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SYNTAX REUSE FOR AFFINE MODE WITH
ADAPTIVE MOTION VECTOR
RESOLUTION

CROSS-REFERENCE TO RELATED
DOCUMENTS

This application 1s a continuation of International Appli-
cation No. PCT/IB2019/057897 filed Sep. 19, 2019, which
claims the prionity to and benefits of International Patent
Application No. PCT/CN2018/106513, filed on Sep. 19,
2018, and International Patent Application No. PCT/
CN2019/074433, filed on Feb. 1, 2019. For all purposes
under the law, the entire disclosure of the atorementioned
application 1s incorporated by reference as part of the
disclosure of this application.

TECHNICAL FIELD

This patent document relates to video processing tech-
niques, devices and systems.

BACKGROUND

In spite of the advances in video compression, digital
video still accounts for the largest bandwidth use on the
internet and other digital communication networks. As the
number of connected user devices capable of receiving and

displaying video increases, 1t 1s expected that the bandwidth
demand for digital video usage will continue to grow.

SUMMARY

Devices, systems and methods related to digital video
coding, and specifically, to motion vector predictor deriva-
tion and signaling for athne mode with adaptive motion
vector resolution (AMVR) are described. The described
methods may be applied to both the existing video coding
standards (e.g., High Efliciency Video Coding (HEVC)) and
future video coding standards or video codecs.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method includes determining, for a conversion between a
coded representation of a current block of a video and the
current block, a motion vector diflerence (IMVD) precision
to be used for the conversion from a set of allowed multiple
MVD precisions applicable to a video region containing the
current video block; and performing the conversion based on
the MVD precision.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method 1includes determiming, for a video region comprising,
one or more video blocks of a video and a coded represen-
tation of the video, a usage of multiple motion vector
difference (M VD) precisions for the conversion of the one or
more video blocks in the video region; and performing the
conversion based on the determining.

In another representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method 1includes determiming, for a video region comprising,
one or more video blocks of a video and a coded represen-
tation of the video, whether to apply an adaptive motion
vector resolution (AMVR) process to a current video block
for a conversion between the current video block and the
coded representation of the video; and performing the con-
version based on the determining.
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In another representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method 1ncludes determining, for a video region comprising
one or more video blocks of a video and a coded represen-
tation of the video, how to apply an adaptive motion vector
resolution (AMVR) process to a current video block for a
conversion between the current video block and the coded
representation of the video; and performing the conversion
based on the determining.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method 1ncludes determining, based on a coding mode of a
parent coding unit of a current coding unit that uses an atfline
coding mode or a rate-distortion (RD) cost of the afline
coding mode, a usage of an adaptive motion vector resolu-
tion (AMVR) for a conversion between a coded represen-
tation of a current block of a video and the current block; and
performing the conversion according to a result of the
determining.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method includes determining a usage of an adaptive motion
vector resolution (AMVR) for a conversion between a coded
representation of a current block of a video and the current
block that uses an advanced motion vector prediction
(AMVP) coding mode, the determining based on a rate-
distortion (RD) cost of the AMVP coding mode; and per-
forming the conversion according to a result of the deter-
mining.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method includes generating, for a conversion between a
coded representation of a current block of a video and the
current block, a set of MV (Motion Vector) precisions using
a 4-parameter atline model or 6-parameter atline model; and
performing the conversion based on the set of MV preci-
S101S.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method includes determining, based on a coding mode of a

parent block of a current block that uses an afline coding
mode, whether an adaptive motion vector resolution
(AMVR) tool 1s used for a conversion, wherein the AMVR
tool 1s used to refine motion vector resolution during decod-
ing; and performing the conversion according to a result of
the determining.

In one representative aspect, the disclosed technology
may be used to provide a method for video processing. This
method includes determining, based on a usage of MV
precisions for previous blocks that has been previously
coded using an athne coding mode, a termination of a
rate-distortion (RD) calculations of MV precisions for a
current block that uses the afline coding mode for a con-
version between a coded representation of the current block
and the current block; and performing the conversion
according to a result of the determining.

In another representative aspect, the above-described
method 1s embodied 1 the form of processor-executable
code and stored 1n a computer-readable program medium.

In yet another representative aspect, a device that 1s
configured or operable to perform the above-described
method 1s disclosed. The device may include a processor
that 1s programmed to implement this method.

In yet another representative aspect, a video decoder
apparatus may implement a method as described herein.
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The above and other aspects and features of the disclosed
technology are described in greater detail in the drawings,
the description and the claims.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 shows an example of constructing a merge can-
didate list.

FIG. 2 shows an example of positions of spatial candi-
dates.

FIG. 3 shows an example of candidate pairs subject to a
redundancy check of spatial merge candidates.

FIGS. 4A and 4B show examples of the position of a
second prediction unit (PU) based on the size and shape of
the current block.

FIG. 5 shows an example of motion vector scaling for
temporal merge candidates.

FIG. 6 shows an example of candidate positions for
temporal merge candidates.

FIG. 7 shows an example of generating a combined
bi-predictive merge candidate.

FIG. 8 shows an example of constructing motion vector
prediction candidates.

FIG. 9 shows an example of motion vector scaling for
spatial motion vector candidates.

FIG. 10 shows an example of motion prediction using the
alternative temporal motion vector prediction (ATMVP)
algorithm for a coding unit (CU).

FIG. 11 shows an example of a coding unit (CU) with
sub-blocks and neighboring blocks used by the spatial-
temporal motion vector prediction (STMVP) algorithm.

FIG. 12 shows an example flowchart for encoding with
different MV precisions.

FIGS. 13 A and 13B show example snapshots of sub-block
when using the overlapped block motion compensation
(OBMC) algorithm.

FIG. 14 shows an example of neighboring samples used
to derive parameters for the local 1llumination compensation
(LIC) algorithm.

FIG. 15 shows an example of a simplified afline motion
model.

FIG. 16 shows an example of an atline motion vector field
(MVF) per sub-block.

FIG. 17 shows an example of motion vector prediction
(MVP) for the AF_INTER afline motion mode.

FIGS. 18A and 18B show examples of the 4-parameter
and 6-parameter atline models, respectively.

FIGS. 19A and 19B show example candidates for the
AF_MERGE afline motion mode.

FI1G. 20 shows an example of bilateral matching 1n pattern
matched motion vector derivation (PMMVD) mode, which
1s a special merge mode based on the frame-rate up conver-
sion (FRUC) algorithm.

FIG. 21 shows an example of template matching in the
FRUC algorthm.

FIG. 22 shows an example of unilateral motion estimation
in the FRUC algorithm.

FIG. 23 shows an example of an optical tlow trajectory
used by the bi-directional optical flow (BIO) algorithm.

FIGS. 24 A and 24B show example snapshots of using of
the bi-directional optical flow (BIO) algorithm without
block extensions.

FIG. 25 shows an example of the decoder-side motion
vector refinement (DMVR) algorithm based on bilateral
template matching.
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FIGS. 26A-261 show tlowcharts of example methods for
video processing based on some implementations of the
disclosed technology.

FIG. 27 1s a block diagram of an example of a hardware
platiorm for implementing a visual media decoding or a
visual media encoding techmique described 1n the present
document.

FIG. 28 shows an example of symmetrical mode.

FIG. 29 shows another block diagram of an example of a
hardware platform for implementing a video processing
system described 1n the present document.

DETAILED DESCRIPTION

Due to the increasing demand of higher resolution video,
video coding methods and techniques are ubiquitous in
modern technology. Video codecs typically include an elec-
tronic circuit or software that compresses or decompresses
digital video, and are continually being improved to provide
higher coding efliciency. A video codec converts uncom-
pressed video to a compressed format or vice versa. There
are complex relationships between the video quality, the
amount of data used to represent the video (determined by
the bit rate), the complexity of the encoding and decoding
algorithms, sensitivity to data losses and errors, ease of
editing, random access, and end-to-end delay (latency). The
compressed format usually conforms to a standard video

compression specification, e.g., the High Eiliciency Video

Coding (HEVC) standard (also known as H.265 or MPEG-H
Part 2), the Versatile Video Coding standard to be finalized,
or other current and/or future video coding standards.

Embodiments of the disclosed technology may be applied
to existing video coding standards (e.g., HEVC, H.265) and
future standards to improve compression performance. Sec-
tion headings are used 1n the present document to improve
readability of the description and do not in any way limit the
discussion or the embodiments (and/or implementations) to
the respective sections only.

1. Examples of Inter-Prediction in HEVC/H.265

Video coding standards have significantly improved over
the years, and now provide, 1n part, high coding etliciency
and support for higher resolutions. Recent standards such as
HEVC and H.265 are based on the hybrid video coding

structure wherein temporal prediction plus transform coding
are utilized.
1.1 Examples of Prediction Modes

Each inter-predicted PU (prediction umt) has motion
parameters for one or two reference picture lists. In some
embodiments, motion parameters include a motion vector
and a reference picture index. In other embodiments, the
usage ol one of the two reference picture lists may also be
signaled using iter_pred_idc. In vet other embodiments,
motion vectors may be explicitly coded as deltas relative to
predictors.

When a CU 1s coded with skip mode, one PU is associated
with the CU, and there are no sigmificant residual coetli-
cients, no coded motion vector delta or reference picture
index. A merge mode 1s specilied whereby the motion
parameters for the current PU are obtained from neighboring
PUs, including spatial and temporal candidates. The merge
mode can be applied to any inter-predicted PU, not only for
skip mode. The alternative to merge mode 1s the explicit
transmission of motion parameters, where motion vector,
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corresponding reference picture index for each reference
picture list and reference picture list usage are signaled
explicitly per each PU.

When signaling indicates that one of the two reference
picture lists 1s to be used, the PU 1s produced from one block
of samples. This 1s referred to as ‘um-prediction’. Uni-
prediction 1s available both for P-slices and B-slices.

When signaling indicates that both of the reference pic-
ture lists are to be used, the PU 1s produced from two blocks
of samples. This 1s referred to as ‘bi-prediction’. Bi-predic-
tion 1s available for B-slices only.

1.1.1 Embodiments of Constructing Candidates for Merge
Mode

When a PU i1s predicted using merge mode, an index
pointing to an entry in the merge candidates list 1s parsed
from the bitstream and used to retrieve the motion informa-
tion. The construction of this list can be summarized accord-
ing to the following sequence of steps:

Step 1: Imitial candidates derivation

Step 1.1: Spatial candidates derivation

Step 1.2: Redundancy check for spatial candidates

Step 1.3: Temporal candidates derivation

Step 2: Additional candidates insertion

Step 2.1: Creation of bi-predictive candidates

Step 2.2: Insertion of zero motion candidates

FIG. 1 shows an example of constructing a merge can-
didate list based on the sequence of steps summarized above.
For spatial merge candidate derivation, a maximum of four
merge candidates are selected among candidates that are
located 1n five diflerent positions. For temporal merge
candidate derivation, a maximum of one merge candidate 1s
selected among two candidates. Since constant number of
candidates for each PU 1s assumed at decoder, additional
candidates are generated when the number of candidates
does not reach to maximum number of merge candidate
(MaxNumMergeCand) which 1s signalled in slice header.
Since the number of candidates 1s constant, index of best
merge candidate 1s encoded using truncated unary binariza-
tion (TU). It the size of CU 1s equal to 8, all the PUs of the
current CU share a single merge candidate list, which 1s
identical to the merge candidate list of the 2Nx2N prediction
unit.

1.1.2 Constructing Spatial Merge Candidates

In the derivation of spatial merge candidates, a maximum
of four merge candidates are selected among candidates
located 1n the positions depicted in FIG. 2. The order of
dertvationis A, B,, B,, A, and B,. Position B, 1s considered
only when any PU of position A, B,, B,, A, 1s not available
(e.g. because 1t belongs to another slice or tile) or 1s 1ntra
coded. After candidate at position A, 1s added, the addition
of the remaining candidates 1s subject to a redundancy check
which ensures that candidates with same motion information
are excluded from the list so that coding efliciency 1is
improved.

To reduce computational complexity, not all possible
candidate pairs are considered in the mentioned redundancy
check. Instead only the pairs linked with an arrow 1n FIG. 3
are considered and a candidate 1s only added to the list 1t the
corresponding candidate used for redundancy check has not
the same motion information. Another source of duplicate
motion information 1s the “second PU” associated with
partitions different from 2Nx2N. As an example, FIGS. 4A
and 4B depict the second PU for the case of Nx2N and
2NxN, respectively. When the current PU 1s partitioned as
Nx2N, candidate at position A, 1s not considered for list
construction. In some embodiments, adding this candidate
may lead to two prediction units having the same motion
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6

information, which 1s redundant to just have one PU 1n a
coding unit. Similarly, position B, 1s not considered when
the current PU 1s partitioned as 2NxN.
1.1.3 Constructing Temporal Merge Candidates

In this step, only one candidate 1s added to the list.

Particularly, in the derivation of this temporal merge candi-
date, a scaled motion vector 1s derived based on co-located
PU belonging to the picture which has the smallest POC
difference with current picture within the given reference
picture list. The reference picture list to be used for deriva-
tion of the co-located PU 1s explicitly signaled in the slice
header.

FIG. 5 shows an example of the derivation of the scaled
motion vector for a temporal merge candidate (as the dotted
line), which 1s scaled from the motion vector of the co-
located PU using the POC distances, tb and td, where tb 1s
defined to be the POC difference between the reference
picture of the current picture and the current picture and td
1s defined to be the POC difference between the reference
picture of the co-located picture and the co-located picture.
The reference picture index of temporal merge candidate 1s
set equal to zero. For a B-slice, two motion vectors, one 1s
for reference picture list O and the other 1s for reference
picture list 1, are obtammed and combined to make the
bi-predictive merge candidate.

In the co-located PU (Y) belonging to the reference frame,
the position for the temporal candidate i1s selected between
candidates C, and C,, as depicted in FIG. 6. It PU at position
C, 1s not available, 1s 1ntra coded, or 1s outside of the current
CTU, position C, 1s used. Otherwise, position C, 1s used 1n
the derivation of the temporal merge candidate.

1.1.4 Constructing Additional Types of Merge Candidates

Besides spatio-temporal merge candidates, there are two
additional types ol merge candidates: combined bi-predic-
tive merge candidate and zero merge candidate. Combined
bi-predictive merge candidates are generated by utilizing
spatio-temporal merge candidates. Combined bi-predictive
merge candidate 1s used for B-Slice only. The combined
bi-predictive candidates are generated by combiming the first
reference picture list motion parameters of an initial candi-
date with the second reference picture list motion parameters
of another. If these two tuples provide diflerent motion
hypotheses, they will form a new bi-predictive candidate.

FIG. 7 shows an example of this process, wherein two
candidates in the original list (710, on the left), which have
mvL0O and refldxLO or mvLLl and refldxI.1, are used to
create a combined bi-predictive merge candidate added to
the final list (720, on the right).

Zero motion candidates are mnserted to fill the remaining
entries 1n the merge candidates list and therefore hit the
MaxNumMergeCand capacity. These candidates have zero
spatial displacement and a reference picture index which
starts from zero and increases every time a new zero motion
candidate 1s added to the list. The number of reference
frames used by these candidates 1s one and two for uni- and
bi-directional prediction, respectively. In some embodi-
ments, no redundancy check 1s performed on these candi-
dates.

1.1.5 Examples of Motion Estimation Regions for Parallel
Processing

To speed up the encoding process, motion estimation can
be performed in parallel whereby the motion vectors for all
prediction units mside a given region are derived simulta-
neously. The derivation of merge candidates from spatial
neighborhood may intertere with parallel processing as one
prediction unit cannot dertve the motion parameters from an
adjacent PU until 1ts associated motion estimation 1s com-
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pleted. To mitigate the trade-ofl between coding efliciency
and processing latency, a motion estimation region (MER)
may be defined. The size of the MER may be signaled in the
picture parameter set (PPS) using the “log 2_parallel_
merge level_minus2” syntax element. When a MER 1s
defined, merge candidates falling in the same region are
marked as unavailable and therefore not considered in the
list construction.

1.2 Embodiments of Advanced Motion Vector Prediction

(AMVP)
AMVP exploits spatio-temporal correlation of motion
vector with neighboring PUs, which 1s used for explicit

transmission of motion parameters. It constructs a motion
vector candidate list by firstly checking availability of left,
above temporally neighboring PU positions, removing
redundant candidates and adding zero vector to make the
candidate list to be constant length. Then, the encoder can
select the best predictor from the candidate list and transmat
the corresponding index indicating the chosen candidate.
Similarly with merge 1index signaling, the index of the best
motion vector candidate 1s encoded using truncated unary.
The maximum value to be encoded 1n this case 1s 2 (see FIG.
8). In the following sections, details about derivation process
of motion vector prediction candidate are provided.

1.2.1 Examples of Constructing Motion Vector Prediction
Candidates

FIG. 8 summarizes derivation process for motion vector
prediction candidate, and may be implemented for each
reference picture list with refidx as an input.

In motion vector prediction, two types ol motion vector
candidates are considered: spatial motion vector candidate
and temporal motion vector candidate. For spatial motion
vector candidate derivation, two motion vector candidates
are eventually derived based on motion vectors of each PU
located 1n five different positions as previously shown 1n
FIG. 2.

For temporal motion vector candidate derivation, one
motion vector candidate 1s selected from two candidates,
which are derived based on two diflerent co-located posi-
tions. After the first list of spatio-temporal candidates 1s
made, duplicated motion vector candidates in the list are
removed. If the number of potential candidates 1s larger than
two, motion vector candidates whose reference picture index
within the associated reference picture list 1s larger than 1
are removed from the list. If the number of spatio-temporal
motion vector candidates 1s smaller than two, additional zero
motion vector candidates 1s added to the list.

1.2.2 Constructing Spatial Motion Vector Candidates

In the derivation of spatial motion vector candidates, a
maximum ol two candidates are considered among five
potential candidates, which are derived from PUs located in
positions as previously shown in FIG. 2, those positions
being the same as those of motion merge. The order of
derivation for the left side of the current PU 1s defined as A,
A, and scaled A, scaled A,. The order of derivation for the
above side of the current PU 1s defined as B, B,, B,, scaled
B,, scaled B,, scaled B,. For each side there are therefore
four cases that can be used as motion vector candidate, with
two cases not required to use spatial scaling, and two cases
where spatial scaling 1s used. The four diflerent cases are
summarized as follows:

No Spatial Scaling

(1) Same reference picture list, and same reference picture

index (same POC)

(2) Diflerent reference picture list, but same reference

picture (same POC)
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Spatial Scaling
(3) Same reference picture list, but different reference

picture (different POC)

(4) Dafferent reference picture list, and different reference

picture (different POC)

The no-spatial-scaling cases are checked first followed by
the cases that allow spatial scaling. Spatial scaling 1s con-
sidered when the POC 1s different between the reference
picture of the neighbouring PU and that of the current PU
regardless of reference picture list. If all PUs of left candi-
dates are not available or are intra coded, scaling for the
above motion vector 1s allowed to help parallel derivation of
left and above MV candidates. Otherwise, spatial scaling 1s
not allowed for the above motion vector.

As shown in the example 1n FIG. 9, for the spatial scaling
case, the motion vector of the neighbouring PU 1s scaled 1n
a similar manner as for temporal scaling. One difference 1s
that the reference picture list and index of current PU 1s
given as mput; the actual scaling process 1s the same as that
of temporal scaling.

1.2.3 Constructing Temporal Motion Vector Candidates

Apart from the reference picture index derivation, all
processes for the derivation of temporal merge candidates
are the same as for the derivation of spatial motion vector
candidates (as shown 1n the example in FIG. 6). In some
embodiments, the reference picture index 1s signaled to the
decoder.

2. Example of Inter Prediction Methods 1n Joint
Exploration Model (JEM)

In some embodiments, future video coding technologies
are explored using a reference software known as the Joint
Exploration Model (JEM). In JEM, sub-block based predic-
tion 1s adopted in several coding tools, such as afline
prediction, alternative temporal motion vector prediction

(ATMVP), spatial-temporal motion vector prediction
(STMVP), bi-directional optical tlow (BIO), Frame-Rate Up

Conversion (FRUC), Locally Adaptive Motion Vector Reso-
lution (LAMVR), Overlapped Block Motion Compensation
(OBMC), Local Illumination Compensation (LIC), and
Decoder-side Motion Vector Refinement (DMVR).

2.1 Examples of Sub-CU Based Motion Vector Prediction

In the JEM with quadtrees plus binary trees (QTBT), each
CU can have at most one set of motion parameters for each
prediction direction. In some embodiments, two sub-CU
level motion vector prediction methods are considered 1n the
encoder by splitting a large CU 1nto sub-CUs and derniving
motion information for all the sub-CUs of the large CU.
Alternative temporal motion vector prediction (ATMVP)
method allows each CU to fetch multiple sets of motion
information from multiple blocks smaller than the current
CU 1n the collocated reference picture. In spatial-temporal
motion vector prediction (STMVP) method motion vectors
of the sub-CUs are derived recursively by using the temporal
motion vector predictor and spatial neighbouring motion
vector. In some embodiments, and to preserve more accurate
motion field for sub-CU motion prediction, the motion
compression for the reference frames may be disabled.
2.1.1 Examples of Alternative Temporal Motion Vector
Prediction (ATMVP)

In the ATMVP method, the temporal motion vector pre-
diction (TMVP) method 1s modified by fetching multiple
sets ol motion mformation (including motion vectors and
reference indices) from blocks smaller than the current CU.

FIG. 10 shows an example of ATMVP motion prediction
process for a CU 1000. The ATMVP method predicts the
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motion vectors of the sub-CUs 1001 withuin a CU 1000 in
two steps. The first step 1s to identily the corresponding
block 1051 in a reference picture 1050 with a temporal
vector. The reference picture 1050 1s also referred to as the
motion source picture. The second step 1s to split the current
CU 1000 1nto sub-CUs 1001 and obtain the motion vectors
as well as the reference indices of each sub-CU from the
block corresponding to each sub-CU.

In the first step, a reference picture 1050 and the corre-
sponding block 1s determined by the motion information of
the spatial neighboring blocks of the current CU 1000. To
avoid the repetitive scanning process of neighboring blocks,
the first merge candidate in the merge candidate list of the
current CU 1000 1s used. The first available motion vector as
well as its associated reference index are set to be the
temporal vector and the index to the motion source picture.
This way, the corresponding block may be more accurately
identified, compared with TMVP, wherein the correspond-
ing block (sometimes called collocated block) 1s always 1n
a bottom-right or center position relative to the current CU.

In the second step, a corresponding block of the sub-CU
1051 1s identified by the temporal vector in the motion
source picture 10350, by adding to the coordinate of the
current CU the temporal vector. For each sub-CU, the
motion information of 1its corresponding block (e.g., the
smallest motion grid that covers the center sample) 1s used
to derive the motion information for the sub-CU. After the
motion information of a corresponding NxN block 1s 1den-
tified, 1t 1s converted to the motion vectors and reference
indices of the current sub-CU, 1n the same way as TMVP of
HEVC, wherein motion scaling and other procedures apply.
For example, the decoder checks whether the low-delay
condition (e.g. the POCs of all reference pictures of the
current picture are smaller than the POC of the current
picture) 1s fulfilled and possibly uses motion vector MVx
(e.g., the motion vector corresponding to reference picture
list X) to predict motion vector MVy (e.g., with X being
equal to O or 1 and Y being equal to 1-X) for each sub-CU.
2.1.2 Examples of Spatial-Temporal Motion Vector Predic-
tion (STMVP)

In the STMVP method, the motion vectors of the sub-CUs
are derived recursively, following raster scan order. FIG. 11

shows an example of one CU with four sub-blocks and
neighboring blocks. Consider an 8x8 CU 1100 that includes
four 4x4 sub-CUs A (1101), B (1102), C (1103), and D
(1104). The neighboring 4x4 blocks 1n the current frame are
labelled as a (1111), b (1112), ¢ (1113), and d (1114).

The motion derivation for sub-CU A starts by identifying
its two spatial neighbors. The first neighbor 1s the NxN block
above sub-CU A 1101 (block ¢ 1113). If this block ¢ (1113)
1s not available or 1s intra coded the other NxN blocks above
sub-CU A (1101) are checked (from left to right, starting at
block ¢ 1113). The second neighbor 1s a block to the left of
the sub-CU A 1101 (block b 1112). If block b (1112) 1s not
available or 1s intra coded other blocks to the left of sub-CU
A 1101 are checked (from top to bottom, staring at block b
1112). The motion mformation obtained from the neighbor-
ing blocks for each list 1s scaled to the first reference frame
for a given list. Next, temporal motion vector predictor
(TMVP) of sub-block A 1101 i1s derived by following the
same procedure of TMVP derivation as specified in HEVC.
The motion mformation of the collocated block at block D
1104 1s fetched and scaled accordingly. Finally, after retriev-
ing and scaling the motion information, all available motion
vectors are averaged separately for each reference list. The
averaged motion vector 1s assigned as the motion vector of
the current sub-CU.
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2.1.3 Examples of Sub-CU Motion Prediction Mode Sig-
naling

In some embodiments, the sub-CU modes are enabled as
additional merge candidates and there 1s no additional syn-
tax element required to signal the modes. Two additional
merge candidates are added to merge candidates list of each

CU to represent the ATMVP mode and STMVP mode. In
other embodiments, up to seven merge candidates may be
used, if the sequence parameter set indicates that ATMVP

and STMVP are enabled. The encoding logic of the addi-
tional merge candidates 1s the same as for the merge
candidates in the HM, which means, for each CU in P or B
slice, two more RD checks may be needed for the two
additional merge candidates. In some embodiments, e.g.,
JEM, all bins of the merge index are context coded by
CABAC (Context-based Adaptive Binary Arithmetic Cod-
ing). In other embodiments, e.g., HEVC, only the first bin 1s

context coded and the remaining bins are context by-pass
coded.
2.2 Examples of Adaptive Motion Vector Ditlerence Reso-
lution

In some embodiments, motion vector differences (MVDs)
(between the motion vector and predicted motion vector of
a PU) are signalled 1n units of quarter luma samples when
use_integer_mv_flag 1s equal to 0 1n the slice header. In the
JEM, a locally adaptive motion vector resolution (LAMVR)
1s introduced. In the JEM, MVD can be coded in units of
quarter luma samples, integer luma samples or four luma
samples. The MVD resolution 1s controlled at the coding
unit (CU) level, and MVD resolution flags are conditionally
signalled for each CU that has at least one non-zero MVD
components.

For a CU that has at least one non-zero MVD compo-
nents, a first flag 1s signalled to indicate whether quarter
luma sample MV precision 1s used in the CU. When the {first
flag (equal to 1) indicates that quarter luma sample MV
precision 1s not used, another flag 1s signalled to indicate
whether mteger luma sample MV precision or four luma
sample MV precision 1s used.

When the first MVD resolution flag of a CU 1s zero, or not
coded for a CU (meaning all MVDs 1n the CU are zero), the
quarter luma sample MV resolution 1s used for the CU.
When a CU uses integer-luma sample MV precision or
four-luma-sample MV precision, the MVPs 1n the AMVP
candidate list for the CU are rounded to the corresponding
precision.

In the encoder, CU-level RD checks are used to determine
which MVD resolution 1s to be used for a CU. That 1s, the

CU-level RD check 1s performed three times for each MVD
resolution. To accelerate encoder speed, the following
encoding schemes are applied 1n the JEM:

During RD check of a CU with normal quarter luma
sample MVD resolution, the motion information of the
current CU (integer luma sample accuracy) 1s stored.
The stored motion information (after rounding) 1s used
as the starting point for further small range motion
vector refinement during the RD check for the same CU
with teger luma sample and 4 luma sample MVD
resolution so that the time-consuming motion estima-
tion process 1s not duplicated three times.

RD check of a CU with 4 luma sample MVD resolution
1s conditionally invoked. For a CU, when RD cost
integer luma sample MVD resolution 1s much larger
than that of quarter luma sample MVD resolution, the
RD check of 4 luma sample MVD resolution for the CU

1s skipped.
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The encoding process 1s shown 1n FIG. 12. First, ¥4 pel
MYV 1s tested and the RD cost 1s calculated and denoted as
RDCost0O, then mteger MV 1s tested and the RD cost 1s
denoted as RDCostl. If RDCostl<th*RDCostO (wherein th
1s a positive valued threshold), then 4-pel MV 1s tested;
otherwise, 4-pel MV 1s skipped. Basically, motion informa-
tion and RD cost etc. are already known for 4 pel MV when
checking integer or 4-pel MV, which can be reused to speed
up the encoding process of mteger or 4-pel MV.

2.3 Examples of Higher Motion Vector Storage Accuracy

In HEVC, motion vector accuracy 1s one-quarter pel
(one-quarter luma sample and one-eighth chroma sample for
4:2:0 video). In the JEM, the accuracy for the internal
motion vector storage and the merge candidate increases to
/16 pel. The higher motion vector accuracy (Y1s pel) 1s used
in motion compensation inter prediction for the CU coded
with skip/merge mode. For the CU coded with normal
AMVP mode, either the mteger-pel or quarter-pel motion 1s
used.

SHVC upsampling interpolation filters, which have same
filter length and normalization factor as HEVC motion
compensation interpolation filters, are used as motion com-
pensation interpolation filters for the additional fractional
pel positions. The chroma component motion vector accu-
racy 1s 132 sample in the JEM, the additional interpolation
filters of 142 pel fractional positions are derived by using the
average ol the filters of the two neighbouring Vis pel
fractional positions.

2.4 Examples of Overlapped Block Motion Compensation
(OBMC)

In the JEM, OBMC can be switched on and off using
syntax at the CU level. When OBMC i1s used 1n the JEM, the
OBMC 1s performed for all motion compensation (MC)
block boundaries except the right and bottom boundaries of
a CU. Moreover, it 1s applied for both the luma and chroma
components. In the JEM, an MC block corresponds to a
coding block. When a CU 1s coded with sub-CU mode
(includes sub-CU merge, atline and FRUC mode), each
sub-block of the CU 1s a MC block. To process CU bound-
aries 1n a uniform fashion, OBMC 1s performed at sub-block

level for all MC block boundaries, where sub-block size 1s
set equal to 4x4, as shown 1n FIGS. 13A and 13B.

FIG. 13 A shows sub-blocks at the CU/PU boundary, and
the hatched sub-blocks are where OBMC applies. Similarly,
FIG. 13B shows the sub-Pus in ATMVP mode.

When OBMC applies to the current sub-block, besides
current motion vectors, motion vectors of four connected
neighboring sub-blocks, 1f available and are not 1dentical to
the current motion vector, are also used to derive prediction
block for the current sub-block. These multiple prediction
blocks based on multiple motion vectors are combined to
generate the final prediction signal of the current sub-block.

Prediction block based on motion vectors of a neighbor-
ing sub-block 1s denoted as PN, with N indicating an index
tor the neighboring above, below, left and right sub-blocks
and prediction block based on motion vectors of the current
sub-block 1s denoted as PC. When PN 1s based on the motion
information of a neighboring sub-block that contains the
same motion 1nformation to the current sub-block, the
OBMC 1is not performed from PN. Otherwise, every sample
of PN 1s added to the same sample i PC, 1.e., four
rows/columns of PN are added to PC. The weighting factors
{4, 8, Vie, VA2} are used for PN and the weighting factors
134, 74, 1516, 3142} are used for PC. The exception are small
MC blocks, (1.e., when height or width of the coding block
1s equal to 4 or a CU 1s coded with sub-CU mode), for which
only two rows/columns of PN are added to PC. In this case
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weighting factors {%4, Y%} are used for PN and weighting
factors {34, 74} are used for PC. For PN generated based on
motion vectors of vertically (horizontally) neighboring sub-
block, samples in the same row (column) of PN are added
to PC with a same weighting factor.

In the JEM, for a CU with size less than or equal to 256
luma samples, a CU level tlag 1s signaled to indicate whether
OBMC 1s applied or not for the current CU. For the CUs
with size larger than 256 luma samples or not coded with
AMVP mode, OBMC 1s applied by default. At the encoder,

-

when OBMC 1s applied for a CU, 1ts impact 1s taken into
account during the motion estimation stage. The prediction
signal formed by OBMC using motion information of the
top neighboring block and the left neighboring block 1s used
to compensate the top and left boundaries of the original
signal of the current CU, and then the normal motion
estimation process 1s applied.
2.5 Examples of Local Illumination Compensation (LIC)
LIC 1s based on a linear model for illumination changes,
using a scaling factor a and an offset b. And 1t 1s enabled or

disabled adaptively for each inter-mode coded coding unit
(CU).

When LIC applies for a CU, a least square error method
1s employed to derive the parameters a and b by using the
neighboring samples of the current CU and their correspond-
ing reference samples. F1G. 14 shows an example of neigh-
boring samples used to derive parameters of the IC algo-
rithm. Specifically, and as shown 1n FIG. 14, the subsampled
(2:1 subsampling) neighbouring samples of the CU and the
corresponding samples (1dentified by motion information of
the current CU or sub-CU) in the reference picture are used.
The IC parameters are dertved and applied for each predic-
tion direction separately.

When a CU 1s coded with merge mode, the LIC flag 1s
copied from neighboring blocks, in a way similar to motion
information copy in merge mode; otherwise, an LIC flag 1s
signaled for the CU to indicate whether LIC applies or not.

When LIC 1s enabled for a picture, an additional CU level
RD check 1s needed to determine whether LIC 1s applied or
not for a CU. When LIC 1s enabled for a CU, the mean-
removed sum of absolute difference (MR-SAD) and mean-
removed sum of absolute Hadamard-transformed difference
(MR-SATD) are used, instead of SAD and SATD, for integer
pel motion search and fractional pel motion search, respec-
tively.

To reduce the encoding complexity, the following encod-
ing scheme 1s applied in the JEM:

LIC 1s disabled for the entire picture when there 1s no
obvious illumination change between a current picture
and 1ts reference pictures. To identify this situation,
histograms of a current picture and every reference
picture of the current picture are calculated at the
encoder. If the histogram difference between the cur-
rent picture and every reference picture of the current
picture 1s smaller than a given threshold, LIC 1s dis-
abled for the current picture; otherwise, LIC 1s enabled
for the current picture.

2.6 Examples of Athne Motion Compensation Prediction

In HEVC, only a translation motion model 1s applied for
motion compensation prediction (MCP). However, the cam-
era and objects may have many kinds of motion, €.g. zoom
in/out, rotation, perspective motions, and/or other irregular
motions. JEM, on the other hand, applies a simplified afline
transform motion compensation prediction. FIG. 15 shows
an example of an afline motion field of a block 1400
described by two control point motion vectors V, and V.
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The motion vector field (MVF) of the block 1400 can be
described by the following equation:

Eq. (1)

( . (le - VD,::)X B (Vly - VU}?)

W W

— Voy)
4 X

w W

y'l'vﬂx

_ (Vly

As shown i FIG. 15, (v, v,,) 1s motion vector of the
top-left corner control point, and (v,,, v,,) 1s motion vector
of the top-right corner control point. To simplity the motion
compensation prediction, sub-block based afline transform
prediction can be applied. The sub-block size MxN 1s
derived as follows:

r X MvP Eqg. (2
M = clip 3(4, W, Y s ] =)
max(abs(viy — voy), abs(vy, — voy))
4 . 1‘ 3(4 , i X MvPre ]
B e s max(abs(vy, — voy), abs(vay, — voy))

Here, MvPre 1s the motion vector fraction accuracy (e.g.,
V16 1n JEM). (v,,, V,,) 1s motion vector ot the bottom-left
control point, calculated according to Eq. (1). M and N can
be adjusted downward 1f necessary to make 1t a divisor of w
and h, respectively.

FIG. 16 shows an example of atine MVF per sub-block
for a block 1500. To derive motion vector of each MxN
sub-block, the motion vector of the center sample of each
sub-block can be calculated according to Eq. (1), and
rounded to the motion vector fraction accuracy (e.g., ¥is in
JEM). Then the motion compensation interpolation filters
can be applied to generate the prediction of each sub-block
with derived motion vector. After the MCP, the high accu-
racy motion vector ol each sub-block is rounded and saved
as the same accuracy as the normal motion vector.

2.6.1 Embodiments of the AF_INTER Mode

In the JEM, there are two afline motion modes:
AF_INTER mode and AF_MERGE mode. For CUs with
both width and height larger than 8, AF_INTER mode can
be applied. An afline flag 1n CU level 1s signaled i the
bitstream to indicate whether AF INTER mode 1s used. In
the AF_INTER mode, a candidate list with motion vector
pair {(vy, Vv )IVve=1v,, v, V. }={v,,v.}} is constructed using
the neighboring blocks.

FIG. 17 shows an example of motion vector prediction
(MVP) for a block 1600 1n the AF_INTER mode. As shown
in FIG. 17, v, 1s selected from the motion vectors of the
sub-block A, B, or C. The motion vectors from the neigh-
boring blocks can be scaled according to the reference list.
The motion vectors can also be scaled according to the
relationship among the Picture Order Count (POC) of the
reference for the neighboring block, the POC of the refer-
ence for the current CU, and the POC of the current CU. The
approach to select vi from the neighboring sub-block D and
E 1s similar. If the number of candidate list 1s smaller than
2, the list 1s padded by the motion vector pair composed by
duplicating each of the AMVP candidates. When the can-
didate list 1s larger than 2, the candidates can be firstly sorted
according to the neighboring motion vectors (e.g., based on
the similarity of the two motion vectors 1n a pair candidate).
In some 1mplementations, the first two candidates are kept.
In some embodiments, a Rate Distortion (RD) cost check 1s
used to determine which motion vector pair candidate 1s
selected as the control point motion vector prediction
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(CPMVP) of the current CU. An index indicating the posi-
tion of the CPMVP 1n the candidate list can be signaled in
the bitstream. After the CPMVP of the current athine CU 1s
determined, atline motion estimation 1s applied and the
control point motion vector (CPMV) 1s found. Then the

difference of the CPMYV and the CPMVP is signaled 1n the
bitstream.

In AF_INTER mode, when % parameter afline mode 1s
used, %3 control points are required, and therefore 23 MVD
needs to be coded for these control points, as shown in FIGS.
18A and 18B. In an existing implementation, the MV may
be derived as follows, e.g., 1t predicts mvd, and mvd, from

mvd,.

MV, =mV,+mvd,

mv | =mv +mvd +mvd,

MV, =mvy+mvd>+mvd,,

Herein, mv,, mvd, and mv, are the predicted motion
vector, motion vector difference and motion vector of the
top-left pixel (1=0), top-right pixel (1=1) or left-bottom pixel
(1=2) respectively, as shown 1 FIG. 18B. In some embodi-
ments, the addition of two motion vectors (e.g., mvA(XA,
yA) and mvB(xB, yB)) 1s equal to summation of two
components separately. For example, newMV=mvA+mvB
implies that the two components of newMV are set to
(xA+xB) and (vA+yB), respectively.

2.6.2 Examples of Fast Afline ME Algorithms in AF
Mode

In some embodiments of the athine mode, MV of 2 or 3
control points needs to be determined jointly. Directly
searching the multiple MVs jointly 1s computationally com-
plex. In an example, a fast athne ME algorithm 1s proposed
and 1s adopted mto VIM/BMS.

For example, the fast athne ME algorithm 1s described for
the 4-parameter athne model, and the 1dea can be extended
to 6-parameter atline model:

_INTER

{ X =ax+by+c Eq. (3)

vV =—-bx+ay+d

{ mvfx?},) =X —x=(a-1x+by+c Eq. (4)

mvi =Y —y==bx+(a-1)y+d

Replacing (a-1) with a' enables the motion vectors to be
rewritten as:

h=X -—x=ax+by+c Eq. (5)

h
MV(x,)
mvi =y —y=-bx+a'y+d

I1 1t 1s assumed that the motion vectors of the two controls
points (0, 0) and (0, w) are known, from Equation (35) the
alline parameters may be derived as:

{ c=mvy Eq. (6)

d — mvfﬂpm

The motion vectors can be rewritten 1n vector form as:

MV(p)=4(P)*MV .. Eq. (7)
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Herein, P=(x, y) 1s the pixel position, In some embodiments, this MVD derivation process may
be 1terated n times, and the final MVD may be calculated as

follows:

1 x 0 Eqg. (8) |

A(P) = [0 v 1 —x } and 5 JAMV (. )" =Z, " =dMV [0] Eq. (18)
MVe=[mvie a mvigg b1l Eq. (9) JAMY (.02 =dMV 1 wAZ " dM VA [0] Eq. (19)
JAMV (0.0, =2 —g” " =dMV 2] Eq. (20)

In some embodiments, and at the encoder, the MVD of
AF_INTER may be derived iteratively. Denote MV'(P) as 1o FAMY =3 = dMV 3 * W45, dM Y 2] Eq. (21)
the MV derived 1n the 1th iteration for posmon P and denote
dMV . as the delta updated for MV . in the ith iteration.
Then 1n the (1+1)th 1teration,

In the atorementioned implementation, predicting delta

MYV of control point (0, w), denoted by mvd, from delta MV

of control point (0, 0), denoted by mvd,, results 1n only

15 (2, "dMV [11*w, -2dMV /[3]*w) being encoded for
Eq. (10)  mvd,.

2.6. 3 Embodiments of the AF_MERGE Mode

= A(P)x+ (MVL) + A(P)« (dMVL)' When a CU 1s applied 1 in AF_MERGE mode, it gets the

first block coded with an atline mode from the Vahd neigh-

20 boring reconstructed blocks. FIG. 19A shows an example of

the selection order of candidate blocks for a current CU

Denote Pic,_.as the reference picture and denote Pic __as 1800. As shown 1n FIG. 19A, the selection order can be from

the current pi::iure and denote Q=P+MV*(P). If the Mgui 1S left (1801), above (1802), above right (1803), lett bottom

used as the matching criterion, then the function that needs (1804) to above left (1803) of the current CU 1800. FIG.
to be minimized may be written as: 25 19B shows another example of candidate blocks for a

current CU 1800 1n the AF_MERGE mode. If the neigh-

boring left bottom block 1801 1s coded in atline mode, as

(Piceu(P) = Picyys (P+ MV*L(P))? = Eq. (11) shown 1n FIG. 19B, the motion vectors v,, v, and v, of the

7 top left corner, above right corner, and left bottom corner of
30 the CU contamning the sub-block 1801 are derived. The
motion vector v, of the top leit corner on the current CU
1800 1s calculated based on v2, v3 and v4. The motion
vector vl of the above right of the current CU can be

If it is assumed that (AMV ") is small enough, PICFEJ(Q+ calculated accordingly.
AP)*(dMV )’) may be rewritten, as an approximation 35  After the CPMV of the current CU v0 and v1 are

based on a 1-st order Taylor expansion, as: computed according to the afline motion model 1n Eq. (1),
the MVF of the current CU can be generated. In order to

Pic fQ+A(P)*(dM V) ePic, A Q1Pic, A Q) A(P)* identily whether the current CU 1s coded with AF_ MERGE
@MVc)”. (12) mode, an afline flag can be signaled in the bitstream when
Herein, 40 there 1s at least one neighboring block 1s coded 1n afline
mode.
2.7 Examples of Pattern Matched Motion Vector Derivation
APicrer(Q) dAPic,er (Q) (PMMVD)
dx dy ] The PMMVD mode 1s a special merge mode based on the
45 Frame-Rate Up Conversion (FRUC) method. With this
mode, motion information of a block 1s not signaled but
derived at decoder side.
A FRUC flag can be signaled for a CU when 1ts merge flag

MVTL(P) = APy« ((MVE) + (@MVE)")

LlJ

= MV/(P) + A(P) « (dM VL)

mjnz (Piceu(P) = Pic,(Q + A(P) # (deg:)r))z
P

PEC:’Ef(Q) —

If the notation E™*'(P)=Pic_,(P)- -Pic, Q) 1s adopted, then:

| | | Ny o Eq. (13) 1s true. When the FRUC flag 1s false, a merge index can :Je
min ) (Pice(P) = Picy (Q) = Piclp(Q)x A(P)« (dM V() | = + 50 signaled and the regular merge mode is used. When the
g FRUC flag 1s true, an additional FRUC mode flag can be
Z (EH(P) = Pic, ¢ (Q) + A(P) + (dM V) ) signaled to indicate which method (e.g., bilateral matching

P or template matching) 1s to be used to derive motion

information for the block.

55 At the encoder side, the decision on whether using FRUC
merge mode for a CU 1s based on RD cost selection as done
for normal merge candidate. For example, multiple match-
ing modes (e.g., bilateral matching and template matching)
are checked for a CU by using RD cost selection. The one

MV, o =dMV 0] Eq. (14) 60 leading to the minimal cost 1S furthgr compared to gther CU

modes. IT a FRUC matching mode 1s the most eflicient one,

FRUC flag 1s set to true for the CU and the related matching

mode 1s used.

| Typically, motion dertvation process in FRUC merge

dMV 0,0, =dMV '[2] Eq. (16) 65 mode has two steps: a CU-level motion search is first

performed, then followed by a Sub-CU level motion refine-

AMV o\ =—dMV Z[3]*w+dMV [ 2] Eq. (17) ment. At CU level, an 1nitial motion vector 1s derived for the

The term dMV ' may be derived by setting the derivative
of the error function to zero, and then computing delta MV
of the control points (0, 0) and (0, w) according to A(P)*
(dAMV 5%, as follows:

dMV(O?W)thMVCI’[I]*w+dMVCf[2] Eq. (15)
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whole CU based on bilateral matching or template matching.
First, a list of MV candidates 1s generated and the candidate
that leads to the mimimum matching cost 1s selected as the
starting point for further CU level refinement. Then a local
search based on bilateral matching or template matching
around the starting point 1s performed. The MV results in the
mimmum matching cost 1s taken as the MV {for the whole
CU. Subsequently, the motion information 1s further refined
at sub-CU level with the derived CU motion vectors as the
starting points.

For example, the following derivation process 1s per-

formed for a WxH CU motion information derivation. At the
first stage, MV for the whole WxH CU 1s derived. At the
second stage, the CU 1s further split into MxM sub-CUs. The
value of M 1s calculated as in Eq. (3), D 1s a predefined
splitting depth which 1s set to 3 by default in the JEM. Then
the MV for each sub-CU 1s derived.

M N

M = max{4, min{ 22 )] B (9

FIG. 20 shows an example of bilateral matching used in
the Frame-Rate Up Conversion (FRUC) method. The bilat-
eral matching 1s used to derive motion information of the
current CU by finding the closest match between two blocks
along the motion trajectory of the current CU (1900) 1n two
different reference pictures (1910, 1911). Under the assump-
tion of continuous motion trajectory, the motion vectors
MV0 (1901) and MV1 (1902) pointing to the two reference
blocks are proportional to the temporal distances, e.g., TD0
(1903) and TD1 (1904), between the current picture and the
two reference pictures. In some embodiments, when the
current picture 1900 1s temporally between the two reference
pictures (1910, 1911) and the temporal distance from the
current picture to the two reference pictures 1s the same, the
bilateral matching becomes mirror based bi-directional MV,

FIG. 21 shows an example of template matching used in
the Frame-Rate Up Conversion (FRUC) method. Template
matching can be used to derive motion iformation of the
current CU 2000 by finding the closest match between a
template (e.g., top and/or left neighboring blocks of the
current CU) 1n the current picture and a block (e.g., same
s1ze to the template) 1n a reference picture 2010. Except the

alforementioned FRUC merge mode, the template matching
can also be applied to AMVP mode. In both JEM and

HEVC, AMVP has two candidates. With the template
matching method, a new candidate can be derived. If the
newly derived candidate by template matching 1s different to
the first existing AMVP candidate, 1t 1s 1nserted at the very
beginning of the AMVP candidate list and then the list size
1s set to two (e.g., by removing the second existing AMVP
candidate). When applied to AMVP mode, only CU level
search 1s applied.

The MV candidate set at CU level can include the
tollowing: (1) original AMVP candidates 1f the current CU
1s iIn AMVP mode, (2) all merge candidates, (3) several MV
in the mterpolated MV field (described later), and top and
left neighboring motion vectors.

When using bilateral matching, each valid MV of a merge
candidate can be used as an 1nput to generate a MV pair with
the assumption of bilateral matching. For example, one valid
MYV of a merge candidate 1s (MVa, ref ) at reference list A.
Then the reference picture ref, of its paired bilateral MV 1s
found 1n the other reference list B so that ref, and ref, are
temporally at different sides of the current picture. If such a
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ref, 1s not available 1n reference list B, ref, 1s determined as
a reterence which 1s different from ret and its temporal
distance to the current picture 1s the mimimal one in list B.
After ref, 1s determined, MVb 1s dertved by scaling MVa
based on the temporal distance between the current picture
and ref , ref,.

In some implementations, four MV's from the interpolated
MYV field can also be added to the CU level candidate list.
More specifically, the interpolated MVs at the position (0,
0), (W/2, 0), (0, H/2) and (W/2, H/2) of the current CU are
added. When FRUC 1s applied in AMVP mode, the original
AMVP candidates are also added to CU level MV candidate
set. In some implementations, at the CU level, 15 MVs for
AMVP CUs and 13 MV for merge CUs can be added to the
candidate list.

The MV candidate set at sub-CU level includes an MV
determined from a CU-level search, (2) top, left, top-left and
top-right neighboring MVs, (3) scaled versions of collocated
MVs from reference pictures, (4) one or more ATMVP
candidates (e.g., up to four), and (5) one or more STMVP
candidates (e.g., up to four). The scaled MV's from reference
pictures are derived as follows. The reference pictures in
both lists are traversed. The MVs at a collocated position of
the sub-CU 1n a reference picture are scaled to the reference
of the starting CU-level MV. ATMVP and STMVP candi-
dates can be the four first ones. At the sub-CU level, one or
more MVs (e.g., up to 17) are added to the candidate list.

Generation of an Interpolated MV Field.

Belore coding a frame, interpolated motion field 1s gen-
erated for the whole picture based on unilateral ME. Then
the motion field may be used later as CU level or sub-CU
level MV candidates.

In some embodiments, the motion field of each reference
pictures 1n both reference lists 1s traversed at 4x4 block
level. FIG. 22 shows an example of unilateral Motion
Estimation (ME) 2100 in the FRUC method. For each 4x4
block, 1f the motion associated to the block passing through
a 4x4 block 1n the current picture and the block has not been
assigned any interpolated motion, the motion of the refer-
ence block is scaled to the current picture according to the
temporal distance TD0 and TD1 (the same way as that of
MYV scaling of TMVP 1n HEVC) and the scaled motion 1s
assigned to the block 1n the current frame. If no scaled MV
1s assigned to a 4x4 block, the block’s motion 1s marked as
unavailable 1n the interpolated motion field.

Interpolation and Matching Cost.

When a motion vector points to a fractional sample
position, motion compensated interpolation 1s needed. To
reduce complexity, bi-linear interpolation 1nstead of regular
8-tap HEVC interpolation can be used for both bilateral
matching and template matching.

The calculation of matching cost 1s a bit different at
different steps. When selecting the candidate from the can-
didate set at the CU level, the matching cost can be the
absolute sum difierence (SAD) of bilateral matching or
template matching. After the starting MV 1s determined, the
matching cost C of bilateral matching at sub-CU level search
1s calculated as follows:

C=SAD+w-(IMV,~MV *[+IMV ~MV ) Eq. (4)

Here, w 1s a weighting factor. In some embodiments, w
can be empirically set to 4. MV and MV” indicate the current
MYV and the starting MV, respectively. SAD may still be used
as the matching cost of template matching at sub-CU level
search.

In FRUC mode, MV 1s derived by using luma samples
only. The derived motion will be used for both luma and
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chroma for MC ter prediction. After MV 1s decided, final
MC 1s performed using 8-taps interpolation filter for luma
and 4-taps interpolation filter for chroma.

MYV refinement 1s a pattern based MV search with the
criterion of bilateral matching cost or template matching
cost. In the JEM, two search patterns are supported—an
unrestricted center-biased diamond search (UCBDS) and an
adaptive cross search for MV refinement at the CU level and
sub-CU level, respectively. For both CU and sub-CU level
MYV refinement, the MV 1s directly searched at quarter luma
sample MV accuracy, and this 1s followed by one-eighth
luma sample MV refinement. The search range of MV
refinement for the CU and sub-CU step are set equal to 8
luma samples.

In the bilateral matching merge mode, bi-prediction 1s
applied because the motion mformation of a CU 1s derived
based on the closest match between two blocks along the
motion trajectory of the current CU 1n two diflerent refer-
ence pictures. In the template matching merge mode, the
encoder can choose among uni-prediction from list0, uni-
prediction from listl, or bi-prediction for a CU. The selec-
tion ca be based on a template matching cost as follows:

If costB1 <= factor * min (costO, costl)
bi-prediction is used;
Otherwise, 1f costO <= costl
uni-prediction from listO 1s used;
Otherwise,
uni-prediction from listl 1s used;

Here, costO 1s the SAD of 11st0 template matching, costl
1s the SAD of listl template matching and costB1 1s the SAD
of bi-prediction template matching. For example, when the
value of factor 1s equal to 1.25, it means that the selection
process 1s biased toward bi-prediction. The inter prediction
direction selection can be applied to the CU-level template
matching process.

2.8 Examples of Bi-Directional Optical Flow (BIO)

The bi-directional optical flow (BIO) method 1s a sample-
wise motion refinement performed on top of block-wise
motion compensation for bi-prediction. In some implemen-
tations, the sample-level motion refinement does not use
signaling.

Let I be the luma value from reference k (k=0, 1) after
block motion compensation, and denote 31*°/3x and 31*/3y
as the horizontal and vertical components of the I gradient,
respectively. Assuming the optical flow 1s valid, the motion
vector field (v,,v,) 1s given by:

I /Bt+v, I /ax+v, 217 /5y=0. Eq. (5)

Combining this optical flow equation with Hermite inter-
polation for the motion trajectory of each sample results in
a umque third-order polynomial that matches both the
function values I and derivatives 31%/3x and 31%°/3y at the
ends. The value of this polynomial at t=0 1s the BIO
prediction:

preg, o=y IO+ 4y /2-(v, 31 1)/8.1:—’508]@)/83:)+vy/ 2

(t, IV /ov—t 31V /0y)). Eq. (6)

FIG. 23 shows an example optical flow trajectory in the
Bi-directional Optical flow (BIO) method. Here, T, and T,
denote the distances to the reference frames. Distances T,
and T, are calculated based on POC for Ref, and Ref;:
T,—POC(current)-POC(Ret,), t,=POC(Ret,)-POC(cur-
rent). If both predictions come from the same time direction
(either both from the past or both from the future) then the
signs are different (e.g., T,-t,<0). In this case, BIO 1s applied
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if the prediction 1s not from the same time moment (e.g.,
T,=T, ). Both referenced regions have non-zero motion (e.g.
MVx,, MVy,, MVx,, MVy,=0) and the block motion vec-
tors are proportional to the time distance (e.g. MVXx,/
MVx,=MVy,/MVy,==t,/T,).

The motion vector field (v,, v,) 1s determined by mini-
mizing the difference A between values 1n points A and B.
FIGS. 9A-9B show an example of intersection of motion
trajectory and reference frame planes. Model uses only first
linear term of a local Taylor expansion for A:

A=(I-I'V v, (1,31 V/0x+1,00 V/0x)+v, (T, 31V /oy+

1,01 /30) Eq. (7)

All values 1n the above equation depend on the sample
location, denoted as (1', 1'). Assuming the motion 1s consis-
tent 1n the local surrounding area, A can be minimized inside
the (ZM+1)x(2M+1) square window £2 centered on the
currently predicted point (1,5), where M 1s equal to 2:

(an Vy) — afgmiﬂ Z ﬁz[f, j’r] Eq (8)

VY jleq

For this optimization problem, the JEM uses a simplified
approach making first a minimization in the vertical direc-
tion and then in the horizontal direction. This results in the
following:

A
vy = (51 +7) > m?clip 3(~thBIO, thBIO, - - j_r)):g Eq. (9)
1
. S — ViS22 Eq. (10)
vy = (ss +r) >m7clip 3 —thBIO, thBIO, — )
(S5 + 1)

where,

si= Y @AIM0x + 100 [V10x)"; Eq. (11)

[, /1€

ss= ) (V=1 01/0x + 70 1°/0x);
[/, jlen

5y = Z (11010 x + 700 11 x) (710110 y + 700 1910 y);
[/, 1en

S5 = Z (1101M/8y + 140 Im)/@y)z;
=

se= > UV —10@ 018y +70817/)y)
[, i]len

In order to avoid division by zero or a very small value,

regularization parameters r and m can be introduced 1n Eq.
(9) and Eq. (10), where:

#=500-4%"5 Eq. (12)

m=700-49"5 Eq. (13)

Here, d 1s bit depth of the video samples.

In order to keep the memory access for BIO the same as
for regular bi-predictive motion compensation, all prediction
and gradients values, 1, 31%/3x, 319/3dy, are calculated for
positions inside the current block. FIG. 24A shows an
example of access positions outside of a block 2300. As
shown 1 FIG. 24A, i Eq. (9), CZM+1)x(2M+1) square
window £2 centered 1n currently predicted point on a bound-
ary of predicted block needs to accesses positions outside of
the block. In the JEM, values of I*®,31%/3x,31/3y outside

of the block are set to be equal to the nearest available value
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inside the block. For example, this can be implemented as a
padding area 2301, as shown in FIG. 24B.

With BIO, it 1s possible that the motion field can be
refined for each sample. To reduce the computational com-
plexity, a block-based design of BIO 1s used 1n the JEM. The
motion refinement can be calculated based on a 4x4 block.

In the block-based BIO, the values of s, in Eq. (9) of all
samples 1 a 4x4 block can be aggregated, and then the

aggregated values of s, 1n are used to derived BIO motion
vectors offset for the 4x4 block. More specifically, the
following formula can used for block-based BIO derivation:

Sy = . . (@AIMEx + 7001 /0x)’; Eq. (14)
(yEby [, /1€0k,)
Ssm, = UV = 1O)@ 01V 0 x + 100 [V x);

(x,¥)eby, [i*,/1eq

S2p, = Z Z (1,010 x + 10019 /9 x)
(x,y)eb [i*,jle0

(701118 y + 1001979 v,

SS.by, = Z Z (Tlé‘f(”/@y+Tgc3!m)/8y)2;
(x, )by [, /10

> UV —IN@a1M8y +7010/8y)
(x,¥)eb, [, /10

Se6,b, =

Here, b, denotes the set of samples belonging to the k-th
4x4 block of the predicted block. s, 1n Eq (9) and Eq (10) are
replaced by ((s, ,.)>>4) to derive the associated motion
vector oflsets.

In some scenarios, MV regiment of BIO may be unreli-
able due to noise or irregular motion. Therefore, 1n BIO, the
magnitude of MV regiment 1s clipped to a threshold value.
The threshold value 1s determined based on whether the
reference pictures of the current picture are all from one
direction. For example, 11 all the reference pictures of the
current picture are from one direction, the value of the
threshold is set to 12x2'*~% otherwise, it is set to 12x2'%~7.

Gradients for BIO can be calculated at the same time with
motion compensation interpolation using operations consis-
tent with HEVC motion compensation process (e.g., 2D
separable Finite Impulse Response (FIR)). In some embodi-
ments, the input for the 2D separable FIR 1s the same
reference frame sample as for motion compensation process
and fractional position (fracX, fracY) according to the
fractional part of block motion vector. For horizontal gra-
dient al/ox, a signal 1s first interpolated vertically using
BIOfilterS corresponding to the fractional position fracY
with de-scaling shift d-8. Gradient filter BIOf{ilterG 1s then
applied 1n horizontal direction corresponding to the frac-
tional position fracX with de-scaling shift by 18-d. For
vertical gradient ol/0y, a gradient filter 1s applied vertically
using BIOfilterG corresponding to the fractional position
fracY with de-scaling shift d—8. The signal displacement 1s
then performed using BIOfilterS in hornizontal direction
corresponding to the fractional position fracX with de-
scaling shift by 18—d. The length of interpolation filter for
gradients calculation BlOfilterG and signal displacement
BIOfilterF can be shorter (e.g., 6-tap) in order to maintain
reasonable complexity. Table 1 shows example filters that
can be used for gradients calculation of diflerent fractional
positions of block motion vector mn BIO. Table 2 shows
example interpolation filters that can be used for prediction
signal generation 1n BIO.
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TABLE 1

Exemplarv filters for eradient calculations in BIO

Fractional Interpolation filter for

pel position gradient(BIOfilterG)
0 {8, -39, -3, 46, -17, 5}
Y16 {8, =32, -13, 50, -18, 5}
L/8 {7, =27, =20, 54, -19, 5}
16 {6, =21, =29, 57, -18, 5}
L {4, -17, =36, 60, —-15, 4}
16 {3, -9, -44, 61, -15, 4}
38 {1, -4, -48, 61, -13, 3}
/16 {0, 1, =54, 60, -9, 2}

L5 {-1,4,-57,57, -4, 1}

TABLE 2

Exemplary interpolation filters for
prediction signal generation 1n BIO

Interpolation filter for
prediction signal(BIOfilterS)

Fractional
pel position

0 {0, 0, 64,0,0,0}

Lis {1, -3, 64, 4, -2, 0}

Ly {1,-6,62,9, -3, 1}
316 {2, -8, 60, 14, -5, 1}
Ly {2, -9, 57,19, -7, 2}
516 {3, -10, 53, 24, -8, 2}
Ve {3, -11, 50, 29, -9, 2}
16 {3, -11, 44, 35, -10, 3}
L {3, -10, 35, 44, -11, 3}

In the JEM, BIO can be applied to all bi-predicted blocks
when the two predictions are from different reference pic-

tures. When Local Illumination Compensation (LIC) 1s
enabled for a CU, BIO can be disabled.

In some embodiments, OBMC 1s applied for a block after
normal MC process. To reduce the computational complex-
ity, BIO may not be applied during the OBMC process. This
means that BIO 1s applied 1n the MC process for a block
when using its own MV and 1s not applied 1n the MC process
when the MV of a neighboring block 1s used during the
OBMC process.

2.9 Examples of Decoder-Side Motion Vector Refinement
(DMVR)

In a bi-prediction operation, for the prediction of one
block region, two prediction blocks, formed using a motion
vector (MV) of list0 and a MV of listl, respectively, are
combined to form a single prediction signal. In the decoder-
side motion vector refinement (DMVR) method, the two
motion vectors of the bi-prediction are further refined by a
bilateral template matching process. The bilateral template
matching applied 1n the decoder to perform a distortion-
based search between a bilateral template and the recon-
struction samples 1n the reference pictures in order to obtain
a refined MV without transmission of additional motion
information.

In DMVR, a bilateral template 1s generated as the
weighted combination (1.e. average) of the two prediction
blocks, from the initial MV0 of list0 and MV1 of listl,
respectively, as shown 1n FIG. 25. The template matching
operation consists of calculating cost measures between the
generated template and the sample region (around the 1nitial
prediction block) in the reference picture. For each of the
two reference pictures, the MV that yields the minimum
template cost 1s considered as the updated MV of that list to
replace the original one. In the JEM, nine MV candidates are
searched for each list. The nine MV candidates include the
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original MV and 8 surrounding MV's with one luma sample
oflset to the original MV 1n either the horizontal or vertical
direction, or both. Finally, the two new MVs, 1.e., MV (' and
MV1'" as shown 1n FIG. 25, are used for generatmg the final
bi-prediction results. A sum of absolute differences (SAD) 1s
used as the cost measure.

DMVR 1s applied for the merge mode of bi-prediction
with one MV from a reference picture 1n the past and another
from a reference picture 1n the future, without the transmis-
sion ol additional syntax elements. In the JEM, when LIC,
alline motion, FRUC, or sub-CU merge candidate 1s enabled

for a CU, DMVR 1s not applied.
2.2.9 Examples of Symmetric Motion Vector Diflerence

Symmetric motion vector diflerence (SMVD) 1s proposed

to encode the MVD more efliciently.

Firstly, 1 slice level, wvanables BiDirPredFlag,
RetldxSymLO and RefldxSyml.1 are derived as follows:

The forward reference picture in reference picture list O
which 1s nearest to the current picture 1s searched. I found,
RetfldxSymLO 1s set equal to the reference index of the
forward picture.

The backward reference picture 1n reference picture list 1

which 1s nearest to the current picture 1s searched. If found,
RetldxSyml.1 1s set equal to the reference index of the
backward picture.

If both forward and backward picture are found,
BiDirPredFlag 1s set equal to 1.
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Otherwise, following applies:

The backward reference picture in reference picture list 0
which 1s nearest to the current one 1s searched. If found,
RetldxSymlLO 1s set equal to the reference index of the
backward picture.

The forward reterence picture in reference picture list 1
which 1s nearest to the current one 1s searched. If found,
RefldxSyml.1 1s set equal to the reference index of the
forward picture.

If both backward and forward picture are found,
BiDirPredFlag 1s set equal to 1. Otherwise, BiDirPredFlag 1s
set equal to O.

Secondly, 1n CU level, a symmetrical mode tlag indicating
whether symmetrical mode 1s used or not 1s explicitly
signaled 11 the prediction direction for the CU 1s bi-predic-
tion and BiDirPredFlag 1s equal to 1.

When the flag 1s true, only mvp_l0 flag, mvp_11 flag and
MVDO are explicitly signaled. The reference indices are set
equal to RefldxSymLO, RefldxSyml.1 for list O and list 1,
respectively. MVDI1 1s just set equal to —-MVDO. The final

motion vectors are shown in below formula.

|

FIG. 28 shows examples of symmetrical mode.

The modifications in coding umt syntax are shown in
Table 3.

(mvxg, mvy,) = (mvpx, + mvdxy, mvpy, + mvdy,)

(mvxy, mvy,) = (mvpx;, —mvdxgy, mvpy, —mvdy,)

TABL

~
-, 3
L

Modifications in coding unit syntax

Descriptor

coding_unit{ x0, y0, cbWidth, cbHeight, treeType ) {

1f( slice_ type = =

B)
inter _pred__ide[ x0 ][ vO ]

ae(v)

if( sps__affine_ enabled_ flag && cbWidth >= 16 && cbHeight >= 16 ) {

inter _affine flag| x0 ][ yO ]

ae(v)

1f( sps__afline_ type_ flag && inter_ affine_ flag] xO ][ yO ] )

cu_ afline_ type_ flag] xO ][ vO ]

h

ae(v)

if( inter pred_idc[ x0 ][ yO | == PRED_ Bl &&

BiDirPredFlag && inter afhine_ flag| xO ][ yO | ==
symmetric_ mvd_ flag] xO |[ yO ]

0)
ae(v)

if( inter_pred__ide[ x0 ][ yO ] !'= PRED_L1) {
if{ num_ ref 1dx_ 10 active__mnusl > 0 && !symmetric__mvd_ flag] xO ][ yvO ] )

ref idx 10[ xO ][ vO ]

ae(v)

mvd__coding( x0, y0, 0, O )

1f{ MotionModelld¢[ xO ][ yvO ] > 0 )
mvd__coding( X0, yO, 0, 1 )

if(MotionModellde[ X0 [ vO ] > 1)
mvd__coding( x0, y0, O, 2 )

mvp__10_ flag] x0 ][ yO ]

I else {

MvdLO[ x0
MvdLO[ x0

h

ILyO 1l
ILyO Il

0
1

ae(v)

]
]

U
0

if( inter pred ide[ x0 ][ yO ] != PRED_10) {
if( num__ref__i1dx_ I1__active_ minusl > 0 && !symmetric__mvd_ flag] xO ][ yvO ] )
ref 1dx_ 11[ xO

} elsé {

Ily0]
if{ mvd__11_ zero_ flag && inter_ _pred__ide[ X0 ][ yO | =

ae(v)
= PRED_BI ) {

if( tsymmetric_mvd flag] X0 ][ y0 ]) {
mvd__coding( x0, yO, 1, O )

11{ MotionModelldc[ xO ][ yvO ] > 0 )
mvd__coding( x0, yO, 1, 1 )

if{MotionModellde[ xO [[ yO ] > 1 )
mvd__coding( X0, yO, 1, 2 )

h

mvp__11_flag] x0 ][ yO ]

ae(v)
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TABLE 3-continued

Modifications in coding unit svntax

26

Ielse {

MvdL1[ x0 ][ yO ][ O ]
MvdL1[ x0 ][ yO ][ 1

= O

2.2.11 Symmetric MVD ifor Afline Bi-Prediction Coding

SMVD for athine mode 1s proposed 1n [9].

2.3 Context-Adaptive Binary Arithmetic Coding (CA-
BAC)

2.3.1 CABAC Design in HEVC

2.3.1.1 Context Representation and Initialization Process
in HEVC

In HEVC, for each context variable, the two variables
pStateldx and valMps are 1nitialized.

From the 8 bit table entry imtValue, the two 4 bit vaniables
slopeldx and oflsetldx are derived as follows:

slopeldx=1nitValue>>4

offsetldx=mitValue & 15 (34)

The variables m and n, used 1n the initialization of context
variables, are derived from slopeldx and oflsetldx as fol-
lows:

m=slopeldx*5-45

n=(oflsetldx<<3)-16 (35)

The two values assigned to pStateldx and valMps for the
mitialization are derived from the luma’s quantization
parameter of slice denoted by SliceQpY. Given the variables
m and n, the mnitialization 1s specified as follows:

preCtxState=Clip3(1,126,((m™*Clip3(0,51,SliceOp Y))
=>4 )+1)

valMps=(preCtxState<=63)70:1

pStateldx=valMps?(preCtxState—64):(63—pre-
CtxState)

2.3.1.2 State Transition Process in HEVC

Inputs to this process are the current pStateldx, the
decoded value binVal and valMps values of the context
variable associated with ctxTable and ctxIdx.

Outputs of this process are the updated pStateldx and
valMps of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the
two variables pStateldx and valMps associated with ctxIdx
1s derived as follows 1n (37):

(36)

1f( binVal = = valMps )
pStateldx = transIdxMps( pStateldx )

else { (37)
1f( pStateldx = = 0 ) valMps = 1 — valMps
pStateldx = transIdxLps( pStateldx )
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2.3.2 CABAC Design in VVC

The context-adaptive binary arithmetic coder (BAC) 1n
VVC has been changed in VVC which 1s different from that
in HEVC in terms of both context updating process and
arithmetic coder.

Here 1s the summary of recently adopted proposal (JVE'T-
M0473, CE test 5.1.13).

TABLE 4

Summary of CABAC modifications in VVC

10 + 14 bit linear, reduced range

5 x 4 bit multiplier

128 x 16 bit to map HEVC-like state to linear
representation, retrained initialization values
256 x 2 x 19 bit table

Variable, defined per contexta =2 ..
a+3...60

That 1s, each context has two variables for
recording the associated probabilities, and each
probability 1s updated with its own speed (faster
speed based on the variable a and lower speed
based on the variable b)

rMPS >= 128 is guaranteed

State representation
rLLPS computation
Initialization

Rate estimation
Window size
(controlling probability
updating speed)

.5b=

Other

2.3.2.1 Context Initialization Process in VVC

n VVC, two values assigned to pStateldx0 and pStateldx1
for the 1mitialization are derived from SliceQpY. Given the
variables m and n, the initialization 1s specified as follows:

preCtxState=Clip3(0,127,((m*Clip3(0,51,SliceQpY))
=>4 )+11)

pStateldxO=1nitStateIldx ToState[preCtxState]|>>4

pStateldx1=1nitStateldx ToState[preCtxState]

2.3.2.2 State Transition Process in VVC

Inputs to this process are the current pStateldxO and
pStateldx1, and the decoded value binVal.

Outputs of this process are the updated pStateldx0 and
pStateldx] of the context variable associated with ctxIdx.

The vanables shiftO (corresponding to variable a in Sum-
mary of CABAC modifications in VVCTlable 4) and shaft 1
(corresponding to variable b 1n Summary of CABAC modi-
fications 1n VVC Table 4¢) are derived from the shiftldx

value associated with ctxTable and ctxInc.

(38)

shiftO=(shiftldx>>2)+2

shift1=(shiftldx & 3)+3+shift0 (39)

Depending on the decoded value binVal, the update of the
two variables pStateldx0 and pStateldx1 associated with
ctxIdx 1s denived as follows:

pStateldxO=pStateldx0-(pStateIdxO>>shiftO )+
(1023*binVal>>shiftO)
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pStateldx1=pStateldx1-(pStateldx1>>shiftl )+
(16383*binVal>>shiftl) (40)

3. Drawbacks of Existing Implementations

In some existing implementations, when MV/MYV difler-
ence (MVD) could be selected from a set of multlple
MV/MVD precisions for afline coded blocks, it remains
uncertain how more accurate motion vectors may be
obtained.

In other existing implementations, the MV/MVD preci-
sion nformation also plays an important role 1n determina-
tion of the overall coding gain of AMVR applied to afline
mode, but achieving this goal remains uncertain.

4. Example Methods for MV Predictors for Afline
Mode with AMVR

Embodiments of the presently disclosed technology over-
come the drawbacks of existing implementations, thereby
providing video coding with higher coding efliciencies. The
derivation and signaling of motion vector predictors for

aline mode with adaptive motion vector resolution
(AMVR), based on the disclosed technology, may enhance

both existing and future video coding standards, 1s eluci-
dated 1n the following examples described for various imple-
mentations. The examples of the disclosed technology pro-
vided below explain general concepts, and are not meant to
be interpreted as limiting. In an example, unless explicitly
indicated to the contrary, the various features described 1n
these examples may be combined.

In some embodiments, the following examples may be
applied to afline mode or normal mode when AMVR 1s
applied. These examples assume that a precision Prec (i.e.,
MYV i1s with 1/(2"Prec) precision) is used for encoding MVD
in AF_INTER mode or for encoding MVD 1n normal inter
mode. A motion vector predictor (e.g., inherited from a
neighboring block MV) and its precision are denoted by
MVPred(MVPred,, Mvpred,) and PredPrec, respectively.
Improvement of Athne Mode with AMVR Supported

1. The set of allowed MVD precisions may be different

from picture to picture, from slice to slice, or from

block to block.

a. In one example, the set of allowed MVD precisions
may depend on coded information, such as block
s1ze, block shape. etc. al.

b. A set of allowed MYV precisions may be pre-defined,
such as {1V1s, V4, 1}.

c. Indications of allowed MV precisions may be sig-
naled 1 SPS/PPS/VPS/sequence header/picture
header/slice header/group of CTUs, etc. al.

d. The signaling of selected MV precision from a set of
allowed MYV precisions further depend on number of
allowed MYV precisions for a block.

2. A syntax element 1s signaled to the decoder to indicate

the used MVD precision 1n afline inter mode.

a. In one example, only one single syntax element 1s
used to mdicate the MVD precisions applied to the

alline mode and the AMVR mode.
1. In one example, same semantics are used, that 1s,

the same value of syntax element 1s mapped to the
same MVD precision for the AMVR and afline

mode.

11. Altematwely, the semantics of the single syntax
clement 1s different for the AMVR mode and the

afline mode. That 1s, the same value of syntax
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clement could be mapped to different MVD pre-
cision for the AMVR and afline mode.

b. In one example, when afline mode uses same set of

MVD precisions with AMVR (e.g., MVD precision

set is {1, Y4, 4}-pel), the MVD precision syntax

clement in AMVR 1s reused 1n afline mode, 1.e., only

one single syntax element 1s used.

1. Alternatively, furthermore, when encoding/decod-
ing this syntax element in CABAC encoder/de-

coder, same or different context models may be
used for AMVR and afline mode.

11. Alternatively, furthermore, this syntax element
may have different semantics in AMVR and afline
mode. For example, the syntax element equal to O,
1 and 2 indicates Va-pel, 1-pel and 4-pel MV
precision respectively in AMVR, while 1n afline
mode, the syntax element equal to 0, 1 and 2
indicates Va-pel, Vis-pel and 1-pel MV precision
respectively.

c. In one example, when afline mode uses same number

of MVD precisions with AMVR but different sets of

MVD precisions (e.g., MVD precision set for

AMVR is {1, V4, 4}-pel while for affine, it is { %is, Y4,

1}-pel), the MVD precmlon syntax clement 1n

AMVR 1s reused 1n afline mode, 1.e., only one single

syntax element 1s used.

1. Altematively, furthermore, when encoding/decod-
ing this syntax element in CABAC encoder/de-
coder, same or different context models may be
used for AMVR and affine mode.

11. Alternatively, furthermore, this syntax element
may have different semantics in AMVR and afline
mode.

. In one example, alline mode uses less MVD preci-

sions than AMVR, the MVD precision syntax ele-

ment 1n AMVR 1s reused 1n atline mode. However,

only a subset of the syntax element values 1s valid for
afline mode.

1. Altematively,, furthermore, when encoding/decod-
ing this syntax element in CABAC encoder/de-
coder, same or different context models may be
used for AMVR and afhine mode.

11. Alternatively, furthermore, this syntax element
may have different semantics in AMVR and afline
mode.

. In one example, afline mode uses more MVD pre-

cisions than AMVR, the MVD precision syntax

clement 1n AMVR 1s reused in afline mode. How-

ever, such syntax element 1s extended to allow more
values 1n afline mode.

1. Altematively,, furthermore, when encoding/decod-
ing this syntax element in CABAC encoder/de-
coder, same or different context models may be
used for AMVR and afline mode.

11. Alternatively, furthermore, this syntax element
may have diflerent semantics in AMVR and afline
mode.

. In one example, a new syntax element 1s used for

coding the MVD precision of afline mode, 1.e., two
different syntax clements are used for codmg the

MVD precision of AMVR and afline mode.

alline mode may be signaled under one or all of the
following conditions are true:

1. MV Ds for all control points are non-zero.

11. MV Ds for at least one control point 1s non-zero.
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111. MVD of one control point (e.g., the first CPMV)

Arc non-7<cro

In this case, when either one of the above conditions
or all of them {fail, there 1s no need to signal the MVD
precisions.

h. The syntax element for indication of MVD preci-
s1ons for either atline mode or the AMVR mode may
be coded with contexts and the contexts are depen-
dent on coded mformation.

1. In one example, when there 1s only one single

syntax e¢lement, the contexts may depend on
whether current block 1s coded with athne mode or
not.

1. In one example, the context may depend on the block
s1ize/block shape/MVD precisions ol neighboring
blocks/temporal layer index/prediction directions,
etc. al.

1. Whether to enable or disable the usage of multiple
MVD precisions for the afline mode may be signaled
in SPS/PPS/VPS/sequence header/picture header/
slice header/group of CTUs, etc. al.

1. In one example, whether to signal the information

of enable or disable the usage of multiple MVD
precisions for the athne mode may depend on
other syntax elements. For example, the informa-
tion of enable or disable the usage of multiple MV
and/or MVP and/or MV D precisions for the atline
mode 1s signaled when atline mode 1s enabled; and
1s not signaled and inferred to be O when atline
mode 1s disabled.

k. Alternatively, multiple syntax elements may be sig-
naled to indicate the used MV and/or MVP and/or
MVD precision (in the following discussion, they are

all referred to as “MVD precision”) in afline inter
mode.

1. In one example, the syntax elements used to

11.

indicate the used MVD precision 1n afline inter
mode and normal inter mode may be different.
1. The number of syntax elements to indicate the

used MVD precision 1n afline inter mode and
normal inter mode may be different.

. The semantics of the syntax elements to indicate

the used MVD precision in afline inter mode
and normal inter mode may be different.

. The context models 1n arithmetic coding to code

one syntax elements to indicate the used MVD
precision 1n athne inter mode and normal nter
mode may be diflerent.

. The methods to derive context models 1n arith-

metic coding to code one syntax element to
indicate the used MVD precision in aifline inter
mode and normal inter mode may be different.

In one example, a first syntax element (e.g.
amvr_flag) may be signaled to indicate whether to

apply AMVR 1 an afline-coded block.
1. The first syntax element 1s conditionally sig-

naled.

a. In one example, signalling of the first syntax
clement (amvr_flag) 1s skipped when current
block 1s coded with certain mode (e.g., CPR/
IBC mode).

b. In one example, signalling of the first syntax
clement (amvr flag) 1s skipped when all
CPMVs” MVDs (including both horizontal and
vertical components) are all zero.

c. In one example, signalling of the first syntax
clement (amvr_flag) i1s skipped when one
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selected CPMVs’ MVDs (including both hori-
zontal and vertical components) are all zero.
1. In one example, the selected CPMV’s MVD
1s the first CPMV’s MVD to be coded/decoded.
d. In one example, signalling of the first syntax
clement (amvr_{lag) 1s skipped when the usage
of enabling multiple MVD precisions for
alline-coded block 1s false.

¢. In one example, the first syntax element may
be signaled under the following conditions:

1. Usage of enabling multiple MVD precisions
for athine-coded block 1s true and current block
1s coded with atline mode;:

11. Alternatively, usage of enabling multiple
MVD precisions for athine-coded block 1s true,
current block 1s coded with afline mode, and at
least one component of a CPMV’s MVD 1s
unequal to 0.

111. Alternatively, usage of enabling multiple
MVD precisions for athine-coded block 1s true,

current block 1s coded with afline mode, and at
least one component of a selected CPMV’s
MVD 1s unequal to O.

1. In one example, the selected CPMV’s MVD
1s the first CPMV’s MVD to be coded/decoded.

. When AMVR 1s not applied to an atline-coded

block or the first syntax element 1s not present,
a default MV and/or MVD precision 1s utilized.
a. In one example, the default precision 1s
la-pel.

b. Alternatively, the default precision i1s set to
that used in motion compensation for afline

coded blocks.

. For example, the MVD precision of atline mode

1s Ya-pel 1f amvr_flag 1s equal to 0; otherwise
the MVD precision of afline mode may be other
values.

a. Alternatively, furthermore, the additional
MVD precisions may be further signaled via a
second syntax element.

111. In one example, a second syntax element (such as
amvr_coarse_precision_flag) may be signaled to
indicate the MVD precision of afline mode.

1. In one example, whether the second syntax

1V.

t
t

clement 1s signaled may depend on the first
syntax element. For example, the second syntax
clement 1s only signaled when the first syntax
clement 1s 1.

. In one example, the MVD precision of afline

mode 1s 1-pel 11 the second syntax element 1s O;
otherwise, the MV D precision of athne mode 1s

Le-pel.

. In one example, the MVD precision of afline

mode 1s Vis-pel 1t the second syntax element 1s
0; otherwise, the MVD precision of ailine mode
1s Tull-pixel.

In one example, a syntax element used to indicate
ne used MVD precision 1n athne inter mode share
ne same context models as the syntax element

with the same name but used to indicate the used

MVD precision in normal inter mode.
1. Alternatively, a syntax element used to indicate

the used MVD precision in afline inter mode
use different context models as the syntax ele-
ment with the same name but used to indicate

the used MVD precision 1n normal inter mode.
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3. Whether to apply or how to apply AMVR on an afline

coded block may depend on the reference picture of the
current block.
1. In one example, AMVR i1s not applied 11 the reference

32

c. Alternatively, when minimum size of a block’s width
or/and height 1s no smaller than X, proposed method
1s not allowed. In one example, X 1s set to 8.

d. Alternatively, when a block’s width >thl or >=thl

picture 1s the current picture, 1.e., Intra block copying >3

1s applied 1n the current block. method is not allowed. In one example, thl and/or
Fast Algorithm of AVMR 1 Afline Mode for Encoder th? is set to &.

Denote RD cost (real RD cost, or SATD/SSE/SAD cost plus e. Alternatively, when a block’s width <thl or <=thl
rough bits cost) of atline mode and AMVP mode as athne- and/or a block’s height <th2 or <a=th2, proposed
Cost1 and amvpCosti for IMV=1, where 1n 1=0, 1 or 2. Here, 10 method is not allowed. In one example, thl and/or
IMV=0 means V4 pel MV, and IMV=1 means integer MV for h? is set to & j

AMVP 4m0§1i/[a$(} 1/1;&3{?1;[\/ fgr 8 glr{e tmOdef\fVm} IM¥.22 f. Alternatively, whether to enable or disable the above
MEdAis = pe ot MOAE ahtl IECaE OF dLLIE methods and/or which method to be applied may be

mode. Denote RD cost of merge mode as mergeCost. dependent on block dimension, video processing

4. It 1s proposed j[hat AMVR 1s dlsahled for athne plode 15 data unit (VPDU), picture type, low delay check flag,
of current CU 11 the best mode of 1ts parent CU 1s not : :
coded information of current block (such as refer-

AF_INTER mode or AE_MBERGE mode ence pictures, uni or bi-prediction) or previousl
a. Alternatively, AMVR 1s disabled for afline mode of ode dpblocks ‘ P P Y

current CU 11 the best mode of 1ts parent CU 1is not 11. The AMVR methods for affine mode may be per-

AF INTER mode 20 oL .
5. It 1s proposed that AMVR 1s disabled for afline mode lormed in dlﬁ"e:rent ways when intra b.IOCk “ObYy (IBC,
a.k.a. current picture reference (CPR)) 1s applied or not.

if athneCostO>thl *amvpCostO, wherein thl 1s a posi- .
a. In one example, AMVR for afline mode cannot be

tive threshold. _ )
a. Altematlvely,, in addition, AMVR 1s disabled for used 11 a block 1s coded by IBC.
afine mode if min(affineCost0, amvpCost0) ., b. In one example AMVR for afline mode may be used
>th2*mergeCost, wherein th2 is a positive threshold. if a block 1s coded by IBC, but the candidate
b. Alternatively, in addition, integer MV 1s disabled for MV/MVD/MVP precisions may be different to those
used for non-IBC coded afline-coded block.

alline mode 11 afmeCostO>th3*afmeCostl wherein
th3 1s a positive threshold. 12. All the term “slice” in the document may be replaced
by “tile group” or “tile”.

6. It 1s proposed that AMVR 1is disabled for AMVP mode
it amvpCostO>th4*atlineCost0, wherein th4 1s a posi- 13. In VPS/SPS/PPS/slice header/tile group header, a
syntax element (e.g. no_amvr_constraint_flag) equal to

tive threshold.
a. Alternatively, AMVR 1s disabled for AMVP mode 1f 1 specifies that it is a requirement of bitstream confor-
mance that both the syntax element to indicate whether

min(aihineCostO, amvpCost0)>thS*mergeCost,
AMVR 1s enabled (e g. sps_amvr_enabled_flag) and

wherein thS 1s a positive threshold.
. . . .
7. It 1s proposed that 4 parameter atline models obtained 35 the syntax element to indicate whether affine AMVR is
ecnabled (e.g. sps_afline avmr enabled_tlag) shall be

in one MV precision may be used as a candidate start
equal to 0. The syntax element (e.g. no_amvr_con-

search point for other MV precisions.
straint_{lag) equal to 0 does not impose a constraint.

a. In one example, 46 parameter atline models obtained
in Y1i¢ MV may be used as a candidate start search _ :
14. In VPS/SPS/PPS/slice header/tile group header or
other video data umits, a syntax element (e.g. no_ai-

point for other MV precisions. 40
b. In one example, 4 parameter afline models obtained
fine_amvr_constraint_{lag) may be signalled.
a. In one example, no_afline_amvr_constraint_flag

in Y4 MV may be used as a candidate start search
equal to 1 specifies that 1t 1s a requirement of

point for other MV precisions.
8. AMVR for atline mode 1s not checked at encoder for the

bitstream conformance that the syntax element to
111d1cate whether aftine AMVR 1s enabled (e.g.

current block if 1ts parent block does not choose the

ailine mode.
9. Statistics of usage of different MV precisions for sps_affine_avmr_enabled_flag) shall be equal to 0.
afline-coded blocks 1n previously coded frames/slices/ The syntax element (e.g. no_affine_amvr_con-

tiles/CTU rows may be utilized to early terminate the straint_flag) equal to 0 does not impose a constraint
rate-distortion calculations of MV precisions for afline-

and/or a block’s height >th2 or >=th2, proposed

30

45

coded blocks 1n current slice/tile/CTU row. 50 5 Embodiments

a. In one example, the percentage ol afhne-coded
blocks w1th:51 certain MV precision 1s reco;'ded. Ift:_le 5.1. Embodiment 1: Indication of Usage of Affine
percentage 1s too low, then the checking of the

AMVR Mod
corresponding MV precision 1s skipped. OeE
b. In one example, previously coded irames with the 55 may be signaled in SPS/PPS/VPS/APS/sequence header/

Sale tempo.ral layer are.u‘tilized to decide whether to picture header/tile group header, etc. al. This section pres-
skip a certain MV precision. ts the sionalline in SPS
he above proposed method may be applied under i ey |

10. The a prop y pp 5.1.1. SPS Syntax Table

certain conditions, such as block sizes, slice/picture/tile
types, or motion information. 60
a. In one example, when a block size contains smaller

Descriptor
than M*H samples, e.g., 16 or 32 or 64 luma
samples, proposed method is not allowed. seq_parameter_set_rbsp( ) { ’
b. Alternatively, when minimum size of a block’s width SPS_Seq_parameter_set_ ue(v)
or/and height 1s splaller than or no larger than X, 65 sps__amvr_enabled_ flag u(1)
proposed method 1s not allowed. In one example, X sps__bdof _enabled_ flag u(1)

1s set to 8.
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-continued

sps__afline_ amvr_ enabled_ flag
sps__cclm_ enabled  flag
sps__mts__intra_ enabled_ flag
sps_ mts_ inter_enabled_ flag
sps__afline_ enabled_ flag
11( sps__afline  enabled_ flag )
sps__afline_ type_ flag
sps__gbi_enabled flag
sps__cpr__enabled_ flag

rbsp__trailing_ bits( )

seq_ parameter set_ rbsp( ) {

sps_ seq_ parameter set  id
sps__amvr__enabled_ flag
sps__bdof__enabled_ flag

sps_ cclm_ enabled  flag

sps_ mts_ intra enabled_ flag
sps_ mts_ inter_ enabled flag
sps__afline_ enabled_ flag

if( sps_affine enabled flag ){
sps__affine_ type_ flag

US 11,265,573 B2

An alternative SPS syntax table 1s given as follows:

Descriptor
u(l)
u(1) >
u(l)
u(l)
u(l)
u(l)
u(l) 10
u(l)
15
Descriptor
20
ue(v)
u(l)
u(l)
u(l)
u(l)
u(l) 25
u(l)
u(1)

-continued
Descriptor
sps__affine_ amvr_ enabled_ flag u(l)
h
sps__gbi__enabled_ flag u(l)
sps_ cpr__enabled flag u(l)
sps_ cup__enabled_ flag u(l)
sps_ triangle_ enabled  flag u(l)
sps__ladf enabled_ flag u(l)
rbsp_ trailing_ bits( )
h
Semantics:

sps_afline_amvr_enabled_tlag equal to 1 specifies that adap-
tive motion vector diflerence resolution 1s used 1n motion
vector coding of afline inter mode. amvr_enabled_flag equal
to O specifies that adaptive motion vector difference resolu-
tion 1s not used 1n motion vector coding of afline inter mode.
5.2. Parsing Process of Afline AMVR Mode Information

Syntax of the afline AMVR mode information may reuse
that for the AMVR mode mnformation (applied to normal
inter mode). Alternatively, diflerent syntax elements may be
utilized. Afline AMVR mode information may be condition-

ally signaled. Diflerent embodiments below show some
examples of the conditions.

5.2.1. Embodiment #1: CU Syntax Table

Descriptor
coding unit( x0, y0, cbWidth, cbHeight, treeType ) {
if( tile__group type !=1) {
if( treeType != DUAL_TREE CHROMA )
cu_skip_ flag] xO0 ][ vO ] ae(v)
if( cu_skip_ flag[ xO ][ yO ] ==0)
pred__mode flag ae(v)

h

if{ CuPredMode[ x0 ][ yO ] = = MODE__INTRA ) {

h

} else if( treeType = DUAL_TREE CHROMA ) { /* MODE_INTER */
if( cu_skip_ flag[ xO ][ yO ] ==0)
merge_ flag[ x0 ][ yO ] ae(v)
if( merge flag[ x0 ][ vO 1) {
merge_data( x0, yO, cbWidth, cbHeight )

}else {

1f( tile__group_ type == B )

inter__pred__idc[ x0 ][ vO ] ae(v)

1f( sps__afline enabled flag && cbWidth >= 16 &&

cbHeight >= 16 ) {

inter _affine  flag[ x0 ][ yO ] ae(v)
if( sps__afline_ type_flag &&

inter__affine_ flag[ x0 ][ yO ] )

h

cu_ afline type_ flag] xO ][ vO ] ae(v)

if( inter_pred_idc[ x0 ][ yO ] != PRED_1L1 )4

if{ num_ ref 1dx_ 10 active__minusl > O )
ref 1dx_ 10[ xO ][ vO ] ae(v)
mvd__coding( x0, vO, 0, O )
1f{ MotionModelldc[ xO ][ yO ] > 0 )
mvd__coding( X0, yvO, 0, 1 )
if{MotionModellde[ X0 [ yO ] > 1 )
mvd__coding( X0, y0, 0, 2 )
mvp_ 10_ flag[ xO ][ yO ] ae(v)

I else {

h

MvdLO[ x0 ][ O ][ O ]
MvdLO[ x0 ][ vO ][ 1 ]

0
0

if( inter_pred_idc[ x0 ][ yO ] != PRED_1.0 ) {

if{ num_ ref 1dx_ I1_ active_ minusl > O )
ref__1dx__I11[ xO ][ yO ] ae(v)
if{ mvd_11_ zero_ flag && inter_ pred_ 1dc[ x0 ][ yO ]
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-continued

Descriptor

= =PRED_BI) {

MvdL1[ x0 ][ vO ][ O ]

Mvc
Mvc
Mvc
Mvc
Mvc
Mvc

Mwvd

RUNIBLNI
X0 [ yO ]
X0 |
RN
| x0 |
x0 [

LI[x0 [ yO ][ 1]
CpL1]
CpL1
CpL1
CpL1
CpL1]
CpL1]

b b = = OO

0
U

— O = O = O

}else {

mvd__coding( X0, vO, 1, O )
1f{ MotionModelld¢c[ xO ][ yO ] > 0 )
mvd__coding( X0, vO, 1, 1 )
if{(MotionModellde[ X0 [ yO | > 1 )
mvd__coding( x0, vO, 1, 2 )
mvp__ 11 flag] x0 ][ yO ]
I else {
MvdL1[ X0 J][yO ][O | =
MvdL1[ x0 ][ yvO ][ 1

ac(v)

h

11( ( sps__amvr_enabled flag && inter afline flag = =

&&

( MvdLO[xO ][ yO ][O ] !=0 1| |
MvdLO[ xO ][ vO][ 1 ]!=0 1| |

MvdL1[ xO ][yO ][O ] !=0 ||
MvdL1[ xO ][ vOJ[ 1 ]!=0)) ||

( sps__afline amvr enabled flag &&
inter _afline. flag==1 &&

( MvdCpLO[ xO [[ YOO ][O ]!=01
MvdCpLO[ xO J[ YO ][O ]J[1 ]!=0 1]

MvdCpL1[xO ][ YyOJ[O ][O ]!=01]
MvdCpL1[ xO J[ YO ][O ]J[1 ]!=0 ||

MvdCpLO[ xO ][ YO J[1 ][O ]!=01]
MvdCpLO[ xO J[yOJ[1][1 ]!=0 1]

MvdCpL1[xO ][ yOJ[1 ][O ]!=01]
MvdCpL1[ xO J[yOJ[1][1 ]!=0 1]

MvdCpLO[ xO ][ yOJ[2 ][0 ]!=0 1]
MvdCpLO[ xO J[ YO ][2][1 ]!=0 1|

MvdCpL1[xO ][ yOJ[2][0]!=0 1]
MvdCpL1[x0 J[yO J[2][1]!=0))){

1f( !'sps_cpr__enabled_ flag | | !{
inter__pred__ide[ x0 ][ vO | = = PRED_LO &&

ref idx_10[ X0 ][ yO ] ==num_ ref idx_ 10_active_ minusl ) )
amvr__flag] x0 |[ yO |
1f( amvr__flag] x0 ][ yO ] )
amvr__coarse__precisomn__flag] x0 ][ yO ]

ae(v)

ae(v)
)
1f{ sps__gb1 enabled flag && inter pred i1de[ xO [[ yO | ==
PRED_ Bl &&
cbWidth * cbHeight >= 256 )

gbi_ 1dx[ x0 ][ yO ] ac(v)

h
h
if( !pem_flag[ x0 ][ yO ]) {
1f( CuPredMode[ x0 ][ yO | '= MODE_ INTRA &&
cu_skip flag[ xO ][ yO ] ==0)
cu_ cbf

1f( cu__cbt )
transform__ tree( x0, yO, cbWidth, cbHeight, treeType )

ac(v)

55
5.2.2.

Embodiment 2: An Alternative CU Syntax
Table Design

Descriptor

coding__unit{ x0, y0, cbWidth, cbHeight, treeType ) {
if{ tile__group_type !=1) {
if( treeType != DUAL_TREE CHROMA )
cu_skip_ flag[ xO ][ yO ]
1f( cu__skip_ flag[ xO |[ yvO ] ==0)
pred__mode_ flag

ae(v)

ae(V)
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Descriptor

h

if( CuPredMode[ x0 ][ yO ] = = MODE__INTRA ) {

h

} else if( treeType = DUAL_TREE_CHROMA ) { /* MODE_ INTER */
1 cu_skip_ flag[ xO |[ yO | ==0)
merge__flag[ xO ][ yO ] ac(v)
if{ merge flag[ x0 ][ yO ] )4
merge_data( x0, yO, cbWidth, cbHeight)

}else {
if( tile__group__type == B )
inter__pred__ide[ x0 ][ yO ] ac(v)
1f( sps__affine  enabled_flag && cbWidth >= 16 &&
cbHeight >= 16 ) {
inter _affine  flag| x0 ][ yO ] ac(v)
1f( sps__afline type_ flag &&
inter _afline_ flag| x0 ][ yO ])
cu__afline type_ flag] xO |[ yO ] ae(v)
h

if( inter_pred_ide[ x0 ][ yO ] != PRED_1L1) {
1f{ num_ ref 1dx_ 10_ active__minusl > 0 )
ref idx_10[] xO ][ vO ] ac(v)
mvd__coding( x0, y0, 0, O )
1f( MotionModelld¢[ xO ][ yO ] > 0 )
mvd__coding( x0, yvO, 0, 1 )
if(MotionModelld¢[ xO ][ vO ] > 1 )
mvd__coding( x0, vO, 0, 2 )
mvp__ 10_ flag] xO0 ][ vO ] ac(v)
}else {
MvdLO[ xO0 ][ yO ][ O ]
MvdLO[ xO J[vO ][ 1 ]
h

if( inter_pred_ide[ x0 ][ yO ] != PRED_1.0) {
1f{ num__ref 1dx_ I1_ active__minusl > 0 )
ref__idx__I1[ xO ][ yO ] ac(v)
1f{ mvd_ 11_ zero_ flag &&
inter _pred idc[ x0 ][ yO ] = =PRED_BI) {

0
0

MvdL1[ x0 ][ yO ][0 ] = O
MvdL1[ x0 J[v0 ][ 1] =0
MvdCpL1[ x0 ][ yO ][0 ][0 ] =0
MvdCpL1[ x0 [[yO ][0 ][ 1] =
MvdCpL1[ x0 [[yO ][ 1 ][0 ] =
MvdCpL1[x0 [[vO ][ 1 ][ 1] =
MvdCpL1[ x0 ][ yO ][2 ][0 ] =0
MvdCpL1[x0 ][yO ][2 ][ 1] =0

}else {

mvd__coding( X0, vO, 1, O )
1f{ MotionModelldc[ xO ][ yO ] > 0 )
mvd__coding( X0, vO, 1, 1 )
if(MotionModellde[ xO ][ vO ] > 1 )
mvd__coding( x0, vO, 1, 2 )

mvp__11_ flag] xO ][ yO ] ac(v)
}else {
MvdL1[ xO ][yO ][O ] =0
MvdL1[ xO ][yO ][ 1 ]=0
i}f( ( sps__amvr__enabled_ flag && inter_ affine  flag = =
&&
( MvdLO[xO ][ yO ][O ] !=0 1| |
MvdLO[ xO [[ yO ][ 1 ] !=0 ||
MvdL1[xO ][yO ] O ]!=0 1|
MvdL1[ xO ][ yvOJ[ 1 ]!=0)) ||
( sps__affine_ amvr_ enabled_ flag &&
inter _afline flag==1 &&
( MvdCpLO[ xO [[YOJJO][O]!=01|
MvdCpLO[ xO J[ YO ][O ]J[1 ]!=0 1]
MvdCpL1[xO ][ YyOJ[O ][O ]!=01]
MvdCpL1[x0 J[yO JIOJ[1]!=0))){
1f( !'sps_ cpr__enabled_ flag | | !(
inter_pred_ide[ x0 ][ vO | = = PRED_ L0 &&
ref idx_10[ X0 ][ yO ] ==num_ ref idx_ 10_active_ minusl ) )
amvr__tlag[ x0 ][ yO ] ac(v)
1f( amvr_flag] xO0 ][ yO ] )
amvr__coarse__precisomn__flag] x0 ][ yO ] ac(v)

h

11( sps__gbi__enabled_ flag && inter_ pred__idc[ xO0 ][ yvO ]
= = PRED_BI &&
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Descriptor
cbWidth * cbHeight >= 256 )
gbi_1dx[ x0 |[ yO ] ac(v)
h
h
if( !pem_flag[ x0 ][ yO ]) {
1f( CuPredMode[ x0 ][ vO | != MODE__INTRA &&
cu_skip_ flag[ xO ][ yO ] ==0)
cu_ cbf ac(v)
1f( cu_ _cbf )
transform tree( x0, yO, cbWidth, cbHeight, treeType )
h
h
5.2.3. Embodiment 3: A Third CU Syntax Table
Design
Descriptor
coding_unit{ x0, y0, cbWidth, cbHeight, treeType ) {
if( tile__group_ type !=1) {
if( treeType != DUAL_ TREE CHROMA )
cu_ skip_ flag] xO ][ vO ] ae(v)
i cu_skip_ flag[ xO J[ yO ] ==0)
pred__mode_flag ae(v)
h
if{ CuPredMode[ x0 ][ yO ] = = MODE__INTRA ) {
h
} else if( treeType = DUAL_ TREE CHROMA ) { /* MODE_INTER */
if( cu_skip_flag[ xO ][ yO ] == 0 )
merge__flag[ x0 ][ yO ] ae(v)
if{ merge flag[ x0 ][ vO]) 4
merge__data( x0, yO, cbWidth, cbHeight )
}else {
1f( tile__group__type == B )
inter__pred__ide[ x0 ][ yO ] ac(v)
1f( sps__affine  enabled_flag && cbWidth >= 16 &&
cbHeight >= 16 ) {
inter _afline  flag] x0 ][ vO ] ac(v)
1f( sps__afline type_ flag &&
inter _afline_ flag] x0 ][ yO ])
cu__afline type_ flag[ x0 |[ yO ] ae(v)
h
if( inter_pred__ide[ x0 ][ yO ] '= PRED_L1 ) {
1f( num_ ref 1dx_ 10_ active_ minusl > 0 )
ref__1dx__10[ xO ][ yO ] ac(v)
mvd__coding( x0, y0, 0, O )
1f{ MotionModelldc[ xO ][ yO ] > 0 )
mvd__coding( x0, yvO, 0, 1 )
if(MotionModellde[ xO ][ vO ] > 1 )
mvd__coding( x0, vO, 0, 2 )
mvp__10_ flag] xO0 ][ vO ] ac(v)
}else {
MvdLO[ xO0 ][yO ][O ] =0
MvdLO[ xO ][vO ][ 1 ]=0
h
if( inter_pred_ide[ x0 ][ yO ] != PRED_1.0) {
if{ num__ ref 1dx_ 11_active _minusl > 0 )
ref idx_I1[ xO ][ yO ] ae(v)

1f{ mvd_ 11_ zero_ flag && inter_ pred_ idc[ x0 ][ yO ]

— = PRED_BI ) {
MvdL1[ x0 ][ yO ][ 0 ] = O
MvdLI[ %0 [[yO ][ 1] =0
MvdCpL1[ %0 J[yO ][O ][0 ] =0
MvdCpL1[ %0 [[yO [0 ][ 1 ] =
MvdCpL1[ %0 [[yO [ 1 ][ 0 ] =
MvdCpL1[ %0 J[yO ][ 1 ][ 1]=0
MvdCpL1[ %0 [[yO ][ 2 ][0 ] =0
MvdCpL1[x0 [[yO ][ 2 ][ 1] =0
}else {

mvd__coding( X0, vO, 1, O )

1f( MotionModelldc[ xO ][ yO ] > 0 )

mvd__coding( X0, vO, 1, 1 )
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Descriptor
if{(MotionModellde[ X0 [ yO | > 1 )
mvd__coding( x0, vO, 1, 2 )
mvp__11_ flag] x0 ][ yO ] ac(v)
I else {
MvdL1[ xO ][yO ][O ] =0
MvdL1[ xO ][yvO ][ 1 ]=0
h
11( ( sps__amvr_enabled flag && inter afline flag = =
&&
( MvdLO[xO ][ yO ][O ] !=0 1| |
MvdLO[ xO ][ vO ][ 1 ] !=0 ||
MvdL1[xO [[yO ] O ]!=01|
MvdL1[ xO ][ vO ][ 1 ]!=0)) ||
( sps__afline amvr enabled flag &&
inter _affine flag==1)) {
1f( 'sps__cpr__enabled_ flag | | !(
inter_pred_ 1dc[ X0 ][ vO ] = =PRED_ L0 &&
ref _1dx_10[ xO ][ yO | = = num__ref_i1dx_ 10__active_ minusl ) )
amvr__flag] x0 |[ yO ] ac(v)
1f( amvr__flag] x0 ][ yvO ] )
amvr__coarse_ precisomn_ flag] x0 ][ yO ] ac(v)
h
11( sps__gbi_enabled flag && inter pred idc[ X0 |[ yO | ==
PRED Bl &&
cbWidth * cbHeight >= 256 )
gbi_1dx[ x0 ][ vO ] ac(v)
h
h
if( !pem__flag[ x0 ][ y0 ] ) {
1f( CuPredMode[ x0 ][ vO | != MODE__INTRA &&
cu_skip_ flag[ x0 ][ yO ] ==0)
cu_ cbf ac(v)

1f( cu__cbi)
transform__tree( x0, yO, cbWidth, cbHeight, treeType )

35
5.2.4. Embodiment 4: Syntax Table Design with

Different Syntax for AMVR and Afline AMVR
Mode

coding_unit{ x0, y0, cbWidth, cbHeight, treeType ) {

if{ tile__group_type !=1) {
if( treeType != DUAL_TREE CHROMA )
cu__skip_ flag[ xO ][ yO ]
1f( cu__skip_ flag[ xO |[ yO | ==0)
pred__mode_ flag

h

if( CuPredMode[ x0 ][ yO ] = = MODE_ INTRA ) {

h

} else if( treeType = DUAL TREE CHROMA ) { /* MODE_INTER */
1f( cu_skip_ flag[ xO |[ yO ] ==0)
merge_ flag] x0 ][ yO ]
if{ merge flag[ X0 ][ v0O ] ) {
merge_ data( x0, yO, cbWidth, cbHeight)

+else {
1f( tile__group__type == B )
inter _pred__ide[ xO0 ][ vO ]
1f( sps__afline enabled flag && cbWidth >=16 &&
cbHeight >= 16 ) {
inter__afline_ flag[ x0 ][ yO ]
if( sps__afline_ type_ flag &&
inter _affine flag[ x0 [ vO ] )
cu_ afline type flag| xO ][ yO ]
h
if( inter_pred_ide[ x0 ][ yO ] != PRED_1L1) {
if( num_ ref 1dx_ 10_active_ minusl > 0 )
ref 1dx_ 10[ xO ][ yO ]
mvd__coding( x0, y0, 0, O )

42
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-continued

1f{ MotionModelldc[ xO ][ yO ] > 0 )
mvd__coding( X0, vO, O, 1 )
if{(MotionModellde[ X0 [ yO | > 1 )
mvd__coding( x0, vO, 0, 2 )
mvp__10_ flag] x0 ][ yO ]

I else {
MvdLO[ x0 [[yO ][0 ] = 0
MvdLO[ x0 [[yO [ 1] =0
;

if( inter_pred ide[ x0 ][ yO ] !'= PRED_10) {
1f( num_ ref 1dx_ I1_ active__minusl > 0O )
ref 1dx_I1[ xO ][ yO ]
if{ mvd__11__zero_ flag && inter_ pred__idc[ X0 ][ yO ]
==PRED_BI) {

44

MvdL1[ xO ][ yO ][ O ] =0
MvdL1[xO ][ vO ][ 1]=0
MvdCpL1[ xO ][ yO ][O ] O] =0
MvdCpL1[xO [[vO ][O ][ 1 ]=0
MvdCpL1[xO [[yOJ[1 ][O ] =0
MvdCpL1[xO [[vOJ[1][1]=0
MvdCpL1[ xO [[yO ][ 2 ][O ] =0
MvdCpL1[xO [[vO ][ 2 ][1]=0
}else {

mvd__coding( x0, yvO, 1, 0)
1f{ MotionModelld¢c[ xO ][ yO ] > 0 )
mvd__coding( X0, vO, 1, 1)
if{(MotionModellde[ X0 [ yO | > 1 )
mvd__coding( x0, vO, 1, 2)
mvp__ 11 flag] x0 ][ yO ]

Felse {
MvdL1[ x0 [[yO ][0 ] = 0
MvdL1[ x0 [[yO ][ 1] =0
;

1f(sps__amvr_enabled_ flag && inter_affine flag = = 0 &&
( MvdLO[ xO ][ vO ][O ] !=0 |l

MvdLO[ x0 ][ yO ][ 1 ]!=0 |
MvdL1[x0 ][ yO ][0 ] !=0 ||
MvdL1[ %0 ][ yO ][ 1]!=0)) {

if( !'sps__cpr__enabled_ flag [ !(
inter _pred__ide[ x0 ][ vO | == PRED_ L0 &&
ref idx_ 10 [x0 ][ y0 ]==num_ref i1dx_ 10 active minusl ) )
amvr__flag] x0 ][ yO ]
1f( amvr__flag[ xO0 ][ yO ] )
amvr__coarse__precisomn__flag] x0 ][ yO ]
I else if (conditionsA) {
if(conditionsB)
affine__amvr_flag[ xO0 ][ yO ]
1f( amvr__flag] X0 ][ yvO ] )
afline__amvr_ coarse_ precisoin_ flag[ x0 |[ yO ]

h
11( sps__gbi_enabled flag && inter pred idc[ xO0 |[ yO | ==
PRED BI &&
cbWidth * cbHeight >= 256 )
gbi_1dx[ x0 |[ yO ]
h
h
if( !pem_flag[ x0 J[ y0 ] )
1f{ CuPredMode[ x0 |[ ¥
cu_skip_ flag[ x0O ][ yO ] ==0
cu_ cbi
1f( cu_ _cbf )
transform__ tree( x0, yO, cbWidth, cbHeight, treeType )

{
)

0]!=MODE_INTRA &&

In one example, conditionsA 1s defined as follows: MvdCpLO[x0][yO0][2][0]!=0|

(sps_alline_amvr_enabled_flag && inter_afline flag== MvdCpLO[xO0][vO][2][1]!=0|
&& MvdCpL1[x0][y0][2][0]!=0]]
(MvdCpLO[x0][y0][0][0]!~0] o MvdCpL1[x0][yO][ 2][1]!~0))
MvdCpLO[x0][yO][O][1]! OH Alternatively, conditionsA 1s defined as follows:
MvdCpL1[x0][yO][0][0]!=0| (sps_alline_amvr_enabled_flag && inter_afhne flag=—
MvdCpL1[x0][yO][O][1]!=0|] &&
MvdCpLO[x0] [yO][l] [0]!=0|] (MvdCpLO[xO0][yO][0][0]!=0||
MvdCpLO[xO0][yvO][1][ 1]!=0|| 65  MvdCpLO[xO0][yO][O][1]! OH
MvdCpL1[x0] [yO][l][O]' =0|| MvdCpL1[x0][yO][0][0]!=0]|
MvdCpL1[x0][yO][1][ 1]!=0| MvdCpL1[x0][y0][0][1]!=0])
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Alternatively, conditionsA 1s defined as follows:

(sps_afline_amvr_enabled_flag && inter_athne_ flag==
&&
(MvdCpLX[x0] [YO][ =0|
MVdeLX x0][yO][0][1 )
wherein X 1s being O or 1
Alternatively, conditionsA 1s defined as follows:

(sps_alline_amvr_enabled_flag && inter_athne_flag==1)

In one example, conditionsB 1s defined as follows:

'sps_cpr_enabled_flag||!(inter_pred_idc[x0][yO]
—PRED_10 &&
rel_1dx_10[x0][yO]==num_rei_1dx_l0 active_minus])

Alternatively, conditionsB 1s defined as follows:

Isps_cpr_enabled ﬂagH'(pred mode[x0][y0]==CPR).
Alternatively, conditionsB 1s defined as follows:
'sps_ibc_enabled_flag||!(pred_mode[x0][y0]=—=IBC).

When different syntax elements are utilized to code AMVR
or Athne AMVR, the context modeling and/or contexts used
for the embodiments 1 5.5 which are applied to Afline
AMVR may be applied accordingly.
5.2.5. Semantics
amvr_{lag[x0][y0] specifies the resolution of motion vector
difference. The array 1indices x0, y0 specity the location (x0,
y0) of the top-left luma sample of the considered coding
block relative to the top-left luma sample of the picture.
amvr_tlag[x0][y0] equal to O specifies that the resolution of
the motion vector difference 1s ¥4 of a luma sample. amvr_
flag[x0][y0] equal to 1 specifies that the resolution of the
motion vector diflerence 1s further specified by amvr_coars-
¢_precisoin_flag[x0][yO0].
When amvr_flag[x0][y0] 1s not present, it 1s inferred as
follows:

If sps_cpr_enabled_flag 1s equal to 1, amvr_flag[x0][yO]

1s 1nferred to be equal to 1.
Otherwise (sps_cpr_enabled_flag 1s equal to 0), amvr_
flag[x0][y0] 1s mferred to be equal to O.

amvr_coarse_precisoin_ilag[x0][y0] equal to 1 specifies that
the resolution of the motion vector difference 1s four luma
samples when inter_athne_flag 1s equal to 0, and 1 luma
samples when inter_afline flag 1s equal to 1. The array
indices x0, y0 specity the location (x0, y0) of the top-leit
luma sample of the considered coding block relative to the
top-left luma sample of the picture.
When amvr_coarse_precisoin_1ilag[x0][y0] 1s not present, 1t
1s 1nferred to be equal to 0.
If_inter_afhine flag[x0][y0] 1s equal to O, the wvariable
MvShitt 1s set equal to (amvr_flag[x0][yO]+amvr_coars-
¢_precisoin_flag[x0][y0])<<1 and the variables MvdLO[x0]

[vO][0], MvdLO[x0][yO][1], MvdL1[x0][y0][0], MvdL1[x0]

[vO][1] are modified as follows:
MvdLO0[x0][¥0][0]=MvdLO[x0][v0][0]<<(MvShift+2) (7-70)
MvdLO[x0][¥0][1]=MvdLO[x0][¥0][1]<<(MvShift+2) (7-71)
MvdL1[x0][¥0][0]=MvdL1[x0][¥0][0]<<(MvShift+2) (7-72)
MvdL1[x0][¥0][1]=MvdL1[x0][¥0][1]<<(MvShift+2) (7-73)

If inter_afhine flag[x0][y0] 1s equal to 1, the wvariable
MvShitt 1s set equal to (amvr_coarse_precisoin_tlag?(amvr_
coarse_precisoin_flag<<l): (-(amvr_flag<<1))) and the
variables MvdCpLO[x0][v0][0][0], MvdCpLO[x0][yO0][O]
[1],  MvdCpLO[x0][y0][1][0], MvdCpLO[x0][yO][1][1],
MvdCpLO[x0][y0][2][0], MvdCpLO[x0][y0][2][1] are
modified as follows:

MvdCpLO[x0][+0][1][0][0]=MvdCpLO[x0
<<(MvShift+2)

1O][0][0]
(7-73)
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MvdCpL1[x0][»0][0][1]=MvdCpL1[x0][0][0][1]<<

(MvShift+2) (7-67)
MvdCpLO[x0][¥0][1][0]=MvdCpLO[x0][10][1][0]<<

(MvShift+2) (7-66)
MvdCpL1[x0][»0][1][1]=MvdCpL1[x0][0][1][1]<<

(MvShift+2) (7-67)
MvdCpLO[x0][¥0][2][0]=MvdCpLO[x0][10][2][0]<<

(MvShift+2) (7-66)
MvdCpL1[x0][»0][2][1]=MvdCpL1[x0][0][2][1]<<

(MvShift+2) (7-67)

Alternatively, if inter_athne flag[x0][y0] 1s equal to 1, the
variable MvShiit 1s set equal to (afﬁne amvr_coarse_preci-
soin_flag?(afline_amvr_coarse_precisoin_tlag<<l): (-(af-
fine_amvr_flag<<1))).
5.3. Rounding Process for Motion Vectors
The rounding process 1s modified that when the given
rightShiit value 1s equal to O (which happens for Vis-pel
precision), the rounding ofiset 1s set to 0 instead of (1<<
(rightShift-1)).
For example, the sub-clause of rounding process for MVs 1s
modified as follows:
Inputs to this process are:

the motion vector mvX,

the right shift parameter rightShift for rounding,

the left shift parameter lettShift for resolution increase.
Output of this process 1s the rounded motion vector mvX.
For the rounding of mvX, the following applies:

offset=(rightShi{ft==0)70:(1<<(rightShift-1)) (8-371)
mvX[0]=(myvX[0]>=07(mvX[0 +olilset)>>r1ghtShift:
—((-mvX]0]+ofiset)>>rightShift) )<<leftShift (8-372)
mv X[ 1]=(mvX[1]>=07(mvX[1 |+oilset)>>r1ghtShift:
((—myX[1]|+oflset)>>rightShift))<<leftShift (8-373)

5.4. Decoding Process

The rounding process mvoked in the afline motion vector
derivation process are performed with the iput of (Mv-
Shift+2) nstead of being fixed to be 2.

Derivation Process for Luma Afline Control Point Motion
Vector Predictors

Inputs to this process are:

a luma location (xCb, yCb) of the top-left sample of the
current luma coding block relative to the top-left luma
sample of the current picture,

two variables cbWidth and cbHeight specifying the width
and the height of the current luma coding block,

the reference imndex of the current coding unit refldxLX,
with X being O or 1,

the number of control point motion vectors numCpMyv.

Output of this process are the luma afline control point
motion vector predictors mvpCpLX|[cpldx] with X being O
or 1, and cpldx=0 . . . numCpMv-1.

For the derivation of the control point motion vectors
predictor candidate list, cpMvpListL.X with X being O or 1,
the following ordered steps apply:

The number of control point motion vector predictor can-
didates 1n the list numCpMvpCandLX 1s set equal to O.
The vaniables availableFlagA and availableFlagB are both
set equal to FALSE.
The rounding process for motion vectors as specified 1n
clause 8.4.2.14 1s imnvoked with mvX set equal to cpMvpLX

[cpldx], nghtShift set equal to (MvShiit+2), and leftShift set
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equal to (MvShift+2) as inputs and the rounded cpMvpLX
[cpldx] with cpldx=0 . . . numCpMv-1 as output.

The variable availableFlagA 1s set equal to TRUE
The derivation process for luma afline control point motion
vectors from a neighbouring block as specified 1n clause
8.4.4.5 1s invoked with the luma coding block location (xCb,
yCb), the luma coding block width and height (cbWidth,
cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and
height (nbW, nbH), and the number of control point motion
vectors numCpMyv as input, the control point motion vector
predictor candidates cpMvpLY|[cpldx] with cpldx=0 . . .
numCpMv-1 as output.

The rounding process for motion vectors as specified 1n
clause 8.4.2.14 1s imnvoked with mvX set equal to cpMvpLY
[cpldx], rightShiit set equal to (MvShitt+2), and leftShift set
equal to (MvShift+2) as inputs and the rounded cpMvpLY
[cpldx] with cpldx=0 . . . numCpMv-1 as output.

The derivation process for luma afline control point motion
vectors from a neighbouring block as specified 1n clause
8.4.4.5 1s invoked with the luma coding block location (xCb,
yCb), the luma coding block width and height (cbWidth,
cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and
height (nbW, nbH), and the number of control point motion
vectors numCpMyv as 1put, the control point motion vector
predictor candidates cpMvpLX][cpldx] with cpldx=0 . . .
numCpMv-1 as output.

The rounding process for motion vectors as specified 1n
clause 8.4.2.14 1s imnvoked with mvX set equal to cpMvpLX
[cpldx], nghtShift set equal to (MvShiit+2), and leftShiit set
equal to (MvShift+2) as inputs and the rounded cpMvpLX
[cpldx] with cpldx=0 . . . numCpMv-1 as output.

The following assignments are made:

cpMvpListLX[numCpMvpCandLX|[0]=cpMvpLX]O] (8-618)
cpMvpListLX[numCpMvpCandLX]|[1]=cpMvpLX]1] (8-619)
cpMvpListLX[numCpMvpCandLX][2]=cpMvpLX][2] (8-620)
numCpMvpCand LX=numCpMvpCandLX+1 (8-621)

Otherwise 1f PredFlagLY [xINbBk]|[yNbBk] (with Y=!X) 1s
equal to 1 and DifiPicOrderCnt(RefPicListY[RefldxLY
[XNbBK][yNbBk]], RefPicListX[refldx].X]) 1s equal to O,
the following applies:

The variable availableFlagB 1s set equal to TRUE
The derivation process for luma afline control point motion
vectors from a neighbouring block as specified in clause
8.4.4.5 1s invoked with the luma coding block location (xCb,
yCb), the luma coding block width and height (cbWidth,
cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and
height (nbW, nbH), and the number of control point motion
vectors numCpMyv as input, the control point motion vector
predictor candidates cpMvpLY|[cpldx] with cpldx=0 . . .
numCpMv-1 as output.

The rounding process for motion vectors as specified 1n
clause 8.4.2.14 1s invoked with mvX set equal to cpMvpLY
[cpldx], rightShiit set equal to (MvShiit+2), and leftShift set
equal to (MvShift+2) as inputs and the rounded cpMvpLY
[cpldx] with cpldx=0 . . . numCpMv-1 as output.

The following assignments are made:

cpMvpListLX[numCpMvpCandLX|[O]=cpMvpLY|[O] (8-622)

cpMvpListLX[numCpMvpCandLX][1]=cpMvpLY[1] (8-623)
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cpMvpListLX[numCpMvpCandLX][2]|=cpMvpLY|[2] (8-624)
numCpMvpCandLX=numCpMvpCandL.X+1 (8-625)

When numCpMvpCandLX 1s less than 2, the following
applies

The derivation process for constructed afline control point
motion vector prediction candidate as specified in clause
8.4.4.8 1s invoked with the luma coding block location (xCb,
yCb), the luma coding block width cbWidth, the luma
coding block height cbHeight, and the reference index of the
current coding unit refldxILX as inputs, and the availability
flag availableConsFlagl.X, the availability flags availableF -
lagl X[cpldx] and cpMvpLX[cpldx] with cpldx=0 . . .
numCpMv-1 as outputs.

When availableConsFlagl.X 1s equal to 1, and numCpMvp-
CandL X 1s equal to 0, the following assignments are made:

cpMvpListLX[numCpMvpCandLX][O]=cpMvpLX][0] (8-626)

cpMvpListLX[numCpMvpCandLX][1]=cpMvpLX]1] (8-627)

cpMvpListLX[numCpMvpCandLX][2]=cpMvpLX][2] (8-628)

numCpMvpCandLX=numCpMvpCandLX+1 (8-629)
The following applies for cpldx=0 . . . numCpMv-1:

When numCpMvpCandLX 1s less than 2 and availableF-

lagl. X[cpldx] 1s equal to 1, the following assignments are
made:

cpMvpListLX[numCpMvpCandLX][O]=cpMvpLX

[cpldx] (8-630)
cpMvpListLX[numCpMvpCandLX][1]=cpMvpLX

[cpldx] (8-631)
cpMvpListLX[numCpMvpCandLX][2]=cpMvpLX

[cpldx] (8-632)
numCpMvpCandLX=numCpMvpCandLX+1 (8-633)

When numCpMvpCandLX 1s less than 2, the following
applies:

The derivation process for temporal luma motion vector
prediction as specified 1n clause 8.4.2.11 1s with the luma
coding block location (xCb, yCb), the luma coding block
width cbWidth, the luma coding block height cbHeight and
refldxLX as iputs, and with the output being the availabil-
ity flag availableFlagl. XCol and the temporal motion vector
predictor mvLXCol. When availableFlagl.XCol 1s equal to
1, the following applies:

The rounding process for motion vectors as specified 1n
clause 8.4.2.14 1s invoked the with mvX set equal to
mvL.XCol, rnghtShift set equal to (MvShift+2), and leftShift
set equal to (MvShift+2) as iputs and the rounded
mvL.XCol as output.

The following assignments are made:

cpMvpListLX[numCpMvpCandLX][0]=mvLXCol (8-634)
cpMvpListLX[numCpMvpCandLX][1]=mvLXCol (8-635)
cpMvpListLX[numCpMvpCandLX][2]=mvLXCol (8-636)
numCpMvpCandLX=numCpMvpCandL.X+1 (8-637)

When numCpMvpCandLLX 1s less than 2, the following is

repeated until numCpMvpCandLLX 1s equal to 2, with

mvZero[0] and mvZero[1] both being equal to O:
cpMvpListLX[numCpMvpCandLX][O]=mvZero (8-638)
cpMvpListLX[numCpMvpCandLX][1]=mvZero (8-639)
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cpMvpListLX[numCpMvpCandLX][2]=mvZero (8-640)
numCpMvpCand LX=numCpMvpCandL.X+1 (8-641)

The athine control point motion vector predictor cpMvpLX
with X being O or 1 1s derived as follows:

cpMvpLX=cpMvpListLX[mvp_lX_ flag[xCb][yCb]] (8-642)

Dernvation Process for Constructed Afline Control Point
Motion Vector Prediction Candidates
Inputs to this process are:

a luma location (xCb, yCb) specitying the top-left sample
of the current luma coding block relative to the top-lett
luma sample of the current picture,

two variables cbWidth and cbHeight specitying the width
and the height of the current luma coding block,

the reference index of the current prediction unit partition
refldxLLX, with X being O or 1,

Output of this process are:

the availability flag of the constructed athine control point
motion vector prediction candidates availableCons-
Flagl.X with X being O or 1,

the availability {flags availableFlagl.X[cpldx]
cpldx=0 ... 2 and X beimng 0 or 1,

the constructed athine control point motion vector predic-
tion candidates cpMvLX|[cpldx] with cpldx=0 . . .
numCpMv-1 and X being O or 1.

The first (top-left) control point motion vector cpMvLX[0]
and the availability flag availableFlagl.X[0] are derived 1n
the following ordered steps:

The sample locations (xNbB2, yNbB2), (xNbB3, yNbB3)
and (xNbA2, yNbA2) are set equal to (xCb-1, yCb-1),
(xCb, yCb-1) and (xCb-1, yCb), respectively.

The availability flag availableFlagl X[0] 1s set equal to 0 and
both components of cpMvLX][0] are set equal to O.

The following applies for (xNbTL, yNbTL) with TL being
replaced by B2, B3, and A2:

The availability derivation process for a coding block as
speciflied 1n clause 1s 1nvoked with the luma coding block
location (xCb, yCb), the luma coding block width cbWidth,
the luma coding block height cbHeight, the luma location
(xNbY, yNbY) set equal to (xXNbTL, yNbTL) as mputs, and
the output 1s assigned to the coding block availability flag
availableTL.

When availableTL 1s equal to TRUE and availableFlagl. X
[0] 1s equal to O, the following applies:

If PredFlaglL. X[xNbTL][yNbTL] 1s equal to 1, and
DifiPicOrderCnt(RefPicListX[Refldx L X[xNbTL ]
[yNbTL]], RetPicListX][refldx.X]) 1s equal to O, and the
reference picture corresponding to RefldxL.X[xNbTL]
[yNbTL] 1s not the current picture, availableFlagl.X][0] 1s set
equal to 1 and the following assignments are made:

with

cpMvLX[0]=MvLX[xNbTL][yNbTL] (8-643)

Otherwise, when PredFlagLY[xNbTL][yNbTL] (with
Y=!X) 1s equal to 1 and DifiPicOrderCnt(RefPicListY[Re-
TIdXLY[xNbTL][yNbTL]], RefPicListX[retldxI.X]) 1s equal
to 0, and the reference picture corresponding to RefldxLY
[XNbTL][yNbTL] 1s not the current picture, availableF-
lagl _X[0] 1s set equal to 1 and the following assignments are
made:

cpMvLX[0]=MvLY[xNbTL][yNbTL] (8-644)

When availableFlagl. X[0] 1s equal to 1, the rounding pro-
cess for motion vectors as specified 1n clause 8.4.2.14 1s
invoked with mvX set equal to cpMvLX[0], rightShift set
equal to (MvShift+2), and leftShift set equal to (MvShiit+2)

as mputs and the rounded cpMvLX][0] as output.
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The second (top-right) control point motion vector cpMvLX
[1] and the availability flag availableFlagl.X[1] are derived
in the following ordered steps:

The sample locations (xNbB1, yNbB1l) and (xNbBO,
yNbBO) are set equal to (xCb+cbWidth—-1, yCb-1) and
(xCb+cbWidth, yCb-1), respectively.

The availability flag availableFlagl X[1] 1s set equal to 0 and

both components of cpMvLX]1] are set equal to O.
The following applies for (xNbTR, yNbTR) with TR being

replaced by B1 and BO:

The availability derivation process for a coding block as
specified 1n clause 6.4.X 1s invoked with the luma coding
block location (xCb, yCb), the luma coding block width
cbWidth, the luma coding block height cbHeight, the luma
location (xNbY, yNbY) set equal to (xNbTR, yNbTR) as
inputs, and the output 1s assigned to the coding block
availability flag availableTR.

When availableTR 1s equal to TRUE and availableFlagl. X
[1] 1s equal to O, the following applies:

If PredFlagl. X[xNbTR][yNbTR] 1s equal to 1, and
DiffPicOrderCnt(RefPicListX[RefldxLX[xNbTR]
[yNbTR]], RefPicListX[refldxLX]) 1s equal to 0, and the
reference picture corresponding to RelfldxLX[xNbTR]
[yNbTR] 1s not the current picture, availableFlagl X[1] 1s set
equal to 1 and the following assignments are made:

cpMvLX[1]=MvLX[xNbTR][yNbTR]

Otherwise, when PredFlaglLY[xNbTR][yNbTR]
Y=!X) 1s equal to 1 and
DiflPicOrderCnt(RefPicListY[RelldxLY[xNbTR]
[yNbTR]], RefPicListX[refldxLX]) 1s equal to 0, and the
reference picture corresponding to RefldxLY[xNbTR]

[yNbTR] 1s not the current picture, availableFlagl X[1] 1s set
equal to 1 and the following assignments are made:

(8-645)
(with

cpMvLX[1]=MvLY[xNbTR][yNbTR] (8-646)

When availableFlagl. X[1] 1s equal to 1, the rounding pro-
cess for motion vectors as specified 1n clause 8.4.2.14 1s
invoked with mvX set equal to cpMvLX][1], rightShift set
equal to (MvShift+2), and lettShift set equal to (MvShiit+2)
as mputs and the rounded cpMvLX][1] as output.

The third (bottom-lett) control point motion vector cpMvLX
[2] and the availability flag availableFlagl. X[2] are derived
in the following ordered steps:

The sample locations (xNbAl, yNbAl) and (xNbAO,
yNbAQ) are set equal to (xCb-1, yCb+cbHeight-1) and
(xCb-1, yCb+cbHeight), respectively.

The availability flag availableFlagl X[2] 1s set equal to 0 and

both components of cpMvLX]2] are set equal to O.
The following applies for (xXNbBL, yNbBL) with BL being

replaced by Al and AO:

The availability derivation process for a coding block as
specified 1 clause 6.4.X mvoked with the luma coding
block location (xCb, yCb), the luma coding block width
cbWidth, the luma coding block height cbHeight, the luma
location (xNbY, yNbY) set equal to (xNbBL, yNbBL) as
inputs, and the output 1s assigned to the coding block
availability flag availableBL.

When availableBL 1s equal to TRUE and availableFlagl. X
[2] 1s equal to 0, the following applies:

If PredFlagl. X|xNbBL][yNbBL] 1s equal to 1, and
DiffPicOrderCnt(RefPicListX[RefldxLX[xNbBL]
[yNbBL]], RefPicListX[refldxLX]) 1s equal to 0, and the
reference picture corresponding to RefldxLY[xNbBL]
[yNbBL] 1s not the current picture, availableFlagl X[2] 1s set
equal to 1 and the following assignments are made:

cpMVLX[2]=MvLX[xNbBL][yNbBL] (8-647)
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Otherwise, when PredFlaglL.Y[XxNbBL]|[yNbBL] (with
Y=!X) 1s equal to 1 and DifiPicOrderCnt(RefPicListY[Re-
fIdXLY[xNbBL][yNbBL]], RetPicListX[refldxLX]) 1s
equal to 0, and the reference picture corresponding to
Retfldx LY [xNbBL][yNbBL] 1s not the current picture, avail-

ableFlagl.X[2] 1s set equal to 1 and the following assign-
ments are made:

cpMVLX[2]=MvLY[xNbBL][yNbBL] (8-648)

When availableFlagl.X[2] 1s equal to 1, the rounding pro-
cess for motion vectors as specified 1n clause 8.4.2.14 1s
invoked with mvX set equal to cpMvLX[2], rightShift set
equal to (MvShift+2), and leftShift set equal to (MvShiit+2)
as mputs and the rounded cpMvLX][2] as output.

3.5. Context Modeling

Assignment of ctxInc to syntax elements with context coded
bins:

binldx
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ctxIdx of ctxIdx of
amvr__coarse_ precisomn__flag amvr_coarse precisoin_ flag
Initiali- when inter affine_ flag when inter afline_ flag
zation is equal to O 1s equal to 1
variable 0 0

mitValue XXX XX

The examples described above may be incorporated 1n the
context of the method described below, e.g., methods 2610
to 2680, which may be implemented at a video decoder or
a video encoder.

FIG. 26 A shows a flowchart of an exemplary method for
video processing. The method 2610 includes, at step 2610,
determining, for a conversion between a coded representa-
tion of a current block of a video and the current block, a

motion vector diflerence (IMVD) precision to be used for the

Syntax element 0 1 2 3

0,1, 2
(clause 9.5.4.2.2, when
inter__affine flag| |[ |
is equal to 0)
amvr__coarse__precisom__flag[ |[ | 0

amvr__flag[ ][ ]

Specification of ctxInc using left and above syntax elements:
In one example, context increasement oflset ctxInc=(condL
&& availableL)+(condA && availableA)+ctxSetldx*3.
Alternatively, ctxInc=((condl. && availableL)|[(condA &&
availableA))+ctxSetldx™3.

ctxInc=(condL && availableL)+M*(cond A &&
availableA)+ctxSetldx*3. (e.g., M=2)

ctxInc=M*(condL && availableL)+(condA &&
availableA)+ctxSetldx*3. (e.g., M=2)

4

na 1na na Ina

na 1na na na
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conversion from a set of allowed multiple MVD precisions
applicable to a video region containing the current video
block. The method 2610 includes, at step 2614, performing
the conversion based on the MVD precision.

FIG. 26B shows a flowchart of an exemplary method for
video processing. The method 2610 as shown 1n FIG. 26B
includes, at step 2612, determining, for a video region
comprising one or more video blocks of a video and a coded
representation of the video, a usage of multiple motion

vector difference (IMVD) precisions for the conversion of the

Syntax element condL condA ctxSetldx
S cu_skip_ flag] xXNbL ][ yNbL ] cu_ skip_ flag] xNbA ][ yNbA ] 0
inter_affine flag] x0 ][ yO ] linter _affine flag[ x0 ][ yO ] 0
S && &&

amvr__flag] xXNbL ][ yNbL ]

Values of mitValue for ctxldx of amvr_flag:

Different contexts are used when current block 1s athine or
non-athne.

ctxIdx of ctxIdx of

amvr__flag when amvr__flag when

Initiali- inter _afline flag inter__afline flag

zation 1s equal to O is equal to 1

variable 0 1 2 3

mitValue XX XX XX XX

Values of mitValue for ctxldx of amvr_coarse_precisoin_
flag:

Different contexts are used when current block 1s athine or
non-athne.

amvr__flag] xXNbA ][ yNbA ]
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one or more video blocks 1n the video region. The method
2610 1includes, at step 2614, performing the conversion
based on the determination.

FIG. 26C shows a flowchart of an exemplary method for
video processing. The method 2620 as shown 1n FIG. 26C
includes, at step 2622, determining, for a video region
comprising one or more video blocks of a video and a coded
representation of the video, whether to apply an adaptive
motion vector resolution (AMVR) process to a current video
block for a conversion between the current video block and
the coded representation of the video. The method 2620
includes, at step 2624, performing the conversion based on

the determining.

FIG. 26D shows a flowchart of an exemplary method for
video processing. The method 2630 as shown 1n FIG. 26D
includes, at step 2632, determining, for a video region
comprising one or more video blocks of a video and a coded
representation of the video, how to apply an adaptive motion
vector resolution (AMVR) process to a current video block
for a conversion between the current video block and the
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coded representation of the wvideo. The method 2630
includes, at step 2634, performing the conversion based on

the determining.

FIG. 26E shows a flowchart of an exemplary method for
video processing. The method 2640 as shown in FIG. 26E
includes, at step 2642, determiming, based on a coding mode
ol a parent coding unit of a current coding unit that uses an
afline coding mode or a rate-distortion (RD) cost of the
afline coding mode, a usage of an adaptive motion vector
resolution (AMVR) for a conversion between a coded
representation of a current block of a video and the current
block. The method 2640 1ncludes, at step 2644, performing,
the conversion according to a result of the determining.

FIG. 26F shows a flowchart of an exemplary method for
video processing. The method 2650 as shown in FIG. 26F
includes, at step 2652, determining a usage ol an adaptive
motion vector resolution (AMVR) for a conversion between
a coded representation of a current block of a video and the
current block that uses an advanced motion vector prediction
(AMVP) coding mode, the determining based on a rate-
distortion (RD) cost of the AMVP coding mode. The method
2650 1includes, at step 2654, performing, the conversion
according to a result of the determining.

FIG. 26G shows a flowchart of an exemplary method for
video processing. The method 2660 as shown in FIG. 26G
includes, at step 2662, generating, for a conversion between
a coded representation of a current block of a video and the
current block, a set of MV (Motion Vector) precisions using
a 4-parameter afline model or 6-parameter atline model. The
method 2660 includes, at step 2664, performing, the con-
version based on the set of MV precisions.

FIG. 26H shows a flowchart of an exemplary method for
video processing. The method 2670 as shown in FIG. 26H
includes, at step 2672, determiming, based on a coding mode
of a parent block of a current block that uses an atline coding
mode, whether an adaptive motion vector resolution
(AMVR) tool 1s used for a conversion, wherein the AMVR
tool 1s used to refine motion vector resolution during decod-
ing. The method 2670 includes, at step 2674, performing the
conversion according to a result of the determining.

FIG. 261 shows a flowchart of an exemplary method for
video processing. The method 2680 as shown in FIG. 261
includes, at step 2682, determiming, based on a usage of MV
precisions for previous blocks that has been previously
coded using an athine coding mode, a termination of a
rate-distortion (RD) calculations of MV precisions for a
current block that uses the atline coding mode for a con-
version between a coded representation of the current block
and the current block. The method 2680 includes, at step
2684, performing the conversion according to a result of the
determining.

5. Example Implementations of the Disclosed
Technology

FIG. 27 1s an example of a block diagram of a video
processing apparatus 2700. The apparatus 2700 may be used
to implement one or more of the methods described herein.
The apparatus 2700 may be embodied 1n a smartphone,
tablet, computer, Internet of Things (IoT) receiver, and so
on. The apparatus 2700 may include one or more processors
2702, one or more memories 2704 and video processing
hardware 2706. The processor(s) 2702 may be configured to
implement one or more methods (including, but not limited
to, methods 2610 to 2680) described in the present docu-
ment. The memory (memories) 2704 may be used for storing,
data and code used for implementing the methods and
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techniques described herein. The video processing hardware
2706 may be used to implement, in hardware circuitry, some
techniques described 1n the present document.

FIG. 29 1s another example of a block diagram of a video
processing system in which disclosed techniques may be
implemented. FIG. 29 i1s a block diagram showing an
example video processing system 2900 in which various
techniques disclosed herein may be implemented. Various
implementations may include some or all of the components
of the system 2900. The system 2900 may include 1nput
2902 for rece1ving video content. The video content may be
received 1n a raw or uncompressed format, e.g., 8 or 10 b1t
multi-component pixel values, or may be 1n a compressed or
encoded format. The input 2902 may represent a network
interface, a peripheral bus interface, or a storage interface.
Examples of network interface include wired interfaces such
as Fthernet, passive optical network (PON), etc. and wire-
less interfaces such as Wi-F1 or cellular interfaces.

The system 2900 may include a coding component 2904
that may implement the various coding or encoding methods
described 1n the present document. The coding component
2904 may reduce the average bitrate of video from the mput
2902 to the output of the coding component 2904 to produce
a coded representation of the video. The coding techniques
are therefore sometimes called video compression or video
transcoding techniques. The output of the coding component
2904 may be either stored, or transmitted via a communi-
cation connected, as represented by the component 2906.
The stored or communicated bitstream (or coded) represen-
tation of the video received at the mput 2902 may be used
by the component 2908 for generating pixel values or
displayable video that 1s sent to a display interface 2910. The
process ol generating user-viewable video from the bit-
stream representation 1s sometimes called video decompres-
sion. Furthermore, while certain video processing operations
are referred to as “coding” operations or tools, it will be
appreciated that the coding tools or operations are used at an
encoder and corresponding decoding tools or operations that
reverse the results of the coding will be performed by a
decoder.

Examples of a peripheral bus interface or a display
interface may include universal serial bus (USB) or high
definition multimedia iterface (HDMI) or Displayport, and
so on. Examples of storage interfaces include SATA (serial
advanced technology attachment), PCI, IDE interface, and
the like. The techniques described 1n the present document
may be embodied 1n various electronic devices such as
mobile phones, laptops, smartphones or other devices that
are capable of performing digital data processing and/or
video display.

In some embodiments, the video processing methods may
be implemented using an apparatus that 1s implemented on
a hardware platform as described with respect to FIG. 27 or
29.

Various techmiques and embodiments may be described
using the following clause-based format. These clauses may
be implemented as preferred features of some embodiments.

The first set of clauses use some of the techmiques
described 1n the previous section, including, for example,
items 1, 2, and 13-15 1n the previous section.

1. A method of video processing, comprising: determin-
ing, for a conversion between a coded representation of a
current block of a video and the current block, a motion
vector difference (MVD) precision to be used for the con-
version from a set of allowed multiple MVD precisions
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applicable to a video region containing the current video
block; and performing the conversion based on the MVD
precision.

2. The method of clause 1, wherein the set of allowed
multiple MVD precisions depends on a picture, a slice, or a

block of the video data.

3. The method of clause 1, wherein the set of allowed
multiple MVD precisions depends on coded information of
the current block.

4. The method of clause 1, wherein the set of allowed
multiple MVD precisions 1s pre-defined.

5. The method of clause 1, wherein the set of allowed

multiple MVD precisions 1s signaled 1n a Sequence Param-
cter Set (SPS), a Picture Parameter Set (PPS), a Video

Parameter Set (VPS), a sequence header, a picture header, a
slice header, a group of coding tree unit s (C1TUs).

6. The method of clause 1, further comprising signaling a
determined MVD precision from the set of allowed multiple
MVD precision based on a number of allowed MV preci-
sions for the current block.

7. The method of clause 1, wherein the determining of the
MVD precision 1s based on one or more syntax elements,
and wherein the current block 1s coded using an atline mode.

8. The method of clause 3 or 7, wherein same syntax
clements are used to indicate the determined MVD precision
from the set of allowed multiple MVD precisions applied to
both the afline mode and a non-athne mode.

9. The method of clause 3, 7, or 8, wherein when the afline
mode and the non-afline mode use a same set of the allowed
multiple MVD precisions.

10. The method of clause 3, 7, or 8, wherein the afline
coded blocks use a diflerent set of the allowed multiple
MVD precisions from that used in a non-afline mode.

11. The method of clause 10, wherein the different set
having a same number of the allowed multiple MVD pre-
cisions as that used in the non-afline mode, the syntax
clements used in the non-atline mode are reused 1n the afline
mode.

12. The method of clause 10, wherein the diflerent set has
at least one MVD precision that 1s different from that used
in the non-afline mode.

13. The method of clause 3, 7, or 8, wherein semantics of
syntax elements used in the non-atline mode and the atline
mode are different and the syntax elements have a same
decoded value interpreted to different MVD precisions.

14. The method of clause 3, 7, or 8, wherein a number of
the allowed multiple MVD precisions used in the afline
mode 1s less than that used in a non-afline mode.

15. The method of clause 8, wherein one or more subsets

of the syntax values for the non-afline mode are not valid 1n
the afl

ine mode.

16. The method of claim 8 or 14, wherein semantics of
syntax elements used in the non-afline mode and the afline
mode are different and the syntax elements with same value
1s 1nterpreted to different MV D precisions.

17. The method of clause 3 or 7, wherein a number of the
allowed multiple MVD prec1810ns used 1n the athne mode 1s
more than that used in a non-afline mode

18. The method of clause 17, wherein one or more syntax
clements 1n the non-afline mode are extended to allow more
values for the afline mode.

19. The method of clause 7, wherein an additional syntax
clement 1s used for processing the MVD precision of the
alline mode, the additional syntax element being different
from that used for processing the MVD precision of a
non-ailine mode.
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20. The method of clause 7, wherein indication of the
MVD precision for the afline mode 1s selectively signaled.

21. The method of clause 20, wherein indication of the
MVD precision for the atline mode 1s signaled when MVDs
for all control point motion vectors (CPMVs) are non-zero.

22. The method of Clause 20, wherein indication of the
MVD precision for the athne mode 1s signaled when MVDs
for at least one CPMYV 1s non-zero.

23. The method of clause 20, wherein indication of the
MVD precision for the athne mode 1s signaled when MVD
of one selected CPMYV 1is non-zero.

24. The method of clause 20, wherein indication of the
MVD precision for the atline mode 1s signaled when MVD
of a first CPMYV 1s non-zero.

25. The method of clause 20, wherein indication of the
MV D precision for the afline mode 1s not signaled when one
or more predetermined conditions are not satisfied.

26. The method of clause 7, wherein a syntax element for
MVD precision indications associated with either the afline
mode or a non-afline mode i1s coded with contexts that are
dependent on coded information of the current block.

27. The method of clause 7, wherein a context selection
of the syntax element for MVD precision indications asso-
ciated with either the afline mode or a non-afline mode 1s
dependent on whether the current block 1s coded with afline
mode or not.

28. The method of clause 7, wherein one context 1s used
for the syntax element for MVD precision indications for an
alline coded block and another context 1s used for a non-
alline coded block.

29. The method of clause 7, wherein a context for MVD
precision indications 1s determined based on a size, shape, or
MVD precisions of neighboring blocks, a temporal layer
index, or prediction directions.

30. The method of clause 7, wherein whether to enable or
disable a usage of the allowed multiple MVD precisions for
the afline mode 1s signaled in a sequence parameter set
(SPS), a picture parameter set (PPS), a video parameter set
(VPS), a sequence header, a picture header, a slice header, or
a group of coding tree units (CTUs).

31. The method of clause 7, wherein whether to enable or
disable a usage of the allowed multiple MVD precisions for
the atline mode depends on the one or more syntax elements.

32. The method of clause 7, wherein information whether
to enable or disable a usage of the allowed multlple MVD
prec1810ns 1s signaled upon an enablement of the atline mode
and 1s not signaled upon a disablement of the afline mode.

33. The method of any of clauses 7 to 32, wherein the one
or more syntax elements are included at a slice level, a
picture level, or sequence level.

34. The method of clause 3, 30, or 33, wherein the slice
1s replaced with a tile group or tile.

35. The method of any of clauses 1 to 34, wherein, 1n a
VPS, SPS, PPS, slice header, or tile group header, a syntax
clement equal to 1 specifies a requirement to conform the
coded representation, the requirement requiring that both of
a first syntax element to indicate whether a first set of
multiple MVD precisions 1s enabled for a non-afline mode
and a second syntax element to indicate whether a second set
of multiple MVD precisions 1s enabled for the afline-mode
are 0.

36. The method of any of clauses 1 to 34, wherein a syntax
clement 1s signaled 1 a VPS, SPS, PPS, slice header, tile
group header, or other video data units,

3’7. The method of clause 36, wherein the syntax element
equal to 1 specifies a requirement to conform the coded
representation, the requirement requiring that the syntax
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clement to indicate whether multiple MVD precisions 1s
enabled for the afline mode 1s equal to O.
38. The method of any of clauses 7 to 37, wherein a

motion vector predictor 1s utilized 1n a same MVD precision

for athine coded blocks.

39. The method of any of clauses 7 to 3’7, wherein a final
motion vector of the current block 1s utilized 1n a same MVD
precision for afline coded blocks.

40. The method of any of clauses 1 to 39, wherein the
performing of the conversion includes generating the coded
representation from the current block.

41. The method of any of clauses 1 to 39, wherein the
performing of the conversion includes generating the current
block from the coded representation.

42. An apparatus 1n a video system comprising a proces-
sor and a non-transitory memory with instructions thereon,
wherein the instructions upon execution by the processor,
cause the processor to implement the method 1n any one of
clauses 1 to 41.

43. A computer program product stored on a non-transi-
tory computer readable media, the computer program prod-
uct including program code for carrying out the method in
any one of clauses 1 to 41.

The second set of clauses use some of the techniques
described 1n the previous section, including, for example,
items 3, 4, and 12 1n the previous section.

1. A method of video processing, comprising: determin-
ing, for a video region comprising one or more video blocks
of a video and a coded representation of the video, a usage
of multiple motion vector difference (MVD) precisions for
the conversion of the one or more video blocks 1n the video
region; and performing the conversion based on the deter-
mining.

2. The method of clause 1, wherein the conversion of at
least some of the one or more video blocks 1s based on afline
mode coding.

3. The method of clause 1 or 2, wherein the usage 1s
indicated 1n the coded representation including a Sequence
Parameter Set (SPS), a Picture Parameter Set (PPS), a Video
Parameter Set (VPS), a sequence header, a picture header, a
slice header, or a group of coding tree units (CTUs)

4. The method of clause 3, wherein the usage 1s indicated
depending on a syntax element used to indicate the MVD
precisions.

5. A method of video processing, comprising: determin-
ing, for a video region comprising one or more video blocks
of a video and a coded representation of the video, whether
to apply an adaptive motion vector resolution (AMVR)
process to a current video block for a conversion between
the current video block and the coded representation of the
video; and performing the conversion based on the deter-
mining.

6. A method of video processing, comprising: determin-
ing, for a video region comprising one or more video blocks
of a video and a coded representation of the video, how to
apply an adaptive motion vector resolution (AMVR) process
to a current video block for a conversion between the current
video block and the coded representation of the video; and
performing the conversion based on the determiming.

7. The method of clause 5 or 6, wherein the conversion of
the current video block 1s based on afline mode coding.

8. The method of clause 7, wherein the determining
depends on a reference picture of the current video block.

9. The method of clause 8, wherein, in a case that the
reference picture 1s a current picture, the determining deter-
mines not to apply the AMVR process.
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10. The method of clause 5 or 6, wherein the determining,
depends on whether an mtra block copying (IBC) 1s applied
to the current block or not.

11. The method of clause 10, wherein the determining
determines to apply the AMVR process to the current block
coded by the IBC.

12. the method of clause 11, wherein candidate MV
(motion vector), MVD, or MVP (motion vector prediction)
precisions for IBC coded blocks are different from those
used for another video block not coded by the IBC.

13. the method of clause 11, wherein candidate MV
(motion vector), MVD, or MVP (motion vector prediction)
precisions for IBC coded blocks are different from those
used for another video block coded with atline mode.

14. The method of any of clauses 1 to 13, wherein the
performing of the conversion includes generating the coded
representation from the current block.

15. The method of any of clauses 1 to 13, wherein the
performing of the conversion includes generating the current
block from the coded representation.

16. An apparatus in a video system comprising a proces-
sor and a non-transitory memory with instructions thereon,
wherein the instructions upon execution by the processor,
cause the processor to implement the method 1n any one of
clauses 1 to 13.

1’7. A computer program product stored on a non-transi-
tory computer readable media, the computer program prod-
uct including program code for carrying out the method in
any one of clauses 1 to 15.

The third set of clauses use some of the techmiques
described 1n the previous section, including, for example,
items 5-10 and 13 in the previous section.

1. A method of video processing, comprising: determin-
ing, based on a coding mode of a parent coding unit of a
current coding unit that uses an afline coding mode or a
rate-distortion (RD) cost of the afline coding mode, a usage
of an adaptive motion vector resolution (AMVR) for a
conversion between a coded representation of a current
block of a video and the current block; and performing the
conversion according to a result of the determining.

2. The method of clause 1, wherein, 1n case that the coding,
mode of the parent coding unit 1s not AF_Inter mode or
AF_MERGE mode, then the determining disables the usage
of the AMVR {for the current coding unat.

3. The method of clause 1, wherein, 1n case that the coding
mode of the parent coding unit 1s not AF_Inter mode, then
the determining disables the usage of the AMVR for the
current coding unit.

4. The method of clause 1, wherein, 1n case that the RD
of the athine coding mode 1s greater than a multiplication of
a positive threshold and an RD cost of an advanced motion
vector prediction (AMVP) mode, then the determining dis-
ables the usage of the AMVR for the current coding unat.

5. The method of clause 4, wherein the determination 1s
applied for Va-pel MV precision.

6. The method of clause 1, wherein, 1n case that a
minimum RD cost 1s greater than a multiplication of a
positive threshold and an RD cost of a merge mode, then the
determining disables the usage of the AMVR {for the current
coding unit, wherein the mimmum RD cost 1s a minimum of
the RD cost of the afline coding mode and an RD cost of an
advanced motion vector prediction (AMVP) mode.

7. The method of clause 6, wherein the determination i1s
applied for a-pel MV precision.

8. A method of video processing, comprising: determining
a usage ol an adaptive motion vector resolution (AMVR) for
a conversion between a coded representation of a current
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block of a video and the current block that uses an advanced
motion vector prediction (AMVP) coding mode, the deter-
mimng based on a rate-distortion (RD) cost of the AMVP
coding mode; and performing the conversion according to a
result of the determining.

9. The method of clause 8, wherein, in case that the RD
cost of the AMVP coding mode 1s greater than a multipli-
cation ol a positive threshold and an RD cost of an afline
mode, the determining disables the usage of the AMVR.

10. The method of clause 8, wherein the determination 1s
applied for Ya-pel MV precision.

11. The method of clause 8, wherein, 1n case that a
mimmum RD cost 1s greater than a multiplication of a
positive threshold and an RD cost of a merge mode, the
determining disables the usage of the AMVR, and wherein
the minimum RD cost 1s a minimum of an RD cost of an
afline mode and an RD cost of the AMVP coding mode.

12. The method of clause 11, wherein the determination 1s
applied for Va-pel MV precision.

13. A method of video processing, comprising: generat-
ing, for a conversion between a coded representation of a
current block of a video and the current block, a set of MV
(Motion Vector) precisions using a 4-parameter ailine model
or 6-parameter ailine model; and performing the conversion
based on the set of MV precisions.

14. The method of clause 13, wherein the 4-parameter
alline model or the 6-parameter afline model obtained 1n a
single MV precision 1s used as a candidate start search point
for other MV precisions.

15. The method of clause 14, wherein the single MV
precision comprises Yie MV accuracy.

16. The method of clause 14, wherein the single MV

precision comprises 4 MV accuracy.

17. A method of video processing, comprising: determin-
ing, based on a coding mode of a parent block of a current
block that uses an afline coding mode, whether an adaptive
motion vector resolution (AMVR) tool 1s used for a con-
version, wherein the AMVR tool 1s used to refine motion
vector resolution during decoding; and performing the con-
version according to a result of the determining.

18. The method of clause 17, wherein, 1n case that the
parent block of the current block 1s not the afline coding
mode, the determining causes not to check the AMVR {for
the current block.

19. A method of video processing, comprising: determin-
ing, based on a usage of MV precisions for previous blocks
that has been previously coded using an athne coding mode,
a termination of a rate-distortion (RD) calculations of MV
precisions for a current block that uses the afline coding
mode for a conversion between a coded representation of the
current block and the current block; and performing the
conversion according to a result of the determining.

20. The method of clause 19, wherein the current block
and the previous blocks are included 1n a current image
segment and a previous 1mage segment, respectively, and the
current 1mage segment and the previous 1mage segments are
pictures, slices, tiles, or CTU (Coding Tree Unit) rows.

21. The method of any of clauses 1 to 20, wherein the
performing of the conversion includes generating the coded
representation from the current block.

22. The method of any of clauses 1 to 20, wherein the
performing of the conversion includes generating the current
block from the coded representation.

23. An apparatus 1n a video system comprising a proces-
sor and a non-transitory memory with instructions thereon,
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wherein the instructions upon execution by the processor,
cause the processor to implement the method 1n any one of
clauses 1 to 22.

24. A computer program product stored on a non-transi-
tory computer readable media, the computer program prod-
uct including program code for carrying out the method in

any one of claims 1 to 22.

From the foregoing, it will be appreciated that specific
embodiments of the presently disclosed technology have
been described herein for purposes of illustration, but that
various modifications may be made without deviating from
the scope of the invention. Accordingly, the presently dis-
closed technology 1s not limited except as by the appended
claims.

Implementations of the subject matter and the functional
operations described 1n this patent document can be 1mple-
mented 1n various systems, digital electronic circuitry, or in
computer software, firmware, or hardware, including the
structures disclosed 1n this specification and their structural
equivalents, or in combinations of one or more of them.
Implementations of the subject matter described in this
specification can be implemented as one or more computer
program products, 1.e., one or more modules of computer
program nstructions encoded on a tangible and non-transi-
tory computer readable medium for execution by, or to
control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter eflecting a machine-read-
able propagated signal, or a combination of one or more of
them. The term “data processing unit” or “data processing
apparatus” encompasses all apparatus, devices, and
machines for processing data, including by way of example
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can include, 1n addition to
hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, or a combination of one
or more of them.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or
interpreted languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily
correspond to a file 1n a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored 1n a markup language document),
in a single file dedicated to the program in question, or 1n
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).
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Processors suitable for the execution of a computer pro-
gram 1nclude, by way of example, both general and special

purpose microprocessors, and any one or more processors of

any kind of digital computer. Generally, a processor will
receive mstructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to recerve data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Computer readable
media suitable for storing computer program instructions
and data include all forms of nonvolatile memory, media and
memory devices, including by way of example semiconduc-
tor memory devices, ¢.g., EPROM, EEPROM, and flash
memory devices. The processor and the memory can be
supplemented by, or incorporated 1n, special purpose logic
circuitry.
It 1s mtended that the specification, together with the
drawings, be considered exemplary only, where exemplary
means an example. As used herein, the use of “or” 1s
intended to include “and/or”, unless the context clearly
indicates otherwise.
While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
invention or of what may be claimed, but rather as descrip-
tions of features that may be specific to particular embodi-
ments of particular inventions. Certain features that are
described 1n this patent document 1n the context of separate
embodiments can also be implemented 1n combination 1n a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting 1n certain combinations and
even 1mmtially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a subcombination or variation of a subcombination.
Similarly, while operations are depicted 1n the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. Moreover, the
separation of various system components in the embodi-
ments described in this patent document should not be
understood as requiring such separation in all embodiments.
Only a few implementations and examples are described
and other implementations, enhancements and variations
can be made based on what 1s described and 1llustrated 1n
this patent document.
What 1s claimed 1s:
1. A method of processing video data, comprising:
determining that a mode of a current block of a video 1s
one of an afline inter mode or a non-atline inter mode;

determining, for motion information of the current block,
a motion precision from a set of allowed multiple
motion precisions; wherein the set of allowed multiple
motion precisions 1s based on whether the current block
1s coded with the afline inter mode or the non-afline
inter mode, and the set of allowed multiple motion
precisions for blocks coded with the afline inter mode
1s different from the set of allowed multiple motion
precisions for blocks coded with the non-afline inter
mode; and
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coding the current block using the determined mode and
the determined motion precision,

wherein one or multiple syntax elements are used to
indicate the motion precision 1n the set of allowed
multiple motion vector difference (MVD) precisions
for blocks coded with the athine inter mode, and the
same one or multiple syntax elements are used to
indicate the motion precision 1 the set of allowed
multiple MVD precisions for blocks coded with non-

afline inter mode.

2. The method of claim 1, wherein a number of the
allowed multiple motion precisions for blocks coded with
the afline mter mode 1s less than that for blocks coded with
the non-athine iter mode.

3. The method of claim 1, wherein a same number of
allowed multiple motion precisions for blocks coded with
the afline inter mode and the non-afline mter mode 1s
enabled, and at least one of the allowed multiple motion
precisions for blocks coded with the afline inter mode 1s
different from that for blocks coded with the non-atline inter
mode.

4. The method of claim 1, wherein the set of allowed
multiple motion precisions 1s pre-defined.

5. The method of claim 1, wherein the set of allowed
multiple motion precisions for blocks coded with the afline
inter mode comprises 1/16 luma sample, 1/4 luma sample
and 1 luma sample.

6. The method of claim 1, wherein the determining of the
motion precision 1s based on one or more syntax elements.

7. The method of claim 1, wherein semantics of at least
one of the syntax elements used 1n the non-atline inter mode
1s different from that used 1n the athne inter mode, and the
at least one of the syntax elements with a same value 1s
interpreted to different motion precisions for the non-afline
inter mode and the afline inter mode.

8. The method of claim 7, wherein a subset of values of
the at least one of the syntax elements are valid in the
non-aifline inter mode and are not valid 1n the athne inter
mode.

9. The method of claim 1, wherein when coding a
context-coded syntax element of the one or multiple syntax
elements, a first context 1s used for blocks coded with the
non-afline inter mode and a second context 1s used for blocks
coded with the afline inter mode, and the first context 1s
different from the second context.

10. The method of claim 1, wherein indication of the
motion precision for the afline inter mode 1s selectively
present 1n a bitstream.

11. The method of claim 10, wherein the indication of the
motion precision for the afline inter mode 1s present if at
least one motion vector difference for at least one control
point motion vectors of the current block 1s non-zero.

12. The method of claim 1, wherein a syntax element
indicating whether to enable or disable a usage of the
allowed multiple MVD precisions in the afline inter mode 1s
present 1n a sequence parameter set (SPS).

13. The method of claim 12, wherein the syntax element
indicating whether to enable or disable a usage of the
allowed multiple MVD precisions in the afline inter mode 1s
present upon an enablement of the atline inter mode and 1s
not present upon a disablement of the afline inter mode.

14. The method of claim 1, wherein the motion informa-
tion comprises at least one ol a motion vector difference
(MVD), motion vector predictor (MVP) and motion vector
(MV) of the current block.

15. The method of claim 1, wherein the coding includes
decoding the current block.
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16. The method of claim 1, wherein the coding includes
encoding the current block.

17. A video processing apparatus comprising a processor
and a non- transitory memory with instructions thereon,
wherein the instructions upon execution by the processor,
cause the processor to:

determine that a mode of a current block of a video 1s one

ik ha

ine inter mode or a non-atline inter mode;

of an a

determine, for motion information of the current block, a

motion precision from a set of allowed multiple motion
precisions; wherein the set of allowed multiple motion
precisions 1s based on whether the current block 1s
coded with the afline inter mode or the non-atline inter
mode, and the set of allowed multiple motion prec1-
stons for blocks coded with the afline inter mode 1s
different from the set of allowed multiple motion

precisions for blocks coded with the non-afhine inter
mode; and

code the current block using the determined mode and the

determined motion precision,

wherein one or multiple syntax elements are used to

18.

1C dl

indicate the motion precision 1 the set of allowed
multiple MVD precisions for blocks coded with the
ailine inter mode, and the same one or multiple syntax
clements are used to indicate the motion precision 1n
the set of allowed multiple MVD precisions for blocks
coded with non-afline 1inter mode.

The apparatus of claim 17, wherein a number of the

Tine inter mode 1s less than that tor blocks coded with

ne non-afiine inter mode.
19.

A non-transitory computer-readable storage medium

storing 1nstructions that cause a processor to:
determine that a mode of a current block of a video 1s one

[

ine 1inter mode or a non-athne inter mode;

of an a

determine, for motion information of the current block, a

motion precision from a set of allowed multiple motion
precisions; wherein the set of allowed multiple motion
precisions 1s based on whether the current block 1s
coded with the afline inter mode or the non-afline inter
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mode, and the set of allowed multiple motion preci-
stons for blocks coded with the afline inter mode 1s
different from the set of allowed multiple motion
precisions for blocks coded with the non-afline inter
mode; and

code the current block using the determined mode and the

determined motion precision,

wherein one or multiple syntax elements are used to

indicate the motion precision 1 the set of allowed
multiple MVD precisions for blocks coded with the
afline iter mode, and the same one or multiple syntax
clements are used to indicate the motion precision 1n

the set of allowed multiple MVD precisions for blocks
coded with non-afline inter mode.

20. A method for storing bitstream of a video, comprising:
determinming that a mode of a current block of the video 1s

[y

ine inter mode and a non-athine inter mode;
for motion information of the current block,
a motion precision from a set of allowed multiple
motion precisions; wherein the set of allowed multiple
motion precisions 1s based on whether the current block
1s coded with the afline iter mode or the non-afline
inter mode, and the set of allowed multiple motion
precisions for blocks coded with the afli

one of an a

ine mter mode
1s different from the set of allowed multiple motion
precisions for blocks coded with the non-afline inter
mode;

generating the bitstream based on the determined mode

and the determined motion precision; and

storing the bitstream 1n a non-transitory computer-read-

able recording medium,

wherein one or multiple syntax elements are used to

indicate the motion precision 1 the set of allowed
multiple MVD precisions for blocks coded with the
afline iter mode, and the same one or multiple syntax
clements are used to indicate the motion precision 1n
the set of allowed multiple MVD precisions for blocks
coded with non-afline inter mode.
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