fewer components may be provided. For example, a com-
puter network 1s mcluded for remote processing or storage.
As another example, a user input device (e.g., keyboard,
buttons, sliders, dials, trackball, mouse, or other device) 1s
provided for user alteration or setting for configuring the
medical system 100.

The sensor 108 1s a depth sensor or camera 108. LIDAR,
2.5D, RGBD, stereoscopic optical sensor, or other depth
sensor may be used. One sensor 108 1s shown, but multiple
sensors may be used. A light projector may be provided. The
sensor 108 may directly measure depth from the sensor 108
to the patient. The sensor 108 may include a separate
processor for determining depth measurements from 1mages,
or the image processor 104 determines the depth measure-
ments from i1mages captured by the sensor 108. The depth
may be relative to the sensor 108 and/or a bed or table 89.
The sensor 108 1s directed to the patient 88. The sensor 108
may be part of or connected to the medical system 100 or 1s
separate from the medical system 100. The sensor 108 1s
configured to measure depths to or for a patient. The depths
are distances from the sensor 108, table, or other location to
the patient at various locations on the patient. Any sample
pattern over the patient may be used. The sensor 108 outputs
depth measurements and/or a surface 1image as one frame of
data for an entire field of view. The sensor 108 measures
over a sequence. The depths and/or images (e.g., RGBD) are
measured at a given time. This may be repeated at diflerent
times, providing frames of surface data representing the
patient at different times.

The 1image processor 104 1s a control processor, general
processor, digital signal processor, three-dimensional data
processor, graphics processing unit, application specific
integrated circuit, field programmable gate array, artificial
intelligence processor, digital circuit, analog circuit, combi-
nations thereof, or other now known or later developed
device for processing surface data. The image processor 104
1s a single device, a plurality of devices, or a network. For
more than one device, parallel or sequential division of
processing may be used. In one embodiment, the 1mage
processor 104 1s a control processor or other processor of a
medical therapy system 100. The image processor 104
operates pursuant to and 1s configured by stored instructions,
hardware, and/or firmware to perform various acts described
herein.

The 1mage processor 104 1s configured to fit a patient
model to the surface data. A frame or multiple frames of
measurements from the sensor 108 are used to fit the patient
model. The frame or frames are from a different part of the
sequence, such as being a frame or frames captured after the
frame or frames for which occupancy 1s 1nitially detected.
The fitting may be an initial, partial, or coarse fitting. For
example, a ngid fitting 1s provided before a non-rigid fitting.
As another example, a coarse fitting 1s provided before a fine
fitting. In one embodiment, the 1mage processor 104 deter-
mines landmark locations of the patient from the measure-
ments. Any number of landmarks may be detected and
located. The 1mage processor 104 may be configured to
perform further fitting using other parts of the sequence of
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captured measurements. For example, the patient 88 moves
aiter the patient model 1s fit. The 1image processor 104 refits
using current frames.

The 1mage processor 104 may be configured to form a
mesh for the patient using the depths from the sensor 108.
A mesh 1s it to the depths or other output of the sensor as
a patient model. The mesh may be {it by detection of the
surface of the patient and/or by minimizing differences
between a pre-determined mesh shape and the shape repre-
sented by the output of the sensor.

The 1image processor 104 1s configured to estimate scan
parameters. The scan parameters may include start and end
slice positions, detector configuration, tube current, tube
potential, reconstruction algorithm, patient positioning, scan
range, reconstructed slice thickness, pitch, among others.
The medical system 100 and scan parameters are configured,
at least 1n part, based on the patient model as fit to the
patient. The image processor 104 sets one or more values of
programmable variables for imaging or treating the patient.
The 1image processor 104 may directly configure the medical
scanner 110.

The 1mage processor 104 1s configured to adjust scan
parameters. The image processor may adjust the scan param-
eters using machine training including comparing the pre-
dicted scan parameters with the current measurements as a
CT scan 1s being generated and adjusting the scan param-
cters based on the comparisons. The adjustments to the scan
parameters may include changes to the start and end slice
positions, detector configuration, tube current, tube poten-
tial, reconstruction algorithm, patient positioning, scan
range, reconstructed slice thickness, pitch, or other param-
cters as a function of raw CT data that 1s acquired during
then CT scan.

The image processor 104 1s configured to generate a
radiology report. The radiology report may be generated
using a model that uses expert system rules and/or machine
trained models to generate a set of findings. The radiology
report may include detection and highlighting of anomalies,
cinematic rendering, enhanced clinical imaging, etc. The
radiology report may include all volumetric analyses
included with deviations from the normative database
marked or highlighted. The radiology report may be pro-
vided to an operator or physician or transferred to PACS for
later use.

The display 102 1s a CRT, LCD, projector, plasma, printer,
tablet, smart phone or other now known or later developed
display device for displaying the output. The display 102 1s
configured by loading an 1mage into a bufler. The display
102 1s configured to display an image of the patient from the
sensor 108 or signaling.

The sensor measurements, it shape model, surface data,
machine trained model, scan parameters, and/or other infor-
mation are stored i1n a non-transitory computer readable
memory, such as the memory 106. The memory 106 1s an
external storage device, RAM, ROM, database, and/or a
local memory (e.g., solid state drive or hard drive). The same
or different non-transitory computer readable media may be
used for the instructions and other data. The memory 106
may be implemented using a database management system
(DBMS) and residing on a memory, such as a hard disk,
RAM, or removable media. Alternatively, the memory 106
1s 1nternal to the processor 104 (e.g. cache).

The instructions for implementing the processes, meth-
ods, and/or techniques discussed herein are provided on
non-transitory computer-readable storage media or memo-
ries, such as a cache, buffer, RAM, removable media, hard
drive or other computer readable storage media (e.g., the
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memory 106). The instructions are executable by the image
processor 104 or another processor. Computer readable
storage media include various types of volatile and nonvola-
tile storage media. The functions, acts or tasks i1llustrated in
the figures or described herein are executed 1n response to
one or more sets of instructions stored 1n or on computer
readable storage media. The functions, acts or tasks are
independent of the instructions set, storage media, processor
or processing strategy and may be performed by software,
hardware, integrated circuits, firmware, micro code and the
like, operating alone or in combination.

In one embodiment, the instructions are stored on a
removable media device for reading by local or remote
systems. In other embodiments, the instructions are stored 1n
a remote location for transfer through a computer network.
In yet other embodiments, the instructions are stored within
a given computer, CPU, GPU or system. Because some of
the constituent system components and method steps
depicted 1n the accompanying figures may be implemented
in soitware, the actual connections between the system
components (or the process steps) may differ depending
upon the manner in which the present embodiments are

programmed.

The medical system 100 includes a diagnostic imaging
scanner 110, such as CT, MR, PET, or SPECT system or a
therapeutic radiation scanner, such as an x-ray or particle
therapy system. The imaging scanner 110 operates pursuant
to one or more settings and scanning parameters to treat or
image a patient. The settings and scanning parameters
control the location 1n the patient being scanned, the type of
scan (e.g., pulse sequence), and/or radiation dose. The
intensity, frequency, duration, and/or other settings are con-
trolled, at least 1n part, based on the fit patient model. The
patient model may be used to indicate a location on or in the
patient, such as a region of interest, an organ location, and/or
a center in one, two, or three dimensions. The medical
system 100 1s configured by setting values of variables to
operate 1 a particular way appropriate for the particular
patient as resting on the bed.

In one embodiment, the medical system 100 uses the fit
patient model to control a position and/or movement of a
bed. The bed 1s configured to be moved based on the fit of
the patient model. For example, an organ or region of
interest reflected in the fit patient model 1s used to move the
bed so that the actual organ or region of interest of the
patient 120 1s at an 1so-center of the medical system 100.
Where the patient 120 then moves, the updated fit using
turther frames from the sensor 108 may be used to reposition
the bed and corresponding organ or region of interest of the
patient 120.

Once configured by the settings, the medical system 100
treats or 1mages the patient. For therapy, the amount of
radiation applied 1s based, at least 1n part, on the fit patient
model as the scanning parameters of the scanner are deter-
mined based on the sensor data and not from a scout scan.
For imaging, the medical system 100 1s configured to scan
an internal region of a patient and generate diagnostic
information from the scan.

The medical scanner 110 1s configured to generate diag-
nostic 1mage information. The configuration uses settings
for one or more parameters, such as an X-ray source voltage,
table position and/or range of movement, gantry position
and/or range of movement, focus, field of view, scan density,
detector thresholds, transmission sequence, 1mage process-
ing settings, filtering settings, or 1image generation settings.
Based on the fit patient model, one or more settings of the
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medical scanner 110 are automatically set. The patient 120
1s 1maged by the medical scanner 110 using the settings.

Various improvements described herein may be used
together or separately. Although 1llustrative embodiments of
the present mvention have been described herein with ref-
erence to the accompanying drawings, 1t 1s to be understood
that the invention 1s not limited to those precise embodi-
ments, and that various other changes and modifications
may be aflected therein by one skilled in the art without
departing from the scope or spirit of the imvention.

What 1s claimed 1s:

1. A method for reduced interaction medical imaging, the
method comprising:

capturing, with a camera, surface data representing a

patient;

registering, by a processor, the surface data to a model of

the patient;

calculating, by the processor, one or more uncertainty

measures based on the registration of the surface data
to the model of the patient;

estimating, by the processor and a machine trained net-

work configured to generate a generalized probability
distribution of scan parameters, scan parameters for a
C'T scanner from the registered image data and the one
or more uncertainty measures;

imtiating a diagnostic scan by the CT scanner with the

scan parameters without performing an additional scan;

adjusting, during the scan, the scan parameters as a

function of acquired scan data during the scan and the
one or more uncertainty measures; and

outputting a radiology report aiter completing the scan.

2. The method of claim 1, wherein the scan parameters are
estimated using a network trained using machine training.

3. The method of claim 1, wherein the scan parameters
comprise at least one of a start slice position, an end slice
position, an expected absorption curve, or dose.

4. The method of claim 3, wherein the start slice position
and the end slice position correspond to anatomical land-
marks 1dentified on the registered surface data.

5. The method of claim 1, wherein estimating the scan
parameters comprises:

estimating, by the processor, a three-dimensional model

of the patient; and

using, by the processor, markers on the three-dimensional

model and a selected protocol to estimate the scan
parameters.

6. The method of claim 1, wherein the scan parameters are
estimated by registering a prior CT scan of the patient to the
surface data and using the prior CT scan to estimate the scan
parameters.

7. The method of claim 1, wherein the adjustment of scan
parameters using machine training comprises comparing the
predicted scan parameters with current measurements from
the CT scanner as the scan 1s being generated and setting the
scan parameters based on the comparison.

8. The method of claim 7, wherein an end slice position
of the scan parameters 1s adjusted as a function of current
measurements indicating an unexpected change in density
values 1n raw data from the CT scanner.

9. The method of claim 1, further comprising:

stopping the scan when an estimate for the scan param-

cters with the one or more uncertainty measures are
outside a range of errors.

10. The method of claim 1, wherein the radiology report
1s generated using a machine trained network trained to
process one or more regions ol interest and classily any
pathologies present.
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11. A system for reduced interaction CT scanning without
preforming an additional scan, the system comprising:
a sensor configured to capture surface data of a patient;
a C'T scanner configured to scan the patient using one or
more scan parameters and generate CT scan data; and
a processor configured to estimate, from the surface data
of the patients and one or more uncertainty measures
derived from the surface data, the one or more scan
parameters using a machine trained network configured
to generate a generalized probability distribution of
scan parameters, mitialize the CT scanner with the
estimated one or more scan parameters, and adjust the
one or more scan parameters during a scan of the
patient by the CT scanner as a function of received C
scan data and the one or more uncertainty measures.
12. The system of claim 11, wherein the processor is
turther configured to automatically generate a radiology
report from an output of the CT scanner.
13. The system of claim 12, wherein the system further
COmprises:
a display configured to display the radiology report.
14. A method for reduced interaction medical imaging, the
method comprising:
capturing, with a three-dimensional camera, surface data
representing an outer surface of a patient;
generating, by a processor, a synthetic topogram from the
surface data, wherein the synthetic topogram includes
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uncertainty measures calculated as a function of a range
of possible error values during generation;

generating, by dose modulation software, one or more
scan parameters from the synthetic topogram without
performing an additional scan using a machine trained
network trained to obtain a generalized probability
distribution of the scan parameters;

imitiating a scan by a CT scanner with the one or more

scan parameters;

adjusting, during the scan, the one or more scan param-

cters as a function of acquired scan data during the
scan; and

outputting a radiology report after completing the scan.

15. The method of claim 14, wherein adjusting the scan
comprises: adjusting the scan parameters constrained by the
range ol error values.

16. The method of claim 14, further comprising: regis-
tering, by the processor, the surface data to a patient model
as a function of a prior scan; wherein the synthetic topogram
1s generated from the registered surface data.

17. The method of claim 14, wherein outputting the
radiology report comprises generating the radiology report
using a machine tramned model trained to classily one or
more pathologies 1n a CT image.
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