US011272044B2

a2 United States Patent (10) Patent No.: US 11,272,044 B2

Smith et al. 45) Date of Patent: Mar. 8, 2022
(54) CONCURRENT PROCESS EXECUTION GO6F 9/5027 (2013.01); GO6F 2209/5015
(2013.01); GO6F 2209/5018 (2013.01); GO6F
(71) Applicant: Miosoft Corporation, Madison, WI 2209/544 (2013.01); GO6F 2209/548
(US) (2013.01); HO4L 45/023 (2013.01)

(58) Field of Classification Search
(72) Inventors: Todd Lyle Smith, Madison, WI (US); CPC ... HO4L 67/2823; HO4L 67/10;, HO4L 67/141;
Mark D. A. van Gulik, Madison, WI HO4L 69/326; HO4L 69/161; HO4L
(US) 65/103

See application file for complete search history.

(73) Assignee: Miosoft Corporation, Madison, WI
(US) (56) References Cited

(*) Notice: Subject to any disclaimer, the term of this U.s. PATENT DOCUMENTS

patent 1s extended or adjusted under 35 5.881.243 A 3/1999 Zaumen et al.

U.5.C. 154(b) by 0 days. 6,061,713 A * 52000 Bharadhwaj GOG6F 9/54
709/203
(21) Appl. No.: 16/738,241 (Continued)
(22) Filed: Jan. 9, 2020 FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data CN 101491033 A 72009
EP 2 007 065 12/2008

US 2020/0153946 Al May 14, 2020 .
A (Continued)

Related U.S. Application Data

(60) Continuation of application No. 15/643,386, filed on
Jul. 6, 2017, now abandoned, which 1s a division of U.S. Appl. No. 13/353,381, filed Jan. 19, 2012.

OTHER PUBLICATTONS

(Continued) (Continued)
(51) Int. CL Primary Examiner — El Hadjn M Sall
HO4L 29/08 (2006.01) (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
HO4L 29/06 (2006.01)
GO6l 9/54 (2006.01) (37) ABSTRACT
HO4L 127757 (2013'():‘) Among other things, a node 1s enabled to participate, with
GO6I’ 9/50 (2006.01) - ; : :
H other nodes, 1n forming and using transport layer features 1n
HO4L 69/326 (2022.01) L -
_ a communication network, the transport layer features being
(Continued) extensible to support ten million or more simultaneous
(52) U.S. CL reliable conversations between or among applications run-
CPC HO41 69/326 (201301)5 GO6l 9/542 ning on respective par‘[icipan’[nodes.
(2013.01); GO6F 9/546 (2013.01); HO4L
69/161 (2013.01); HO4L 69/165 (2013.01); 8 Claims, 12 Drawing Sheets

VTN P " CLIENT LIBRARIES, 31
NETWORK ™ HIGHER LEVEL TRANSPORT LAYER 29 ~_°

TRANSPORT ¢

| | AYER |
\y SOFTWARE A

--

Y

DENTIFIER

/ RESOLUTION
33

£
H
7

!
¢

NS, 35

US 11,272,044 B2
Page 2

(1)

(56)

Related U.S. Application Data

application No. 13/353,381, filed on Jan. 19, 2012,
now Pat. No. 9,769,292,

Int. CI.
HO4L 69/16
HO4L 69/165
HO4L 45/023

(2022.01
(2022.01
(2022.01

L N

References Cited

U.S. PATENT DOCUMENTS

0,001,807 A
6,269,378 Bl
7,072,329 B2
7,504,982 B2
7,318,102 Bl
7,551,629 B2
8,082,468 Bl
8,478,890 B2
9,769,292 B2

2003/0106067 Al
2005/0071440 Al*

2005/0149934 Al
2006/0020525 AlL*

2006/0123079
2007/0291765
2008/0049619

2008/0062862
2008/0077710
2008/0205415

2008/0209434
2008/0263172
2008/0263212
2009/0299957
201
201

201

201
201
201
201
201
201

201

0/0057835
0/0085887
0/0198698

0/0250755
0/0322236
2/0303609
3/0124475
3/0191434
4/0280398
7/0310794

AN A A AN A A A AN A A AN AN A

5/2000
7/2001
7/2006
12/2007
1/2008
6/2009
12/2011
7/2013
9/2017
6/2003
3/2005

7/2005
1/2006

6/2006
12/2007
2/2008

3/2008
3/2008
8/2008

8/2008
10/2008
10/2008
12/2009

3/2010

4/2010

8/2010

9/201
12/201
11/201

5/201

7/201

9/201
10/201

~] L Wwro OO

Albert et al.
Quurt

Willars et al.
Hondo et al.
Krause et al.
Chen et al.
Backensto et al.
Chaturvedi et al.
Smith et al.
Hoskins et al.
Jonesoooceinnin,

Doolittle et al.
Borelli

Sturniolo et al.
Boley et al.

[]
TWISS v,

Goyal et al.
Kouvelas et al.

Morales

Queck et al.
Hickerson et al.
Goix et al.
[edlie

Little

Ray et al.
Raleigh

Morris
Vimpar et al.
Bent et al.

Hildenbrand et al.

Smith et al.
Smith et al.
Smith et al.

HO4L 12/1827
709/218

G06Q 30/0641
705/34

. HO4L 69/329
370/236

... HO4L 67/16
370/401

HO4L 41/0806
705/26.1

FOREIGN PATENT DOCUMENTS

EP 2 057 803 1/2011
EP 2805459 11/2014
WO WO 2004/051497 6/2004
WO WO 2013/109455 7/2013
WO WO 2014/150378 9/2014

OTHER PUBLICATTIONS

U.S. Appl. No. 13/838,518, filed Mar. 15, 2013.
Chinese Oflice Action with English translation 1ssued in Chinese
application 201380014967.9 dated Sep. 12, 2016 (14 pages).

European Communication pursuant Pursuant to Rules 161 & 162
EPC dated Aug. 27, 2014 1ssued 1n European application 13738594 4

(3 pages).
European Communication pursuant to Article 94(3) EPC dated Nov.
2, 2015 1ssued 1n European application 13738594.4 (8 pages).

European Otlice Action for App. Ser. No. EP 13 73 8594, dated Nov.
2, 2015, 8 pages.

European Search Report for App. Ser. No. EP 13 73 8594, dated Oct.
13, 2015, 6 pages.

International Preliminary Report on Patentability for App. Ser. No.
PCT/US14/23097, dated Sep. 15, 2015, 7 pages.

International Preliminary Report on Patentability for App. Ser. No.
PCT/US2013/020964, dated Jul. 22, 2014, 9 pages.

International Preliminary Report on Patentability from PCT appli-
cation PCT/US2014/023097 dated Sep. 24, 2015 (7 pages).
International Search Report and Written Opinion for App. Ser. No.
PCT/US14/23097, dated Aug. 22, 2014, 14 pages.

International Search Report and Written Opinion for App. Ser. No.
PCT/US2013/020964, dated May 7, 2013, 15 pages.

Ozsu and Valduriez, “Principles of Distributed Database Systems,”
p. 3, Third Edition, copyright Springer Science + Business Media,
LLC (2011).

Response to European Communication pursuant Pursuant to Rules
161 & 162 EPC 1ssued 1n European application 13738594 .4, sub-
mitted on Feb. 12, 2015 (9 pages).

Response to Supplemental Search Report 1ssued 1n European appli-
cation 13738594 .4, submitted on Aug. 4, 2015 (4 pages).
Supplemental Partial European Search Report for App. Ser. No. EP
13 73 8594, dated Jun. 30, 2015, 6 pages.

Tanenbaum, A., Computer Networks, “The Transport Layer,” Com-
puter Networks, Third Edition, Prentice-Hall International, London,
GB, pp. 479-576, Jan. 1, 1996, XP002348041, ISBN: 978-0-13-
394248-4.

U.S. Appl. No. 13/353,381, filed Jan. 19, 2012—Issued U.S. Pat.
No. 9,769,292,

U.S. Appl. No. 15/643,386, filed Jul. 6, 2017—Published 20170310794.
U.S. Appl. No. 13/838,518, filed Mar. 15, 2013—Abandoned.

* cited by examiner

S. Patent Mar. 8, 2022 Sheet 1 of 12 S 11.272.044 B2

BB & B Lk ok ok ok ko kM B L B ok b ok 8RB J &k Bk k ok ko ok ko

+
a
F rwm =
1 +
L L]
2
+
+
=
-
&+
I
+
Y
'
+
+
LY
o
"
=
»
"
T
[}
*
T
+*
+
+
Fl
-
4+
+ =
+ -y
+ m 'y
1+
+

+ + d + d + b+ b+ F o+ e+ A Fd AR+ FF A Fd R+ b+ d A+ R R+ FA AR+ FA A+ F R+ A FAd e+ bR FAFd R F+d A Fd R F R+ F e+ bR Fr ket b FRd e+ R R R d A+ R A F FdF b kA A dF+d R+ Rd A+ DA F e d rd bk F A e+ R+ R FAFAad o+

SOURCE DESTINATION | SOURCE | DESTINATION
ADDRESS ADDRESS PART PORT

- - T T i A I O I A T A A I P I - I I T T T T T T T T T T T - T T T T e T T O o T T P, L TR I L I et A T T I T T T T T P T T - L T T T T T A T T T - T I T T - T O T A T T T T T T P T L T - L,

U.S. Patent Mar. 8, 2022 Sheet 2 of 12 US 11,272,044 B2

SNV o ~"CLIENT LIBRARIES, 31
NETWORK =\ HIGHER LEVEL TRANSPORT LAYER, 29 <

TRANSPORT

. | SQL;—?\;%ERE) * ____________
’ 34 36
"32
/ IDENTIFIER
, RESOE;J%ON G o

S. Patent Mar. 8, 2022 Sheet 3 of 12 S 11.272.044 B2

+
-+ +
+ +
+
+ 4
+ + +
+ + +
+
+ * +
* *
+ +
+ &
+ + +
-+ + "3 + + + +
Iy + + + +
+ + + +
+ + + + +
+ * + +
L + +
+ + + + + ¥
DN
+
+
+
+
-+
+
+
+
+
+
+
+
+
+
+
*
+
+
+
+ +
) +
+
h &
+
+
+
+
*
+ +
+
+
+
-+
+
+ +
+ +
+
+
*
*
+
+
+
+
+
+
+
*
+
+
+
+
+*
+
+

+ + + + +

+ + + +

S. Patent Mar. 8, 2022 Sheet 4 of 12 S 11.272.044 B2

+ + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +F + + F +F F FF A+ FFAFFFFEFFF
+
+
i+
+
+
+ + + F+ + + F + +F A+ + + + + + + + + + + + + + + -

+ + + + + + + +F + + + + + F A FFFFFEFEFEFEFEFEFEFEE T

+ F + + + +

US 11,272,044 B2

il
s 1 B

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+*
+
+
+
+
+*
o :
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ +
+ + +
+ +*
+
+ +
+ +
-+ +
+ + +
+ +*
+
+ +
+ +*
+ +
+ + +
+
+
+
+
+
+ +*
+
+
+
+
+
+
+
+
+
*
S y
+
+
' :
r +
+
h "
S +
+
+ .-.+
iy +
d
+
+*
-
+ + + + +, + + +
+ + + +
+* + &
+ +
+
+ +
+ +
+ + + + + + .—..—.
“ _ !
+ +
-+
+ +
+
i+ +
+ +
+ +
0 + —'j +
+ n" +
b+
o H ”
+ + 4 Iy ul’ +
e L+
4 * ' L+ N +
. + v g, .
¢+ + H!Eﬁ;iiiag *
+ +
N | | ! , :
. J
-+ L3 +
&
+ g +
L3
] * *
+
+
+
+ + +
+
+
tl
+
+*
+
M +

+ + + + + + + +

U.S. Patent

+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+

+
+
+
+
+
+
+
+
+
+
+

n

%

g

+

U.S. Patent Mar. 8, 2022 Sheet 6 of 12 US 11,272,044 B2

++

SERVICE 132
HANDLE, - j
122 B W
N _ _
SUBSCRIBER| AN RELIABLY, 134
¢ SUBSCRIBE, 121 |
; USER § ® 1
- APPLICATION,|
120

oERVICE

HANDLE EVENT 130
124
PURLISHER |
196
138

+++

e
+
+
"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
4
+*
+
wd
+
+
+
+
+ +

DISCARDED, 138

F1G. 6

26 L FTONYH

ADIAHIS ~
_ﬁ NOLLYNILSTQ Sy

US 11,272,044 B2

BB E o B N B A E g oE o R

- 0§l
~ TIONYH | .
> | JAES | I
7 * JOUNOS N\ |
SIWVYHOY LY
N e vEsn
~ .m w
K |
o~
> _
” ALNEYTIVAY
L — IIANIS
40 OI104LH0d

A L + k%

A L e e

U.S. Patent

U.S. Patent Mar. 8, 2022 Sheet 8 of 12 US 11,272,044 B2

~ 306

CLIENT |
DATAGRAM|

- 304

OPEN
+—> | SERVICE
HANDLE

+++++++++++++++++++++++++++++++++++

302 | OPEN
! SERVICE | &
HANDLE

+++++++++++++++++++++++++++++++++++

7
\ EVENT

NOTIFICATION

+
+
-+
+
+-
+
+ +
+
+ + +
+ +
+ + +
+ + +
+* +
+
+
+
+
+ + + +
* +
+ +
+
+ +
+ +
+
+
+-

+ +
+
+*

+
+*
| b -
H +
+
e
+
+
+
+* H
+
+*
+ +
+ +
H *
+
*
+ +
+
*
Iy .
+ +
+*
+
+ + +
+

312

SERVICE | _/
| HANDLE

(PUBLISHER)

3 32 |
+
* LA,
+ + +
+
+ +
+ +
+ +

F1G. 8

U.S. Patent Mar. 8, 2022 Sheet 9 of 12 US 11,272,044 B2

401 .~ S o
 SERVICE| oo APPL%CATEON
HANDLE
SQFTWAREE
SERViCE DENTIFIER INSTANCE

— 422
SUBSCRIPTIONS |
SUBSCRIPTION ' READER TABLES 404
CONVERSATIONMAE, 2 | berreereeereeeeeeeeeeeeeeeee

400
CONVERSATIONS, 402

CONVERSATION
IDENTIFIER, 412

U.S. Patent Sheet 10 of 12

Mar. 8, 2022

504
202

[NETWORK X .
3 TRANSPORT [\ 504
T SOFTWARFE s

205
508

204

US 11,272,044 B2

- 512

378

Sy
SHOLY ISNVEL |

S AN
H NIVHO NOLLVISNYHL INTOV

ANZADY Ldd00V

US 11,272,044 B2

+ + *+ + + F + + F + +F F F FFFFFEFEFFEFFEF

+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*

.
+
F + +
L]
+ +
+
+*
Y r
+ F ¥+ A AFEA A A A A FE A A
+ +
+ +
+ +
+* +* * + o+ + + o+ ko
+ F+ + + F + + + + + At F A A AFEAAFEA A
+ + +
- L N R R RN RN NN RN NN, L I N N N NN Nl RN Rl Nl RN RN NN RN NN NN, . .
1 * PPN * *
+ + +
+ + +
* . * *
+ + +
*)) * *
+* +* +*
.
+ + +
+* H +* +*
+ + +
+ + +
+* . H b H +* +*
+ + +
[F 2 F PP PRI WA
+ + +
+* - +* +*
+ + +
+ + +
+ - - - + +
+ + +
+ + +
+* +* +*
+ F + + + + + + + + + + + F + A A A At
+ +
- L I N N N NN Nl RN Rl Nl RN RN NN RN NN NN, .
+* +*
+ +
+ +
+* +*
+ +
+*
+ SR IL NI +
+
* * * AR *
* + AN
+ + + + + + +
* + + +* o+ +*
+ + + gt + + +
-+ + +
+ + + + +
+
+ + + +
H +*
+ + + +
+
+* +* +* +*
+
+ + + +
L +*
+ + + +
+
+* +* +* +*
+
+ + + + H H
+
+ + + +
+
+ + + L +
+
+ + + +
+*
+ + + H H +
+
+* +* +* +*
+
+ + + +
+*
+ + + +
+
+ +
+
+ + RIS
+
+ +
+
+* +*
+ +
- : :
[T s e s 4+] * +
* PPN ettt * .
+ +
+ - + - -
+ +
+ +
& ¥ *
+ . +
+ +
+ +
. . + +
+ H + H
+ +
+ +
+ +
+* . H H H H +*
+ +
+ +
+ + + + + ++ + ++ + +F 4+ +F+F+FFFFFFEFEFEFEFFFrFFEFEFFEEFEEFEFEFF T + +

+* + F ¥ F F ¥ FFFFFFFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFEFEFEEFEFEFEFEFEEFFEFEFEFEEFEFEEFFEFEFEFFFFE

+ 4+ + + + + + + + + + + + +F F +F FFFFFEFEFFEFEFEFFEFE A FEFEFEFFEFEFEEFEE A EEEEE

+
+

COC INAND WILLDIA .

* + + F F FFFFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFFFFFFF + +

. 0P% CCY
ATTIVL &444408 SOLVNIGHOO0

AR NN NI N B R EEBE BB EBEEBEEBEEBEEBEBEREBEEEBEEEEEBEMEEIMNEEIEINEIEIEIBIEIEIIIEZISLIEZIM.,.

LI N N B N N B N R B N N BN
i B L N N BN B BN B NN NN B B NN NS

U.S. Patent

US 11,272,044 B2

+
+
+
: . %
+
+ .
+
+ H H H H H
+
: .
+
+
+++
+
i+
+ +
i+ +
+
"y
+ +
+
+
+
+
+ +
+
+ +
+
+
+ +
g +
+
+
+
+ +
+
+
+
+
+
+
+ +
+ +
+ +
" "
g
& + +
+ +
+
+
+
+ +
+
+
+
+ 4+ + + + + + + + + + + + +F F +F F A FEFE +
+ +
+ "y
+
g ++++++++++++++++++++++++++++++++++++++

SOIVLYD
AJIAL IS

oo HONVYH
A0IAMAS |

LA B B N N RN EEEEEN]

a

o

S

= e SAVANLS

3 ~ LHOdSNYYL xmogim;mzk B A0 5LdE

= ‘ _ /o A ZdivVdd e
g H v0Z | /) e

* =+ kb kb .—..—.
+
+
+
+ +
+
+
" i #

\ AUIAHAS

+

HAAUHAOH
AUIALDS

+++++++++++++++++++
+
+ +
+ +
+*
+
+
+
+
+
+
+ + + *+ + + + + + + + +F F + FF+

SeddiAILLNAU]
A0IAADS

Mar. 8, 2022

: > .
+* + + + + + +

N DNIONI o

ANAAAS

U.S. Patent

US 11,272,044 B2

1
CONCURRENT PROCESS EXECUTION

CROSS REFERENC

L1

This application is a continuation of U.S. application Ser. >

No. 15/643,386, filed Jul. 6, 2017, which 1s a division of
U.S. application Ser. No. 13/353,381, filed Jan. 19, 2012.
The entire contents of all above references are incorporated

herein by reference.
10

BACKGROUND

This description relates to concurrent process execution.

Referring to FIG. 1, multiple processes 10 (also called
applications or programs) can be run, for example, by
corresponding processors 12 (e.g., computers) that are
located at different nodes 14 of a network 16. The concurrent
execution can be managed by the processes sending and
receiving network data packets 18 that conform to, for ,,
example, the Transmission Control Protocol (TCP). Correct
delivery of the TCP data packets 1s facilitated by 1dentitying,
in each packet, source and destination addresses 20, 22 on
the network of the nodes at which the data packet 1s being
sent and received, and source and destination port numbers 25
24, 26 at the sending and receiving nodes that have been

reserved by the sending and receirving processes for the
connection on which the data packets are to be carried. The
TCP permits a limited number of ports to be reserved at a

given node by providing a 16-bit addressable port space 30
(0-65535).

15

SUMMARY

In general, 1n an aspect, a node 1s enabled to participate, 35
with other nodes, in forming and using transport layer
features 1n a communication network, the transport layer
features being extensible to support ten million or more
simultaneous reliable conversations between or among
applications running on respective participant nodes. 40

Implementations may include one or more of the follow-
ing features. The conversations are reliable based on at least
one of the following: delivering notifications reliably and
delivering data streams reliably by delivering datagrams
unrclhiably and applying a process to the unreliable datagram 45
delivery to assure the reliability of the stream delivery. The
node 1s enabled to participate without regard to the platform
on which the node 1s running. The transport layer features
are provided at the application level of the communication
network. The participating node and other participating 50
nodes are organized automatically to provide the extensible
transport layer features. The conversations are reliable based
on at least one of (a) delivering notifications reliably or (b)
delivering data streams reliably by delivering datagrams
unreliably and applying a process to the unreliable datagram 55
delivery to assure the reliability of the stream delivery.

In general, in an aspect, user applications that run 1 an
application layer on nodes of a communication network are
enabled to cooperate to implement network transport layer
features on the communication network and to use the 60
implemented network transport layer features.

Implementations may include one or more of the follow-
ing features. The transport layer features include TCP fea-
tures. The TCP {features are used to carry notifications
reliably. The transport layer features include UDP features. 65
The UDP {features are used for autodiscovery of nodes and
automatic organization of node topology.

2

In general, 1n an aspect, nodes of a small communication
network are enabled to form and participate 1n transport
layer features that provide as many as trillions of commu-
nication channels available for communication among appli-
cations hosted on the nodes.

Implementations may include one or more of the follow-
ing features. The small communication network includes
tewer than all of the nodes on the Internet. Each of the
communication channels includes two communication end-
points each represented by a persistent service handle. The
service handle 1s maintained by a node that hosts an appli-
cation that provides or uses an associated service through
one of the communication channels. The forming of the
transport layer features by the nodes includes managing
service handles associated with endpoints of the communi-
cation channels. The nodes cooperate to maintain a common
global view of existing service handles. The network trans-
port features include TCP features. The network transport
teatures imnclude UDP features.

In general, 1n an aspect, as a configuration of a commu-
nication network changes, tables are dynamically deter-
mined, at nodes ol the network, to be used for routing
communications ifrom node to node through the network.
The dynamic determining includes propagating neighbor-
hood snapshots generated at respective nodes and in
response to the propagated neighborhood snapshots, itera-
tively delaying the determining of routing tables.

Implementations may include one or more of the follow-
ing features. A node schedules, for an incrementally later
time, a rebuilding of i1ts routing table when another node
jo1ns or leaves 1ts neighborhood. The node reschedules, for
a yet imncrementally later time, a rebuilding of 1ts routing
table when yet another node joins or leaves 1ts neighbor-
hood.

In general, 1n an aspect, at a node 1n a communication
network, a service location facility 1s provided for applica-
tions hosted on the node with respect to services oflered or
used by the applications hosted on the node or by applica-
tions hosted on other nodes of the communication network.
The service location facility maintains associations between
services and corresponding service identifiers.

Implementations may include one or more of the follow-
ing features. Snapshots of the associations are propagated
from the node to other nodes in the network. The associa-
tions are maintained in a service catalog. Alternate modes
are provided for an application to use the service catalog to
locate services of interest. The associations are used to
provide anycast features. The associations are used to pro-
vide multicast features. The associations are used to provide
load-balancing features with respect to use of the commu-
nication network. The associations are used to provide
proximity routing features.

In general, in an aspect, in a node of a communication
network, maintenance of communication endpoints 1s
enabled for use in establishing conversations of the nodes
and of the applications of the network. The endpoints are
maintained persistently as one or more of the following
occur: (a) conversations are established and terminated, (b)
network transport software instances are shut down and
restarted, (¢) nodes on which network transport software
instances are running are shut down and restarted, (d) an
entire network transport layer mesh 1s shut down and
restarted, or (e) the entire communication network 1s shut
down and restarted.

Implementations may include one or more of the follow-
ing features. Security techniques are applied based on the
persistence of the endpoints. Maintaining the endpoints

US 11,272,044 B2

3

persistently includes maintaining associated service handles
persistently. Statistically unique global i1dentity of the ser-
vice handles 1s maintained. Service handles are enabled to be
reused by transport soltware instances to represent given
participants of a conversation. Applications on nodes of the
communication network are enabled to provide and use
services between them privately based on the persistence of
the endpoints. Applications are enabled to migrate from one
node to another node of the network and the migrated
applications are enabled to provide and use services to one
another based on the persistence of the endpoints. Static
program correctness 1s analyzed based on the persistence of
the endpoints. Conversations of the nodes are re-established
after a failure of the communication network based on the
persistence of the endpoints.

In general, 1n an aspect, 1n a communication network in
which applications hosted on nodes of the network provide
and use services through communication between nodes on
the network, nodes of the network are enabled to cooperate

[

to provide reliable notification when failures at a node aflect
the availability of services from applications hosted on the
node.

Implementations may include one or more of the follow-
ing features. The failures include software restarts. The
tailures include hardware resets. The nodes of the network
are enabled to cooperate to provide reliable notification by
using transport layer software instances running on the
nodes. The failures include loss of operation of one or more
of the mstances. The nodes 1include operating systems sofit-
ware running on hardware. The failures include loss of
operation ol the operating system, the hardware, or both.

In general, in an aspect, 1n a communication network,
applications hosted on a node of the network are enabled to
publish the availability of services provided by the applica-
tions and to subscribe to services oflered by other applica-
tions. The publication includes publishing 1n one mode when
a service 1s subscribed by an application that 1s hosted on the
same node as the application that publishes the service, and
publishing 1n a diflerent mode when a service 1s subscribed
by an application that 1s hosted on a different node from the
node hosting the application that publishes the service.

Implementations may include one or more of the follow-
ing features. The published service availability 1s used to
respond to a request by an application for the location of the
service. The application requesting the location need have
no a priori knowledge of whether the service 1s available on
a local node or on a remote node. The application uses a
single location-neutral interface for requesting the location
whether the service 1s available on a local node or on a
remote node.

In general, 1n an aspect, 1n a communication network,
applications hosted on a node of the network are enabled to
subscribe to services published by applications on the net-
work. The subscribing includes: subscribing 1n one mode
when a service 1s published by an application that 1s hosted
on the same node as the application that subscribes to the
service, and subscribing in a different mode when a service
1s published by an application that 1s hosted on a different
node from the node hosting the application that subscribes to
the service.

Implementations may include one or more of the follow-
ing features. In the diflerent mode, the subscribing 1s reg-
istered locally by transport layer soitware running on the
same node as the application that subscribes to the service.
I any subscriptions have already been registered at the same
node for the service published by the application hosted on

10

15

20

25

30

35

40

45

50

55

60

65

4

the different node, the local node need not report the new
subscriber to the remote publishing application.

In general, 1n an aspect, when a first client application
hosted by a local node of a network wants to subscribe to a
service oflered by a service application running on a remote
node, a local transport layer software instance on the local
node sends a subscription management message to the
remote node to subscribe to the service on behalf of the first
client application. The local transport layer soltware
instance enables other local applications to use the service
without requiring any other subscription management mes-
sage to be sent on the network to the other node.

Implementations may include one or more of the follow-
ing features. The local transport layer software instance
sends another subscription management message only when
no local client application any longer uses the service. A
request for the location of a service 1s responded to 1n a way
that depends on whether the service being sought by an
application 1s hosted on the same node as the application that
provides the service. The responding can be based on only
services published 1n the one mode, or on services published
in the one mode and 1n the different mode.

In general, in an aspect, communication by applications
hosted on nodes of a communication network 1s enabled by
a combination of notifications that are delivered reliably and
datagrams that are delivered unreliably.

Implementations may include one or more of the follow-
ing features. The enabled communication 1s used to reliably
deliver streamed data. The datagrams are used to deliver
user data.

In general, 1n an aspect, In a communication network,
cach of the nodes of the network (a) can engage 1n com-
munications, on behalf of applications hosted on the node,
with other nodes 1n the network and (b) provides an 1/O
system for physical delivery and receipt of the communica-
tions. The communications are 1n contention for use of the
I/0O system. Entirely deadlock-free asynchronous operation
of the I/O system 1s provided with respect to contending
communications. These and other aspects, features, and
implementations can be expressed as methods, systems,
apparatus, program products, methods of doing business,
means and steps for performing functions, components, and
in other ways.

Other features, objects, and advantages of the invention
will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1 through 12 are block diagrams of combinations
ol elements associated with concurrent process execution.

DESCRIPTION

Although the 16-bit addressable port space provided by
the TCP 1s enough for many user applications and network
communication among them, 1t often 1s too small for super-
computing clusters and grids. For example, the limited port
space may make it impossible to implement direct TCP
packet commumication among interconnected cliques of
thousands of participant processes that are to execute large-
scale parallel algorithms.

Although the TCP imposes upon 1ts connections (1.., on
its connection space) only the uniqueness constraint of
<source IP, source port, destination IP, destination port>,
sometimes the connection space cannot be fully allocated
under the specification of the Berkeley Software Distribu-

US 11,272,044 B2

S

tion (BSD)-derived socket application programming inter-
taces (APIs). In particular, the APIs require a client process
to allocate a umique local TCP port before initiating a
connection to a server, and the client’s node 1s limited, by the
port space, to 2'° (65536) outgoing TCP connections. Simi-
larly, a node that hosts a server process is limited to 2'°
incoming connections from a particular node of a client.

The TCP on Internet Protocol version 6 (IPv6) deals with
these scale limitations by vastly expanding the network
source and destination address space (rather than an
expanded port space), but aspects of typical implementa-
tions of IPv6 constrain the degree of parallelism available
for grid computing applications, particularly in systems in
which distributed software 1s making eflective use of the
processor cores available at a particular node.

As an example, given a grid application distributed across
120 nodes, each of which hosts one process for each of 1ts
24 processor cores, such that every process wishes to
communicate with every other participating process uni-
formly using the TCP, each node would need to dedicate
69,096 ports for the local use of the grnid application pro-
cesses running on that node. This number of ports 1s several
thousand more than could be supported by the TCP port
space.

Here we discuss a new platform-neutral network transport
layer that provides connection space opportunities that scale
significantly beyond the TCP 16-bit port space limitation.
This new transport layer also provides deep, eflicient net-
work buflering and a robust service architecture that sup-
ports anycast and multicast addressing, load balancing,
persistence of identity, and reliable notification of events.
Tens of millions of active communication endpoints distrib-
uted across thousands of applications and hundreds of nodes
can be managed using available processors, memories, and
other hardware, without imposing special hardware require-
ments. A high level of parallelism can be provided for grid
computing applications, particularly in cases when distrib-
uted software 1s making good use of processor cores avail-
able at a particular node.

As shown 1n FIG. 2, in some examples, this platform-
neutral, large connection space network transport layer 30
can be implemented as what we will call network transport
software 32, instances of which run at respective nodes of
the network. We use the phrase network transport software
in a very broad sense to include, for example, instances of
software that run on nodes of networks and provide any one
Or more, or any combination, of the novel features described
here. Some 1mplementations of the network transport soft-
ware can be 1n the form of instances of Mioplexer™
soltware, available from MioSoit Corporation of Madison,
Wis., USA. Any references to Mioplexer in this description
are meant to be broad references to any kind of such network
transport software including the kinds described in this
document.

The network transport software operates above the TCP
34 and User Datagram Protocol (UDP) 36 as a higher-level
network transport layer 29. In some implementations, the
network transport software supports Internet Protocol ver-
sions 4 (IPv4) and 6 (IPv6).

As shown 1n FIG. 3, a network transport software istance
40 uses broadcast addressing to autodiscover other instances
42, 44 operating on the same network 46, to form a large-
connection-space network transport mesh 48 of nodes for
that network. The autodiscovery process shares network
transport soitware identifiers that specity TCP listen ports
for autodiscovery purposes. The network transport software
32 includes an identifier resolution process 33 that uses the

10

15

20

25

30

35

40

45

50

55

60

65

6

Domain Name System (DNS) 35 to resolve nonnumeric
identifiers while treating conformant decimal and hexadeci-
mal numeric 1dentifiers as IPv4 and IPv6 addresses, respec-
tively.

If broadcast addressing 1s unavailable or 1nsuflicient, the
autodiscovery process may be supplemented by unicast
addressing ol preconfigured targets. This mechanism may
also be used to join together large-connection-space network
transport meshes 50, 52 associated with different networks
54, 56. In some i1mplementations, the network transport
solftware can be implemented on commercially available
commodity hardware that incorporates a Network Interface
Card (NIC), and runs on any operating system that supports
a Java platform.

As shown in FIG. 3, an mnterconnected mesh 48 formed by
the network transport software includes a collection of
instances 40, 42, 44 of the network transport soitware that 1s
distributed across many network nodes 60, 62 1n each
network 46, 54, 56 of a network, such as a TCP/IP network.
In a typical configuration, each participating node hosts only
a single 1nstance of the network transport software. (Some-
times, we refer to a node 1n a network that hosts an instance
of the network transport software simply as a node. Some-
times we use the terms node and network transport software
interchangeably. Note that, although the node hosts the
network transport software, the software may be off while
the node 1s running. And, when the node 1s down, the
soltware 1s also down.)

This configuration 1s analogous to a typical configuration
of a traditional network transport layer: an operating system
instance at a node provides a single implementation of a
TCP stack to be shared by all user applications. In some
implementations of what we describe here, a single node 1n
a network can host multiple copies of network transport
software, which can be used for locally testing the base
soltware and user applications.

The network transport software 1nstances running 1n the
nodes use a UDP-based autodiscovery process to organize
themselves into the interconnected mesh. In a reasonably
stable network environment, user applications 11, 13 (FIG.
1) running on the various nodes of the mesh can automati-
cally leverage the pre-established mesh to reduce startup
latency that would otherwise be needed for mitiating con-
current parallel processing of distributed algorithms.

Neighboring nodes within a mesh are reliably connected
using the TCP. A network transport software instance uses
the same port number, by default 13697, for new TCP
connections as for mmcoming and outgoing UDP autodiscov-
ery-related messages. The autodiscovery process remains
active throughout the lifetime of the network transport
software, and thus automates fast recovery of lost TCP
connections that result from temporary network disruptions.
Provided that network links do not disappear as a result of
topological reorganization, then the autodiscovery mecha-
nism automatically repairs long-term breaches 1n the mesh.

The network transport software instances 40, 42, 44 (we
sometimes will refer to instances of the network transport
soltware simply as network transport software, for simplic-
ity) hosted on different nodes can connect to each other
using full-duplex TCP connections 45. Once a TCP connec-
tion has been established between two network transport
soltware 1nstances (we sometimes refer to these connections
between 1instances ol the transport software as network
transport software connections), the client node and server
node, in client-server model examples, negotiate to agree
upon, for example, a Mioplexer protocol version. If no
consensus can be reached, the client must disconnect from

US 11,272,044 B2

7

the server. Should the client fail to disconnect 1n this event,
then the server must disconnect the client upon incidence of
the first protocol violation.

Referring to FIG. 4, the mesh 59 supports user applica-
tions 64, 66 that wish to interchange data 68 between
disjoint address spaces or network nodes 70, 72, to provide
or use nonlocal services 74, 76, or collaborate to execute
parallel algorithms, or any combination of two of more of
those activities, and others.

A user application that wishes to use a mesh for any of
these activities first establishes a TCP connection 82, 84 to
a specific network transport software instance 78, 80 within
the mesh. Though a user application may elect to participate
in the network transport software autodiscovery process to
locate a suitable target instance, the user application often
will have prior knowledge of a specific network transport
soltware instance and 1ts hosting node’s 1dentity and loca-
tion. Often, the target instance will be running on the same
node as the user application.

We refer to a TCP connection between a network transport
soltware instance and a user application as an application
connection. When the user application 1s behaving as a client
relative to a service provided by the network transport
software 1nstance, the application connection can be called
a client connection. With respect to the roles played by
network transport software instances and applications, any
network transport software instance can act as a server for a
client application that 1s looking for service. And a network
transport soltware instance can act as a client when looking
to set up an outgoing connection to another node. A user
application can be a client 1f it needs service, either from
another user application or from a node, or a server to
provide a service to another user application. In all of these
cases, a client needs a service and the server provides it.

There are two levels of logical connectivity among
instances and applications. The lower level 1s TCP connec-
tivity between a user application and a network transport
software instance. The higher level 1s service handle (e.g.,
channel) connectivity between two user applications. A
logical connection usually establishes the directionality of
the client-server relationship. Both user applications and
network transport software instances can perform either role
(client or server) depending upon context.

In some i1mplementations, application connections are
treated as full-duplex for all purposes. After an application
connection 1s established, the user application and the net-
work transport software negotiate to agree upon, Ifor
example, a Mioplexer protocol version. If no consensus can
be reached, the user application will disconnect from the
network transport software. Should the client fail to discon-
nect 1n this event, then the network transport software will
disconnect the user application upon 1ncidence of the first
protocol violation. If, on the other hand, protocol version
negotiation results in a viable application connection, a user
application operating say as a client can send control mes-
sages, queries, and datagrams along this connection and can
receive control message acknowledgments, query responses,
datagrams, and event notifications from the network trans-
port software or other user applications along the same
connection. The client datagrams can carry user data from
one user application to another.

As shown in FIG. 5, the mesh 89 also enables user
applications 90, 92 to communicate directly with each other
by opening so-called service handles 94, 96 and exchanging,
user data 98 by means of the service handles. A service
handle 1s an opaque memento that universally and uniquely
represents a persistent communication endpoint 93, 95 that

10

15

20

25

30

35

40

45

50

55

60

65

8

may send or receive user data in the form of client datagrams
100. The client datagram exchange protocol 1s connection-
less. A service handle need only be open to enable a client

to send or receive client datagrams. Any two open service
handles 94, 96 define a channel 102 across which client

datagrams 100 may flow.

Though a user application may have explicit prior knowl-
edge of a specific service handle that facilitates a particular
service, for example, at another node, the user application
can also query its network transport software 104 (for
example, an instance that 1s hosted by the same node as the
user application) using a service identifier 106 that names
the needed service 1in a general way. A user application 90
that oflers a service 91 may ask 1ts network transport
software 108 to bind 112 a service identifier 110 to each

service handle 94 that facilitates the service; this process 1s
called service advertisement.

Once a service handle 1s bound to a service identifier, 1t
can be discovered by a user application. Service identifiers
need not be unique. In some implementations, many service
handles 114, 116 advertise the same service identifier. If
there are multiple service handles matching a particular
service 1dentifier, the network transport software can apply
additional filters 118 specified by a query 106 from the user
application and answer with the service handles that satisty
the query.

This arrangement allows the network transport software
to provide on-demand load balancing, nearness routing,
anycast routing, or other advanced routing capabilities or
any combination of two or more of them, and provide other
management functions, 1in the course of satistying the que-
ries of user applications. In some implementations, rules can
be implemented to ensure that service clients do not discover
mappropriate service providers. For example, two service
handles are allowed to bind the same service 1dentifier 11 and
only 1f they offer the same service in the same way. An
organization responsible for administration of a network
transport layer mesh may wish to establish a naming author-
ity and procedures to prevent accidental collisions in the
global service 1dentifier namespace 1n the network transport
soltware mesh.

As shown in FIG. 6, a user application 120 may subscribe
121 any of 1ts open service handles 122 to an event stream
126 of any other service handle 124, even one that has never
been opened. We name the former service handle as the
subscriber 122 and the latter as the publisher 124. When an
interesting event 130 occurs 1n the lifecycle of the publisher,
such as 1ts openming or closing, it publishes a notification 132
of this event to all subscribers. Event notifications from a
given publisher are reliably delivered 134 in occurrence
order to all of 1ts subscribers. Event notifications are guar-
anteed to be unique; a network layer software instance sends
only a single notification of an event, and no subscriber ever
receives a duplicate notification, even in the presence of a
chaotic or unstable network.

Application (e.g. client) datagrams 136 are delivered on a
best-eflort basis, and the mesh 1s engineered to perform well
even under systemic heavy load. However, 1n some 1mple-
mentations, a network layer software instance of the mesh
may discard 138 a client datagram at 1ts discretion. User
applications that directly use the client datagram transport
must accept the possibility of arbitrary loss of client data-
grams, though 1n practice the software instance only dis-
cards client datagrams associated with slow flowing chan-
nels, and only when the system 1s globally stressed by
extremely heavy traffic.

US 11,272,044 B2

9

Because routes through the mesh may change as a result
of node failures, network outages, and autodiscovery of new
network layer software instances in the mesh, the client
datagrams may reach their destination service handles 1n an
order different from the order 1n which they were sent from 5
the source service handle. The mesh can be configured to
butler client datagrams and be tuned to match an environ-
ment’s prevailing use cases. The bullering can include
sensible defaults that are suitable for most traflic patterns.

Though this combination of unreliable user datagrams 10
139 and reliable event notifications 134 is sufliciently useful
for many user applications, a transport layer can also provide
reliable 1mn-order delivery of user data. A user of the network
layer software can engineer transport layers above the
platform-neutral network transport layer provided by the 15
network layer software. In some implementations, a higher-
level transport layer 29 (FIG. 2) can be bundled and
deployed with the network transport software. This higher-
level transport layer may contain production-quality client
libraries 31 that implement a powertul and robust connec- 20
tion-oriented reliable streaming protocol that leverages a
broad spectrum of the network transport software’s capa-
bilities.

Returning to autodiscovery, to reduce user configuration
costs and maximize reliability, the network transport soft- 25
ware and its nodes may use a continuous autodiscovery
process to 1dentily peer nodes and to establish and maintain
a viable mesh. The autodiscovery process involves periodic
interchange of UDP messages that trigger TCP connection
attempts. This process also can help to ensure that lost TCP 30
connections are automatically restored as quickly as network
conditions permut.

Once the network transport software on a node 1s running,
it starts a timer that expires periodically with a user-defined
period having a default value, e.g., 10,000 ms (10s). This 35
timer defines a greeter heartbeat, and controls a rate at which
autodiscovery messages are broadcast by that instance of the
network transport software over UDP. The timing of the
initial heartbeat at a given software instance 1s randomized
to occur within a span established by the period to mntroduce 40
arrhythmia among nodes cooperating within the mesh. The
arrhythmia reduces the likelihood and impact of pulsed UDP
broadcasts that would otherwise result as a consequence of
starting the network transport software on many nodes
simultaneously. This strategy reduces the number of UDP 45
packets dropped by network hardware (UDP packets are
typically dropped belfore other packets).

Once per heartbeat, the network transport software of a
given node broadcasts a request-greetings message over
UDP to each target network. By default, the network trans- 50
port software of a node targets all networks 1n which the
node participates. The request-greetings message includes a
network transport software 1dentifier (47, 49, 33, FIG. 3) that
uniquely 1dentifies the sender node on its mesh. This 1den-
tifier 1s <node name, server port number>, where a node 55
name 1s a size-prefixed UTF-8 string that represents, for
example, the DNS name, IPv4 address, or IPv6 address of
the network transport software host node.

When network transport software hosted on a node
receives a request-greetings message, 1t resolves the network 60
transport software 1dentifier contained 1n the message into an
IP address, 1f necessary. If a TCP connection to the sender
does not already exist, the receiver replies by unicast over
UDP using a greetings message. A greetings message
includes the sender’s network transport software identifier. 65
The receiver then mitiates a TCP connection to the indicated
<]P address, server port number>. If a TCP connection to the

10

sender already exists, then the request-greetings message 1s
discarded without further action.

In some mmplementations, two nodes each hosting the
network transport software 1n a mesh may race to establish
TCP connections with one another. The network transport
software hosted on many nodes may be started virtually
simultaneously and 1t 1s desirable to maintain only one TCP
connection between any two nodes 1n order to make most
cllicient use of network resources. Since the network trans-
port software 1dentifiers are unique within a mesh, they can
be used to define a total order of the TCP connections. In
some 1mplementations, when TCP connections are estab-
lished between two nodes of a mesh, the network transport
soltware with the lower collating network transport software
identifier checks for the existence of a preexisting TCP
connection. If 1t discovers such a connection, 1t disestab-
lishes the TCP connection that it initiated and preserves the
other. The synchromization mechanisms that control the
internal TCP connection management data structures ensure
that one of these two connections must complete strictly
betore the other, therefore the algorithm guarantees that
redundant connections are ephemeral. Two nodes 1in a mesh,
cach hosting network transport soltware, separated by a
firewall 63 (FIG. 3), and segregated by network address
translation (NAT) can therefore reliably communicate with
one another; as long as one of the nodes 1s reachable from
the other, then a full-duplex connection may be established
between them.

A user application that wants to take advantage of the
network transport software autodiscovery process may listen
for request-greetings messages on the appropriate UDP port.
The user application does not respond to the request-greet-
ings message with a greetings message, so as not to be
confused for another network transport software instance by
the originator of the request-greetings message. In deploy-
ment scenarios that are grid-like, the network transport
software will cohabit with respective user applications.
Therefore a user application should typically attempt to
establish a TCP connection to the same node’s standard
network transport soitware port before resorting to listening,
for request-greetings messages 1n order to locate a viable
network transport software instance.

With respect to protocol version negotiation, after an
application connection 1s established from an arbitrary user
(e.g., client) application to a node (e.g., a server node),
network transport software protocol versions are negotiated
to ensure mutual compatibility. Each conformant client
application honors a list of acceptable server protocol ver-
sions. Each network transport soltware instance as a server
honors a list of acceptable client protocol versions. In some
implementations, the network transport software acts both as
a client, e.g., when establishing an outgoing TCP connection
to another node 1n the mesh, and as a server, e.g., when
accepting a TCP connection. This scheme ensures sliding
windows of backward and forward compatibility among
network transport software implementations.

Protocol version negotiation must be completed success-
tully before any requests may be 1ssued, responses given, or
user data exchanged. To reduce the burden of implementa-
tion for both user (e.g., client) application and mesh devel-
opers, liveness messages may be exchanged before or during
protocol negotiation.

When a client application has successiully established an
application connection, the client transmits a client-version
message that encapsulates a size-prefixed UTF-8 string that
umiquely 1dentifies the client’s preferred network transport
software protocol version. The content of a network trans-

US 11,272,044 B2

11

port software protocol string can be dictated exclusively by
a single controlling source (such as MioSoit Corporation).
In some implementations, actual network transport software
protocol strings can be conventionally conformed to the
format “MUX YYYY.MM.DD”, where YYYY 1s the four-
digit Gregorian year, MM 1s the one-based two-digit month
ordinal, and DD 1s the one-based two-digit day ordinal. The
date can correspond to a design date of the network transport
software protocol.

When the server receives this client-version message, it
checks the embedded protocol version for membership in 1ts
list of acceptable client protocol versions to see if it can
guarantee protocol version compatibility. The server
responds with a server-version message that contains its own
preferred network transport soitware protocol version and a
protocol version compatibility assertion. This assertion 1s a
Boolean value that 1s the result of the membership test. A
value of true indicates that the server guarantees protocol
compatibility with the client; a value of false disclaims any
such guarantee.

When a client receives this server-version message, it
checks the protocol version compatibility assertion. If the
assertion 1s true, then protocol version negotiation has
completed successtully. If the assertion i1s false, then the
client checks the embedded protocol version for member-
ship 1n 1ts list of acceptable server protocol versions. It the
membership test 1s positive, then protocol version negotia-
tion has completed successiully.

If both 1) the compatibility assertion was false and 2) the
client-side membership test was negative, then protocol
version negotiation has failed: the client and server have no
protocol versions 1in common and are therefore immcompat-
ible. No requests may be sent, no responses may be received,
and no user data may be interchanged. When a client has
detected this situation, 1t disconnects from the server without
transmitting any additional messages.

If protocol version negotiation 1s completed successiully,
then the client may transmit service requests and user data
with the expectation that the server understands incoming,
messages and will react appropriately.

As shown 1n FIG. 7, with respect to routing, the network
transport software 140 at a node 142 is responsible for
delivering any user (e.g., client) datagrams 144 (in which
user data 1s wrapped) that arrive along 1ts incoming TCP
mesh connections 148. A client-datagram message (which
we often refer to simply as a client datagram) originates at
a particular source service handle 150 and travels across the
mesh to its destination service handle 152. When a client-
datagram message reaches the network transport software
that 1s responsible for the destination service handle, the
network transport software checks the status of the destina-
tion service handle. If the service handle 1s open, then the
network transport software delivers the client-datagram
message to the user application 154 at the other end 156 of
the appropriate TCP client connection 158. If the service
handle 1s not open, then the network transport software
discards 160 the client datagram.

If a user application 154 sends a client-datagram message
164 to another user application 166 that 1s directly associ-
ated with the same node 142 hosting both user applications,
then the network transport software 140 simply navigates its
own 1nternal data structures to deliver the message. In some
implementations, the user applications 175, 154 are remote
from each other and reside on different network nodes 142,
176. In this case, the network transport software 178 routes
an incoming client-datagram message 180 across one of 1ts
active mter-network transport software TCP mesh connec-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions 182 toward the mtended recipient 154. The network
transport software accomplishes this by participation 1n a
collaborative dynamic routing protocol.

The network transport software on each node in the mesh
maintains its own routing table 184 for directing incoming
messages using only locally available information. The
routing table 1s a collection of <destination network trans-
port software 1dentifier, neighboring network transport soft-
ware 1dentifier>. Each such tuple associates a destination
with the neighbor to which a message bound for the desti-
nation should be forwarded. A neighbor 1s a node to which
a live outgoing TCP connection exists. A node’s neighbor-
hood comprises all of its neighbors.

A node 1n the mesh may reliably send messages to any
neighbor over a corresponding TCP mesh connection. Such
a message either arrives at the neighbor or results in a TCP
error on the TCP mesh connection. To detect connection
outages as quickly as possible, a node periodically transmits
liveness messages across all its TCP connections, imncluding
its application connections 181 and its TCP mesh connec-
tions 182. The frequency of these messages 1s configurable.

The network transport software at a node schedules a
rebuilding of 1ts routing table whenever another node run-
ning a network transport software instance joins or leaves its
neighborhood. While a node waits to rebwld its routing
table, any other change to its neighborhood triggers the
renewal of the complete scheduling quantum. Therefore
incremental changes in the neighborhood result 1n incre-
mental lengthening of this postponement. Rebuilding of the
routing table for a node that participates 1n a large mesh
requires eflort linear 1 the size of the mesh, and this
postponement reduces unnecessary computation of interme-
diate routing tables (and transmission of neighborhood snap-
shots) during periods of high mesh flux that may exist, for
example, when the network transport software on many
nodes are started or stopped 1n quick succession.

As a result of any neighborhood change, a node saves a
new neighborhood snapshot that combines 1ts network trans-
port software 1dentifier, a monotonically increasing snapshot
version number, and the new membership of the neighbor-
hood. Some 1implementations use the nanoseconds elapsed
since the Unix epoch (1970-01-01T00:00:00Z [ISO 8601])
as the snapshot version number. A node saves not only 1ts
own neighborhood snapshot, but also a collection of neigh-
borhood snapshots that describe other nodes. Coincident
with the inchoate rebuilding of the routing table, the network
transport soltware transmits a neighborhood-snapshot mes-
sage that encloses 1ts own neighborhood snapshot and a list
of recipients. The list of recipients 1s 1dentical to the current
neighbors. The message 1s sent to all recipients.

When the network transport soitware receives a neigh-
borhood-snapshot message, 1t saves the contained neighbor-
hood snapshot if and only 1f 1) 1t has never received a
neighborhood snapshot from the associated node or 2) its
snapshot version number exceeds the one associated with
the corresponding saved neighborhood snapshot. In other
circumstances, the network transport software discards the
message and takes no further action regarding 1t. This
prevents old neighborhood snapshots that were arbitrarily
delayed by long routes or unusual mesh topologies from
regressing a node’s knowledge about the remote neighbor-
hood. Assuming that the network transport software saved
the neighborhood snapshot, 1t then computes the set difler-
ence between 1ts own neighbors and the enclosing message’s
recipients. If the diflerence 1s not the empty set, then the
network transport software constructs a new neighborhood-
snapshot message that encloses the foreign snapshot and the

US 11,272,044 B2

13

set union of the original recipients and the previously
computed difference. The network transport software then
transmits the new message to all members of the difference.
Accordingly, no neighborhood-snapshot messages will be

circularly routed; the algorithm terminates. Irrespective of 5

whether any new messages were actually sent, the network
transport software schedules the rebulding of 1ts routing
table (or renews the scheduling quantum of an outstanding,
delayed rebuild).

The algorithm that rebuilds the routing table accepts as
inputs all saved neighborhood snapshots, including the
node’s own, and produces as output a routing table. The
saved neighborhood snapshots implicitly define a connec-
tivity graph of a mesh. The routing algorithm seeds a work
queue and new routing table with the executing node’s direct
neighbors. It then consumes the work queue, adding new
routes and work queue 1tems only for destinations that have
not yet been routed. This constitutes a breadth-first traversal
of the connectivity graph, thereby ensuring that when a new
network transport software 1dentifier 1s first encountered, the
route established will be the shortest possible. The algorithm
has linear space and time requirements. In particular, it
requires O(n) space, where n 1s the number of nodes
participating in the mesh under consideration, and O(e) time,
where e 1s the number of neighbor relationships existing
among these nodes.

The neighborhood snapshot propagation and routing table
construction algorithms allow all nodes participating 1n a
mesh to converge 1n parallel to have a uniform view of mesh
connectivity, and each node to have a routing table opti-
mized for 1ts own location within the graph. When a routing
decision needs to be made, for example, because a client-
datagram message has just arrived at a node, the decision
may be made using only locally available information. The
use of a stable mesh provides advantages. For example, once
the mesh quiesces with respect to node membership and
connectivity, all routing decisions 1n the mesh may be made
without requiring further control message traflic overhead.

In some implementations, 1n which the mesh may not be
stable, circular routing of client-datagram messages can be
prevented without using a mechanism such as TCP’s Time
To Live (TTL) that causes each router that handles a packet
to decrement an embedded counter before retransmission
and to discard the packet it the value reaches zero. In some
implementations, the platform-neutral network transport
layer uses a system of postmarks. When a node receives a
client-datagram message and 1s neither its source nor des-
tination node, it appends its own network transport software
identifier to a list of postmarks before retransmitting the
message. The source and destination network transport
software 1dentifiers encoded by the source and destination
service handles are automatically treated as postmarks, so 1t
would be redundant for the source and destination nodes to
append their 1dentifiers explicitly.

If a node discovers 1ts own postmark on an mmcoming
client-datagram message destined for some other node, 1t
discards the message to curtail unbounded circular routing.
Accordingly, arbitrarily long routes at the expense of greater
overhead per client datagram are allowed. Most environ-
ments are expected to establish mesh cliques in which every
node has all other nodes as its neighbors. In such a clique,
the overhead 1s limited to the necessary source and desti-
nation network transport software identifiers.

For most user applications, knowledge of the membership
and connectivity of the actual mesh 1s unnecessary. These
applications simply use and provide services as clients or
servers, respectively. User applications that wish to provide

10

15

20

25

30

35

40

45

50

55

60

65

14

services acquire a service handle and bind an appropnate
service 1dentifier. User applications that wish to use services
cither employ statically known service identifiers or stati-
cally known service handles to locate and contact services.

In some 1implementations, some user applications monitor
mesh health and report status. To support such user appli-
cations, the network transport software provides a service
240 to which an application may subscribe to receive
notifications of routing events. In particular, whenever the
reachability of a set of nodes change, all nodes send to each
interested user application a routing-notification message
that contains a reachability state {reachable, unreachable}
and a list of network transport software identifiers that
denote the nodes whose reachability has changed. A user
application registers interest in routing notifications by send-
ing 1ts network transport software a routing-subscribe mes-
sage that includes the service handle that should begin
receiving routing notifications. If the user application no
longer wishes to receive routing notifications, it may trans-
mit a routing-unsubscribe message that contains a previ-
ously subscribed service handle.

As shown i FIG. 12, i typical implementations, user
applications that leverage (make use of) a mesh have at least
one or both of two characteristics: they are service providers
200 that offer feature sets or services 201 or they are service
clients 202 that request and use those feature sets or services.
Such arrangements can adhere to the client-server model of
distributed computing. Peer-to-peer relationships among
user applications are not precluded. A combination of client-
server and peer-to-peer arrangement could also be imple-
mented.

Once a user application has established a TCP connection
204 with the network transport software 206 hosted on a
node, the user application acquires ownership of one or more
service handles 208 by which 1t communicates with other
user applications (located either locally or at remote nodes).
These other user applications may be clients that will contact
the service handles 208 to request services. They may also
be servers that offer services through their own service
handles, 1n which case the user application that owns service
handles 208 may contact these service handles to request
services. Conforming user applications treat service handles
as opaque atomic values. From a node’s perspective, how-
ever, a service handle 1s not opaque, but rather a <network
transport soitware identifier, UUID>, where UUID 1s a
128-bit Leach-Salt variant 4 universally unique identifier
[RFC 4122].

To obtain a service handle for its use either as a service
consumer, service provider, or both, a user application sends
its network transport software a request-service-handle mes-
sage that contains a new conversation i1dentifier. A conver-
sation 1dentifier can be, for example, a 64-bit integral value
that uniquely identifies a request-response transaction
between the user application and i1ts network transport
software. Upon receipt of the request-service-handle mes-
sage, the network transport software responds with a new-
service-handle message that contains the same conversation
identifier and a newly allocated, statistically unique service
handle. The network transport software 1dentifier embedded
in this service handle denotes the network transport software
that allocated 1t, which allows for correct routing ol mes-
sages.

At this point, the network transport software has created
a new value 1n the vast global space 210 of service handles.
Before a user application can use the new service handle, 1t
sends 1ts network transport software an open-service-handle
message. This message contains a new conversation identi-

US 11,272,044 B2

15

fier and the freshly allocated service handle. When the
network transport software receives this message, 1t registers
the service handle with the sender, thereby causing the
service handle to enter an open state, and replies with a
client-acknowledgement message that includes the request’s
conversation i1dentifier and an acknowledgment code of ok.

A service handle 1s open 1f 1t 1s registered with a user
application; 1t 1s closed 1f 1t 1s not registered with a user
application. All service handles begin 1n the closed state. In
addition, every unallocated service handle 1s considered
closed by the network transport software, making the closed
state independent of the existence of the service handle. The
complete set of service handle states is {open, closed,
unreachable}. (The unreachable state is a pseudo-state used
by the service handle notification mechanism to indicate that
all routes to a remote publisher have been lost, as discussed
turther below.)

An application that wants to operate as a service provider
will typically open one or more service handles to listen for
incoming service requests. Unlike an Internet socket, which
1s an ephemeral binding of <IP address, port number>, a
service handle 1s a persistent entity. Service handles are
drawn from a vast space, and a service handle can be reused
if 1t conceptually describes the same communication end-
point across all instantiations of the service provider. In
some 1mplementations, a service client also uses service
handles persistently. This persistence of service handles and
their use allows for the creation and maintenance of private
networks of user applications within a mesh. For example,
i service provider applications and their client applications
make prior agreements, then they may communicate using
unadvertised service handles, thereby effectively privatizing
theirr communication by excluding the possibility that other
user applications can discover the participating service
handles and send client datagrams to them.

In some situations, a service client will not know the exact
service handle with which 1t should communicate to use a
service. To support service clients more flexibly and anony-
mously, a service provider may 1ssue a bind-service-identi-
fier message that contains a new conversation i1dentifier and
a service binding 214 of <service identifier, open service
handle>. A service identifier 212 1s a size-prefixed UTF-8
string that names the service in a way expected by the
service provider’s clients. Upon receipt, the network trans-
port software enters the service binding into the service
catalog 276. The service catalog 1s the collection of all
service bindings. Because each service handle also identifies
the node responsible for 1t, 1.e., the one to which the owning,
user application 1s attached, the service catalog indicates
where all services can be contacted. Finally the network
transport soltware replies with a client-acknowledgment
message that contains the request’s conversation 1dentifier
and an acknowledgment code of ok. A service provider 1s
free to bind more than one service identifier to an open
service handle, for example, by transmitting one bind-
service-1dentifier message for each desired binding.

When a change 1n local service oflerings occurs, the
network transport software of the local node saves a new
service catalog snapshot 277 that combines 1ts network
transport software identifier, a monotonically increasing
snapshot version number, and the new collection of local

service bindings. Some implementations may use the nano-
seconds elapsed since the Unix epoch (1970-01-01T00:00:

007 [ISO 8601]) as the snapshot version number. A node
saves not only 1ts own service catalog snapshot, but also a
collection of service catalog snapshots that describe the
services oflered by user applications attached to other nodes.

10

15

20

25

30

35

40

45

50

55

60

65

16

Whenever a node saves a service catalog snapshot of its own
local service oflerings, either as a result of establishment or
disestablishment of service bindings, 1t schedules a task that
will transmit a service-catalog-snapshot message that
encloses this service catalog snapshot and a list of recipients.
The list of recipients 1s i1dentical to the current neighbors.
The message 1s sent to all recipients.

While a node waits to transmit, any other change to its
local service offerings triggers a renewal of the complete
scheduling quantum. Therefore incremental updates result 1n
incremental lengthening of this postponement. This incre-
mental lengthening avoids unnecessary transmission of ser-
vice catalog snapshots during periods of high service tlux
such as prevail when many nodes are started or stopped 1n
quick succession.

When a node receives a service-catalog-snapshot mes-
sage, 1t saves the contained service catalog snapshot 1f and
only 1f 1) 1t has never received a service catalog snapshot
from the associated node or 2) its snapshot version number
exceeds the one associated with the corresponding saved
service catalog snapshot. In other circumstances the node
discards the message and takes no further action regarding
the message. Old service catalog snapshots that were arbi-
trarily delayed by long routes or unusual mesh topologies
are therefore prevented from regressing a node’s knowledge
about remote service oflerings.

Assuming that the node saved the service catalog snap-
shot, 1t computes two sets by comparing the old service
catalog snapshot and the new service catalog snapshot. The
first set comprises the bindings to be added to the service
catalog and embodies the bindings present in the new
snapshot but not the old. The second set comprises the
bindings to be removed from the service catalog, and
embodies the bindings present in the old snapshot but not the
new. The contents of the first set are immediately added to
the service catalog; the contents of the second set are
immediately removed from the service catalog. The network
transport software then computes the set difference between
its own neighbors and the enclosing message’s recipients. If
the difference 1s not the empty set, then the network trans-
port soiftware constructs a new service-catalog-snapshot
message that encloses the foreign snapshot and the set union
of the onginal recipients and the previously computed
difference. The network transport software then transmits
the new message to all members of the difference. No
service-catalog-snapshot messages will be circularly routed,
and the algorithm terminates.

The service catalog snapshot propagation and service
catalog construction algorithms allow all nodes participating
in a mesh to converge 1n parallel to have a uniform view
(portiolio) 298 of service availability. When a service query
arrives, 1t may be resolved using only locally available
information. A stable service portiolio can provide advan-
tages. For example, once a stable service portiolio materi-
alizes, all service resolution decisions may be made without
requiring further control message traflic overhead.

To find a service, a user application sends 1ts node a
locate-services message. This message comprises a new
conversation i1dentifier, a service identifier match pattern, the
desired match mode, the desired locate mode, and the
response timeout as a 64-bit encoding of milliseconds. The
service 1dentifier match pattern 1s a size-prefixed UTF-8
string whose semantics are determined by the selected match
mode, but 1s either a service identifier or a Java regular
expression (as defined by java.util.regex.Pattern circa
1.6.0_19, for example) intended to match one or more
service 1dentifiers. In some implementations, the match

US 11,272,044 B2

17

modes can be {exact, pattern}, where exact means that the
match pattern will be matched literally against the current
service bindings, and pattern means that the match pattern
will be applied using the regular expression match engine. In
some implementations, the locate modes are {all, any},
where all means that the network transport software should
reply with every matching service binding, and any means
that the network transport software should reply arbitrarily
with any matching service binding.

When a node receives a locate-services message, it
attempts the specified lookup against 1ts complete service
catalog. If matches are discovered, then the node replies
immediately with a service-list message that includes the
same conversation identifier and an appropriate number and
kind of matching service bindings. The complete bindings
are provided so that the requester has access to the exact
service 1dentifiers as well as their bound service handles; this
1s particularly usetul for clients that used the pattern match
mode. If no matches are discovered, then the node adds the
request to a set of pending requests and schedules a timer
that will fire when the response timeout specified in the
locate-services message expires.

Whenever new service bindings are established as a result
of processing either a bind-service-identifier message or a
service-catalog-snapshot message, the node checks each
pending request against the new service bindings. Any
matches result in immediate removal from the set of pending,
requests, disablement of the timer, and transmission of
appropriate service-list messages. If the timer expires before
the corresponding request matches any service bindings,
then the node removes the request from the set of pending
requests and sends a service-list message that contains no
service bindings.

Because a service-list message may contain multiple
service bindings, it 1s arranged that a service client that
wishes to contact a particular service will decide which
service handle to select. Equal service identifiers will des-
ignate equal services, so a user application that wishes to
contact a service by a particular service identifier may
arbitrarily select from the retrieved bindings any service
handle bound to that service identifier. Generally a user
application will not be able to decide intelligently among
service handles for equal service identifiers, so only an
arbitrary decision will be possible. The organization respon-
sible for a mesh may be operated so as to assign distinct
names to distinct services and i1dentical names to 1dentical
services. Though equal service 1dentifiers will denote equal
services (1.e., services that do the same things in the same
ways), usually a user application cannot intelligently decide
among service bindings that embed equal service 1dentifiers.
There may be a best decision, e.g., the least stressed or least
distant of all services answer by the query, but a user
application 1s typically at a wrong vantage point to arrive at
a sensible decision. The network transport software some-
times can make better decisions on a service client’s behalf,
for example, when an appropriate locate mode 1s specified 1n
the locate-services message. Future locate modes can
directly support service provider proximity and load balanc-
ng.

A service provider may unbind any service binding pre-
viously established for one of 1ts open service handles, e.g.,
by sending 1ts network transport software instance an
unbind-service-identifier message that encloses a new con-
versation 1dentifier and a service binding. A node that
receives such a message removes the service binding from
its local service oflerings, saves a new service catalog
snapshot, and schedules the transmission of a service-cata-

10

15

20

25

30

35

40

45

50

55

60

65

18

log-snapshot message as described in detail above. After
local updates are complete, the network transport software
replies with a client-acknowledgment message that includes
the request’s conversation identifier and an acknowledgment
code of ok.

As shown 1n FIG. 8, two open service handles 302, 304
may exchange client datagrams 306. In some 1implementa-
tions, all user data 1s transierred between user applications
in this fashion (that 1s, using datagrams). Because this base
communication protocol provided by the network transport
software 1s fundamentally connectionless, 1t 1s 1mportant
that user applications know when their peers are available to
send and receive datagrams. In some implementations, a
user application 310 subscribes an open service handle to
receive event noftifications 308 emitted by another service
handle 312. The former service handle 1s the subscriber and
the latter the publisher. To subscribe a service handle to a
publisher, the user application sends its network transport
soltware a service-handle-subscribe message that contains a
new conversation identifier, the subscriber, and the pub-
lisher. After locally registering the client’s interest, the
network transport software replies with a client-acknowl-
edgment message that includes the request’s conversation
identifier and an acknowledgment code of ok.

A subscribed service handle may occasionally receive
service-handle-notification messages about 1ts publishers. A
service-handle-notification message embodies a subscriber
registered to the recerving client, a publisher, and the pub-
lisher’s state circa message creation time. In some 1mple-
mentations, such a message 1s created and transmitted 11 and
only i1f the publisher changes state. No duplicate notifica-
tions are sent by a node or received by a client. All
notifications of publisher state changes are therefore real and
may be reacted to accordingly by clients without the neces-
sity for complicated client-side state tracking logic.

In some implementations, a client uses these notifications
as a data valve.

A notification that a publisher 1s open indicates that the
client may begin sending client datagrams to the publisher
and may expect, depending on the style of communication,
to receive messages from the publisher.

A noftification that a publisher 1s closed indicates that the
client should not send new client datagrams to the publisher.
Because many paths may exist in a mesh, some client
datagrams may arrive at the publisher after a closed notifi-
cation 1s sent. Such client datagrams arriving from closed
service handles may be discarded. In some implementations,
the specific application domain should drive this policy
decision of whether to discard such client datagrams.

A notification that a publisher 1s unreachable indicates
that the last route between the client’s and publisher’s
network transport software instances has evaporated. While
a publisher 1s unreachable, 1t may undergo state changes of
which 1ts subscribers are not informed. Because all inter-
node links are tull-duplex, reachability (ergo unreachability)
of nodes 1s symmetric. As in the above case, such an
unavailability notification may race with client datagrams
bound for the subscriber. In some implementations, any
notifications received by a node that originate at an unreach-
able publisher are 1gnored, 1.¢., they are not forwarded along
to subscribers. Subsequent receipt of an open or closed
publisher state implies that the local and remote nodes are
once again mutually reachable; the reported state 1s circa
reestablishment of the route between the two nodes.

Sometimes a client may no longer wish to receive noti-
fications from a particular publisher at a particular sub-
scriber. The client may send a service-handle-unsubscribe

US 11,272,044 B2

19

message containing a new conversation identifier, the sub-
scriber, and the publisher. Upon receipt, the network trans-
port software deregisters the subscriber’s interest in the
publisher and replies with a client-acknowledgment mes-
sage that includes the request’s conversation 1dentifier and
an acknowledgment code of ok.

A transport layer software istance 331 1n a node 330
employs a service handle subscription manager 332 to track
its clients’ service handle subscriptions. The subscription
manager keeps several sets of data structures for the purpose
ol managing subscriptions and service handle state transi-
tions. In some 1mplementations, the first set comprises the
following:

1. The client subscribers map, a map {publisher—local
subscriber}, where publisher is a service handle and local
subscriber 1s the set of locally registered service handles that
subscribe to the key. This map supports eflicient delivery of
notifications.

2. The client publishers map, a map {local subscriber—pub-
lishers}, where local subscriber is a locally registered ser-
vice handle and publishers are the set of service handles to
which the key subscribes. This map supports eflicient
cleanup when a service handle 1s closed, e.g., when the
service handle 1s explicitly closed or when a client connec-
tion 1s lost.

3. The publishers by network transport software instance
map, a map {network transport software identifier—pub-
lishers }, where network transport software identifier denotes
any node participating 1n the mesh and publishers are the set
of service handles registered to the key’s referent. This map
supports eflicient reaction to changes 1n the reachability of
the network transport software on the nodes.

When a node receives a service-handle-subscribe mes-
sage, 1ts service handle subscription manager updates these
maps, 1 lockstep. As a result: the client subscribers map
now lists the subscriber in its publisher’s set of subscribers;
the client publishers map now lists the publisher 1n the
subscriber’s set of publishers; the publishers by network
transport software mstance map now lists the publisher 1n its
network transport software identifier’s set of registered
publishers. The local network transport software takes note
of whether this was an 1nitial subscription, that 1s, the first
time that one of 1its registered service handles subscribed to
the specified publisher.

When a node receives a service-handle-unsubscribe mes-
sage, 1ts service handle subscription manager also updates
these maps in lockstep. As a result: the client subscribers
map no longer lists the subscriber in 1ts publisher’s set of
subscribers; the client publishers map no longer lists the
publisher 1n the subscriber’s set of publishers; the publishers
by network transport software instance map no longer lists
the publisher in 1ts network transport software 1dentifier’s set
of registered publishers. The local network transport soit-
ware takes note of whether this was a final unsubscription,
that 1s, there are no longer any registered service handles
subscribed to the specified publisher.

The service handle subscription manager uses a two-
tiered mechanism for managing service handle subscrip-
tions.

The first tier associates open subscribers with publishers,
using the data structures described above. When a client
subscribes one of 1ts service handles to a publisher registered
to another client attached to the same node, only the first tier
1s necessary to manage subscriptions and to correctly deliver
service handle state notifications. Since only one node 1s
involved, whenever the publisher becomes open or closed,
the node may directly notify all local subscribers by full-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

duplex application connections to the corresponding clients.
Similarly, a node does not need to mnform a local subscriber
that a local publisher 1s unreachable. To deliver notifications
from a particular local publisher, a node fetches from the
client subscribers map the set associated with the publisher.
The network transport software iterates over this set and
sends one service-handle-notification message to each client
for each registered subscriber. In some 1mplementations, a
node does this whenever a change 1n a local publisher’s state
1s detected, for nstance, as a result of processing an open-
service-handle message.

The second tier associates nodes that have open subscrib-
ers with remote publishers. To support this second tier, the
service handle subscription manager keeps a second set of
data structures. Examples of the set second of data structures
include:

1. The network transport software subscribers map, a map
{local publisher—network transport software identifiers},
where local publisher 1s a locally registered service handle
and network transport software identifiers are a set of
network transport software identifiers denoting remote
nodes that have subscribers to the key. This map supports
cilicient transmission of notifications.

2. The network transport soitware publishers map, a map
Inetwork transport software identifier—local publishers},
where network transport software identifier denotes a remote
node and local publishers 1s a set of publishers for which the
key has subscribers. This map supports eflicient implemen-
tation of the mechanism that propagates service handle
states after a network transport software cycles.

3. The network transport software subscription conversation
map, a map {network transport software service handle
subscription key—ssubscription conversation}. A network
transport software service handle subscription key 1s a
<publisher, network transport software identifier>, where
publisher 1s a locally registered service handle and network
transport software identifier describes a node that has sub-
scribers to this publisher. A subscription conversation 1s a
<conversation identifier, reaper phase number>, where con-
versation 1dentifier describes the conversation identifier
embedded within the most recently received second-tier
subscription control message. The reaper phase number
corresponds to a particular performance of the reaper task
that 1s responsible for cleaning up defunct conversations
(also discussed below). This map provides informational
monotonicity of subscription conversations.

Examples of control messages for the second-tier sub-
scription 1nclude: node-service-handle-subscribe, node-ser-
vice-handle-unsubscribe, node-request-service-handle-noti-
fications, node-service-handle-notification. Any of these
messages may be routed through intermediate nodes en
route to their destinations.

There can be many available routes 1n a mesh (or dropped
network frames that result 1n retransmissions), and it 1s
possible that control messages arrive out of order. In some
implementations, a control message that 1s not new 1is
1gnored to prevent regression of a subscription conversation.
A second-tier subscription control message 1s considered
new 1f 1) no conversation 1s extant about the subscription
key, or 2) the conversation identifier embedded in the
message 1s newer than the one recorded in the ongoing
conversation. If a second-tier subscription control message
1s determined to be new, then the node receiving the message
updates the network transport soitware subscription conver-
sation map such that the appropriate subscription key sub-
sequently binds a new conversation comprising the conver-
sation i1dentifier embedded in the message and the next

US 11,272,044 B2

21

reaper phase number. Soon after receipt of a second-tier
subscription control message, the receiver replies unreliably
with a routable node-acknowledgment message that con-
tains the request’s conversation i1dentifier and an acknowl-
edgment code of ok. The main processing can occur after
this acknowledgment is sent.

Every initial subscription to a remote publisher causes the
local network transport soitware to subscribe itself to the
publisher by reliably routing a node-service-handle-sub-
scribe message to the publisher’s node. This message
encloses a new conversation i1dentifier and an appropriate
network transport software service handle subscription key
that specifies the publisher and the subscribing node. When
a node recerves such a message, 1t extracts the subscription
key and looks up the conversation associated with 1t in the
network transport software subscription conversation map.
If the message 1s new, then the recerver updates the other
second-tier maps 1n lock step. As a result: the network
transport soltware subscribers map now lists the subscribing,
node 1n its publisher’s set of subscribers; the network
transport software publishers map now lists the publisher in
the subscribing node’s set of publishers. Finally the receiver
reliably sends the subscribing node a node-service-handle-
notification message that includes a new conversation iden-
tifier, the subscriber’s network transport soitware identifier,
the publisher, and the publisher’s state circa message cre-
ation time. Additional complexities emerge when sending
notifications about closed publishers shortly after starting up
the network transport software on a node; these are
described 1n greater detail below.

A subscribed node may occasionally receive node-ser-
vice-handle-notification messages about 1ts publishers, e.g.,
when a publisher changes state, for instance, because its
network transport software processed a corresponding open-
service-handle message. If a node-service-handle-notifica-
tion message 1s new, then the receiver fetches from the client
subscribers map the set associated with the described pub-
lisher. The recerving node 1terates over this set and sends one
service-handle-notification message to each client for each
registered subscriber.

Upon receiving a final unsubscription from a remote
publisher, the local node unsubscribes 1itself from the pub-
lisher by reliably routing a node-service-handle-unsubscribe
message to the publisher’s node. This message encloses a
new conversation identifier and an appropriate network
transport software service handle subscription key that
specifies the publisher and the unsubscribing node. When a
node recerves such a message, 1t looks up the conversation
associated with the specified subscription key 1n the network
transport software subscription conversation map. If the
message 1s new, then the receiver updates the other second-
tier maps, 1n lock step. As a result: the network transport
software subscribers map no longer lists the unsubscribing
node i 1ts publisher’s set of subscribers; the network
transport software publishers map no longer lists the pub-
lisher in the unsubscribing node’s set of publishers.

Second-tier subscription control messages may be lost 1n
transit. In some 1mplementations, reliable delivery 1s nec-
essary, €.g2., for good performance of the service handle
subscription mechanism. In some implementations, when
these control messages are sent, copies are stored on the
retransmission list. Additionally, a task 1s scheduled to
execute recurrently once per complete quantum. This quan-
tum, the retransmission rate, can be configured based on the
system or the user’s needs and has a default value of 5,000
ms (5 s). This task transmits the copy of the control message
to 1ts destination when executed. When a node receives a

5

10

15

20

25

30

35

40

45

50

55

60

65

22

node-acknowledgment message, 1t removes the copied mes-
sage whose conversation identifier matches from the retrans-
mission list and cancels 1ts corresponding retransmission
task. A node-acknowledgment message 1s not required to be
transmitted reliably, because its failure to appear causes the
reflexive retransmission of the associated control message.

Sometimes the network transport software instance at a
node may terminate, either as the result of processing a
restart message or a shutdown message, user- or system-
initiated termination of the node’s operating system process,
or software error. Under such circumstances, the application
connections and TCP mesh connections between the net-
work transport software instance and i1ts neighbors and
clients abort spontaneously without transmission of further
control messages. Following the shutdown event, the node 1s
deemed unreachable by other nodes participating in the
mesh. Likewise any service handles registered by its clients
are also deemed unreachable. Whenever a node determines
that some nodes participating in the node mesh have become
unreachable, 1t iteratively queries the publishers by the
network transport software instance map using the network
transport software identifiers of the unreachable nodes as
keys. The network transport software then computes the set
union of all resultant sets to determine the complete set of
publishers now unreachable by their subscribers. The net-
work transport software iterates over this set and sends one
service-handle-notification message to each client for each
registered subscriber.

When a downed node and/or 1ts network transport soft-
ware restarts, many clients will attempt to automatically
reconnect to the new network transport software instance
and to reestablish their service handles, service bindings,
and subscriptions. Lest the service handles of these clients
be deemed closed when the restarted node’s presence 1s
detected by other nodes, the restarted node observes a
service reestablishment grace period. The duration of this
grace period 1s configurable by the user and has a default
value of 30,000 ms (30 s).

During the grace period, the node will not send a service-
handle-notification message or node-service-handle-notifi-
cation message that reports a closed state for its contained
publisher. The network transport software instead enqueues
the message on the service reestablishment grace queue for
transmission when the grace period expires. If the state of
the publisher transitions during this time, e.g., the network
transport software, receirves an appropriate open-service-
handle message, then the enqueued message 1s discarded
and a replacement message 1s sent to report the open state for
its publisher. When the grace period expires, all messages
still on the grace queue are sent to their respective destina-
tions.

From a client’s perspective, any unreachable publishers
may be changing state arbitrarily during their nodes’ or the
network transport software’s outage. This may indeed be the
case 1f the unreachable network transport software istances
have not cycled but rather some other condition has dis-
rupted communication. An unplugged network cable may
have this effect. Additionally, a local subscriber can be
allowed to unsubscribe from an unreachable publisher, even
though the publisher’s network transport software 1s 1tself
unreachable by definition.

To address such situations, the two nodes must coordinate
their subscription and service handle states upon mutual
determination of reachability. Each node achieves this eflect
by sending a node-request-service-handle-notifications mes-
sage to 1ts remote partner when 1t becomes reachable again.
This message contains a new conversation identifier, the

US 11,272,044 B2

23

complete set of publishers recorded for the destination node
in the publishers by network transport software instance
map, and the network transport software identifier of the
subscribing network transport software instance.

When the network transport software receives a node-
request-service-handle-notifications message, 1t first com-
putes a special network transport software service handle
subscription key using the network transport software 1den-
tifier of the subscribing node and the request notifications
UUID, a UUID statically allocated from a range reserved by
the network transport soitware for i1ts internal use. This
subscription key 1s used specifically to order node-request-
service-handle-notifications messages within a special con-
versation. In some implementations, a complete set of
publishers local to the receiving network transport software
that was 1nstantaneously correct at message creation time 1s
embedded 1nto the message. In such implementations, use of
the special subscription key prevents aggregate regression of
knowledge about second-tier subscriptions. If the message 1s
new, then the receiver computes three sets:

1. The forgotten publishers. This 1s the set of publishers no
longer present in the subscribing node’s subscription list. To
compute this set, first query the network transport software
publishers map with the network transport software 1denti-
fier of the subscribing network transport software. These are
the last known publishers. Extract the publishers encapsu-
lated 1n the node-request-service-handle-notifications mes-
sage. These are the current publishers. The desired result 1s
the set difference between the last known publishers and the
current publishers.

2. The new publishers. This 1s the set of publishers new to
the subscribing node’s subscription list since the last time
that the two nodes were mutually reachable. The desired
result 1s the set diflerence between the current publishers and
the last known publishers.

3. The retained publishers. This 1s the set of publishers
present in the subscribing node’s subscription list before and
after the outage. This 1s the set intersection of the current
publishers and the last known publishers.

Each publisher 1n the set of forgotten publishers 1s treated
as though 1t were the target of a separate node-service-
handle-unsubscribe message for the purpose of updating the
associated subscription conversation and second-tier maps.
Likewise each publisher in the set of new publishers is
treated as though 1t were the target of a separate node-
service-handle-subscribe message for the same purposes.
Each publisher 1n the set of retained publishers 1s treated as
though i1t were the target of a separate redundant node-
service-handle-subscribe message, so only the associated
subscription conversation 1s updated. In addition, all appro-
priate node-service-handle-notification messages are con-
structed and sent, observing the service reestablishment
grace period as necessary.

The effect of receiving a sequence of second-tier sub-
scription control messages 1s independent of the order 1n
which they were recerved, which 1s an essential aspect of the
subscription mechanism and allows for reliable notification
of changes to the states of publishers. The two-tier mecha-
nism can reduce network trathic compared to a one-tier
mechanism and can reduce notification latency. In particular,
when the nodes hosting the network transport soitware are
deployed 1n a large grid-like mesh, the subscription archi-
tecture scales at least to millions of service handles variously
subscribed to hundreds or thousands of publishers.

The network transport software subscription conversation
map does not discard any conversations. In some implemen-
tations, most service handles are dynamically allocated to

10

15

20

25

30

35

40

45

50

55

60

65

24

meet the communication requirements of user applications.
Such service handles are therefore only viable publishers
during their limited lifetime; once closed, they generally are
not expected to become open again. Under these circum-
stances, the network transport software subscription conver-
sation map 400 (FIG. 9) will accumulate conversations
about permanently defunct service handles.

In some 1implementations, to prevent unbounded memory
growth due to the accumulated conversations, a reaper task
404 executes periodically at a configurable interval. By
default, the reaper period 1s three hours. When the reaper
task executes, it collects every conversation that satisfies at
least the criteria that 1) no subscription 1s extant for its
network transport software service handle subscription key
406 and 2) its reaper phase number 408 1s less than the
current reaper phase number. Then the reaper task transac-
tionally removes all such conversations from the conversa-
tion map. Finally the reaper task also increments the reaper
phase number. In some 1implementations, the relatively long
default reaper period 1s suflicient to maintain a 1 GB heap
limit for the large-scale deployment scenario described
above.

At any time after a service handle 401 becomes open, 1ts
registered user application 403 may relinquish ownership by
sending 1ts network transport software 1nstance 410 a close-
service-handle message that contains a new conversation
identifier 412 and the service handle. Processing of this
message by the network transport software causes the ser-
vice handle to be deregistered, thereby causing the service
handle to enter the closed state. Any service i1dentifiers 420
and subscriptions 422 associated with the service handle are
then forgotten as if appropriate unbind-service-identifier and
service-handle-unsubscribe messages were applied. Client
datagrams that arrive at closed service handles are discarded
at the destination network transport software. Once the
message 1s fully processed, the network transport software
replies with a client-acknowledgment message that includes
the request’s conversation identifier and an acknowledgment
code of ok. If a user application suddenly disconnects from
its network transport software, then the network transport
soltware automatically closes all open service handles reg-
istered to the user application. This happens as 1f the user
application had first sent a close-service-handle message for
cach of its open service handles.

In some situations, the network transport software may
not be able to successiully process the control messages.
Upon receipt of any control message, the network transport
soltware checks the message against its internal state before
deciding to allow the corresponding operation to proceed.
For instance, a user application cannot open a service handle
already registered as open, either by 1tself or by another user
application. Likewise a user application cannot close a
service handle registered as open by another user applica-
tion. These error conditions may imply a nonsensical opera-
tion, like closing an already closed service handle, or
violation of privilege, like disestablishing a service binding
for a service handle owned by a different user application
than the requestor. Such operations produce client-acknowl-
edgement messages whose acknowledgment codes difler
from ok. In some implementations, the client checks the
resultant acknowledgment code to proceed accordingly and
makes no assumption that the process of the control mes-
sages 1s successiul.

We now consider the operation of the mput/output (1/0)
system 302 (FIG. 10) of the network transport software 300.
In some implementations, the node’s I/O subsystem scales
to hundreds of threads managing tens of thousands of

US 11,272,044 B2

25

simultaneous TCP connections. The theoretical limits are
higher, except that the node’s connectivity 1s bounded by the
limitations of the TCP. No more than 2'® TCP connections
may exist between a node and 1ts external neighbors and
internal clients. This 1s the design limit imposed by TCP, and
corresponds to the complete space of TCP port numbers. The
practical limit may be lower, when other processes running,
on the node also consume TCP port numbers.

The network transport software overcomes these limita-
tions by providing virtual channels 504, many of which may
multiplex data over a single shared TCP connection 503. In
some 1mplementations, exactly one TCP mesh connection
505 exists between any two neighboring nodes and exactly
one application connection 506 exists between a node and a
client 508. In some 1mplementations, all network traflic
between these parties must flow across these singular TCP
connections. Fach service handle that a client registers
establishes a live commumnication endpoint; there can be a
very large number of service handles that a particular client
registers. Every other service handle 1s a potential commu-
nication endpoint. Any two service handles can define a
channel 504, and any two open service handles 510 512
define a live channel. A node’s internal data structures scale
to managing millions of open service handles scattered
across myriad clients.

The scalability and other advantages of channels 1s 1llus-
trated using the following example. Let M(N) be the local
network transport software instance for a client N. Let S(N)
be the set of service handles registered to a client N. Given
two clients A and B, assume that exactly one application
connection exists between A and M(A), likewise for B and
M(B), and exactly one TCP mesh connection exists between
M(A) and M(B). Then only 3 TCP connections are necessary
to support the Cartesian product S(A)xS(B). Given that each
of S(A) and S(B) may be a set containing 1 maillion open
service handles, the number of live connections may exceed
1 trillion. Channels provide an enormous scalability advan-
tage over dedicated TCP connections.

To enable the network transport software to scale to
arbitrarily large deployment scenarios, its I/O mechanisms
need to operate correctly, independent of network load.
Scalable I/0 algorithms exhibit performance inversely pro-
portional to traflic volume and correctness invariant with
respect to traflic volume. Scalable systems may be subject to
deadlock condition.

An 1mportant aspect of at least some 1implementations of
the network transport software’s 1/O subsystem 1s freedom
from deadlock at all scales. This freedom 1s both theoretical
and practical. In some implementations, to obtain freedom
from deadlock, at least the following criteria are set to be
met: 1) all I/O operations provided through system calls are
asynchronous and 2) entry conditions to critical sections that
protect internal data structures do not block the executing
thread for arbitrary amounts of time. In some 1mplementa-
tions, to satisfy 2), threads awaiting access to a critical
section need to be scheduled fairly.

The network transport software satisfies the first condition
by using only platform I/O APIs that are asynchronous. All
reads from TCP connections, writes to TCP connections,
initiations of new TCP connections, and establishments of
TCP connections are performed asynchronously, consuming
resources only when the operation may be completed with-
out blocking the executing thread indefinitely. In particular,
in some 1mplementations, only asynchronous DNS resolu-
tion 1s used when nitiating new connections. Plattorm APIs
tor DNS resolution are classically synchronous, especially
on UNIX® variants and derivatives. In some implementa-

10

15

20

25

30

35

40

45

50

55

60

65

26

tions, the network transport software nonetheless avoids
synchronous DNS resolution 1n all circumstances and for all

supported platforms, through use of asynchronous custom
APIs.

Satisfaction of the second condition uses architectural
support, as follows.

As shown mn FIG. 11, in some implementations, the
network transport software’s 1/0O subsystem 502 comprises
at least three types of entities: a single coordinator 522 with
the responsibility for managing threads and buflering reified
and serialized messages; one or more, €.g., four, agents 524,
cach of which manages a different kind of TCP I/O event;
and one or more, e.g., many, conduits 526, each of which
enriches a single socket-based TCP connection 505.

The coordinator provides two task executors, each of
which 1s backed by a diflerent pool of threads. The writer
task executor 528 1s reserved for executing tasks whose
exclusive function 1s to write a single serialized message to
a socket. The general task executor 330 i1s available for
executing all other tasks, but 1s principally used for execut-
ing tasks whose exclusive functions, respectively, are to read
a single serialized message from a socket or to complete an
asynchronous TCP connection. The segregation of the two
task executors improves performance by reducing conten-
tion between writes and other activities, notably reads, but 1s
not necessary for algorithmic correctness. Empirical evi-
dence shows that this division of labor leads to improved
throughput, and that this improvement 1s suilicient to war-
rant the increased complexity.

A thread that wishes to take advantage of one of these
thread pools 532, 534 does so by submitting a task to the
corresponding task executor’s unbounded task submission
queue 337, 539. Whenever a task executor has idle threads,
it dequeues the task at the head of the task submission queue
and arranges for an i1dle thread to execute it. Task execution
1s therefore asynchronous with respect to task submission.
The primary clients of the task executors are the four agents.

The coordinator also tracks the aggregate memory utili-
zation of all messages pending for transmission and enforces
a bufler threshold. The bufler threshold 1s a configurable
parameter and represents the approximate number of bytes
that the node will bufler. The builer tally 540 1s the coor-
dinator’s reckoning of the number of bytes currently buil-
cred. The size of a message 1s 1its complete memory foot-
print, including “invisible” system overhead such as its
object header. Every message also knows the size of its
serialized form. For the purpose of accounting for aggregate
memory utilization, the coordinator treats a message as 11 its
intrinsic representational requirement were the greater of the
two footprints. This both simplifies and expedites the
accounting.

There are four agents, one for each basic kind of TCP
event. The read agent 536 manages asynchronous reads.
When the operating system’s TCP implementation indicates
that data has arrived for a particular socket 527, the read
agent enqueues on the general task executor a task that,
when performed, will read as many bytes as are available
from the associated network bufler and append them to a
message assembly bufler owned by the conduit responsible
for the socket. A particular read may not culminate 1n the
ability to reily a complete message from the message
assembly bufler. The serialized forms of messages have
suflicient internal structure to allow eflicient stepwise stor-
age and assembly. When a read results in the assembly and
reification of a complete message, it 1s processed synchro-
nously.

US 11,272,044 B2

27

The connect agent 538 and the accept agent 540 are
respectively responsible for establishing outgoing and
incoming TCP connections. When the operating system
indicates that a connection has been completed, the appro-
priate agent enqueues on the general task executor a task
that, when performed, will create and configure a conduit
that abstracts the new socket. Any action that has been
deferred until connection establishment completes 1s per-
formed synchronously.

The write agent 542 manages asynchronous writes. When
the operating system 1ndicates that data may be written to a
particular socket, the write agent enqueues on the writer task
executor a task that, when performed, will cause the conduit
responsible for the socket to serialize and transmit as many
pending messages as allowed by the current transmission
window availability. A particular write may not culminate in
transmission of a complete message. Generally, a conduit
completes transmission of a partially transmitted message
before serializing and transmitting additional messages.

The network transport soltware communicates with
neighbors and clients using conduits. A conduit 526 encap-
sulates a socket 527 and abstracts 351 access to it. The
conduit offers asynchronous read and write capabilities 1n a
fashion that permits its clients to exert fine-grained control
over the serialization of messages. A client obtains a conduit
by asking the coordinator to mitiate or accept a TCP
connection. When the TCP connection 1s established asyn-
chronously with respect to the connection initiation, the
client specifies a configuration action that will be performed
upon establishment of a TCP connection.

In use, the configuration action binds a translation chain
to the conduit. A translation chain 548 comprises an ordered
sequence ol modular, pluggable translators 350. A translator
serves to migrate bidirectionally between serial representa-
tions of messages. A translator has a write converter and a
read converter. Each converter accepts as iput a bufler of
data and produces as output a bufler of data. The write
converter accepts a buller of data flowing toward a socket;
the read converter accepts a buller of data flowing from a
socket. A translation chain may be applied in the write
direction, and the translation chain then accepts a reified
message and passes 1t, 1n the client-specified order, through
the write converters of its translators to produce the final
serial form that will be wrtten to 1ts conduit’s socket.
Conversely, when a translation chain 1s applied in the read
direction, 1t accepts the final serial form from the conduit’s
socket, applies the read converters of 1ts translators 1n the
opposite order, and produces a reified message.

Translation chains may be used for various purposes, €.g.,
enforcing protocol requirements, compressing streams,
encrypting streams, etc. Translators may be statetul, thereby
allowing the translation chain to alter the transactional
boundaries of messages; the smallest translation quantum
may contain several protocol messages.

The configuration action also associates a read action with
the conduit. This action 1s performed when the conduit’s
translation chain produces reified messages. This action 1s
executed asynchronously with the configuration action and
synchronously with the actual read of data from the socket’s
network read butler. The action runs in a thread managed by
the general task executor. To allow the network transport
software to be free of deadlocks, the read action does not
perform any operations that could block for an arbitrary
amount of time. This constraint applies specifically to direct
I/O operations. A read action may, however, enqueue a
message for transmission on any conduit without fear of
deadlock. Whenever a conduit 1s informed that data has been

10

15

20

25

30

35

40

45

50

55

60

65

28

received on 1ts socket, it passes this data through its trans-
lation chain 1n the read direction. Once suflicient data has
percolated through the translation chain so that one or more
reifled messages are available, the read action 1s performed
for each of them, one at a time, 1n order.

A client may write a message to a conduit. In some
implementations, this 1s permissible at any time and in any
context. A message written to a conduit 1s not immediately
serialized and transmitted using the underlying socket. First
it 1s assigned a message number from a monotonically
increasing counter. It 1s then enqueued upon one of the
conduit’s two transmission queues: the control queue 560,
reserved for high-priority control messages like open-ser-
vice-handle and bind-service-identifier; and the write queue
562, used for client-datagram messages and low-priority
control messages like liveness. A conduit informs the coor-
dinator of any write to either queue, thereby allowing the
coordinator to increment the bufler tally by the size of the
newly enqueued message. The network transport software
guarantees that messages enqueued on a conduit’s control
queue will eventually be serialized and transmitted.

Messages enqueued on a conduit’s write queue may be
discarded 1f a write to the conduit causes the bufler tally to
exceed the bufler threshold. The coordinator maintains a
priority queue ol conduits, called the victim queue 563,
ordered by the message number of the oldest message
enqueued on the write queue of each conduit. In some
implementations, a conduit appears in this priority queue 1f
and only 1f 1t has one or more messages enqueued on 1ts
write queue. When a write to a conduit causes the bufler tally
to exceed the buflfer threshold, the coordinator discards
messages until the bufler tally no longer exceeds the bufler
threshold.

In particular, the coordinator removes the head of the
victim queue, removes and discards the head of its write
queue, decrements the bufler tally by the size of the dis-
carded message, reinserts the conduit into the victim queue,
and repeats the process until the bufler tally 1s less than the
bufler threshold. The slowest flowing conduits are penalized
first, thereby allowing traflic along other conduits to con-
tinue to make progress. In some implementations, the net-
work transport software clients employ a higher-level stream
protocol 29 to communicate with one another, and the
messages that are retransmitted soonest are discarded.

In some cases, 1t 1s conceivable that only high-priority
control messages are enqueued on conduits, but the bufler
tally somehow exceeds the bufler threshold due to a large
volume of control messages. In such cases, the coordinator
can continue to buller messages indefimtely and without
respecting the bufler threshold.

When a conduit becomes eligible to write data to its
socket, it first transmits as much as possible of the current
tully translated bufler. If the conduit successtully consumes
and transmits this bufler, which may already be empty 1n a
trivial case, then 1t dequeues a message. If there are mes-
sages enqueued on the conduit’s control queue, then the
oldest of the enqueued messages 1s dequeued; otherwise the
conduit dequeues the oldest message on the write queue. In
this way, the algorithm prefers to senalize and send high-
priority control messages. Not only are such messages more
likely to exhibit time sensitivity in their processing, but they
exert higher pressure on the network transport software
because the mesh cannot freely discard them even under
heavy load.

Having dequeued a message, the conduit instructs the
coordinator to decrement 1ts builer tally by the size of the
message. Then the conduit passes the message through the

US 11,272,044 B2

29

translation chain in the write direction to produce a serial-
1zed bufler. If no bufler 1s produced, then the conduit orders
the translation chain to flush. If no bufler i1s produced, then
the conduit aborts the transmission process and awaits the
enqueuing of new messages. Assume that a buffer has been °
obtained. The conduit mstructs the coordinator to increment
its buller tally by the size of the buller, possibly causing old
messages enqueued on the write queues of one or more
conduits to be discarded. Then the conduit transmits as much
of the produced builer as the socket’s transmission window
availability allows and decrements the bufler tally appropri-
ately.

In some 1implementations, each conduit, agent, and coor-
dinator 1s outfitted with a reentrant lock that controls access .
to i1ts data structures. Use of conduits can drive lock acqui-
sition. For example, a thread that wishes to acquire the locks
for a particular trio of <conduit, coordinator, agent> acquires
the locks 1n the order specified in the tuple to avoid the
possibility of deadlock. The network transport software 2q
implements, e.g., strictly implements, the locking order, e.g.,
using techniques to ensure the correctness of the implemen-
tation and to detect aberration from the correct locking order
as early as possible. In some implementations, the acquired
locks are owned by the conduits for short periods of time, 25
¢.g., less than 1 ms, allowing for high throughput.

With respect to starting, stopping, and restarting, the
network transport soitware has been designed to be highly
configurable and provides mechanisms for setting configur-
able parameters. For example, to support various deploy-
ment scenarios, these parameters may be specified using 1)
the platform-specific command line, 2) an XML configura-
tion document whose outermost element 1s <configuration>,
or 3) Java system properties, or some combination of two or
more of those. If a particular parameter 1s multiply specified
through these mechanisms, the network transport software
will not start until all values given for the parameters match
semantically. Otherwise, the network transport software
1ssues an error message that describes the detected incoher- 4
ence to allow an end user to review the settings of the
running network transport soitware i a straightforward
fashion. The end user does not have to memorize rules of
precedence of configuration sources and can use information
obtained from the error message to determine the actual 45
runtime values of parameters whose sources disagree.

In some i1mplementations, only a few configuration
parameters are made available through command-line
options. These include the most common and important
options. They serve as useful semantic documentation for an 50
end user who examines the node’s running processes
through a platform-specific application or utility, such as

Windows Task Manager (Microsoit Windows®), Activity
Monitor (Mac OS X®), and ps or top (UNIX® variants),
that features a mode to display an application’s command 55
line.

Examples of the complete set of configurable parameters
are as follows. Some configuration patterns are described by
regular expressions, particularly to explain optional or
repeating elements. 60

network transport software 1dentifier. The instance’s net-

work transport soitware 1dentifier can include the fol-

lowing parameters.

Command line: --myld=(host:)?port

XML element: <myld>(host:)?port</myld> 65

System property: com.miosoit.mioplexer.myld=
(host:)?port

10

30

35

30

Default: <autodetected DNS hostname, 13697>

host 1s the DNS hostname of the node and port 1s an
available TCP port number in the range [0, 65535]. host
1s optional and defaults to the autodetected hostname.
It can be determined by querying the operating system,
if not specified. It this autodetection procedure fails to
ascertain a unique hostname for the node, then the
hostname “localhost” i1s chosen. Failure to correctly
establish the network transport software 1dentifier may
result in the unreachability of the instance.

Greeter port number. The 1nstance’s greeter port number

can 1nclude the following parameters. This 1s the UDP

port number used by the network transport software

autodiscovery retlex.

Command line: --greeterPort=port

XML element: <greeterPort>port</greeterPort>

System property: com.miosoft.mioplexer.greeting.
greeterPort=port

Default: network transport software identifier’s TCP
port number

Port 1s an available UDP port number 1n the range [0,

65533]. Failure to correctly establish the greeter port

number may result in the instance’s iability to par-

ticipate 1n the network transport software autodiscov-

ery mechanism.

Greeter targets. The autodiscovery process will attempt to

contact the complete set of <DNS hostname, UDP port

number>. It may be necessary to specily these explic-

itly to ensure that nodes separated by firewalls can
communicate.

Command line: --greeter Targets=(host:)?port
(,(host:)?port)*

XML element:

<greeter Targets>(<greeter Target>(host:)?port<’/greet-
er Target>)*</greeterTargets>

System property: com.miosoft.mioplexer.greeting.
greeter Targets=(host:)?port(,(host:)?port)*

Detault: The set of all pairs <broadcast address, greater
port number>, where broadcast address 1s the broad-
cast address of one of the node’s network adapters.

host 1s a DNS hostname of the node and port 1s a TCP

port number in the range [0, 65535]. host 1s optional
and defaults to the autodetected hostname. It can be
determined by querying the operating system, 1f not
specified. If this autodetection procedure fails to ascer-
tain a unique hostname for the node, then the hostname

“localhost” 1s chosen. Failure to correctly establish this

list may result 1n an unexpected and unusual mesh

topology.

Greeter heartbeat. The greeter heartbeat 1s the denomina-

tor of the frequency with which the network transport

soltware transmits request-greetings messages to all

greeter targets. The parameters are specified 1 milli-

seconds.

XML element: <greeterHeartbeatMillis>rate<greeter-
HeartbeatMillis>

System property: com.miosoit.mioplexer.greeting.
grecterHeartbeatMillis=rate

The network transport software will send a request-

greetings message to all greeter targets with a fre-

quency of once per rate milliseconds.

Liveness probe rate. This rate 1s the mnverse of the

frequency with which liveness messages are sent across

established TCP connections. The parameters are speci-

fied 1n milliseconds.

XML element: <livenessProbeRateMillis>rate</live-
nessProbeRateMillis>

US 11,272,044 B2

31

System property: com.miosoft.mioplexer.routing.live-
ness- ProbeRateMillis=rate

Detault: 30,000

The network transport software will send liveness
messages to each established TCP connection, whether
client or neighbor, with a frequency of once per rate
milliseconds. The liveness probe rate can be set low to
reduce network traflic or high to quickly detect faults
on low-traflic connections.

Routing postponement quantum. The quantum postpones

routing tasks, such as routing table construction and

neighborhood snapshot propagation. The parameters

are specified 1n milliseconds. This quantum is renewed

when an update occurs that would cause a delayed

computation to produce a different answer. This allows

incremental lengthening of delays.

XML element: <routingPostponementMillis>quantum
</routingPostponement Millis>

System property: com.miosoft.mioplexer.routing.post-
pone- mentMillis=quantum

Default: 5

Quantum 1s the amount of time, 1n milliseconds, to

delay a routing task. Failure to set the routing post-

ponement quantum wisely may result 1n poor perfor-

mance.

Retransmission rate. The denominator of the frequency

with which iter-network transport software control

messages are retransmitted. The parameters are speci-

fied 1n milliseconds.

XML element: <retransmissionRateMillis>rate</re-
transmissionRateMillis>

System property: com.miosoft.mioplexer.services.re-
trans- missionRateMillis=rate

Detault: 5,000

The network transport software will retransmit a mes-

sage on the retransmission list with a frequency of once

per rate milliseconds. Failure to set the retransmission

rate wisely will result 1n increased network traflic or

increased latency for service requests.

Service reestablishment grace period. This period 1s the

amount of time must elapse after the network transport
soltware on a node starts before the network transport
software should send a service-handle-notification or
node-service-handle-notification message that reports a
closed service handle state. Specified 1n milliseconds.
XML element: <gracePeriodMillis>quantum</grace-
PeriodMillis>
System property: com.miosoit.mioplexer.services.gra-
cePer- 1odMillis=quantum
Detault: 30,000
The network transport software will delay transmission
of affected notifications by quantum milliseconds. Fail-
ure to set the service reestablishment grace period
wisely will result 1n 1increased mterruptions 1n commus-
nication or increased latency when the network trans-
port software istances cycle.

Registrar postponement quantum. The quantum 1s related

to postponement of registrar tasks, such as service

catalog snapshot propagation. The parameters are

specified 1 milliseconds. This quantum 1s renewed

when an update occurs that would cause a delayed

computation to produce a diflerent answer. This allows

incremental lengthening of delays.

XML element: <registrarPostponementMillis>quant-
um-</registrarPostponementMillis>

System property: com.miosoit.mioplexer.services.
postponementMillis=quantum

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Default: 5

Quantum 1s the amount of time, 1 milliseconds, to
delay a registrar task. Failure to set the routing post-
ponement quantum wisely may result in poor perfor-
mance.

Reaper period. This period 1s the mnverse of the frequency
with which the reaper task executes. The parameter 1s
specified 1n milliseconds.

XML element: <reaperPeriodMillis>rate</reaperPeri-
odMillis>

System property: com.miosoit.mioplexer.services.
reaperPeriodMillis=rate

Default: 10,800,000

The reaper task will execute with a frequency of once

per rate milliseconds. The reaper period can be set to

prevent regression ol second-tier subscription conver-

sations or excessive memory growth.

Bufler threshold. The threshold sets the approximate
number of bytes that the network transport software
buflers before discarding eligible messages. A single
message or buller may cross this threshold, and by an
arbitrary amount. The parameter 1s specified in bytes.
Command line: --bufferThreshold=threshold
XML element: <buflerThreshold>threshold <bufler-

Threshold>
Detault: 200,000,000
The network transport software will bufler threshold
bytes of messages and bullers, plus a single message or
bufler. Failure to set the bufler threshold wisely may
result 1n poor performance.

Thread pool size. This size specifies the maximum num-
ber of threads that will be allocated to each of the
network transport software’s thread pools.

XML element: <threadPoolSize>size</threadPool-
S1ze>

Default: Twice the number of processor cores.

The network transport software will populate each

thread pool with at most this many operating system

kernel schedulable threads. Failure to set the thread

pool size wisely may result 1n poor performance.

During startup, the network transport software writes an
informative herald to 1ts standard output, 1f any. This herald
can include the build version, the preferred server protocol
version, the supported server protocol versions, the sup-
ported client protocol versions, a detailed timestamp closely
correlated to the herald’s generation, and a copyright notice.
An end user with access to this herald can readily determine
many important facts of the sort required by developers and
support staill when troubleshooting problems.

The network transport software 1s designed and 1mple-
mented without special shutdown requirements. An end user
with logical access to a network transport software’s process
may use the platform’s tools to terminate the process. The
network transport software does not require a clean shut-
down procedure, so this 1s an acceptable means of stopping
an 1nstance. A node can completely shut down or crash
without any exceptional consequences for other nodes par-

ticipating 1n the mesh or for the instance’s replacement
incarnation.

In many environments, a mesh administrator may not
have access to all nodes or instances” processes participating,
in the mesh. To practically perform administration of the
entire mesh, the mesh administrator may use an administra-
tive client to stop or restart the network transport software on
a node. To stop the network transport software, the client

US 11,272,044 B2

33

sends a request-shutdown message to 1ts local network
transport software. This message encapsulates a new con-
versation 1dentifier, the network transport software 1dentifier
of the target network transport software, the amount of time
(in milliseconds) that the target should delay prior to exiting,
and the status code with which the operating system process
should exait.

When a node recerves a request-shutdown message, 1t
creates a routable shutdown message and reliably transmits
it to the destination using the same mechanism as described
tor the second-tier subscription control messages. This mes-
sage contains the same destination network transport soft-
ware 1dentifier, timeout, and status code, plus 1ts own
network transport software identifier and a new conversation
identifier. Only upon receipt of a node-acknowledgment
message contamning this conversation identifier does the
network transport software acknowledge the originating
client by means of a client-acknowledgment message that
contains the original conversation identifier and an acknowl-
edgment code of ok.

When the network transport software recerves a shutdown
message, 1t immediately replies with a node-acknowledg-
ment message that contains the same conversation 1dentifier
and an acknowledgment code of ok. It then delays for the
specified amount of time. Finally the network transport
soltware exits the operating system process with the carried
status code.

To restart the network transport software on a node, the
client sends a request-restart message to 1ts local node. This
message encapsulates a new conversation identifier, the
network transport soitware identifier of the target network
transport software, the amount of time (in milliseconds) that
the target should delay prior to restarting, and an optional
replacement network transport software binary.

When a node receives a request-restart message, 1t creates
a routable restart message and reliably transmits 1t to the
destination. This message contains the same destination
network transport soitware i1dentifier, timeout, and replace-
ment binary, plus 1ts own network transport software 1den-
tifier and a new conversation identifier. When 1t finally
receives a node-acknowledgment message that contains this
conversation identifier, it replies to the client with a client-
acknowledgment message that contains the original conver-
sation 1dentifier and an acknowledgment code of ok.

When the network transport software receives a restart
message, 1t immediately replies with a node-acknowledg-
ment message that contains the same conversation 1dentifier
and an acknowledgment code of ok. It then delays for the
specified quantum. Once the quantum expires, the network
transport software prepares to restart. If no replacement
network transport software binary has been specified, the
network transport software starts a special network transport
software relauncher application and exits. The network
transport soltware relauncher delays until 1ts parent process
has terminated. It then launches the network transport soft-
ware and finally exits.

If a replacement network transport soitware binary has
been specified, then the network transport software nstance
securely writes 1t to a temporary file. The network transport
soltware 1nstance then starts the network transport software
relauncher, specilying the location of the replacement net-
work transport soitware binary. The network transport soft-
ware now exits. The network transport software relauncher
delays until 1ts parent process has terminated. It then over-
writes the original network transport soitware binary with
the contents of the temporary file. Finally it launches the
new network transport soitware binary and exits. The net-

10

15

20

25

30

35

40

45

50

55

60

65

34

work transport software and the relauncher are bundled
together 1n the binary, so the relauncher 1tself 1s simultane-
ously updated and semantic compatibility between the two
applications i1s provided. Facilitated by a good administra-
tive client, a mesh administrator may thus effect an easy
upgrade of a single node or an entire mesh.

It 1s possible that a node-acknowledgment message that 1s
a reply to either a shutdown or restart message may be lost
in transit. When the target node becomes unreachable from
the client’s network transport software as a consequence of
having quit, the client’s network transport software cancels
the retransmaission task responsible for reliably sending the
shutdown or restart message. Without this precaution, newly
started network transport software on a node might receive
a shutdown or restart message that was intended for 1its
previous instance and appropriately exit. This error could
cascade through many iterations of mstances so long as the
race condition continued to resolve itsell 1n the same fash-
101.

With respect to user access, diagnostics, and logging, the
network transport soltware runs essentially as a daemon
process. Though the process may control a terminal session,
for example, when starting the network transport software
from the platform command line, this process does not
supply mput to the program. Such a session 1s used to
display information to the user, such as the herald, high-
priority informational messages, and stack traces that result
when noteworthy exceptional conditions occur.

Some 1mplementations use the Java Logging API that 1s
provided with the Java Runtime Environment (JRE) to
provide end-user customizable logging. This framework
allows an end user with logical access to the network
transport software on a node using the shell or desktop to
decide which avenues (terminal, file system, socket, etc.) to
use and how to filter messages by their intrinsic priorities. In
some 1mplementations, the following Java system properties
may be used to set the logging priority filters for the various
network transport software subsystems:

com.miosoft.10.Coordinator.level. This sets the verbosity

of the I/O and bufler management subsystem. This can
be very noisy when the logging priority filter 1s set
lower than the recommended value, as it provides
copious debugging information related to connection
maintenance and message traflic. Generation and out-
put of this additional information may degrade perfor-
mance. The recommended value 1s INFO.
com.miosoft.mioplexer.Mioplexer.level. This determines
whether forged or unrecognized messages will be
logged. The recommended value 1s WARNING.
commiosoit.mioplexer.MioplexerConfiguration.level.
This sets the verbosity of the configuration processor.
As such, it provides notifications about configurable
parameters, such as their final values and problems
encountered when attempting to parse them or obtain
defaults. The recommended value 1s WARNING.
com.miosoit.mioplexer.greeting. Greeter.level. This sets
the verbosity of the autodiscovery retlex. This can be
somewhat noisy when the logging priority filter 1s set
very low, as 1t provides debugging information about
transmission of request-greetings and greetings mes-
sages. The recommended value 1s WARNING.
com.miosoft.mioplexer.routing.Router.level. This sets the
verbosity of the router. This can be periodically noisy,
particularly when the mesh 1s experiencing flux, but
generally 1s quiet. The recommended value 1s INFO; 1t
strikes a good balance between performance and
reporting.

US 11,272,044 B2

35

com.miosoft.mioplexer.services.Registrar.level. This sets
the verbosity of the registrar. This can be periodically
noisy, particularly when the mesh 1s experiencing a
surge of client activity, but generally 1s quiet. The
recommended value 1s INFO. Based on this setting, the °
most 1nteresting messages, such as open-service-
handle, close-service-handle, request-restart, and
request-shutdown, are logged upon receipt.

Logs enable a mesh administrator to passively monitor
mesh health and perform post hoc investigation. Sometimes
it 1s valuable to run live queries against a running system.
For example, a client that wishes to examine the internal
state of a running network transport software instance may
send a request-diagnostics message tailored to its particular
interest set. This message includes a new conversation
identifier, the network transport soiftware identifier of the
destination node, and a set of diagnostic request 1dentifiers.
Each diagnostic request identifier uniquely specifies a par-
ticular type of diagnostic information, and the set in aggre- 20
gate 1s understood to represent a transactionally complete
interest set.

When the network transport soitware of a node receives
a request-diagnostics message, it sends a node-request-
diagnostics message to the destination network transport 25
software. This message includes a new conversation 1den-
tifier, the network transport software 1dentifier of 1ts creator,
and the same set of diagnostic request identifiers. The
network transport software transmits it reliably using the
same mechanism as for second-tier subscription control
messages and shutdown and restart messages.

When a node receives a node-request-diagnostics mes-
sage, 1t examines the set of diagnostic request 1dentifiers and
computes the appropriate diagnostic information. The kinds
of diagnostics that could be provided conceptually are quite
broad. In some 1mplementations, only a handful are speci-
fied and implemented at the time of writing. These are:

Build version. This 1s the current build version of the
target network transport software. This assists mesh 4
administrators 1n keeping all software current.

Neighborhood. This 1s the current neighborhood of the
target network transport software, specified as a set of
network transport software identifiers.

Reachable network transport software instances. This 1s 45
the complete set of nodes reachable from the target
network transport software. In a healthy environment,
this should converge, once the mesh stabilizes, to the
complete set of nodes participating in the mesh.

Neighborhood pairs. This 1s the complete set of neigh- 50
borhood pairs <source, neighbor> known to the target
network transport software, where source 1s the net-
work transport software identifier of the node that
originated the neighborhood snapshot that attested the

relationship and neighbor 1s the network transport 55
software 1dentifier of a neighbor in the source node’s
neighborhood.

Routing pairs. This 1s the complete set of routing pairs
<target, next hop> known to the target network trans-
port software, where target 1s the network transport 60
soltware 1dentifier of a reachable node and next hop 1s
the network transport software identifier of the node to
which traflic should be routed in order to reach the
target network transport software.

Local service catalog. These are the local service offerings 65
of the target network transport software, specified as a
set of service bindings.

10

15

30

35

e

36

Service catalog. This 1s the complete set of service
offerings known to the target network transport soft-
ware, specified as a set of service bindings.

Open service handles. This 1s the complete set of open
service handles registered to clients of the target net-
work transport soitware.

Active service handle subscription pairs. This 1s the
complete set of active service handle subscription pairs
<subscriber, publisher>, where subscriber 1s an open
service handle registered to a client of the target net-
work transport soitware and publisher 1s any publisher,
local or remote.

Active routing subscriptions. This 1s the complete set of
routing subscriptions, specified as a set of open service
handles registered to clients of the target network
transport software.

In some 1implementations, the network transport software
will be able to provide support for more varied diagnostics.
In particular, the network transport software may be able to
report the values of all configurable parameters. In addition,
the network transport software may be able to report infor-
mation about 1ts node, like CPU, disk, and network activity
levels. Once all diagnostics have been computed, the net-
work transport software packages them into a diagnostics
message with a conversation identifier that matches the one
carried 1nside the node-request-diagnostics message. The
diagnostics message also includes a timestatnp that corre-
sponds closely to the time of its reification. When the client’s
attached network transport soitware receives the diagnostics
message, 1t removes the copied node-request-diagnostics
message from the retransmission list in order to prevent
redundant delivery of diagnostic information to the client (as
a result of an incoming diagnostics message racing with a
slow outgoing node-request-diagnostics message). The net-
work transport software then extracts the diagnostics and
timestamp and creates a new diagnostics message that
encloses this mformation and the client’s original conver-
sation 1dentifier. Finally 1t delivers the diagnostics message
to the client.

With respect to acknowledgment codes, when a client
sends 1ts connected network transport software instance a
service control message, such as an open-service-handle
message or a close-service-handle message, the network
transport software replies with a client-acknowledgment
message. When a node sends another node a second-tier
subscription control message, the remote node replies reli-
ably with a node-acknowledgment message. Both kinds of
acknowledgment message include an acknowledgment code
that describes the result of attempting the specified opera-
tion. Since requested operations usually are completed with-
out error, this acknowledgment code will typically be ok.
Other acknowledgment codes are possible, and sometimes
are the result of poor client behavior.

Examples of acknowledgment codes are listed below. The
parenthetical value 1s the numeric representation of the
acknowledgment code, as appearing for instance in a seri-
alized acknowledgment message. The indented lists are the
messages that may elicit responses that convey the acknowl-
edgment code.

ok (0). The network transport software satisfied the speci-
fied request without encountering any exceptional cir-
cumstances. Applicable when receiving messages:
open-service-handle
close-service-handle
bind-service-identifier
unbind-service-identifier
service-handle-subscribe

US 11,272,044 B2

37

service-handle-unsubscribe
node-service-handle-subscribe
node-service-handle-unsubscribe
node-request-service-handle-notifications
routing-subscribe
routing-unsubscribe
request-restart
request-shutdown
restart
shutdown
error_service_handle_allocated_by_another node (-1).
The node refused to satisty the request because the
target service handle was allocated by a different node.
open-service-handle
error_service_handle registered to_another client (-2).
The node refused to satisty the request because the
target service handle 1s registered to a different client.
open-service-handle
close-service-handle
bind-service-1dentifier
unbind-service-identifier
service-handle-subscribe
service-handle-unsubscribe
routing-subscribe
routing-unsubscribe
error_service_handle already_open (-3). The node
refused to satisty the request because the target service
handle 1s already open.
open-service-handle
error_service_handle_not_open (—4). The node refused to
satisly the request because the target service handle 1s
not open.
close-service-handle
bind-service-1dentifier
unbind-service-identifier
service-handle-subscribe
service-handle-unsubscribe
routing-subscribe
routing-unsubscribe
error_service_binding_already_established (-35). The
node refused to satisly the request because the target
service binding 1s already established.
bind-service-identifier
error_service_binding_not_established (-6). The node
refused to satisiy the request because the target service
binding 1s not established.
unbind-service-identifier
error_service_handle_already_subscribed (=7). The node
refused to satisty the request because the target sub-
scription already exists.
service-handle-subscribe
routing-subscribe
error_service_handle_not_subscribed (-8). The node
refused to satisty the request because the target service
handle subscription does not exist.
service-handle-unsubscribe
routing-un subscribe
error_special_service_handle (-9). The node refused to
satisly the request because an embedded service handle

contains a UUID that falls within the range reserved for
internal use. This range 1s [0x000000000000000-

00000000000000000, 0x0000000000000000000000-
00000003ER], 1.e. the first 1,000 sequential UUIDs.

open-service-handle
service-handle-subscribe

10

15

20

25

30

35

40

45

50

55

60

38

In some implementations, the acknowledgment codes
delivered inside client-acknowledgment messages need to
be checked to ensure correctness of algorithms and reason-
able programming practices should be used.

The techniques described here can be used 1n a wide range
of fields and 1n a wide range of applications, for example,
applications or networks that require a very large number of
communication paths among applications running on nodes
of a network or a relatively low amount of overhead devoted
to establishing and maintaining communication paths 1n a
network or both.

The techniques described here can be implemented on a
wide variety of commercially available platforms in the
fields of computer hardware, routers, gateways, wiring,
optical fiber, and other networking hardware, operating
systems, application software, firmware, networking, wire-
less communication, user interfaces, and others.

Other implementations are within the scope of the fol-
lowing claims.

The mvention claimed 1s:

1. A method comprising

in a node of a communication network, enabling mainte-

nance of communication endpoints for use 1n establish-
ing conversations ol the nodes and of the applications
of the network, the endpoints being maintained persis-
tently as one or more of the following occur: (a)
conversations are established and terminated, (b) net-
work transport software instances are shut down and
restarted, (c¢) nodes on which network transport sofit-
ware mstances are runmng are shut down and restarted,
(d) an entire network transport layer mesh 1s shut down
and restarted, or (¢) the entire communication network
1s shut down and restarted,

wherein maintaining the endpoints persistently comprises

maintaining associated service handles persistently, the
corresponding service handles on each endpoint of a
pair of endpoints defining a channel between the pair of
endpoints.

2. The method of claim 1 comprising applying security
techniques based on the persistence of the endpoints.

3. The method of claim 1 comprising maintaining statis-
tically unique global identity of the service handles.

4. The method of claim 3 comprising enabling service
handles to be reused by transport soltware instances to
represent given participants of a conversation.

5. The method of claim 1 comprising enabling applica-
tions on nodes of the communication network to provide and
use services between them privately based on the persistence

of the endpoints.

6. The method of claim 1 comprising migrating applica-
tions from one node to another node of the network and
enabling the migrated applications to provide and use ser-
vices to one another based on the persistence of the end-
points.

7. The method of claim 1 comprising analyzing static
program correctness based on the persistence of the end-
points.

8. The method of claim 1 comprising re-establishing
conversations of the nodes after a failure of the communi-
cation network based on the persistence of the endpoints.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

