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METHODS AND MEANS FOR TREATING
DNA REPEAT INSTABILITY ASSOCIATED
GENETIC DISORDERS

RELATED APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/855.,848, filed Dec. 27, 2017, which 1s a

division of U.S. patent application Ser. No. 14/809,483, filed
Jul. 27, 2015, now U.S. Pat. No. 9,890,379, which 1s a
division of U.S. patent application Ser. No. 12/377,160, filed
Feb. 24, 2010, which 1s a 35 US.C. § 371 filing of
International Patent Application No. PCT/NL2007/050399,
filed Aug. 10, 2007, which claims priority to European
Patent Application Nos. 06118809.0, filed Aug. 11, 2006,
and 06119247.2, filed Aug. 21, 2006, the disclosures of
which are incorporated herein by reference 1n their entirety.

SEQUENCE LISTING

The 1nstant application contains a Sequence Listing which
has been submitted electronically in ASCII format and 1s

hereby 1incorporated by reference 1n its entirety. Said ASCII
copy, created on Oct. 22, 2019, 1s named 617852_V(CQO9-

001USDIV2CON_Sequence_Listing.txt and 1s 7,568 bytes
n size.

FIELD OF THE INVENTION

The current invention relates to the field of medicine, 1n
particular to the treatment of genetic disorders associated
with genes that have unstable repeats in their coding or
non-coding sequences, most in particular unstable repeats in
the human Huntington disease causing HD gene or the
myotonic dystrophy type 1 causing DMPK gene.

BACKGROUND OF THE INVENTION

Instability of gene-specific microsatellite and minisatellite
repetitive sequences, leading to increase in length of the
repetitive sequences in the satellite, 1s associated with about
35 human genetic disorders. Instability of trinucleotide
repeats 1s for instance found in genes causing X-linked
spinal and bulbar muscular atrophy (SBMA), myotonic
dystrophy type 1 (DM1), fragile X syndrome (FRAX genes
A, E, F), Huntington’s disease (HD) and several spinocer-
cbellar ataxias (SCA gene family).

Unstable repeats are found in coding regions of genes,
such as the Huntington’s disease gene, whereby the pheno-
type of the disorder 1s brought about by alteration of protein
function and/or protein folding. Unstable repeat units are
also found 1n untranslated regions, such as 1n myotonic
dystrophy type 1 (DM1) m the 3' UTR or in intronic
sequences such as 1n myotonic dystrophy type 2 (DM2). The
normal number of repeats 1s around 5 to 37 for DMPK, but
increases to premutation and full disease state two to ten fold
or more, to 50, 100 and sometimes 1000 or more repeat
units. For DM2/ZNF9 increases to 10,000 or more repeats
have been reported. (Cleary and Pearson, Cytogenet.
Genome Res. 100: 25-535, 2003).

The causative gene for Huntington’s disease, HD, 1s
located on chromosome 4. Huntington’s disease 1s inherited
in an autosomal dominant fashion. When the gene has more
than 35 CAG trinucleotide repeats coding for a polygluta-
mine stretch, the number of repeats can expand 1n successive
generations. Because of the progressive increase 1n length of
the repeats, the disease tends to increase in severity and
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2

presents at an earlier age 1n successive generations, a process
called anticipation. The product of the HD gene 1s the 348
kDa cytoplasmic protein huntingtin. Huntingtin has a char-
acteristic sequence of fewer than 40 glutamine amino acid
residues 1n the normal form; the mutated huntingtin causing
the disease has more than 40 residues. The continuous
expression of mutant huntingtin molecules 1n neuronal cells
results 1n the formation of large protein deposits which
eventually give rise to cell death, especially in the frontal
lobes and the basal ganglia (mainly in the caudate nucleus).
The severity of the disease 1s generally proportional to the
number of extra residues.

DM1 1s the most common muscular dystrophy 1n adults
and 1s an mherited, progressive, degenerative, multisystemic
disorder of predominantly skeletal muscle, heart and brain.

DMI1 1s caused by expansion of an unstable trinucleotide
(CTG)n repeat 1n the 3' untranslated region of the DMPK
gene (myotonic dystrophy protein kinase) on human chro-
mosome 19q (Brook et al, Cell, 1992). Type 2 myotonic
dystrophy (DM2) 1s caused by a CCTG expansion in intron
1 of the ZNF9 gene, (LLiquori et al, Science 2001). In the case
of myotonic dystrophy type 1, the nuclear-cytoplasmic
export of DMPK transcripts 1s blocked by the increased
length of the repeats, which form hairpin-like secondary
structures that accumulate 1n nuclear foci. DMPK transcripts
bearing a long (CUG)n tract can form hairpin-like structures
that bind proteins of the muscleblind family and subse-
quently aggregate 1n ribonuclear foci in the nucleus. These
nuclear inclusions are thought to sequester muscleblind
proteins, and potentially other factors, which then become
limiting to the cell. In DM2, accumulation of ZNF9 RNA
carrying the (CCUG)n expanded repeat form similar foci.
Since muscleblind proteins are splicing factors, their deple-
tion results 1n a dramatic rearrangement in splicing of other
transcripts. Transcripts of many genes consequently become
aberrantly spliced, for instance by inclusion of fetal exons,
or exclusion of exons, resulting in non-functional proteins
and 1mpaired cell function.

The observations and new 1nsights above have led to the
understanding that unstable repeat diseases, such as myo-
tonic dystrophy type 1, Huntington’s disease and others can
be treated by removing, either fully or at least in part, the
aberrant transcript that causes the disease. For DMI, the
aberrant transcript that accumulates 1n the nucleus could be
down regulated or fully removed. Even relatively small
reductions of the aberrant transcript could release substantial
and possibly suflicient amounts of sequestered cellular fac-
tors and thereby help to restore normal RNA processing and
cellular metabolism for DM (Kanadia et al., PNAS 2006). In
the case of HD, a reduction 1n the accumulation of hunting-
tin protein deposits in the cells of an HD patient can
ameliorate the symptoms of the disease.

A few attempts have been made to design methods of
treatment and medicaments for unstable repeat disease myo-
tonic dystrophy type 1 using antisense nucleic acids, RNA
interference or ribozymes. (1) Langlois et al. (Molecular
Therapy, Vol. 7 No. 5, 2003) designed a ribozyme capable of
cleaving DMPK mRNA. The hammerhead ribozyme 1is
provided with a stretch RNA complementary to the 3' UTR
of DMPK just before the CUG repeat. In vivo, vector
transcribed ribozyme was capable of cleaving and dimin-
ishing 1n transfected cells both the expanded CUG repeat
containing mRINA as well as the normal mRNA species with
63 and 50% respectively. Hence, also the normal transcript
1s gravely aflected by this approach and the affected mRINA
species with expanded repeats are not specifically targeted.




US 11,274,299 B2

3

(1) Another approach was taken by Langlois et al.,
(Journal Biological Chemistry, vol 280, no. 17, 2005) using
RNA interference. A lentivirus-delivered short-hairpin RNA
(shRNA) was introduced in DM1 myoblasts and demon-
strated to down regulate nuclear retained mutant DMPK
MmRNAs. Four shRNA molecules were tested, two were
complementary against coding regions of DMPK, one
against a unique sequence in the 3' UTR and one negative
control with an irrelevant sequence. The first two shRNAs
were capable of down regulating the mutant DMPK tran-
script with the amplified repeat to about 50%, but even more
cllective in down regulating the cytoplasmic wildtype tran-
script to about 30% or less. Equivalent synthetic siRNA
delivered by cationic lipids was ineflective. The shRINA
directed at the 3' UTR sequence proved to be ineflective for
both transcripts. Hence, also this approach 1s not targeted
selectively to the expanded repeat mRNA species.

(111) A third approach by Furling et al. (Gene Therapy, Vol.
10, p 795-802, 2003) used a recombinant retrovirus express-
ing a 149-bp long antisense RNA to inhibit DMPK mRINA
levels 1n human DM1 myoblasts. A retrovirus was designed
to provide DM1 cells with the 149 bp long antisense RNA
complementary to a 39 bp-long (CUG)13 repeat and a 110
bp region following the repeat to increase specificity. This
method yielded a decrease in mutated (repeat expanded)
DMPK transcript of 80%, compared to a 50% reduction 1n
the wild type DMPK transcript and restoration of differen-
tiation and functional characteristics 1n infected DM1 myo-
blasts. Hence, also this approach 1s not targeted selectively
to the expanded repeat mRNA species, 1t depends on a very
long antisense RINA and can only be used in combination
with recombinant viral delivery techniques.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

The methods and techniques described above provide
nucleic acid based methods that cause non-selective break-
down of both the aflected repeat expanded allele and unat-
tected (normal) allele for genetic diseases that are associated
with repeat instability and/or expansion. Moreover, the art
employs sequences specific for the gene associated with the
disease and does not provide a method that 1s applicable to
several genetic disorders associated with repeat expansion.
Finally, the art only teaches methods that involve use of
recombinant DNA vector delivery systems, which need to be
adapted for each oligonucleotide and target cell and which
still need to be turther optimised.

The current invention provides a solution for these prob-
lems by using a short single stranded nucleic acid molecule
that comprises or consists of a sequence, which 1s comple-
mentary to the expanded repeat region only, 1.e. 1t does not
rely on hybridisation to unique sequences 1n €xons or 1ntrons
of the repeat containing gene. Furthermore, 1t 1s not essential
that the employed nucleic acid (oligonucleotide) reduces
transcripts by the RNAse H mediated breakdown mecha-
nism.

Without wishing to be bound by theory, the current
invention may cause a decrease in transcript levels by
alterations 1n posttranscriptional processing and/or splicing
of the premature RNA. A decrease 1n transcript levels via
alternative splicing and/or postranscriptional processing is
thought to result 1n transcripts lacking the overly expanded
or instable (tri)nucleotide repeat, but still possessing func-
tional activities. The reduction of aberrant transcripts by
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altered RNA processing and/or splicing may prevent accu-
mulation and/or translation of aberrant, repeat expanded
transcripts 1n cells.

Without wishing to be bound by theory the method of the
current invention 1s also thought to provide specificity for
the aflected transcript with the expanded repeat because the
kinetics for hybridisation to the expanded repeat are more
favourable. The likelihood that a repeat specific comple-
mentary nucleic acid oligonucleotide molecule will hybri-
dise to a complementary stretch in an RNA or DNA mol-
ecule increases with the size of the repetitive stretch. RNA
molecules and 1n particular RNA molecules comprising
repetitive sequences are normally internally paired, forming,
a secondary structure comprising open loops and closed
hairpin parts. Only the open parts are relatively accessible
for complementary nucleic acids. The short repeat stretches
of a wild type transcript not associated with disease 1s often
only 5 to about 20-40 repeats and due to the secondary
structure relatively inaccessible for base pairing with a
complementary nucleic acid. In contrast, the repeat units of
the expanded repeat and disease associated allele 1s normally
at least 2 fold expanded but usually even more, 3, 3, 10 fold,
up to 100 or even more than 1000 fold expansion for some
unstable repeat disorders. This expansion increases the like-
lihood that part of the repeat 1s, at least temporarily, 1n an
open loop structure and thereby more accessible to base
pairing with a complementary nucleic acid molecule, rela-
tive to the wild type allele. So despite the fact that the
oligonucleotide 1s complementary to a repeat sequence
present 1n both wildtype and repeat-expanded transcripts and
could theoretically hybridise to both transcripts, the current
invention teaches that oligonucleotides complementary to
the repetitive tracts preferably hybridise to the disease-
associated or disease-causing transcripts and leave the func-
tion of normal transcripts relatively unaflected. This selec-
tivity 1s beneficial for treating diseases associated with
repeat 1stability irrespective of the mechanism of reduction
of the aberrant transcript.

The invention thus provides a method for the treatment of
unstable cis-element DNA repeat associated genetic disor-
ders, by providing nucleic acid molecules that are comple-
mentary to and/or capable of hybridising to the repetitive
sequences only. This method thereby preferentially targets
the expanded repeat transcripts and leaves the transcripts of
the normal, wild type allele relatively unaffected. This 1s
advantageous since the normal allele can thereby provide for
the normal function of the gene, which 1s at least desirable
and, depending on the particular gene with unstable DNA
repeats, may 1n many cases be essential for the cell and/or
individual to be treated.

Furthermore, this approach 1s not limited to a particular
unstable DNA repeat associated genetic disorder, but may be
applied to any of the known unstable DNA repeat diseases,
such as, but not limited to: coding regions repeat diseases
having a polyglutamine (CAG) repeat: Huntington’s dis-
case, Haw River syndrome, Kennedy’s disease/spinobulbar
muscular atrophy, spino-cerebellar ataxia, or diseases hav-
ing polyalamine (GCQG) repeats such as: infantile spasm
syndrome, deidocranial dysplasia, blepharophimosis/ptosis/
epicanthus invensus syndrome, hand-foot-genital syndrome,
synpolydactyly, oculopharyngeal muscular dystrophy, holo-
prosencephaly. Diseases with repeats 1n non-coding regions
of genes to be treated according to the mvention comprise
the trinucleotide repeat disorders (mostly CTG and/or CAG
and/or CCTG repeats): myotonic dystrophy type 1, myo-
tonic dystrophy type 2, Friedreich’s ataxia (mainly GAA),
spino-cerebellar ataxia, autism. Furthermore, the method of
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the invention can be applied to fragile site associated repeat
disorder comprising various fragile X-syndromes, Jacobsen
syndrome and other unstable repetitive element disorders
such as myoclonus epilepsy, facioscapulohumeral dystrophy
and certain forms of diabetes mellitus type 2.

Another advantage of the current invention i1s that the
oligonucleotides specific for a repeat region may be admin-
istered directly to cells and 1t does not rely on vector-based
delivery systems. The techniques described 1n the prior art,
for mstance those mentioned above for treatment of DM1
and removal of DMPK transcripts from cells, require the use
of vector based delivery systems to administer sutlicient
levels of oligonucleotides to the cell. The use of plasmid or
viral vectors 1s vet less desirable for therapeutic purposes
because of current strict safety regulations for therapeutic
recombinant DNA vectors, the production of suilicient
recombinant vectors for broad clinical application and the
limited control and reversibility of an exaggerated (or non-
specific) response after application. Nevertheless, optimisa-
tion 1n future 1s likely in these areas and viral delivery of
plasmids could yield an advantageous long lasting eflect.
The current inventors have surprisingly found that oligo-
nucleotides that comprise or consist of a sequence that 1s
complementary to repetitive sequences of expanded repeat
transcripts, due to the expansion of their molecular target for
hybridisation, have a much increased athnity and/or avidity
for their target in comparison to oligonucleotides that are
specific for unique sequences 1n a transcript. Because of this
high athnity and avidity for the repeat expanded target
transcript, lower amounts of oligonucleotide suflice to yield
suilicient inhibition and/or reduction of the repeat expanded
allele by RNase H degradation, RNA 1interference degrada-
tion or altered post-transcriptional processing (comprising,
but not limited to splicing or exon skipping) activities. The
oligonucleotides of the current mnvention which are comple-
mentary to repetitive sequences only, may be produced
synthetically and are potent enough to be eflective when
delivered directly to cells using commonly applied tech-
niques for direct delivery of oligonucleotides to cells and/or
tissues. Recombinant vector delivery systems may, when
desired, be circumvented by using the method and the
oligonucleotide molecules of the current invention.

In a first aspect, the current invention discloses and
teaches the use of an oligonucleotide comprising or consist-
ing of a sequence that 1s complementary only to a repetitive
sequence 1n a human gene transcript for the manufacture of
a medicament for the diagnosis, treatment or prevention of
a cis-element repeat instability associated genetic disorders
in humans. The invention hence provides a method of
treatment for cis-element repeat instability associated
genetic disorders.

In a second aspect, the mmvention also pertains to an
oligonucleotide which can be used 1n the first aspect of the
invention and/or applied i method of the invention to
prevent the accumulation and/or translation of repeat
expanded transcripts 1n cells.

An oligonucleotide of the invention may comprise a
sequence that 1s complementary only to a repetitive
sequence as defined below. Preferably, the repetitive
sequence 1s at least 50% of the length of the oligonucleotide
of the invention, more preferably at least 60%, even more
preferably at least 70%, even more preferably at least 80%,
even more preferably at least 90% or more. In a most
preferred embodiment, the oligonucleotide of the invention
consists of a sequence that 1s complementary only to a
repetitive sequence as defined below. For example, an
oligonucleotide may comprise a sequence that 1s comple-
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mentary only to a repetitive sequence as defined below and
a targeting part, which 1s later on called a targeting ligand.

A repeat or repetitive element or repetitive sequence or
repetitive stretch 1s herein defined as a repetition of at least
3, 4, 5, 10, 100, 1000 or more, of a repetitive unit or
repetitive nucleotide unit or repeat nucleotide unit compris-
ing a trinucleotide repetitive unit, or alternatively a 4, 5 or
6 nucleotide repetitive unit, 1n a transcribed gene sequence
in the genome of a subject, including a human subject.

An oligonucleotide may be single stranded or double
stranded. Double stranded means that the oligonucleotide 1s
an heterodimer made of two complementary strands, such as
in a siIRNA. In a preferred embodiment, an oligonucleotide
1s single stranded. A single stranded oligonucleotide has
several advantages compared to a double stranded siRNA
oligonucleotide: (1) 1ts synthesis 1s expected to be easier than
two complementary siRINA strands; (11) there 1s a wider
range of chemical modifications possible to optimise more
cllective uptake 1n cells, a better (physiological) stability and
to decrease potential generic adverse eflects; and (111) siR-
NAs have a higher potential for non-specific effects and
exaggerated pharmacology (e.g. less control possible of
cellectiveness and selectivity by treatment schedule or dose)
and (1v) siRNAs are less likely to act in the nucleus and
cannot be directed against introns. Theretfore, 1n a preferred
embodiment of the first aspect, the invention relates to the
use of a single stranded oligonucleotide comprising or
consisting of a sequence that 1s complementary only to a
repetitive sequence 1n a human gene transcript for the
manufacture ol a medicament for the diagnosis, treatment or
prevention ol a cis-clement repeat instability associated
genetic disorders in humans.

The oligonucleotide(s) preferably comprise at least 10 to
about 50 consecutive nucleotides complementary to a repeti-
tive element, more preferably 12 to 45 nucleotides, even
more preferably 12 to 30, and most preferably 12 to 25
nucleotides complementary to a repetitive stretch, preferably
having a trinucleotide repeat unit or a tetranucleotide repeat
unit. The oligonucleotide may be complementary to and/or
capable of hybridizing to a repetitive stretch 1n a coding
region of a transcript, preferably a polyglutamine (CAG) or
a polyalanine (GCGQG) coding tract. The oligonucleotide may
also be complementary to and/or capable of hybridizing to
a non-coding region for instance 5' or 3' untranslated

regions, or intronic sequences present i precursor RNA
molecules.

In a preferred embodiment the oligonucleotide to be used
in the method of the mvention comprises or consists of a
sequence that 1s complementary to a repetitive element
having as repetitive nucleotide unit a repetitive nucleotide
unit selected from the group consisting of (CAG)n, (GCG)n,
(CUG)n, (CGG)n (GAA)n, (GCCn and (CCUG)n. and said
oligonucleotide being a single or double stranded oligo-
nucleotide. Preferably, the oligonucleotide 1s double
stranded.

The use of an oligonucleotide that comprises or consists of
a sequence that 1s complementary to a polyglutamine
(CAG)n tract 1 a transcript 1s particularly useful for the
diagnosis, treatment and/or prevention of the human disor-
ders Huntington’s disease, several forms of spino-cerebellar
ataxia or Haw River syndrome, X-linked spinal and bulbar
muscular atrophy and/or dentatorubral-pallidoluysian atro-
phy caused by repeat expansions i the HD, HDL2/JPH3,
SBMA/AR, SCAI1/ATX1, SCA2/ATX2, SCA3/ATX3,
SCA6/CACNAIA, SCA7, SCA17, AR or DRPLA human

genes.
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The use of an oligonucleotide that comprises or consists
of a sequence that 1s complementary to a polyalanine
(GCG)n tract 1n a transcript 1s particularly useful for the
diagnosis, treatment and/or prevention of the human disor-
ders: infantile spasm syndrome, deidocranial dysplasia,
blepharophimosis, hand-foot-gemital disease, synpolydac-
tyly, oculopharyngeal muscular dystrophy and/or holopros-
encephaly, which are caused by repeat expansions in the

ARX, CBFA1l, FOXL2, HOXAI13, HOXDI13, OPDM/
PABP2, TCFBRI1 or ZIC2 human genes.

The use of an oligonucleotide that comprises or consists
ol a sequence that 1s complementary to a (CUG)n repeat 1n
a transcript and 1s particularly useful for the diagnosis,
treatment and/or prevention of the human genetic disorder
myotonic dystrophy type 1, spino-cerebrellar ataxia 8 and/or

Huntington’s disease-like 2 caused by repeat expansions 1n
the DM1/DMPK, SCAS8 or JPH3 genes respectively. Pret-

crably, these genes are from human origin.

The use of an oligonucleotide that comprises or consists
ol a sequence that 1s complementary to a (CCUG)n repeat 1n
a transcript 1s particularly useful for the diagnosis, treatment
and/or prevention of the human genetic disorder myotonic
dystrophy type 2, caused by repeat expansions 1n the DM2/
/N9 gene.

The use of an oligonucleotide that comprises or consists
ol a sequence that 1s complementary to a (CGG)n repeat 1n
a transcript 1s particularly useful for the diagnosis, treatment

and/or prevention of human fragile X syndromes, caused by
repeat expansion in the FRAXA/FMR1, FRAXE/FMR2 and

FRAXF/FAMI11A genes.

The use of an oligonucleotide that comprises or consists
ol a sequence that 1s complementary to a (CCG)n repeat 1n
a transcript 1s particularly useful for the diagnosis, treatment
and/or prevention of the human genetic disorder Jacobsen
syndrome, caused by repeat expansion in the FRAI1B/
CBL2 gene.

The use of an oligonucleotide that comprises or consists
of a sequence that 1s complementary to a (GAA)n repeat 1n
a transcript 1s particularly useful for the diagnosis, treatment
and/or prevention of the human genetic disorder Friedreich’s
ataxia.

The use of an oligonucleotide that comprises or consists
ol a sequence that 1s complementary to a (ATTCT)n repeat
in an intron 1s particularly useful for the diagnosis, treatment
and/or prevention of the human genetic disorder Spinocer-
cbellar ataxia type 10 (SCA10).

The repeat-complementary oligonucleotide to be used in
the method of the invention may comprise or consist of

RNA, DNA, Locked nucleic acid (LNA), peptide nucleic
acid (PNA), morpholino phosphorodiamidates (PMO), eth-
ylene bridged nucleic acid (ENA) or mixtures/hybrids
thereol that comprise combinations of naturally occurring
DNA and RNA nucleotides and synthetic, modified nucleo-
tides. In such oligonucleotides, the phosphodiester backbone
chemistry may further be replaced by other modifications,
such as phosphorothioates or methylphosphonates. Other
oligonucleotide modifications exist and new ones are likely
to be developed and used i1n practice. However, all such
oligonucleotides have the character of an oligomer with the
ability of sequence specific binding to RNA. Therefore 1n a
preferred embodiment, the oligonucleotide comprises or
consists of RNA nucleotides, DNA nucleotides, locked
nucleic acid (LNA) nucleotides, peptide nucleic acid (PNA)
nucleotides, morpholino phosphorodiamidates, ethylene-
bridged nucleic acid (ENA) nucleotides or mixtures thereof
with or without phosphorothioate containing backbones.
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Oligonucleotides containing at least in part naturally
occurring DNA nucleotides are useful for inducing degra-

dation of DNA-RNA hybrid molecules 1n the cell by RNase
H activity (EC.3.1.26.4).

Naturally occurring RNA ribonucleotides or RNA-like
synthetic ribonucleotides comprising oligonucleotides may
be applied 1n the method of the mvention to form double
stranded RNA-RNA hybrids that act as enzyme-dependent
antisense through the RNA 1nterference or silencing (RNNA1/
siRNA) pathways, 1nvolving target RNA recognition
through sense-antisense strand pairing followed by target
RNA degradation by the RNA-induced silencing complex
(RISC).

Alternatively or in addition, steric blocking antisense
oligonucleotides (RNase-H independent antisense) interfere
with gene expression or other precursor RNA or messenger
RNA-dependent cellular processes, in particular but not
limited to RNA splicing and exon skipping, by binding to a
target sequence of RNA transcript and getting 1n the way of
processes such as translation or blocking of splice donor or
splice acceptor sites. Alteration of splicing and exon skip-
ping techniques using modified antisense oligonucleotides
are well documented, known to the skilled artisan and may
for 1instance be found i1n U.S. Pat. No. 6,210,892,
W09426887, W0O04/083446 and W(O02/24906.

Moreover, steric hindrance may inhibit the binding of
proteins, nuclear factors and others and thereby contribute to
the decrease 1n nuclear accumulation or ribonuclear foci 1n
diseases like DM1.

The oligonucleotides of the mvention, which may com-
prise synthetic or modified nucleotides, complementary to
(expanded) repetitive sequences are useful for the method of
the mnvention for reducing or inactivating repeat containing
transcripts via the siRNA/RNA interference or silencing
pathway.

Single or double stranded oligonucleotides to be used 1n
the method of the invention may comprise or consist of
DNA nucleotides, RNA nucleotides, 2'-0 substituted ribo-
nucleotides, including alkyl and methoxy ethyl substitu-
tions, peptide nucleic acid (PNA), locked nucleic acid
(LNA) and morpholino (PMO) antisense oligonucleotides
and ethylene-bridged nucleotides (ENA) and combinations
thereof, optionally chimeras with RNAse H dependent anti-
sense. Integration of locked nucleic acids 1n the oligonucle-
otide changes the conformation of the helix after base
pairing and increases the stability of the duplex. Integration
of LNA bases 1nto the oligonucleotide sequence can there-
fore be used to increase the ability of complementary
oligonucleotides of the invention to be active 1n vitro and 1n
vivo to increase RNA degradation inhibit accumulation of
transcripts or increase exon skipping capabilities. Peptide
nucleic acids (PNAs), an artificial DNA/RNA analog, in
which the backbone 1s a pseudopeptide rather than a sugar,
have the ability to form extremely stable complexes with
complementary DNA oligomers, by increased binding and a
higher melting temperature. Also PNAs are superior
reagents 1n antisense and exon skipping applications of the
invention. Most preferably, the oligonucleotides to be used
in the method of this invention comprise, at least 1n part or
fully, 2'-O-methoxy ethyl phosphorothioate RNA nucleo-
tides or 2'-O-methyl phosphorothioate RNA nucleotides.

Oligonucleotides comprising or consisting of a sequence
that 1s complementary to a repetitive sequence selected from
the group consisting of (CAG)n, (GCG)n, (CUG)n, (CGG)n,
CCQO)n, (GAAN, (GCC)n and (CCUG)n having a length of
10 to 50, more preferably 12 to 335, most preferably 12 to 25
nucleotides, and comprising 2'-O-methoxyethyl phosphoro-
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thioate RNA nucleotides, 2'-O-methyl phosphorothioate
RNA nucleotides, LNA nucleotides or PMO nucleotides are
most preferred for use in the mvention for the diagnosis,
treatment of prevention of cis-element repeat instability
genetic disorders.

Accordingly, 1 a preferred embodiment, an oligonucleotide
of the invention and used in the mmvention comprises or
consists ol a sequence that 1s complementary to a repetitive
sequence selected from the group consisting of (CAG)n,
(GCG)n, (CUG)n, (CGG)n, (GAA), (GCCO)n and (CCUG)
n, has a length of 10 to 50 nucleotides and 1s further
characterized by:

a) comprising 2'-O-substituted RNA phosphorothioate
nucleotides such as 2'-O-methyl or 2'-O-methoxy ethyl
RINA phosphorothiote nucleotides, LNA nucleotides or
PMO nucleotides. The nucleotides could be used in any
combination and/or with DNA phosphorothioate or
RNA nucleotides; and/or

b) being a single stranded oligonucleotide.

Accordingly, 1n another preferred embodiment, an oligo-
nucleotide of the imvention and used in the imvention com-
prises or consists of a sequence that 1s complementary to a
repetitive sequence selected from the group consisting of
(CAG)n, (GCG)n, (CUG), (CGG)n, (GAA), (GCCn and
(CCUG)n, has a length of 10 to 50 nucleotides and 1s turther
characterized by:

¢) comprising 2'-O-substituted RNA phosphorothioate

nucleotides such as 2'-O-methyl or 2'-O-methoxy ethyl
RN A phosphorothiote nucleotides, LNA nucleotides or
PMO nucleotides. The nucleotides could be used 1n
combination and/or with DNA phosphorothioate or
RNA nucleotides; and/or

d) being a double stranded oligonucleotide.

In case, the mvention relates to a double stranded oligo-
nucleotide with two complementary strands, the antisense
strand, complementary only to a repetitive sequence 1n a
human gene transcript, this double stranded oligonucleotide
1s preferably not the siRNA with antisense RNA strand
(CUQG), and sense RNA strand (GCA), applied to cultured
monkey fibroblast (COS-7) or human neuroblastoma (SH-
SYSY) cell lines with or without transfection with a human
Huntington gene exon 1 fused to GFP and as depicted 1n
Wanzhao Liu et al (Wanzhao Liu et al, (2003), Proc. Japan
Acad, 79: 293-298). More preferably, the invention does
neither relate to the double stranded oligonucleotide siRNA
(with antisense strand (CUG), and sense strand (GCA),) nor
to its use for the manufacture of a medicament for the
treatment or prevention ol Huntington disease, even more
preferably for the treatment or prevention of Huntington
disease gene exon 1 containing construct.

Although use of a single oligonucleotide may be suflicient
tor reducing the amount of repeat expanded transcripts, such
as nuclear accumulated DMPK or ZNF9 transcripts or
segments thereof or suflicient reduction of accumulation of
repeat expanded HD protein, 1t 1s also within the scope of the
invention to combine 2, 3, 4, 5 or more oligonucleotides.
The oligonucleotide comprising or consisting of a sequence
that 1s complementary to a repetitive part of a transcript may
be advantageously combined with oligonucleotides that
comprise or consist of sequences that are complementary to
and/or capable of hybridizing with unique sequences 1n a
repeat contaiming transcript. The method of the mmvention
and the medicaments of the invention comprising repeat
specific oligonucleotides may also be combined with any
other treatment or medicament for cis-element repeat 1nsta-
bility genetic disorders.
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For diagnostic purposes the oligonucleotide used in the
method of the invention may be provided with a radioactive
label or fluorescent label allowing detection of transcripts 1n
samples, 1n cells 1 situ 1n vivo, €x vivo or 1n vitro. For
myotonic dystrophy, labelled oligonucleotides may be used
for diagnostic purposes, for visualisation of nuclear aggre-
gates of DMPK or ZNF9 RNA transcript molecules with

associated proteins. Fluorescent labels may comprise Cy3,
Cy3, FITC, TRITC, Rhodamine, GFP and the like. Radio-
active labels may comprise “H, S, ***°P, '*°1. Enzymes
and/or immunogenic haptens such as digoxigenin, biotin and
other molecular tags (HA, Myc, FLAG, VSV, lexA) may
also be used. Accordingly, 1n a further aspect, the invention
discloses an vitro or ex vivo detection and/or diagnostic
method wherein a oligonucleotide as defined above 1s used.

The oligonucleotides for use according to the mnvention
are suitable for direct administration to cells, tissues and/or
organs 1n vivo ol individuals aflected by or at risk of
developing a cis-clement repeat instability disorder, and may
be administered directly 1 vivo, €x vivo or 1n vitro. Alter-
natively, the oligonucleotides may be provided by a nucleic
acid vector capable of conferring expression of the oligo-
nucleotide 1n human cells, 1n order to allow a sustainable
source of the oligonucleotides. Oligonucleotide molecules
according to the imnvention may be provided to a cell, tissue,
organ and/or subject to be treated in the form of an expres-
sion vector that 1s capable of conferring expression of the
oligonucleotide in human cells. The vector 1s preferably
introduced 1n the cell by a gene delivery vehicle. Preferred
vehicles for delivery are viral vectors such as retroviral
vectors, adeno-associated virus vectors (AAV), adenoviral
vectors, Semliki Forest virus vectors (SFV), EBV vectors
and the like. Also plasmids, artificial chromosomes, plas-
mids suitable for targeted homologous recombination and
integration 1n the human genome of cells may be suitably
applied for delivery of oligonucleotides. Preferred for the
current mnvention are those vectors wherein transcription 1s
driven from pollll promoters, and/or wherein transcripts are
in the form fusions with Ul or U7 transcripts, which yield
good results for delivering small transcripts.

In a preferred embodiment, a concentration of oligonucle-
otide, which 1s ranged between about 0.1 nM and about 1
uM 1s used. More preferably, the concentration used 1is
ranged between about 0.3 to about 400 nM, even more
preferably between about 1 to about 200 nM. If several
oligonucleotides are used, this concentration may refer to
the total concentration of oligonucleotides or the concentra-
tion of each oligonucleotide added. The ranges of concen-
tration of oligonucleotide(s) as given above are preferred
concentrations for in vitro or ex vivo uses. The skilled
person will understand that depending on the oligonucle-
otide(s) used, the target cell to be treated, the gene target and
its expression levels, the medium used and the transfection
and mcubation conditions, the concentration of oligonucle-
otide(s) used may further vary and may need to be optimised
any further.

More preferably, the oligonucleotides to be used in the
invention to prevent, treat or diagnose cis-element repeat
instability disorders are synthetically produced and admin-
istered directly to cells, tissues, organs and/or patients in
formulated form in pharmaceutically acceptable composi-
tions. The delivery of the pharmaceutical compositions to
the subject 1s preferably carried out by one or more paren-
teral 1njections, e.g. mtravenous and/or subcutaneous and/or
intramuscular and/or intrathecal and/or intraventricular
administrations, preferably injections, at one or at multiple
sites 1n the human body. An intrathecal or intraventricular
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administration (in the cerebrospinal fluid) 1s preferably
realized by introducing a diffusion pump into the body of a
subject. Several diffusion pumps are known to the skilled
person.

Pharmaceutical compositions that are to be used to target
the oligonucleotide molecules comprising or consisting of a
sequence that 1s complementary to repetitive sequences may
comprise various excipients such as diluents, fillers, preser-
vatives, solubilisers and the like, which may for instance be
found in Remington: The Science and Practice of Pharmacy,
20th Edition. Baltimore, Md.: Lippincott Williams &
Wilkins, 2000.

Particularly preferred for the method of the invention 1s
the use of excipients that will aid 1n delivery of the oligo-
nucleotides to the cells and into the cells, 1n particular
excipients capable of forming complexes, vesicles and/or
liposomes that deliver substances and/or oligonucleotide(s)
complexed or trapped 1n the vesicles or liposomes through
a cell membrane. Many of these substances are known 1n the
art. Suitable substances comprise polyethylemmine (PEI),
ExGen 500, synthetic amphiphils (SAINT-18), Lipofec-
tin™, DOTAP and/or viral capsid proteins that are capable
of self assembly into particles that can deliver oligonucle-
otides to cells. Lipofectin represents an example of lipo-
somal transfection agents. It consists of two lipid compo-
nents, a cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,
N-trimethylammonium chloride (DOTMA) (cp. DOTAP
which 1s the methylsulfate salt) and a neutral lipid dio-
leoylphosphatidylethanolamine (DOPE). The neutral com-
ponent mediates the intracellular release. Another group of
delivery systems are polymeric nanoparticles. Polycations
such like diethylaminoethylaminoethyl (DEAE)-dextran,
which are well known as DNA transfection reagent can be
combined with butylcyanoacrylate (PBCA) and hexylcya-
noacrylate (PHCA) to formulate cationic nanoparticles that
can deliver oligonucleotides across cell membranes into
cells. In addition to these common nanoparticle materials,
the cationic peptide protamine oflers an alternative approach
to formulate oligonucleotides as colloids. This colloidal
nanoparticle system can form so called proticles, which can
be prepared by a simple self-assembly process to package
and mediate intracellular release of the oligonucleotides.
The skilled person may select and adapt any of the above or
other commercially available alternative excipients and
delivery systems to package and deliver oligonucleotides for
use 1n the current mvention to deliver oligonucleotides for
the treatment of cis-element repeat instability disorders in
humans.

In addition, the oligonucleotide could be covalently or
non-covalently linked to a targeting ligand specifically
designed to facilitate the uptake in to the cell, cytoplasm
and/or 1ts nucleus. Such ligand could comprise (1) a com-
pound (including but not limited to peptide(-like) structures)
recognising cell, tissue or organ specific elements facilitat-
ing cellular uptake and/or (i1) a chemical compound able to
tacilitate the uptake 1n to cells and/or the intracellular release
of an oligonucleotide from vesicles, e.g. endosomes or
lysosomes. Such targeting ligand would also encompass
molecules facilitating the uptake of oligonucleotides into the
brain through the blood brain barrier. Therefore, in a pre-
ferred embodiment, an oligonucleotide 1n a medicament 1s
provided with at least an excipient and/or a targeting ligand
for delivery and/or a delivery device of the oligonucleotide
to cells and/or enhancing 1ts intracellular delivery. Accord-
ingly, the invention also encompasses a pharmaceutically
acceptable composition comprising an oligonucleotide of
the invention and further comprising at least one excipient
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and/or a targeting ligand for delivery and/or a delivery
device of the oligonucleotide to the cell and/or enhancing 1ts
intracellular delivery.

The invention also pertains to a method for the reduction of
repeat containing gene transcripts i a cell comprising the
administration of a single strand or double stranded oligo-
nucleotide molecule, preferably comprising 2'-O-substituted
RINA phosphorothioate nucleotides such as 2'-O-methyl or
2'-O-methoxy ethyl RNA phosphorothioate nucleotides or
LNA nucleotides or PMO nucleotides, and having a length
of 10 to 50 nucleotides that are complementary to the
repetitive sequence only. The nucleotides could be used 1n
combination and/or with DNA phosphorothioate nucleo-
tides.

In this document and 1n 1ts claims, the verb “to comprise”
and 1ts conjugations 1s used 1n 1ts non-limiting sense to mean
that items following the word are included, but combina-
tions and/or 1tems not specifically mentioned are not
excluded. In addition, reference to an element by the indefi-
nite article “a” or “an” does not exclude the possibility that
more than one of the element 1s present, unless the context
clearly requires that there be one and only one of the

clements. The indefinite article “a” or “an” thus usually
means “at least one”.

FIGURE LEGENDS

FIG. 1: Northern blot of RNA isolated from myotubes
transiected with different oligonucleotides or mock control.
The myotubes were derived from 1immorto mouse myoblast
cell lines containing a transgenic human DMPK genes with
(CTG)n repeat expansion length of approximately 500 next

to 1its normal mouse DMPK gene without (C'TG) repeat. The
blot shows human DMPK mRNA (top), mouse DMPK

(mDMPK) mRNA (middle) and mouse GAPDH mRNA
(bottom).

FIG. 2: The human and mouse DMPK signals of FIG. 1
were quantified by phosphoimager analysis and normalized
to the GAPDH signal. The results are expressed relative to
the mock treatment (set to 100).

FIG. 3: Northern blot of total RNA 1solated from murine
myotubes containing a mouse-human chimaeric DMPK
gene 1n which the 3' part of the mDMPK gene was replaced
by the cognate segment of the human DMPK gene including
a (CTG),,o-repeat. The blot was probed for DMPK mRNA
(upper panel) and mouse GAPDH mRNA (bottom). Cells
were transiected with antisense oligonucleotide PS58 or
control.

FIG. 4 shows the response of DM500 myotubes treated
with various concentrations of oligonucleotide PS38. The
expression of hDMPK was quantified via Northern blot
analysis followed by phosphoimager analysis. The signal
was normalised to the GAPDH signal and expressed relative
to the response after mock treatment.

FIG. 5§ shows the Northern blot of total RNA of DM500
myotubes transfected with 200 nM PS58 at different time
points: 2 h, 4 h, 8 h and 48 h belore harvesting. Mock
treatment was performed 48 h before harvesting. Northern
blots show human and mouse DMPK and mouse GAPDH
mRNA. These were quantified by phosphoimager and the
normalized DMPK signal was expressed relative to mock
treatment.

FIG. 6 shows the Northern blot of total RNA of DM500
myotubes harvested 2 d, 4 d, 6 d and 8 d after transfection
with 200 nM PS38 or mock control. Northern blot analysis
and quantification was performed as before.
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FIG. 7 shows a Northern blot of total RNA from MyoD-
transformed myoblasts treated with oligonucleotide PS58

(20 and 200 nM) or mock control. The myoblasts were
derived from fibroblasts obtained from a congenital myo-
tonic dystrophy type I patient bearing a hDMPK allele with

a triplet repeat expansion length of approximately 1500 and
a hDMPK allele with normal length of 11 repeats. The

Northern blot was hybrnidized with a human DMPK
(hDMPK) probe and GAPDH mRNA probe. The human
DMPK signals were normalized to the GAPDH signal and
expressed relative to mock control.

FIG. 8 shows the RT-PCR analysis of DM300 myotubes
transtected with 200 nM of oligonucleotide PS38, specific to
the (CUG) repeat sequence only, oligonucleotide PS113,
specific to a sequence 1n exon 1, or mock control. RT-PCR
analysis was performed with primers specific for hDMPK
mRNA and three other gene transcripts with a naturally
occurring (CUG) repeat i mice: Ptbpl mRNA with a
(CUG)6, Syndecan3 mRNA with a (CUG)6 and Taxilinbeta
mRNA with a (CUG)9. The intensity of the signals were
normalized to the actin signal and expressed relative to
mock control.

FIG. 9 shows FISH analysis of DM300 myoblasts trans-
tected with 200 nM PS58 (B) or mock control (A). Forty
eight hours after the start of the treatment, the cells were
washed and fixed and subsequently hybridized with fluo-
rescently labeled oligonucleotide Cy3-(CAG)10-Cy3. The
ribonuclear foci indicative of hDMPK (CUG)SDD mRNA
aggregation 1n the nucleus were visualized using a Bio-Rad
MRC1024 confocal laser scanning microscope and Laser-
Sharp2000 acquisition software.

FIG. 10 shows the relative cell count for the presence of
ribonuclear foci 1n the nucleus of DM500 myoblasts trans-
tected with PS58 or mock control from the experiment
depicted 1n FIG. 9.

FIG. 11 shows the RT-PCR analysis of hDMPK mRNA in
muscle of DM500 mice treated with PS58 or mock control.
Shortly, PS58 (2 nmol) was 1njected 1n the GPS complex of
one-year-old DM500 mice and this procedure was repeated
alter 24 h. After 15 days, M. plantaris and M. gastrocnemius
were 1solated and RT-PCR was performed on total RNA for
hDMPK and mouse actin. The intensity of the hDMPK
signal was normalized to the actin signal and the values
expressed relative to mock control.

FIG. 12 shows a Northern blot analysis of DM500 myo-
tubes treated with different oligonucleotides (200 nM) or
mock control. PS58, PS146 and PS147 carried a full 2'O-
methyl phosphorothiate backbone, but differed in length,
(CAG)7, (CUG)10 and (CUG)3, respectively. PS142 has a
complete phosphorothiate DNA backbone with a (CAG)7
sequence. hDMPK and mDMPK signals were normalized to
mouse GAPDH and expressed as percentage to mock con-
trol. Quantification 1s shown 1n the lower panel.

EXAMPLES

Example 1

Immortomyoblast cell lines were derived from DM300 or
CTG110 mice using standard techniques known to the
skilled person. DM300 mice were derived from mice
obtained from de Gourdon group 1n Paris. CT1G110 mice are
described below and present at the group of Wieringa and
Wansink 1n Niymegen. Immortomyoblast cell lines DM300
or CTG110 with vaniable (CTG)n repeat length in the
DMPK gene were grown subconfluent and maintained 1n a
3% CO, atmosphere at 33° C. on 0.1% gelatin coated dishes.
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Myoblast cells were grown subconfluent in DMEM supple-
mented with 20% FCS, 50 ug/ml gentamycin and 20 units of
v-interferon/ml. Myotube formation was induced by grow-
ing myoblast cells on Matrigel (BD Biosciences) coated
dishes and placing a confluent myoblast culture at 37° C. and
in DMEM supplemented with 5% horse serum and 50 ug/ml
gentamycin. After five days on this low serum media con-
tracting myotubes arose in culture and were transfected with
the desired oligonucleotides. For transfection NaCl (500
mM, filter sterile), oligonucleotide and transiection reagents
PEI (ExGen 300, Fermentas) were added in this specific
order and directly mixed. The oligonucleotide transiection
solution contained a ratio of 5 ul ExGen500 per ug oligo-
nucleotide which 1s according to the instructions (ExGen
500, Fermentas). After 15 minutes of incubation at room
temperature the oligonucleotide transfection solution was
added to the low serum medium with the cultured myotubes
and gently mixed. The final oligonucleotide concentration
was 200 nM. Mock control treatment 1s carried out with
transiection solution without an oligonucleotide. After four
hours of incubation at 37° C., fresh medium was added to the
culture (resulting 1n a dilution of approximately 2.3x) and
incubation was extended overnight at 37° C. The next day
the medium containing the oligonucleotide was removed
and fresh low serum medium was added to the myotubes
which were kept 1n culture at 37° C. for another day. Forty
eight hours after the addition of oligonucleotide to the
myotube culture (which 1s seven days after switching to low

serum conditions to induced myotube formation), RNA was
isolated with the “Total RNA mmm kit” (Bio-Rad) and

prepared for Northern blot and RT-PCR analysis. The North-
ern blot was hybridized with a radioactive human DMPK
(hDMPK) probe and a mouse GAPDH probe. The probe
used for DMPK i1s a human DMPK c¢DNA consisting of the
DMPK open reading frame with full 3' UTR and 11 CTGs.

The human and mouse DMPK signal were quantified by
phosphoimager analysis and normalized to the GAPDH
signal. Primers that were used for the RT-PCR for hDMPK
mRNA were situated i1n the 3'untranslated part with the
sequence S'-GGGGGATCACAGACCATT-3' (SEQ ID NO:
23) and 5'-TCAATGCATCCAAAACGTGGA-3' (SEQ ID
NO: 24) and for murine actin the primers were as followed:
Actin sense S'-GCTAYGAGCTGCCTGACGG-3' (SEQ ID
NO: 25) and Actin anfisense 5-GAGGCCAGGATG-
GAGCC-3' (SEQ ID NO: 26). PCR products were run on an
agarose gel and the signal was quantified using Labworks
4.0 (UVP Biolmaging systems, Cambridge, United King-
dom). The intensity of each band was normalized to the
intensity of the corresponding actin band and expressed
relative to mock control.

Thirteen different oligonucleotides were tested (for an
overview see Table 1) as described above on the immorto-
myoblast DM3500 cell line containing transgenic human
DMPK gene with (CTG)n repeat length of approximately
500 and a normal mouse DMPK gene without (CTG) repeat.
FIG. 1 shows the Northern blot of the 1solated RNA from the
oligonucleotide transfected myotubes visualized with the
hDMPK probe and a GAPDH probe for loading control.
Quantification of the human DMPK (with CTG repeat) and
murine DMPK (without CTG repeat) signal on the Northern
blot 1s shown in FIG. 2. The signal was normalized to
murine GAPDH and expressed relative to mock control.

Table 2 indicates the level of hDMPK mRNA reduction
that 1s caused by a specific oligonucleotide. The minus (-)
stands for no reduction and the number of positive signs (+)
stands for the relative level of hDMPK mRNA break-down.

Clearly, oligonucleotide PS38, specifically targeted to the
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repeat sequence, 1s much more potent 1n reducing or altering,
hDMPK transcripts than the other oligonucleotides comple-
mentary to unique sequences in the hDMPK transcripts.
FIG. 3 shows the eflect of PS58 1in murine immortomyo-
tubes derived from CTG110 mice, a knock-1n mouse con-
taining a DMPK gene with the 3' part of the human DMPK

gene including a (CTG) repeat of approximately 110. North-
ern blot analysis showed that the DMPK transcript contain-
ing the (C'1TG)110 repeat was reduced by the treatment with
oligonucleotide PS38 but not after mock treatment.

Example 2 (FIG. 4)

The DM 300 immortomyoblast cell line carrying a human
DMPK gene with an approximate (CTG)300 repeat expan-
sion was cultured, prepared and transiected as described
above (see example 1). In this example, the transtection was
carried out with PS38 at diflerent concentrations. Eighty
four hours after start of treatment, the myotubes were
harvested and Northern blot analysis was performed on
1solated RNA as described above (see example 1).

FIG. 4 shows the quantification of the hDMPK mRNA
signal preformed by phosphoimager analysis and normal-
1zed to the GAPDH signal at diflerent concentrations. Under

these conditions, a half maximal eflect was observed at
around 1 nM.

Example 3 (FIGS. 5 and 6)

The DM 300 immortomyoblast cell line carrying a human
DMPK gene with an approximate (CTG)300 repeat expan-
sion was cultured, prepared and transiected as described
above (see example 1). However, 1n this example the trans-
tection with 200 nM PS38 was carried out at different time
points. Usually DM500 myotubes were harvested seven
days after switching to low serum conditions to induce
myotube formation. The standard procedure (as 1n example
1 and 2) was to start treatment (transfection) 48 h (two days)
before harvesting. Now, treatment with PS58 was started 2
h-48 h (FIG. 5) or 2 d-8 d (FIG. 6) before harvesting.
Northern blot analysis and quantification was performed as
betore.

FIG. 5 shows that expanded hDMPK mRINA in DM500
myotubes was decreased rapidly within 2 h of treatment with
oligonucleotide PS58 compared to mock control treatment.

FIG. 6 shows a persistent decrease 1n expanded hDMPK
mRNA 1 DM300 myotubes for at least 8 days. Please note
that 1n the case of the 8 d experiment, cells were transtected
in the myoblast stage (approximately 60% contluent, 33° C.,
high serum) and that they have received fresh medium on
various occasions until harvesting (including a change to
low serum at 37° C., two days after transfection). Example
2 and 3 are indicative of a highly eflicient inhibitory inter-
vention by an oligonucleotide directed solely to the repeat
expansion. The magnitude of this effect might be influenced
by the relative low levels of hDMPK expression in these
model cell systems, which normally 1s also seen 1n humans.

Example 4 (FIG. 7)

In this example, fibroblasts obtained from a human patient
with congenital myotonic dystrophy type 1 (cDM1) were
used. These patient cells carry one disease causing DMPK
allele with a triplet repeat expansion length of 1500 and one
normal DMPK allele with a repeat length of 11. The size of
the (CTG)n expansion on both alleles was confirmed with
PCR and Southern blotting.
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The fibroblasts were grown subconfluent and maintained
in a 3% CO, atmosphere at 37° C. on 0.1% gelatin coated
dishes. Fibroblasts were grown subconfluent in DMEM
supplemented with 10% FCS and 50 ug/ml gentamycin.
Myotube formation was induced by growing fibroblasts cells
on Matrigel (BD Biosciences) coated dishes and infecting
the cells at 75% confluency with MyoD-expressing adeno-
virus (Ad5F1b50MyoD, Crucell, Leiden) (MOI=100) 1n
DMEM supplemented with 2% HS and 50 ug/ml gentamy-
cin for 2 hours. After the incubation period MyoD adeno-
virus was removed and DMEM supplemented with 10%
FCS and 30 ng/ml gentamycin was added. The cells were
maintained 1n this medium 1 a 5% CO, atmosphere at 37°
C. until 100% confluency. At this point cells were placed 1n
DMEM supplemented with 2% FCS and 50 nug/ml gentamy-
cin. After five days on this low serum media cells were
transiected with PS58 following the procedure according to
the mstructions (ExGen 300, Fermentas) and as described
above. The final oligonucleotide concentration was 200 nM
and 20 nM. Forty eight hours after start of the treatment
(which 1s seven days aiter switching to low serum condi-
tions), RNA was i1solated with the “Total RNA min1 kit”
(Bio-Rad) and prepared for Northern blot. The Northern blot

was hybridized with a radioactive human DMPK (hDMPK)
and mouse GAPDH mRNA probe. The human DMPK
signals were quantified by phosphoimager analysis and
normalized to the GAPDH signal and expressed relative to
mock control.

FIG. 7 shows the Northern blot analysis of the MyoD-
transformed myoblasts treated with oligonucleotide PS58
(20 and 200 nM). The results demonstrate an eflective
complete mhibition of the disease-causing hDMPK (CUG)
1500 RNA transcript, while the smaller normal hDMPK
(CUG)11 RNA transcript 1s only moderately aflected at the
two concentrations. Thus, oligonucleotides directed to the
repeat region exhibit selectivity towards the larger repeat
s1ze (or disease causing expansion).

Example 5 (FIG. 8)

In this example, the DM500 immortomyoblast cell line
carrving a human DMPK gene with an approximate (CTG)
500 repeat expansion was cultured, transfected and analysed
as described before 1 example 1. The DM500 myotubes
were treated 48 h before harvesting with 200 nM of oligo-
nucleotide PS58, specific to the (CUG) repeat sequence
only, oligonucleotide PS113, specific to a sequence 1n exon
1, or mock control. RT-PCR analysis was performed on
hDMPK mRNA expressed in this murine cell line (for
primers see example 1) and on three other gene transcripts
with a naturally occurring (CUG) repeat 1n mice, Ptbpl with
a (CUQG)6, Syndecan3 with a (CUG)6 and Taxilinbeta with
a (CUG)9.

The PCR primers used were 1for Ptbpl:

SSTCTGTCCCTAATGTCCATGG-3' (SEQ ID NO: 27) and
S-GCCATCTGCACAAGTGCGT-3' (SEQ ID NO: 28); for
Syndecan3: 5'-GCTGTTGCTGCCACCGCT-3' (SEQ ID
NO: 29) and 3-GGCGCCTCGGGAGTGCTA-3' (SEQ ID
NO: 30); and for Taxilinbeta:
S-CTCAGCCCTGCTGCCTGT-3' (SEQ ID NO: 31) and
S-CAGACCCATACGTGCTTATG-3" (SEQ ID NO: 32).
The PCR products were run on an agarose gel and signals
were quantified using the Labworks 4.0 program (UVP
Biolmaging systems, Cambridge, United Kingdom). The
intensity of each signal was normalized to the corresponding
actin signal and expressed relative to mock control.
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FIG. 8 shows the RT-PCR results with a maximal 1nhi-
bition of hDMPK mRNA expression by PS38. The other
gene transcripts carrying a naturally occurring small (CUG)
repeat were not or only marginally aflected by the oligo-
nucleotide PS58, specific to the (CUG) repeat, compared to
oligonucleotide PS113, which has no complementary
sequence to these gene transcripts.

This example confirms the selectivity of an oligonucle-
otide, directed solely to the repeat region, towards the long
repeat size (or disease causing expansion) compared to
naturally occurring shorter repeat sizes.

Example 6 (FIG. 9 En 10)

In this example, the DM500 immortomyoblast cell line
carrying a human DMPK gene with an approximate (CTG)
500 repeat expansion was cultured and transtected with

PS58 (200 nM). Here, FISH analysis was carried out on the
cells. Forty eight hours after the start of the treatment, the

cells were fixed with 4% formaldehyde, 5 mM MgC(Cl, and
1xPBS for 30 minutes. Hybridization with fluorescently
labeled oligonucleotide Cy3-(CAG)10-Cy3 was performed
overnight at 37° C. 1n a humid chamber. After hybridization
the material was washed and mounted 1n mowiol and
allowed to dry overnight. Nuclear inclusions (ribonuclear
foc1) were visualized using a Bio-Rad MRC1024 confocal
laser scanning microscope and LaserSharp2000 acquisition
software. In total 50 cells were counted and scored for the
presence of inclusions 1n the nucler of these cells.

Literature 1indicates that DMPK mRNA contaiming a
(CUG) expanded repeat accumulates and aggregates in the
nucleus to form ribonuclear foci1 with regulatory nuclear
proteins and transcription factors. Therefore, normal nuclear
gene processing and cell function gets impaired.

FIG. 9 shows a mock treated cell containing ribonuclear
inclusions 1n the nucleus, while these are no longer present
in the cell nucleus atfter treatment with PS58. FIG. 10 shows
that the percentage of nucler containing ribonuclear foci
seen under control conditions mm DM300 myotubes 1s
strongly decreased by the treatment with PS38. This result
demonstrates that inhibition of hDMPK mRNA expression
also 1nhibits the disease related triplet repeat (CUG) rich
inclusions.

Example 7 (FIG. 11)

Here, the effect of PS58 was evaluated 1n vivo in DM500
mice contaiming hDMPK with a (CTG)n expansion of
approximately 500 triplets. The DM500 mice were derived
by somatic expansion from the DM300 mouse (e.g. see
Gomes-Pereira M et al (2007) PLoS Genet. 2007 3(4): €32).
A (CTGQ) triplet repeat expansion of approximately 500 was
confirmed by southern blot and PCR analysis.

In short, PS38 was mixed with transfection agent ExGen
500 (Fermentas) according to the accompanying instructions
for in vivo use. PS58 (2 nmol, 1n the transfection solution
with Exgen 500) was mjected (40 ul) in the GPS complex of
one-year-old DM500 mice and this procedure was repeated
alter 24 h. As a control, DM500 mice were treated similarly
with the transiection solution without PS58. After 15 days,
the mice were sacrificed, muscles were 1solated and total
RNA was 1solated from the tissues (using Trizol, Invitro-
gen). RT-PCR analysis was performed to detect hDMPK
mRNA 1n the muscle similar as described above. The
intensity of each band was performed using the Labworks
4.0 program (UVP Biolmaging systems, Cambridge, United
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Kingdom) and normalized to the intensity of the correspond-
ing actin band. Primer location 1s indicated 1n the figure.
FIG. 11 shows that 1n vivo treatment of DM300 mice with
PS58 strongly reduced the presence of hDMPK mRNA
containing a (CUG)n repeat expansion compared to mock
treatment 1n the M. plantaris and M. gastrocnemius.

Example 8 (FIG. 12)

In this example, different oligonucleotides (in length and
backbone chemistry) but all with a sequence directed solely
to the (CTG)n repeat expansion were compared. DMS500
myotubes were cultured, transfected and analysed as
described above 1n example 1. Northern blots were quanti-

fied by phosphoimager analysis and DMPK signals were
normalized to GAPDH.

Here, the DM500 myotubes were treated with the follow-
ing oligonucleotides (200 nM), all with a complete phos-
phorothioate backbone (see Table 3).

FIG. 12 shows that treatment of the DM500 myotubes
results 1n a complete reduction of (CUG)n expanded
hDMPK mRNA for all oligonucleotides tested. Under the
present conditions, the maximal effect obtainable 1s 1nde-
pendent of oligonucleotide length, backbone modification or
potential mechanism of inhibition by the employed single
stranded oligonucleotides.

Example 9

Fibroblasts (GM 00303) from a male patient with Hun-
tington’s Disease were obtained from Coriell Cell Reposi-
tory (Camden, N.J., US) and cultured according to the
accompanying instructions and standard techniques known
to the skilled person 1n the art. Huntington patients carry one
healthy and one disease-causing allele of the Huntington
gene resulting i the expression of both mRNAs with
respectively a normal number and an expanded number of
(CAGQG) repeats, respectively.

The fibroblasts were transiected with a 21-mer 2'0O-
methyl phosphorothioate RNA antisense oligonucleotide
PS57 with a (CUG)7 sequence, complementary to the
(CAQG) triplet repeat 1n Huntington mRNA. Transfection
occurred at 100 or 200 nM 1n the presence of PEI as
indicated by the manufacturer. Twenty four hours after
transfection the cells were harvested and total RNA was
1solated and analysed by RT-PCR. The Huntington transcript

was determined using primers i downstream exon 64 (5'
GAAAG TCAGT CCGGG TAGAA CTTC 3' (SEQ ID NO:

33) and 5' CAGAT ACCCG CTCCA TAGCA A 3' (SEQ ID
NO: 34)). This method detects both types of Huntington
mRNAs, the normal and mutant transcript with the addi-
tional (CAG) expansion. GAPDH mRNA (housekeeping
gene) was also determined. The signals were quantified and
the total amount of Huntington mRNA was normalised to
the amount of GAPDH mRNA 1n the same sample. The
results are expressed relative to a control treated (without
oligonucleotide) sample from fibroblasts (which was to
100%). In the samples from {fibroblasts transfected with
either 100 or 200 nM of PS37, significantly lower levels of
total Huntington mRNA levels were observed of approxi-
mately 353% and 66% compared to the levels in control-
treated cells, respectively.

Thus, PS57, an oligonucleotide directed only to the
(CAQG) repeat, induces a decrease 1n Huntington mRNA
levels and these results are consistent with a selective
inhibition of mutant over normal Huntington mRNA.
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TABLE 1

Overview oligonucleotideg tegted

B2

20

Oligo
name Modification Sequence Pogition
P540 2'0OMe RNA phogphorothicate/FAM GAGGGGCGUCCAGGGAUCCG intron l4-exon 15
PS41 2'0Me RNA phosphorothioate GCGUCCAGGGAUCCGGACCG intron l4-exon 15
PS42 2'0Me RNA phosphorothioate CAGGGAUCCGGACCGGAUAG intron l4-exon 15
PS56 DNA CAGCAGCAGCAGCAGCAGCAG repeat 1n exon 15
PsSh8 2'0OMe RNA phosphorothiocate/FAM CAGCAGCAGCAGCAGCAGCAG repeat in exon 15
PS5% 2'0Me RNA phosphorothioate UGAGUUGGCCGGCGUGGGECC ESE exon 15
PS60 2'0Me RNA phosphorothiocate UUCUAGGGUUCAGGGAGCGCGG ESE exon 15
PSel 2'0Me RNA phosphorothiocate ACUGGAGCUGGGCGGAGACCC ESE exon 15
PSe62 2'0Me RNA phosphorothiocate CUCCCCGGCCGCUAGGGGGEC ESE exon 15
PS113 DN&A phosphothioroate GAGCCGCCTCAGCCGCACCTC Exon 1
PS114 DNA phosphothioroate GAAGTCGGCCACGTACTTGTC Exon 1
PS115 DNA phosphothioroate GGAGTCGAAGACAGTTCTAGG Exon 15
PS116¢ DNA phosphothioroate GGTACACAGGACTGGAGCTGG Exon 15
TABLE 2 TABLE 3
30
Reduction of hDMPK mRNA after oligo transfection:
Oligonucleotides used in example 9
Oligo Reduction hDMPK mRNA SEQ ID No. ’s
PS40 + 1 RNAse H
PS41 - 2 35 L
P<4? 3 3 Substitution breakdown
P59 - 4 # Length (CAG)n ribose possible
PS60 — 5
PS61 +/ - 0
PS62 - 7 PS5 21-mer n=>7 2°0O-Methyl No
PS5 ++++ 8 , _
40 - = 'O-
PSS 6 ~ 0 PS146 30-mer n=10 2°0O-Methyl No
PS113 - 10 PS147 15-mer n= 2°0O-Methyl No
PS114 — 11 , .
PS115 v 19 PS142 21-mer n=7 Deoxyribose (DNA) Yes
PS116 + 13

(—) indicates no reduction, (+) indicates level of reduction in hDMPK mRNA.

SEQUENCE LISTING

<160>

<210>
<211>
<212>
<213>
220>
<223>

<400>

NUMBER OF SEQ ID NOS:

SEQ ID NO 1
LENGTH: 20

TYPE: RNA
ORGANISM: Unknown
FEATURE :

OTHER INFORMATION:

SEQUENCE: 1

JgadyqgyCcyguc cagyyauccd

<210>
<211>
«212>
213>
220>

SEQ ID NO 2
LENGTH: 20

TYPE: RNA
ORGANISM: Unknown
FEATURE :

chemically synthesized oligonucleotide PS40

20

45 ¥ all oligonucleotides full length phosphorothioate and substitution



<«223> OTHER INFORMATION:

<400> SEQUENCE: 2

gcguccaggg auccggaccyg

<210> SEQ ID NO 23

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<«223> OTHER INFORMATION:

<400> SEQUENCE: 3

cagggauccg gaccggauag

<210> SEQ ID NO 4

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 4

cagcagcagc agcagcagca g

<210> SEQ ID NO &

<211> LENGTH: 21

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 5

cugcugcuge ugcugcugceu g

<210> SEQ ID NO 6

<211> LENGTH: 21

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 6

cagcagcagc agcagcagca g

<210> SEQ ID NO 7

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 7

ugaduudgyCcc gygogudgdgyCcc

<210> SEQ ID NO 8

<211> LENGTH: 22

<212> TYPE: RNA

<2123> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 8

uucuaggguu cagggagcgce gg
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-continued

chemically synthesized oligonucleotide PS41

chemically synthesized oligonucleotide PS42

chemically synthesized oligonucleotide PS56

chemically synthesized oligonucleotide PS5E7

chemically synthesized oligonucleotide PSE8

chemically synthesized oligonucleotide PS5E9

chemically synthesized oligonucleotide PS60
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20

21

21

21

20

22

22



<210> SEQ ID NO ©

<211> LENGTH: 21

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 9

acuggagcug ggcggagacce ¢

<210> SEQ ID NO 10
<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 10

cucccecggcec gcuagggggc

<210> SEQ ID NO 11
<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 11

gagccgcecte agceccgcacct ¢

<210> SEQ ID NO 12
<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 12

gaagtcggcce acgtacttgt ¢

<210> SEQ ID NO 13
<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 13

ggagtcgaag acagttctag g

<210> SEQ ID NO 14
<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

<«223> OTHER INFORMATION:

<400> SEQUENCE: 14

ggtacacagg actggagctg g

<210> SEQ ID NO 15
<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Unknown
<220> FEATURE:

<«223> OTHER INFORMATION:

US 11,274,299 B2
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-continued

chemically synthesized oligonucleotide PS6l

21

chemically synthesized oligonucleotide PSé62

20

chemically synthesized oligonucleotide PS113

21

chemically synthesized oligonucleotide PS114

21

chemically synthesized oligonucleotide PS115

21

chemically synthesized oligonucleotide PS116

21

chemically synthesized oligonucleotide PS142

24



<400> SEQUENCE: 15

cagcagcagc agcagcagca g

<210> SEQ ID NO 16
<211> LENGTH: 30

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 1o

US 11,274,299 B2
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-continued

21

chemically synthesized oligonucleotide PS146

cagcagcagc agcagcagca gcagcagcag 30

<210> SEQ ID NO 17
<211> LENGTH: 15

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 17

cagcagcagc agcag

<210> SEQ ID NO 18
<211> LENGTH: 12

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 18

cagcagcagce ag

<210> SEQ ID NO 19
<211> LENGTH: 12

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 19

gcgygceggedyy <9

<210> SEQ ID NO 20
<211> LENGTH: 12

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 20

cugcugcuge ug

<210> SEQ ID NO 21
<211> LENGTH: 12

<212> TYPE: RNA

<213> ORGANISM: Unknown
<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE: 21

cggceggedde 99

<210> SEQ ID NO 22
<«211> LENGTH: 12

chemically synthesized oligonucleotide PS147

15

chemically synthesized oligonucleotide (CAG)n

12

chemically synthesized oligonucleotide (GCG)n

12

chemically synthesized oligonucleotide (CUG)n

12

chemically synthesized oligonucleotide (CGG)n

12

26
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<212> TYPE: RNA

<213> ORGANISM: Unknown

<220> FEATURE:

<223> OTHER INFORMATION: chemically synthesized oligonucleotide (CCUG)n

<400> SEQUENCE: 22

ccugceccugce ug 12

<210> SEQ ID NO 23

«211> LENGTH: 18

<212> TYPE: DNA

«213> ORGANISM: Artificial

<220> FEATURE:

223> QOTHER INFORMATION: primer 1 hDMPK

<400> SEQUENCE: 23

gggggatcac agaccatt 18

<210> SEQ ID NO 24

<211> LENGTH: 21

«212> TYPE: DNA

<213> ORGANISM: Artificial

«220> FEATURE:

<223> OTHER INFORMATION: primer 2 hDMPK

<400> SEQUENCE: 24

tcaatgcatc caaaacgtgg a 21

<210> SEQ ID NO 25

«211> LENGTH: 19

<212> TYPE: DHNA

«213> ORGANISM: Artificial

<220> FEATURE:
<223> OTHER INFORMATION: Actin sense primer

<400> SEQUENCE: 25

gctaygagct gcctgacgyg 19

<210> SEQ ID NO 26

<211> LENGTH: 17

<212> TYPE: DHNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: actin antisense primer

<400> SEQUENCE: 26

gaggccagga tggagcc 17

<210> SEQ ID NO 27

«211> LENGTH: 20

<«212> TYPE: DNA

«213> ORGANISM: Artificial

<220> FEATURE:

<223> QOTHER INFORMATION: primer 1 Ptbpl

<400> SEQUENCE: 27

tctgtceccta atgtccatgg 20

«<210> SEQ ID NO 28

«211> LENGTH: 19

«212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:
<223> OTHER INFORMATION: primer 2 Ptbpl

<400> SEQUENCE: 28
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gccatctgca caagtgcgt

«<210> SEQ ID NO 29

«<211> LENGTH: 18

<212> TYPE: DNA

<213> ORGANISM: Artificial

«220> FEATURE:

<223> OTHER INFORMATION: primer 1 Syndecan3

<400> SEQUENCE: 29

gctgttgetyg ccaccegcet

«210> SEQ ID NO 30

«<211> LENGTH: 18

«212> TYPE: DNA

<213> ORGANISM: Artificial

«220> FEATURE:

<223> OTHER INFORMATION: primer 2 Syndecan3

<400> SEQUENCE: 30

ggcgcctegg gagtgcta

<210> SEQ ID NO 31

<211> LENGTH: 18

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: primer 1 Taxilinbeta

<400> SEQUENCE: 31

ctcagcecctg ctgectgt

<210> SEQ ID NO 32

<211> LENGTH: 20

<212> TYPE: DNA

<2123> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: primer 2 Taxilinbeta

<400> SEQUENCE: 32

cagacccata cgtgcttatg

<210> SEQ ID NO 33

<211> LENGTH: 24

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: primer 1 Huntington

<400> SEQUENCE: 33

gaaagtcagt ccgggtagaa cttc

<210> SEQ ID NO 34
<211> LENGTH: 21

<212> TYPE: DHNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: primer 2 Huntington

<400> SEQUENCE: 34
cagatacccg ctccatagca a
<210> SEQ ID NO 35
<211l> LENGTH: 12

«212> TYPE: DNA
<«213> ORGANISM: Unknown

-continued
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32

-continued

<«220> FEATURE:
<«223> OTHER INFORMATION:

<400> SEQUENCE: 35

gaagaagaag aa

<210>
<211>
<«212>
<213>
<220>
<223 >

SEQ ID NO 26
LENGTH: 12

TYPE: DNA
ORGANISM: Unknown
FEATURE:

OTHER INFORMATION :

<400> SEQUENCE: 36

gccgocgecyg cc

The 1nvention claimed 1s:

1. A method of treating a spino-cerebellar ataxia (SCA),
spinal and bulbar muscular atrophy (SBMA), or dentatoru-
bral-pallidoluysian atrophy (DRPLA) 1n a subject 1n need

thereol, comprising administering to the subject an oligo-
nucleotide comprising or consisting of a sequence that 1s
complementary only to a polyglutamine (CAG)n repetitive

nucleotide unit 1n a gene transcript.
2. The method of claim 1, wherein the SCA 1s SCA type

1,2,3,6,7or 17.

3. The method of claim 1, wherein said oligonucleotide
has a length of 10 to 50 nucleotides.

4. The method of claim 3, wherein said oligonucleotide
has a length of 12 to 30 nucleotides.

5. The method of claim 4, wherein said oligonucleotide 1s
a single-stranded oligonucleotide.

6. The method of claim 1, wherein said oligonucleotide
comprises or consists oI RNA nucleotides, DNA nucleo-
tides, 2'-O substituted RNA nucleotides, locked nucleic acid
(LNA) nucleotides, peptide nucleic acid (PNA) nucleotides,
morpholinophosphorodiamidates, ethylene-bridged nucleic
acid (ENA) nucleotides or mixtures thereot, with or without
a phosphorothioate-containing backbone.

7. The method of claim 6, wherein the oligonucleotide
comprises 2'-O substituted RNA phosphorothioate nucleo-
tides.

8. The method of claim 7, wherein said 2'-O-substituted
RINA phosphorothioate nucleotide 1s a 2'-O-methyl or 2'-O-
methoxy ethyl RNA phosphorothioate nucleotide.

9. The method of claim 1, wherein said oligonucleotide 1s
provided 1n an expression vector.

10. The method of claim 9, wherein said expression vector
1s a viral vector.

11. The method of claim 1, wherein said oligonucleotide
1s provided with an excipient and/or a targeting ligand for
delivery of the oligonucleotide to cells and/or for enhancing
intracellular delivery of the oligonucleotide.

12. The method of claim 1, wherein said oligonucleotide
1s comprised 1n a pharmaceutically acceptable composition.

13. The method of claim 12, wherein said pharmaceutical
composition further comprises at least one excipient and/or
targeting ligand for delivery of the oligonucleotide to the cell
and/or for enhancing intracellular delivery of the oligonucle-
otide.

14. The method of claim 1, wherein said oligonucleotide
preferentially hybridizes to a disease-associated or disease-
causing transcript and leaves the function of a normal
transcript relatively unaflected.

chemically synthesized oligonucleotide

chemically synthesized oligonucleotide

20

25

30

35

40

45

50

55

60

65

(GAA) n

12

(GCC)n

12

15. The method of claim 1, wherein said oligonucleotide
prevents the accumulation and/or translation of repeat
expanded transcripts 1n cells.

16. The method of claim 15, wherein said repeat expanded

transcript 1s a (CAG)n repeat mm an ATXNI1, ATXN2,
ATXN3, SCA7, CACNAIA, AR, SCA17 or DRPLA gene
transcript 1n a cell.

17. The method of claim 1, wherein said oligonucleotide
interferes with gene expression or one or more other pre-
cursor RNA or messenger-RNA dependent cellular pro-
CEeSSes.

18. The method of claim 17, wherein said messenger-
RNA-dependent cellular process 1s RNA splicing or exon
skipping.

19. The method of claim 1, wherein said administration 1s
carried out by one or more parenteral injections at one or
multiple sites 1n the human body.

20. The method of claim 19, wherein said parenteral
injection 1s an intravenous, a subcutaneous, an intramuscu-
lar, an intrathecal, or an intraventricular ijection.

21. A method of treating a spino-cerebellar ataxia (SCA)
in a subject 1n need thereol, comprising administering to the
subject the oligonucleotide of claim 1.

22. A method of treating spinal and bulbar muscular
atrophy (SBMA) 1n a subject in need thereof, comprising
administering to the subject the oligonucleotide of claim 1.

23. A method of treating dentatorubral-pallidoluysian
atrophy (DRPLA) 1n a subject in need thereof, comprising
administering to the subject the oligonucleotide of claim 1.

24. A method of treating a spino-cerebellar ataxia (SCA),
spinal and bulbar muscular atrophy (SBMA), or dentatoru-
bral-pallidoluysian atrophy (DRPLA) 1n a subject in need
thereof, comprising administering to the subject an oligo-
nucleotide comprising or consisting of a sequence that 1s
complementary only to a polyglutamine (CAG)n repetitive
nucleotide unit 1n a gene transcript, wherein the oligonucle-
otide comprises at least one modification and 10 to 50
nucleotides that are complementary to CAGCAGCAGCAG
(SEQ ID NO: 18).

25. A method of treating a spino-cerebellar ataxia (SCA),
spinal and bulbar muscular atrophy (SBMA), or dentatoru-
bral-pallidoluysian atrophy (DRPLA) 1n a subject in need
thereof, comprising administering to the subject an oligo-
nucleotide comprising or consisting of a sequence that 1s

complementary only to a polyglutamine (CAG)n repetitive
nucleotide unit 1n a gene transcript, wherein the oligonucle-
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otide comprises a sequence selected from the group con-
sisting of: SEQ ID NOs: 5 (cug cug cug cug cug cug cug)
and 20 (cug cug cug cug).

G e x Gx ex
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