

(12) United States Patent Freeman et al.

(10) Patent No.: US 11,272,889 B2 (45) Date of Patent: Mar. 15, 2022

- (54) EVALUATION OF RESPIRATORY VOLUME MONITORING (RVM) TO DETECT RESPIRATORY COMPROMISE IN ADVANCE OF PULSE OXIMETRY AND ELIMINATE FALSE DESATURATION ALARMS
- (71) Applicant: Respiratory Motion, Inc., Waltham, MA (US)
- Inventors: Jenny E. Freeman, Weston, MA (US);
 Jordan Brayanov, Medford, MA (US);
 Daniel Eversole, Swampscott, MA (US);
 (US); Malcolm G. Bock, Medfield, MA (US)
- (52) **U.S. Cl.**

(56)

- CPC A61B 5/742 (2013.01); A61B 5/087 (2013.01); A61B 5/0816 (2013.01); A61B 5/14542 (2013.01); A61B 5/7278 (2013.01); A61B 5/746 (2013.01)
- (58) Field of Classification Search CPC A61B 5/742; A61B 5/746; A61B 5/0816; A61B 5/14542; A61B 5/087; A61B 5/7278

See application file for complete search history.

- (73) Assignee: Respiratory Motion, Inc., Watertown, MA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 968 days.
- (21) Appl. No.: **15/380,480**
- (22) Filed: Dec. 15, 2016
- (65) **Prior Publication Data**

US 2017/0164909 A1 Jun. 15, 2017

Related U.S. Application Data

(60) Provisional application No. 62/416,400, filed on Nov.

References Cited

U.S. PATENT DOCUMENTS

3,433,217 A	3/1969	Rieke et al.					
3,690,143 A	9/1972	Day et al.					
3,742,936 A		Blanie et al.					
	(Continued)						

FOREIGN PATENT DOCUMENTS

AU	2007201370	4/2007
CN	1034665	8/1989
	(Cor	ntinued)

OTHER PUBLICATIONS

PCT Search and Patentability Report for PCT/US2016/066930, dated Mar. 27, 2017.

(Continued)

Primary Examiner — Jacqueline Cheng
Assistant Examiner — Tho Q Tran
(74) Attorney, Agent, or Firm — Remenick PLLC

2, 2016, provisional application No. 62/270,413, filed on Dec. 21, 2015, provisional application No. 62/267,787, filed on Dec. 15, 2015.

(51)	Int. Cl.	
	A61B 5/00	(2006.01
	A61B 5/08	(2006.01
	A61B 5/087	(2006.01
	A61B 5/145	(2006.01

(57) **ABSTRACT**

Systems and methods of leveraging high-fidelity continuous respiratory volume monitoring for rapid patient assessment are disclosed herein.

24 Claims, 4 Drawing Sheets

US 11,272,889 B2 Page 2

(56)		Referen	ces Cited		2011/0138323 A1*	6/2011	Skidmore A61M 16/0051 715/800
	U.S.	PATENT	DOCUMENTS		2011/0245712 A1	10/2011	
					2011/0306850 A1	12/2011	Hatlestad et al.
	3,953,329 A *	4/1976	Updike	A61M 1/1698	2012/0041279 A1*	2/2012	Freeman A61B 5/0205
	0,500,025 11		opullit	210/638			600/301
	4,036,217 A	7/1977	Ito et al.	210/050	2012/0165883 A1	6/2012	Kalgren et al.
			Geddes et al.		2013/0127621 A1*		Watson G08B 21/02
	/ /		Tsoglin et al.				340/573.1
	5,735,284 A		Tsoglin et al.		2013/0187941 A1	7/2013	Noon
	6,168,568 B1		Gavriely		2013/0276785 A1	10/2013	Melker et al.
	6,173,198 B1		Schulze et al.		2013/0289366 A1*	10/2013	Chua A61B 5/02028
	6,286,806 B1	9/2001	Corcoran				600/301
	6,366,803 B1	4/2002			2013/0296823 A1	11/2013	Melker et al.
	6,402,969 B1	6/2002	Rodgers et al.		2014/0073895 A1	3/2014	Freeman et al.
	6,809,462 B2	10/2004	Pelrine et al.		2015/0031964 A1*	1/2015	Bly G16H 40/67
	6,976,963 B2	12/2005	Clift				600/301
	7,196,317 B1	3/2007	Meissner, II et al.		2015/0105632 A1	4/2015	Melker et al.
	7,361,146 B1	4/2008	Bharmi et al.		2015/0120067 A1*	4/2015	Wing H02J 7/0013
	7,530,956 B2	5/2009	Lewicke et al.				700/282
	7,871,394 B2		Halbert et al.		2016/0120468 A1*	5/2016	Mathew A61B 5/01
	8,096,962 B2		Palazzolo et al.				600/301
	8,306,611 B2		Granov et al.	AC1D 5/742	2016/0350488 A1*	12/2016	Stocker G16H 50/20
	0 100 017 01 %	л (С)	A 1 A 1:	A C I D E (777)			

6,402,969 B1 6/200	2 Rodgers et al.
6,809,462 B2 10/2004	4 Pelrine et al.
6,976,963 B2 12/200	5 Clift
7,196,317 B1 3/200	7 Meissner, II et al.
	8 Bharmi et al.
· · ·	9 Lewicke et al.
· · · ·	1 Halbert et al.
· · ·	2 Palazzolo et al.
	2 Granov et al.
· · ·	3 Al-Ali A61B 5/742
0,150,017 D1 1/201	600/301
9,615,743 B2 * 4/201	7 Kruger A61B 5/091
	2 Weil et al.
	4 Olbrich A61B 7/003
2004/0039293 AT 2/2004	
2004/0051225 11 4/200	600/538
	4 Jeung et al.
	4 McGrath
	5 Kehyayan et al.
2005/0042589 A1* 2/200	5 Hatlestad A61B 5/0031
	434/262
2005/0090753 A1 4/200	5 Goor et al.
2005/0107719 A1 5/200	5 Arad (Abbound)
2005/0113702 A1 5/200	5 Salla et al.
2006/0058600 A1 3/200	6 Eichler
2006/0241506 A1 10/200	6 Melker et al.
2006/0241513 A1 10/200	6 Hatlestad et al.
2007/0010764 A1 1/200	7 Palazzolo et al.
2007/0276300 A1 11/200	7 Olson et al.
2008/0312565 A1 12/200	8 Celik-Butler et al.
2009/0062672 A1 3/200	9 Sly et al.
	9 Lenhardt et al.
2009/0227849 A1 9/200	9 Goor et al.
2009/0264789 A1 10/200	9 Molnar et al.
2009/0281838 A1* 11/200	9 Lynn G06Q 50/24
	705/3
2009/0326253 A1 12/200	9 Iding et al.
	9 Watson et al.
	0 Goor et al.
	0 Batchelder A61B 5/14551
2010/0113901 111 3/201	600/324
2010/0152600 A1 6/201	0 Droitcour et al.
	0 Centen
	0 Savage et al. 0 Sherman A61B 5/00
ZUIU/UZ9Z344 AI ' 11/ZUI	
2011/00/0712 41 2/201	600/300
	1 Colman et al.
2011/0077497 A1 3/201	1 Oster et al.

FOREIGN PATENT DOCUMENTS

CN	101496767		2/2009					
EP	1302217		4/2003					
EP	2008581		12/2008					
EP	2018825		1/2009					
JP	200070370		3/2000					
JP	2007203041		8/2007					
JP	2009240752		10/2009					
RU	2250462 C	1 *	4/2005					
RU	2454932 C	1 *	7/2012					
WO	WO0033733		6/2000					
WO	WO2006006871		7/2004					
WO	WO2007064682		6/2007					
WO	WO2007147505		12/2007					
WO	WO2008130549		10/2008					
WO	WO2009035965		3/2009					
WO	WO2009036312		3/2009					
WO	WO2010059049		5/2010					
	OTHER F	' UB	BLICATIO	ONS				
U.S. 4	Appl. No. 12/677,216, F	reer	nan et al.					
U.S. Appl. No. 13/210,360, Freeman et al.								
U.S. Appl. No. 13/554,346, Freeman et al.								
U.S. Appl. No. 14/021,939, Freeman et al.								
Zulkarneev R Kh. et al., A Hardware-Software System for Volu-								
	c Calibration of Impeda			•				
	-		-					
neering, vol. 35, No. 1, 2001, pp. 48-51.								

Pajic, et al, Model-driven safety analysis of closed-loop medical systems, IEEE Trans Industr Inform. vol. 10, pags. 1-35, p. 4, para. 1-2, Oct. 28, 2013.

European Search Report for EP 16876683, dated May 9, 2019.

* cited by examiner

U.S. Patent Mar. 15, 2022 Sheet 1 of 4 US 11, 272, 889 B2

Patient with True Desaturation

Figure 1

U.S. Patent Mar. 15, 2022 Sheet 2 of 4 US 11,272,889 B2

Patient with False Alarms

Figure 2

U.S. Patent Mar. 15, 2022 Sheet 3 of 4 US 11, 272, 889 B2

· · · · · · · · · · · · · · · · · · ·	· · · · ·			ation		· · · · · · ·	· · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••••	· · · · · · · ·	· · · · · · · · · · · · ·	a a constanta da seria. Na constanta da seria		· · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	0-		2	3	4	5	6		fli				<u>A</u> .	5	6
	1										ere interes				
								e E							
	2-							Ę	2						
	3						****	6 0	3	· . · . · • · · · · ·					
								D C		· · · · · · · ·		· · · · · · · · ·	· · · · · · · · ·		· · · ·
· · ·	4							Ê	4	· · · · · · · · · · · · · · · · · · ·					
· · · ·	5							ŝ	5			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	V									· · · · · · · · ·	1 205	11() , vv1	8) (C.IV		
3	6		Patient	s witt	i no i	MV			6		Patia	nts wi	fb 1 8.	1. 1. 1. 1.	
		· · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	8		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		S	upplemen	ital O			low s	everity L	.MVe	• • • • • • • • • • • • • • • • • • •	Low SpO ₂ alarm "False" SpO ₂ alarm			n	
				high	high severity LMVe Long duration,				 Apnea >30s 						
PACU stay				_ Shor	Short duration,				× PCA opioid dose						

Figure 3

U.S. Patent Mar. 15, 2022 Sheet 4 of 4 US 11, 272, 889 B2

			1	Recorded SpO ₂ Alarms						
000000000000000000000000000000000000000	No Pt [%]	LMV in PACU	Transient (1-min)	3	ypoxe even (≥2mi	ts	No. Pt [%]	Dosage	Frequency	PACU LOS
		[#/\tr]		False	True	RN Records		[µg/kg/hr]	{Doses/hr}	[hr]
With Low MV:	198 [76%]	2.3 ±0.1	58	10	7	1	133 [67%]	40 ±3	2.0 ±0.1	2.8 ±0.1
No Low MV:	61 [24%]	()	29	9	()	1	33 [53%]	33 ±4	2.3 ±0.2	2.4 ±0.1
Total:	259 [100%]	1.8 ±0.1	87	19	7	2	166 [64%]	39 ±2	2.1 ±0.1	2.7 ±0.1

1

EVALUATION OF RESPIRATORY VOLUME MONITORING (RVM) TO DETECT RESPIRATORY COMPROMISE IN ADVANCE OF PULSE OXIMETRY AND ELIMINATE FALSE DESATURATION ALARMS

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/267,787 entitled "Continuous Respiratory ¹⁰ Status Visualization Technique" filed Dec. 15, 2015, U.S. Provisional Application No. 62/270,413 entitled "Evaluation of Respiratory Volume Monitoring (RVM) to Detect Respiratory Compromise in Advance of Pulse Oximetry and Eliminate False Desaturation Alarms" filed Dec. 21, 2015, ¹⁵ and U.S. Provisional Application No. 62/416,400 entitled "Respiratory Volume and SpO₂ Monitoring Devices and Methods" filed Nov. 2, 2016, the entirety of all of which are hereby incorporated by reference.

2

Inadequate ventilation is usually the precipitating event leading to respiratory depression or respiratory arrest if not detected and treated in time. Since capnography has not proven as useful in non-intubated patients as once hoped, clinicians generally rely on pulse oximetry, despite its welldocumented limitations. This is especially challenging in clinical settings with supplemental oxygen delivery. In patients receiving supplemental oxygen, basing care on a selected threshold of SpO₂ considered concerning (which now ranges from <80% to <90% in various institutions) can be fatal by providing false assurance as to patient safety. Relying on saturation data can delay the diagnosis of significant under-ventilation, undetected hypercarbia, and impending respiratory failure. Another well-documented problem associated with pulse oximetry is the high rate of false alarms, which has contributed to increasingly serious clinical concerns associated with alarm desensitization and fatigue. Clinicians, plagued by an 20 excessive number of alarms, of which approximately 90% are false, have responded by disabling alarms, decreasing volume, changing settings, or ignoring alarms altogether. "Alarm safety" became a Joint Commission on Hospital Accreditation national patient safety goal in 2013, and in 2015 the Commission mandated that improvements be made to ensure that alarms on medical equipment are heard and responded to on time. Epstein and colleagues at Vanderbilt found that SpO₂ alarms occur at a particularly high rate in the postanesthesia ³⁰ care unit (PACU). Their results indicate that 11.3%±0.02% of PACU patients experienced at least one hypoxemic episode (SpO₂ alarm sustained for >2 min). Timely resolution of hypoxemic events outside the operating room proved challenging, with 40.9%±0.02% of the hypoxemic events unresolved after 3 min. This was likely compounded by the fact that 68.8% of SpO₂ alarms occurred in the PACU more than 30 min after arrival, at a time associated with less ongoing attention and potentially less availability of advanced respiratory care providers. The authors suggested a reconsideration of staff allocation, which is not only costly, but may not necessarily improve patient safety. Rather, one could use an RVM for the early identification of respiratory compromise, not only providing a longer window for skilled anesthesia providers to arrive, but also alerting a clinician earlier to a patient's deteriorating condition. An additional advantage of this technology may come from its truncal electrode placement, which helps reduce sensor dislodgement and is not susceptible to extremity motion. This feature may allow the RVM to help clinicians identify SpO₂ alarms that are artifacts (i.e., false alarms) triggered by patient's motion or probe dislocation, in addition to revealing when potential hypoxemia is masked by the administration of supplemental oxygen. The purpose of this study was to assess the ability of the RVM to detect respiratory depression in advance of a low SpO₂ measurement and to differentiate false from true SpO₂ alarms. We hypothesized that the RVM would detect respiratory depression significantly earlier than pulse oximetry and may help reduce the frequency of false alarms created by motion or other artifacts impacting SpO₂ measurements.

BACKGROUND

1. Field of the Invention

The invention is directed to systems and methods of ²⁵ visualization of continuous respiratory status. Specifically, the invention is directed to systems and methods of leveraging high-fidelity continuous respiratory volume monitoring for rapid patient assessment.

2. Background of the Invention

Surveillance of respiratory status is a critical component of patient care in any clinical setting. Unfortunately, current clinical practice relies on secondary indicators of respiratory 35 status, usually oxygen saturation (SpO₂) measured by pulse oximetry, in lieu of monitoring ventilation. Early identification of respiratory insufficiency using real-time respiratory volume monitoring has the potential to allow clinicians to alter therapy in time to prevent more serious complica- 40 tions. A non-invasive monitor that rapidly and accurately measures ventilation metrics could help reduce the rate of false alarms generated by pulse oximetry. Ventilation metrics would have utility in virtually all patient care environments, from the battlefield or other sites of traumatic injury, 45 through transport, throughout the hospital in both critical care and general ward locations, and post discharge into the patient's home. Until recently, monitoring ventilation in non-intubated patients has been challenging. An FDA-approved non-inva- 50 sive bio-impedance based respiratory volume monitor has become recently available that provides real-time digital respiratory data as well as continuous trends of minute ventilation (MV), tidal volume (TV) and respiratory rate (RR) in non-intubated patients. Previous clinical studies 55 have demonstrated strong correlation (mean of 0.96, 95% CI from 0.93 to 0.99 for regular and erratic breathing) and clinically relevant accuracy (average error accuracy of 9.3%) for MV, 9.0% for TV and 1.8% for RR) between the RVM and spirometric measurements. When compared with vol- 60 ume measurements collected from patients on a ventilator, either during mechanical ventilation or spontaneously breathing the RVM demonstrated an average MV and TV accuracy>90% and RR accuracy>95%. Additionally, RVM measurements were not substantially impacted by ineffec- 65 tive obstructed breaths associated with small volumes of air movement not exceeding anatomic dead space.

SUMMARY OF THE INVENTION

The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new tools and methods of visualizing respiratory status.

3

One embodiment of the invention is directed to a visualization technique, based on continuous respiratory volume monitoring (RVM) data, which allows clinicians to assess patient respiratory status quickly and efficiently. By reducing the variability of the high-fidelity RVM data while 5 preserving key temporal and dimensional features, one is able to synthesize hours of patient data into simple and easy-to-interpret plots, allowing clinicians to make clinical decisions faster, with improved patient safety, reduced staff workload, and healthcare cost-savings.

One embodiment of the invention is directed to a method of displaying respiratory data of a patient. The method comprises the steps of obtaining respiratory data of a patient from at least one patient sensor, obtaining oxygen saturation (SpO₂) data of the patient, obtaining treatment data of the 15 patient, outputting a visualization of the patient's respiratory status on a display device including the respiratory data, the SpO₂ data, and the treatment data, and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ data being met. In a preferred embodiment, the respiratory data includes at least one of minute ventilation (MV), tidal volume (TV), and respiratory rate (RR) of the patient. Preferably, the patient is non-intubated. In a preferred embodiment, the visualization of the patient's respiratory status comprises at 25 least one indication of a treatment timeline of the patient, at least one indication of supplemental oxygen given to the patient, at least one indication of a low minute ventilation (LMV) event, at least one indication of a drug dose given to the patient, at least one indication of an appeic pause longer 30 than a predefined duration; and at least one indication of a low SpO₂ events, wherein a LMV event occurs upon the MV of the patient falling below a predetermined MV of the patient for a predetermined period of time and a low SpO₂ event occurs upon the SpO₂ of the patient falling below a 35predefined SpO_2 percentage. Preferably, the visualization of the patient's respiratory status includes a differentiation between true SpO₂ events and false SpO₂ events, wherein a true SpO₂ event occurs upon a low SpO₂ event occurring for a predefined period of 40 time and a false SpO₂ event occurs upon a low SpO₂ event occurring for less than the predefined period of time. The alarm is preferably triggered only for true SpO₂ events. Preferably, the indication of a low minute ventilation (LMV) event includes the duration of the event and the severity of 45 the event. In a preferred embodiment, the respiratory data are obtained continuously and the SpO₂ data are obtained upon at least one of the MV, TV, or RR of the patient at least one of meeting predefined criteria or exceeding a predefined range. Preferably, the SpO₂ data are obtained continuously and the respiratory data is obtained upon at least one of the MV, TV, or RR of the patient at least one of meeting predefined criteria or exceeding a predefined range. In a preferred embodiment, the SpO₂ data are displayed upon predefined 55criteria being met. The SpO₂ data are preferably obtained or displayed if and only if MV measurements drop below, for example, 50%, 40%, or 30% of baseline MV. Preferably, SpO₂ data are obtained or displayed if and only if MV measurements drop below, for example, 50%, 40%, or 30% 60 of predicted MV based on the patient's body surface area. Preferably, SpO₂ data are obtained or displayed if and only if MV measurements drop below, for example, 50%, 40%, or 30% of predicted MV based on the patient's ideal body weight.

4

example, 250%, 300%, or 350% of baseline MV. Preferably, SpO₂ data are obtained or displayed if and only if MV measurements exceeds, for example, 250%, 300%, or 350% of predicted MV based on the patient's body surface area.
⁵ Preferably, SpO₂ data are obtained or displayed if and only if MV measurements exceeds, for example, 250%, 300%, or 350% of predicted MV based on the patient's ideal body weight. Preferably, SpO₂ measurements are obtained or displayed if and only a rate of change of MV measurements 10 over time exceeds a predefined threshold.

In a preferred embodiment, upon both MV below a predefined range and SpO₂ below a predefined range the audible or visual alarm is triggered. Preferably, the respiratory data is collected from a ventilator, spirometer, pneu-15 motachometer, or non-invasive respiratory volume monitoring device. Preferably, the method further comprises adjusting at least one respiratory setting on a ventilator in intubated patients or on a continuous positive airway pressure or a bilevel positive airway pressure machine in non-20 intubated patients.

Other embodiments and advantages of the invention are set forth in part in the description, which follows, and in part, may be obvious from this description, or may be learned from the practice of the invention.

DESCRIPTION OF THE DRAWINGS

FIG. 1 A 70 y/o female patient (BMI: 36.7 kg/m^2 , 7.2L/min MV_{PRED}) with a 25-pack year smoking history and previous diagnosis of COPD, Type 2 Diabetes, and heart disease presented for right total hip replacement surgery. After surgery under general anesthesia, the patient was monitored in the PACU for 183-min with pulse oximetry and RVM. Here we present recorded SpO₂ values (A) aligned with the RVM trends of MV (B), TV (C), and RR (D). SpO₂ values (open blue circles) were recorded in the EHR at 1-min intervals. One-minute Transient Alarms and False Desaturation are indicated as red circles and True Desaturations filled red circles. In the PACU, the patient experienced a single 1-min Transient Alarm in addition to a single Hypoxemic Episode, lasting 3-min. The patient was initially placed on supplemental oxygen by facemask (6 L/min) and transitioned to room air during phase 3 of the PACU. A morphine PCA pump was implemented, but no doses were administered. The patient experienced 10 recurring Low MV events commencing 149-min prior to the True Desaturation with the most closely preceding Low MV event occurring 12.6-min prior to the True Desaturation. SpO_2 values remained steady, indicating the pulse oximeter was 50 well seated on the patient's finger. Note that Low MV was more associated with a decrease in TV than RR. FIG. 2 Patient with Multiple False Alarms. A 63 y/o female patient (BMI: 29.1 kg/m², 7.0 L/min MV_{PRED}) with a 4.5-pack year smoking history and no diagnosed respiratory issues presented for right total knee arthroplasty/replacement. After surgery under spinal anesthesia, the patient was monitored in the PACU for 121-min with pulse oximetry and RVM. Here we present recorded SpO₂ values (A) aligned with the RVM trends of MV (B), TV (C), and RR (D). SpO₂ values (open blue circles) were recorded in the EHR at 1-min intervals. 1-min Transient Alarms and False Desaturation are indicated as red circles. In the PACU, the patient experienced four 1-min Transient Alarms in addition to a single Hypoxemic Episode, lasting 2-min. The patient 65 was initially placed on supplemental oxygen by facemask (6 L/min) and within 15-min of PACU arrival transitioned to room air. A femoral nerve block for post-operative pain

In a preferred embodiment, SpO₂ data are obtained or displayed if and only if MV measurements exceeds, for

5

control was administered pre-op. As the block wore off, nursing records indicated pain scores>4 out of 10 and a hydromorphone PCA pump was implemented, from which 1-dose was administered. Admitted to the PACU with a $MV_{MEASURED}$ above 150% MV_{PRED} , the patient maintained 5 a $MV_{MEASURED}$ centered about 100% MV_{PRED} throughout her PACU stay. Concurrent with each Low SpO₂ alarm, the patient experienced large increases in MV. Contrasting with the SpO₂ signal reported in the True Desaturation patient, here SpO₂ values fluctuate continuously, considered to be 10 from the pulse oximeter not being well seated on the patient's finger. Fluctuations in both MV and SpO₂ indicate excessive patient movement. FIG. 3 Visualization of the Respiratory Status of Patients in the PACU. Each patient is visualized along an individual 15 line, parallel to the Y-axis (see FIG. 1). The dashed blue line represents each patient's timeline in the PACU, with arrival at the PACU aligned with the X-axis. Supplemental O₂ is displayed as a solid red line overlaid on top of the dashed blue, spanning the regions where supplemental O_2 was 20 delivered. Along each patient axis we display Low MV events with red ellipses. The length of each ellipse (along the y-axis) denotes the temporal duration of a Low MV event, whereas the width of each ellipse corresponds to the severity of each event with wider ellipses corresponding to more 25 severe (i.e. lower MV) Low MV event. In addition, PCA opioid doses are visualized as green asterisks, apneic pauses longer than 30-sec as black dots, and Low SpO₂ alarms as purple diamonds. "False SpO₂ alarms" (i.e. 1-min Transient Alarms and False Desaturations) are displayed with hollow 30 symbols and True Desaturations displayed with solid symbols.

D

PACU, with arrival at the PACU aligned with the X-axis. Supplemental O_2 is displayed as a solid line overlaid on top of the dashed line spanning the regions where supplemental O_2 was delivered. Along each patient axis the LMVe is displayed with ellipses. The length of each ellipse (along the y-axis) denotes the temporal duration of an LMVe or a cluster of LMVe (if in close succession), whereas the width of each ellipse corresponds to the severity of each event with wider ellipses corresponding to more severe (e.g. lower MV) LMVe. In addition, PCA opioid or other drug doses are visualized as asterisks, apneic pauses longer than 30-sec or another predefined duration as dots, and Low SpO₂ alarms as diamonds. "False SpO₂ alarms" are displayed with hollow symbols and true SpO₂ alarms lasting>2 min are displayed with solid symbols. As more clinical decisions are driven by quantitative data, new ways of synthesizing and visualizing data can assist with interpretation and quicker patient assessment. This is particularly important when working with high-fidelity respiratory volume data in non-intubated patients. The naturally occurring variability in these data can make it challenging for a clinician to combine trends and correlative or causal effects from the raw metrics alone. For these reasons, a synthesized visualization may be able to assist not only with clinical decision making, but may also reduce workload and associated healthcare costs. In one embodiment of the invention, the RVM monitor is continuously applied to the patient and the SpO₂ monitor is applied to the patient only when triggered by MV, TV, or RR measurements or a combination thereof that meet certain criteria or go outside of pre-defined range(s). In another embodiment, the SpO₂ monitor is also continuously applied to the patient, but measurements are obtained only when triggered by MV, TV, or RR measurements or a combination thereof that meet certain criteria or go outside of pre-defined

FIG. 4 Stratification of Patient Cohort by Occurrence of Low MV. The plot shows the percent of patients in which the RVM measured MV levels below the 40% MV_{PRED} threshold. RVM data for the entire patient cohort was segmented into two important 30-min periods: the 30 minutes starting at PACU arrival and the 30 minutes prior to discharge from PACU. In each group, the number of SpO₂ alarms recorded in the 40 EHR was determined and PACU nurse records, the number of patients receiving opioids, the average dosage and frequency of opioid administration, and the PACU LOS.

DESCRIPTION OF THE INVENTION

As embodied and broadly described herein, the disclosures herein provide detailed embodiments of the invention. However, the disclosed embodiments are merely exemplary of the invention that may be embodied in various and 50 alternative forms. Therefore, there is no intent that specific structural and functional details should be limiting, but rather the intention is that they provide a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention

Continuous RVM data, O₂ supplementation status, SpO₂ alarm records and PCA opioid administration data is collected from each patient during their stay, for example, in the PACU following orthopedic surgery. Herein, as an example, a low MV event (LMVe) is defined as MV<40% MV_{PRED} 60 (based on the patient's BSA) sustained for at least 60 seconds. Low SpO₂ alarm limit can be, for example, set at <90% and sporadic low SpO₂ readings (<2 min) are preferably considered "false alarms." Each patient is preferably visualized along an individual 65 axis, parallel to the Y-axis. For example, as depicted in FIG. 3, the dashed line represents each patient's timeline in the

range(s).

In another embodiment, the SpO₂ monitor is both applied and measurements from it are obtained continuously, however, internal algorithms determine when those measurements are displayed. In one embodiment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements drop below 40% of baseline MV. In one embodiment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements drop below 40% of 45 predicted MV based on the patient's body surface area (BSA). In one embodiment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements drop below 40% of predicted MV based on the patient's ideal body weight (IBW). In one embodiment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements exceeds 300% of baseline MV. In one embodiment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's BSA. In one embodi-55 ment, SpO₂ measurements are obtained and/or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's IBW. In one embodiment, SpO₂ measurements are obtained and/or displayed if and only the rate of change of MV measurements over time exceeds a pre-defined threshold (e.g. 1 L/min² or 20%/min). In one embodiment, the MV is incorporated into standard early scoring systems instead of RR. In one embodiment, an algorithm based on a combination of one or more of MV, TV, or RR triggers the integration of SpO₂ measurements as above (e.g. one or more of continuously applied, intermittently applied, and continuously collected). In one embodiment, an algorithm based on a second-order features (e.g.

7

variance, kurtosis, entropy, and enthalpy) of one or more of MV, TV, or RR triggers the integration of SpO₂ measurements as above (e.g. one or more of continuously applied, intermittently applied, and continuously collected).

In one embodiment, MV, TV, RR measurements or sec- 5 ond-order derived statistics of those measurement or a combination of these is used to filter SpO_2 measurements to exclude or minimize the impact of likely false measurement in data display, analysis, or clinical decision making algooutside pre-defined range and Low SpO₂ is preferably required to trigger an alert requiring clinical intervention or assessment. In another embodiment, the data from one of these combinations can be used for the diagnosis of respiratory depression, respiratory compromise, respiratory arrest, respiratory failure, need for intubation, need for re-intubation, need for extubation, transfer to higher acuity setting, transfer to lower acuity setting, discharge home, admission to hospital, need for treatment, monitoring the 20 effectiveness of treatment or therapy, need and titration of O₂ administration, need or titration of CPAP or BiPAP or high flow O_2 . In one embodiment, MV, TV, or RR data may be collected from a ventilator, spirometer, pneumotachometer, or non- 25 invasive RVM. Combined data can be used for adjustment of respiratory setting (e.g. PEEP or flow) on a ventilator in intubated patients or in continuous positive airway pressure or bilevel positive airway pressure (CPAP/BiPAP) machines in non-intubated patients. Algorithms based on the com- ³⁰ bined data as mentioned herein may use temporal lead/lag between measurements when integrating data together. The following examples illustrate embodiments of the invention, but should not be viewed as limiting the scope of the invention.

8

conversion ratios: 1 mg morphine=1 MME; 0.13 mg hydromorphone=1 MME; 10 mcg fentanyl=1 MME.

Each patient's Predicted MV (MV_{PRED}), representing the expected MV during quiet respiration in the awake, nonintubated patient, was calculated based on BSA and patient gender. Measured MV (MV_{MEASURED}) was converted to Percent Predicted MV (MV_{MEASURED}/MV_{PRED}×100%). Low MV was defined as MV less than 40% MV_{PRED} sustained for a period of 1-min or longer. The criteria chosen rithms. In one embodiment, a combination of Low MV 10 for Low MV <40% MV_{PRED} was originally based on the ARDSnet protocol for weaning patients off mechanical ventilation, which suggests that adequate ventilation associated with successful extubation is >40% of the predicted value for normal respiratory volumes and MV <40% 15 MV_{PRED} was subsequently used to define inadequate ventilation to risk-stratify patients in the PACU. Any measured Low MV within a 10-min period following the first Low MV alarm was considered part of the same event. Correlating Minute Ventilation with Pulse Oximetry Data. Timestamps for both RVM measurements (MV, TV, and RR) and SpO₂ values recorded in the EHR were aligned to facilitate the classification of pulse oximeter alarms. The pulse oximeter alarm (Low SpO₂) in the PACU was set at SpO₂<90% as per standard hospital protocol. In Table 1 patients were stratified based on the occurrence of Low MV. All terms and their abbreviations are summarized. A Low SpO₂ recorded for 1-min was considered to be a "Transient Alarm," and Low SpO₂ sustained for period of 2-min or longer (i.e. a minimum of two consecutive one minute data points) was considered a "Hypoxemic Episode". Hypoxemic Episodes were stratified into "True Desaturation" if the Hypoxemic Episode was associated with a preceding Low MV and "False Desaturation" when the Hypoxemic Episode coincided with patient movement and/ 35 or pulse oximeter probe malposition. Both Transient Alarms and False Desaturations were considered to be "False Alarms". A True Desaturation was considered to be a "True" Alarm".

EXAMPLES

A non-invasive, impedance-based respiratory volume monitor (RVM) was used to continuously and quantitatively 40 measure real-time MV, TV, and RR. Thoracic PadSet electrodes were placed in the recommended positions (sternal notch, xiphoid, and right midaxillary line at the level of the xiphoid). Medical history, anthropometrics, and basic demographics were obtained. In this observational study, clini- 45 cians were blinded to the RVM measurements and perioperative patient care followed standard practice, i.e. no changes were made to pain management protocols, PACU care, or interventions based on RVM measurements.

RVM data collection was started preoperatively, contin- 50 ued during surgery (using either general or spinal anesthesia), and terminated upon discharge from the PACU. SpO₂ values, measured as part of the routine PACU care, were collected by the bedside monitor and oximetry system in clinical use. Time stamped SpO₂ values, routinely recorded 55 at 60-second intervals, were obtained from the electronic health records (EHR). From the PACU nursing records, the following events, with approximate times noted, were obtained: PACU admission and discharge, supplemental oxygen (mode and flow rate), clinician-administered opioids 60 (dose) and any clinician recorded desaturation events. Patients with post-operative pain were typically managed on patient-controlled analgesia (PCA) pumps using either hydromorphone 0.2 mg/ml or morphine 1 mg/ml. Dosing timestamps were obtained from the PCA log. The total 65 opioid dose was calculated in Morphine Milligram Equivalents/kg (MME/kg) for each patient using the following

Statistical Analysis.

Multi-factor analysis of variance (MFANOVA) was used to evaluate differences in patient demographics between different groups. Unpaired two-sided t-tests were used to compare length of stay (LOS) across groups and a Fisher's exact test was used to investigate the occurrence of Low MV with opioid administration and administration of supplemental oxygen. All analyses were performed in MATLAB R2012b, with a p<0.05 considered significant. All values in the manuscript are reported as mean±standard error of the mean (SEM), unless otherwise noted.

Data were obtained from 273 patients. Fourteen patients were excluded due to missing data (SpO₂, RVM) or withdrawal of consent. Of the remaining 259 patients (140 females, mean age, 67 years, range, 28-91 years; mean body mass index (BMI), 29.8 kg/m², range, 19.0-49.1 kg/m²) included in the analysis, 82 patients (32% of cohort) had general anesthesia and 177 (68%) had spinal anesthesia. Patients were monitored for an average of 2.7±0.1 hrs in the PACU. Identification of True Desaturation by Monitoring Low MV. The MV trends were aligned with recorded SpO₂ values to analyze: (1) the MV preceding and during a Low SpO₂ Alarm, to help differentiate True Desaturation and False Desaturation events and (2) severity and timing of a Low MV event related to a Low SpO₂ Alarm. FIG. 1 provides an example of a 70 y/o female patient, BMI: 36.7 kg/m², 7.2 L/min MV_{PRED} who experienced a True Desaturation event. Over much of her 183-min PACU

9

stay, the $MV_{MEASURED}$ was less than 80% MV_{PRED} , stabilizing at or below 40% MV_{PRED} for the last 50-min of the PACU stay. It was during this period, readings from the pulse oximeter, which remained at 100% prior to this point, drifted to levels below 90%. The patient experienced 10 5 recurring Low MV events commencing 149-min prior to the True Desaturation with the most closely preceding Low MV event occurring 12.6-min prior to the True Desaturation.

FIG. 2 provides an example of a 63 y/o female patient, BMI: 29.1 kg/m², 7.0 L/min MV_{PRED} with multiple False 10 Desaturation events. This patient was admitted to the PACU with a MV_{MEASURED} above 150% MV_{PRED}. Over the course of her 121-min PACU stay, she experienced 4 Transient Alarms (1-min Low SpO₂) and 1 Hypoxemic Episode. Concurrent with all Low SpO₂ Alarms (both Hypoxemic 15) Episodes and Transient Alarms), the patient experienced large increases in MV, coinciding with movement and/or exertion. All Low SpO₂ Alarms were analyzed (i.e. Transient) Alarms and Hypoxemic Episodes) recorded across the entire 20 patient population to evaluate the relationship of Low MV to desaturation and to determine the number and proportion of True Desaturations (i.e. Hypoxemic Episodes preceded by Low MV events). Given multiple measurements and clinical interventions that occurred, a plot to facilitate visualization 25 of key temporal and dimensional features was created. Low MV events and clinical markers (EHR recorded Low SpO₂) Alarm, supplemental O_2 , and opioids) for each patient were temporally overlaid on a 1-dimensional axis representing each patient's PACU LOS, as shown in FIG. 3. All 113 Low SpO₂ Alarms were concentrated in 46 of the 259 patients (18% of the cohort). Of the 113 Low SpO₂ Alarms, 87 (77%) were Transient Alarms (1-min Low SpO₂), and 26 (23%) met the criteria for a Hypoxemic were 2-min, 27% were 3-min, 4% were 4-min, and 4%>5min long. All recorded Hypoxemic Episodes were separated by at least 3 minutes and had no missing data. Hypoxemic Episodes occurred in 18 patients; 12 of these 18 patients had one or more accompanying Transient Alarm. Note that 74% 40 of all Low SpO₂ Alarms occurred >30-min after admission to the PACU, which agrees with the 68.8% reported by Epstein et al (16).

10

patients experiencing Low MV was significantly longer than those who maintained adequate MV (2.8±0.1 hr vs. 2.4±0.1 hr respectively (p < 0.001)). Of the 259 patients, 202 (78%) were on supplemental oxygen for the majority of their PACU stay, and 137 (68%) of those 202 patients experienced at least one Low MV event without a Low SpO₂ Alarm recorded in the EHR. In contrast, of the remaining 57 (22%) patients who were maintained on room air during their PACU stay, 28 (49%) experienced at least one Low MV event without a Low SpO₂ Alarm recorded in the EHR (p<0.05).

The percent of time each patient maintained MV<40% MV_{PRED} was further analyzed during the first and last 30-min in the PACU (FIG. 4). Arrows indicate the percentage of patients with MV below 40% of MV_{PRED} for at least 10 minutes (one-third of each 30-min segment), indicating increased opioid sensitivity or other cause of respiratory depression and potentially a threat to patient safety. In the first 30-min in the PACU, approximately 18% of patients experienced Low MV for at least 1/3 of the time. This percentage remained at approximately 21% in the 30 minutes prior to discharge from the PACU, which could suggest that these patients may require RVM or other monitoring as they are transferred to the floor. In 35 (18%) of the 198 patients with at least one Low MV event, there were 75 recorded Low SpO₂ Alarms in the EHR of which only one was noted in the PACU nursing records. Of the recorded 75 Low SpO₂ Alarms, 58 were 1-min Transient Alarms, 9 were False Desaturations, and 8 were 30 True Desaturations. In 11 (18%) of the 61 patients without a preceding Low MV event, there were 38-recorded Low SpO₂ Alarms in the EHR of which 29 were 1-min Transient Alarms and 9 were False Desaturations.

Episode (i.e. >2 min). Of these Hypoxemic Episodes, 65% 35 Opioids Increase Likelihood of Respiratory Depression;

SpO₂ is a Late Indicator of Respiratory Depression.

Correlation of Hypoxemic Episodes with RVM measure- 45 ments shows that only 8 out of 113 (7%) Low SpO₂ Alarms were True Desaturations (identified in 7 patients-4 females; mean age, 69 years, range, 58-83 years; BMI, 27.2 kg/m^2 , range, 21.9-36.7 kg/m²; 6 of 7 received spinal anesthesia). True Desaturations were 2.5 ± 0.3 min in length 50 and the Low MV event most immediately preceding a True Desaturations occurred an average of 12.8±2.8 min earlier. Importantly, these True Desaturations generally followed repeated Low MV events. Patients with True Desaturation had on average 4.9±0.9 Low MV events commencing 55 71.4±16.5 min prior to a True Desaturation. Multi-factor ANOVA found no statistically significant difference in the demographics of the patients with True Desaturation (i.e. True Alarms) vs False Alarms (p>0.2 for height, weight, age, BMI, sex, and all cross-effects). The remaining 18 of 26 60 Hypoxemic Episodes coincided with excessive patient motion and adequate MV, i.e. MV>40% MV_{PRED}. Stratification of Patients by Occurrence of Low MV oxemia. Of the 259 patients, 198 (76%) experienced at least one Low MV event $(2.3 \pm 0.1 \text{ Low MV} \text{ events per hour})$, with the 65 remaining 61 (24%) patients maintaining adequate MV throughout their PACU stay. The LOS in the PACU for

Low MV increases LOS

Patients were further stratified according to administration of opioids. 166 (64%) of 259 patients received opioids. Patients on opioids had an increased likelihood of Low MV (69% vs 80%, p<0.05). Furthermore, patients receiving opioids in the PACU had significantly longer LOS than those who did not receive opioids $(2.9\pm0.1 \text{ hr vs. } 2.3\pm0.1 \text{ hr},$ p < 0.001). In the opioid group, the LOS in the PACU increased substantially with Low MV. The 133 (80%) of 166 patients on opioids with Low MV spent 75% longer in the PACU than the 33 (20%) patients on opioids without Low MV $(3.0\pm0.1 \text{ hr vs. } 1.7\pm0.2 \text{ hr}, p<0.001)$.

Results show that the majority (93%) of SpO₂ alarms recorded in the EHR were likely false. Using the RVM, respiratory depression was detected in advance of all True Desaturations by 12.8±2.8 min from the immediately preceding Low MV event. In fact, if the healthcare providers caring for the patients studied here had been using the RVM for clinical assessment and treatment, they would have likely acted on the repeated Low MV alarms, which started an average of 71.4±16.5 min prior to each True Desaturation, possibly eliminating all of them. The lag between inadequate ventilation and the onset of hypoxemia as measured by the pulse oximeter is a critical period. Early signs of inadequate ventilation provided by the RVM could trigger assessment and treatment of the underlying cause before desaturation occurs, preventing rather than treating the hyp-A significantly larger fraction of the patients on supplemental O₂ had Low MV without a Low SpO₂ Alarm (68%) vs 49%, p<0.05), indicating that supplemental oxygen likely masks the manifestation of respiratory depression as a

11

desaturation. Data shows that supplemental oxygen increases the lag time before significant hypoxemia is detected below a preset SpO₂ threshold, potentially masking serious respiratory complications that can lead to respiratory failure and death. Results also show that pulse oximetry can 5 detect periods of hypoventilation when a patient is breathing room air. Patients on oxygen should have additional monitoring of their ventilation status. While the data supports this view, it should not be overlooked that nearly half of the patients (49%) on room air also demonstrated periods of 10 Low MV, indicating that pulse oximetry alone may also not be sufficient to monitor respiratory status of post-operative patients on room air who may have compromised ventilation from opioids or residual neuromuscular blockade. Since pulse oximetry became universally implemented 15 throughout the hospital, the issue of false alarms has increased in prevalence, leading to the Joint Commission's call for establishing policies and procedures for managing clinical alarms, most recently reinforced in their 2016 advance of or in conjunction with pulse oximetry has the potential to increase patient safety not only by providing earlier data as to deteriorating respiratory status, but also by reducing the number of false alarms. Developing protocols based on RVM data could mitigate the effects of alarm 25 fatigue. Responding to all alarms drains clinical resources and time, in addition to not addressing the underlying problem. Additionally, RVM permits: (1) enhanced detection of increased opioid sensitivity, allowing for changes to opioid management based on each patient's individual 30 response and helping to guide rational use of multimodal therapy and expensive non-opioids; (2) reduced PACULOS; (3) improved triage of patients to an appropriate setting post-PACU, and (3) better determination of the most effective respiratory therapeutic strategy. Combined these fea- 35

12

taken can be very difficult, due to other clinical priorities leading to incomplete information records. Not uncommonly, the chart does not provide evidence or reasons for the patient needing to be urgently or emergently reintubated or having suffered a cardiopulmonary arrest.

Third, in this observational study, clinicians were blinded to the RVM measurements while pulse oximetry was used as part of routine care. As staff was unaware of Low MV and hence no clinical action steps were taken, the clinical condition of hypoventilation was not assessed or addressed. On this basis, the number of Low MV events per patient appears artificially inflated from what would be seen when the RVM technology is used to drive clinical assessment and action. Finally, the study was limited to the use of existing PACU monitoring technologies. Comparison of ventilation with EtCO₂ monitoring was not done because EtCO₂ monitoring was not implemented in the PACU in the study institution. Previous work has well documented accuracy of the RVM measurements in both intubated and non-intubated National Patient Safety Goals. Using continuous RVM in 20 patients obviating the need to include spirometry. Additionally, adding spirometry complicates the study and enhance the Hawthorne effect. Since measurement of MV using the RVM provides the earliest signal of respiratory insufficiency and, with truncal electrode placement, does not suffer from false alarms due to patient movement or probe dislodgement, there are several ways that the results presented here could be translated into clinical practice. One would be to monitor patient ventilation status continuously with RVM and obtain pulse oximetry readings only intermittently on a set schedule and also when the MV decreases below a given threshold. This approach is of particularly relevance to patient monitoring in a moving vehicle, where exogenous movement often renders oximetry monitoring suboptimal. Another is to create an algorithm that incorporated both continuous RVM and pulse

tures assist in increasing patient safety while reducing cost.

Length of stay in the PACU was significantly increased in patients with Low MV events (2.8±0.1 hr. vs 2.4±0.1 hr, p < 0.05) and, as logic dictates. Opioid use increases the likelihood of a Low MV event in the PACU. However, data 40 more dramatically show that patients receiving opioids who also experience Low MV events spent nearly 75% more time in the PACU vs patients receiving opioids who did not experience Low MV events $(3.0\pm0.1 \text{ hr. vs. } 1.7\pm0.2 \text{ hr.})$ p<0.001). These findings indicate that instead of using a 45 uniform opioid dosing regimen, clinicians could individualize opioid dosing or better select patients for expensive multimodal analgesic regimens based on real-time RVM data.

This study has several limitations. First, given the sample 50 size, the current study did not stratify specific patient populations based on: (1) significant respiratory disease, e.g. chronic obstructive pulmonary disease, congestive heart failure; (2) obstructive sleep apnea; (3) decreased respiratory reserve, e.g. pregnant women, elderly, ultra-morbidly obese, 55 children; (4) increased physiologic reserve, e.g. athletes (5) general versus spinal anesthesia. Second, events recorded in the EHR correlated poorly with PACU nursing records. The 1-min SpO₂ recordings represent snapshots rather than 1-min averages of SpO_2 values; combined with the 15-min 60 resolution in the nursing records, the clinical indicators used to resolve hypoxemic events remain unclear. These limitations bring into question the reliability of nursing notes and EHR records as they currently are configured as the primary infrastructure to capture information as to patient respiratory 65 status for retrospective analysis. When reviewing for quality issues, trying to reconstruct event timetables and actions

oximetry data to define alarm parameters. Both of these methods provide a decrease in false alarms and improve patient safety.

The use of the basic RVM technology is not limited to brick-and-mortar hospital settings. Accurate, robust, and portable technologies for use in transport vehicles or mobile clinics, often found in disaster-struck regions or military conflict zones is important for the safety of patients where advanced respiratory care is not readily available. Continuous RVM monitoring of patients in these settings drive better management decisions regarding treatments and triaging that prevent otherwise serious consequences of severe respiratory compromise and minimize patient harm. Initial validation in the more controlled PACU setting is useful and carries extended value for other settings as well.

The RVM projects to be a clinical tool for identifying true respiratory depression and, when used in conjunction with SpO₂ monitoring, can reduce the number of false alarms, leading to less alarm fatigue and desensitization. Delivery of only meaningful alarms is particularly important in less intensely monitored and staffed clinical environments and would help hospitals meet The Joint Commission National Patient Safety Goal mandates to deal effectively with alarms. Using the RVM for monitoring non-intubated patients has great potential to improve patient safety, yield greater efficiency, and provide a method for respiratory assessment across the continuum of care. Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all publications, U.S. and foreign patents and patent applications, are specifically

40

13

and entirely incorporated by reference. It is intended that the specification and examples be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. Furthermore, the term "comprising of" includes the terms "consisting of" and "consisting essen- 5 tially of."

14

SpO₂ event occurs upon the SpO₂ of the patient falling below a predefined SpO₂ percentage; and wherein the visualization of the patient's respiratory status includes a differentiation between true SpO₂ events and false SpO₂ events, wherein a true SpO₂ event occurs upon a low SpO₂ event occurring for a pre-

TABLE 1

	Definition	n of Terms and their Abbrevia	tions
Term	Abbreviation	Definition	Calculation
Measured Minute Volume	MV _{MEASURED}	The real-time MV reported by the RVM	
Predicted Minute Volume	MV _{PRED}	Expected MV under baseline conditions of quiet respiration in the awake, non-intubated patients	Male: BSA × 4 Female: BSA × 3.5
Percent Predicted Minute Volume	% MV _{PRED}	In percentage, the degree of deviation $MV_{MEASURED}$ is from the MV_{PRED}	$(MV_{MEASURED}/MV_{PRED}) \times 100$
Adequate Minute Volume	Adequate MV	$MV \ge 40\% MV_{PRED}$	
Low Minute Volume	Low MV	MV<40% MV _{PRED} sustained for a period of 1- min or longer	
Low Minute Volume Event	Low MV event	Low MV within a 10-min period following the first Low MV alarm	
Pulse Oximeter Alarm	Low SpO ₂	SpO ₂ <90%	
Transient		SpO ₂ <90% recorded for	
Alarm Hypoxemic Episode		only 1-min SpO ₂ <90% sustained for a period of 2-min or longer	
True Desaturation		Low SpO ₂ associated with a preceding Low MV event	
False Desaturation		Low SpO ₂ coinciding with Adequate MV and patient	
False Alarm		movement Either a Transient Alarm or Ealco Deceturation	

False Desaturation

True Alarm

A True Desaturation

The invention claimed is:

1. A method of displaying respiratory data of a patient comprising, on a processor:

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, 45 percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO_2) data of the patient; obtaining treatment data of the patient;

outputting a visualization of the patient's respiratory ⁵⁰ status on a display device including the respiratory data, the SpO₂ data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ data being met; ⁵⁵

wherein the visualization of the patient's respiratory sta-

defined period of time and at least one of an abnormal MV, TV, or RR, and a false SpO_2 event occurs upon a low SpO_2 event occurring for less than the predefined period of time and at least one of an adequate MV, TV, or RR.

2. The method of claim 1, wherein the patient is non-intubated.

3. The method of claim 1, wherein the alarm is triggered only for true SpO_2 events.

4. The method of claim 1, wherein the indication of a low
 ⁰ minute ventilation (LMV) event includes the duration of the event and the severity of the event.

5. The method of claim 1, wherein the respiratory data are obtained continuously and the SpO₂ data are obtained upon at least one of the MV, TV, or RR of the patient at least one of meeting predefined criteria or exceeding a predefined range.
6. The method of claim 1, wherein the SpO₂ data are obtained continuously and the respiratory data is obtained upon at least one of the MV, TV, or RR of the patient at least one of meeting predefined criteria or exceeding a predefined range.
7. The method of claim 1, wherein the SpO₂ data are displayed upon predefined MV, TV, or RR criteria being met.
8. The method of claim 1, wherein SpO₂ data are obtained or displayed if and only if MV measurements drop below 40% of baseline MV.

tus comprises at least one indication of a treatment timeline of the patient, at least one indication of supplemental oxygen given to the patient, at least one indication of a low minute ventilation (LMV) event, at least one indication of a drug dose given to the patient, at least one indication of an apneic pause longer than a predefined duration, at least one indication of a low SpO₂ events, wherein a LMV event occurs upon the MV of the patient falling below a predetermined MV of the patient for a predetermined period of time, or a low

50

15

9. The method of claim 1, wherein SpO_2 data are obtained or displayed if and only if MV measurements drop below 40% of predicted MV based on the patient's body surface area.

10. The method of claim 1, wherein SpO_2 data are ⁵ obtained or displayed if and only if MV measurements drop below 40% of predicted MV based on the patient's ideal body weight.

11. The method of claim 1, wherein SpO_2 data are obtained or displayed if and only if MV measurements ¹⁰ exceeds 300% of baseline MV.

12. The method of claim 1, wherein SpO_2 data are obtained or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's body 15 surface area.

16

wherein SpO₂ data are obtained or displayed if and only if MV measurements drop below 40% of predicted MV based on the patient's body surface area.
20. A method of displaying respiratory data of a patient comprising, on a processor:

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO_2) data of the patient; obtaining treatment data of the patient; outputting a visualization of the patient's respiratory

13. The method of claim 1, wherein SpO_2 data are obtained or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's ideal body weight.

14. The method of claim 1, wherein SpO_2 measurements are obtained or displayed if and only a rate of change of MV measurements over time exceeds a predefined threshold.

15. The method of claim 1, wherein upon both MV below a predefined range and SpO_2 below a predefined range the ²⁵ audible or visual alarm is triggered.

16. The method of claim 1, wherein the respiratory data is collected from a ventilator, spirometer, pneumotachometer, or non-invasive respiratory volume monitoring device.

17. The method of claim **1**, further comprising adjusting ³⁰ at least one respiratory setting on a ventilator in intubated patients or on a continuous positive airway pressure or a bilevel positive airway pressure machine in non-intubated patients.

³⁵ **18**. A method of displaying respiratory data of a patient comprising, on a processor:

status on a display device including the respiratory data, the SpO_2 data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO_2 data being met;

wherein SpO₂ data are obtained or displayed if and only if MV measurements drop below 40% of predicted MV based on the patient's ideal body weight.
21. A method of displaying respiratory data of a patient comprising, on a processor:

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO_2) data of the patient; obtaining treatment data of the patient; outputting a visualization of the patient's respiratory status on a display device including the respiratory data, the SpO₂ data, and the treatment data; and

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, 40 percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO_2) data of the patient; obtaining treatment data of the patient;

outputting a visualization of the patient's respiratory 45 status on a display device including the respiratory data, the SpO₂ data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂

data being met;

- wherein SpO₂ data are obtained or displayed if and only if MV measurements drop below 40% of baseline MV.
 19. A method of displaying respiratory data of a patient comprising, on a processor:
 - obtaining respiratory data of a patient from at least one 55 patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV,

triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ data being met;

wherein SpO₂ data are obtained or displayed if and only if MV measurements exceeds 300% of baseline MV.
22. A method of displaying respiratory data of a patient comprising, on a processor:

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO_2) data of the patient; obtaining treatment data of the patient;

outputting a visualization of the patient's respiratory status on a display device including the respiratory data, the SpO₂ data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ data being met;

wherein SpO₂ data are obtained or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's body surface area.
23. A method of displaying respiratory data of a patient 60 comprising, on a processor:

percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient;

obtaining oxygen saturation (SpO₂) data of the patient; obtaining treatment data of the patient;

outputting a visualization of the patient's respiratory status on a display device including the respiratory data, the SpO_2 data, and the treatment data; and triggering at least one of an audible or visual alarm upon 65 a predetermined condition in the variability of the SpO_2 data being met; obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient; obtaining oxygen saturation (SpO₂) data of the patient; obtaining treatment data of the patient;

17

outputting a visualization of the patient's respiratory status on a display device including the respiratory data, the SpO₂ data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ 5 data being met;

wherein SpO₂ data are obtained or displayed if and only if MV measurements exceeds 300% of predicted MV based on the patient's ideal body weight.

24. A method of displaying respiratory data of a patient 10 comprising, on a processor:

obtaining respiratory data of a patient from at least one patient sensor, wherein the respiratory data includes at least one of minute ventilation (MV), predicted MV, percent predicted MV, tidal volume (TV), and respiratory rate (RR) of the patient; obtaining oxygen saturation (SpO₂) data of the patient; obtaining treatment data of the patient; outputting a visualization of the patient's respiratory status on a display device including the respiratory 20 data, the SpO₂ data, and the treatment data; and triggering at least one of an audible or visual alarm upon a predetermined condition in the variability of the SpO₂ data being met; 18

wherein SpO₂ measurements are obtained or displayed if 25 and only a rate of change of MV measurements over time exceeds a predefined threshold.

* * * * *