US011263026B2

a2 United States Patent (10) Patent No.: US 11,263,026 B2

Maycotte et al. 45) Date of Patent: Mar. 1, 2022
(54) SOFTWARE PLUGINS OF DATA 16/27;, GO6F 3/067, GO6F 3/0641; GO6F
VIRTUALIZATION-BASED ARCHITECTURE 9/44526; GO6F 16/90335; GO6F 9/45558;
HO4L 67/10; GO6N 20/00
(71) Applicant: Molecula Corp., Austin, TX (US) See application file for complete search history.
(72) Inventors: Higinio Oliver Maycotte, Austin, TX (56) References Cited

(US); Matthew Isaac Jaffee, Austin,

I'X (US); Sarah Kathryn King, Austin, U.s. PAIENT DOCUMENTS

1X (US); Travis Turner, Austin, TX 9,191,425 B2* 11/2015 Momchilov ... HO4L 65/4084
(US) 9,203,883 B2* 12/2015 Momchilov HO4L 65/605
10,599,661 B2* 3/2020 Turner GO6F 16/9535
(73) Assignee: Molecula Corp., Austin, TX (US) 11,106,688 B2* = 82021 Turner GUOL 7/24
2005/0240043 Al1l* 10/2005 Smuth GO6F 9/465
. - - - - 719/328
(%) Notice: Subject to any disclaimer, the term of'this 5415138060 A1* 62011 Momchilov HO4L 65/605
patent 1s extended or adjusted under 35 709/23 1
U.S.C. 154(b) by 86 days. (Continued)
(21) Appl. No.: 16/883,853 Primary Examiner — Ninos Donabed
(74) Attorney, Agent, or Firm — Kowert, Hood, Munyon,
(22) Filed: May 26, 2020 Rankin & Goetzel, P.C.
(65) Prior Publication Data (57) ABSTRACT
US 2021/0373916 Al Dec. 2, 2021 Techniques are disclosed relating to managing virtual data
sources (VDSs), including creating and using VDSs. A
(51) Int. CL virtual data source manager (VDSM) that 1s executing on a
GO6F 9/445 (2018.01) computer system may receive a VDS creation request to
GO6N 20/00 (2019.01) create a particular VDS. The VDS creation request may
GO6F 16/903 (2019.01) include information that 1s usable to identily a data origin of
GOGF 9/455 (2018.01) the particular VDS and an ingestion routine. The VDSM
(52) U.S.Cl) may use the mgestion routine to create the particular VDS

that includes a bitmap index that i1s representative of data
stored at the origin. In response to a data request corre-

(2013.01); GO6F 16/90335 (2019.01); GOON sponding to the origin, the particular VDS may be used to

20/00 (2019.01) initiate a query to the particular VDS for data without

(58) FKield of Classification Search accessing the origin. The VDSM may further maintain
CPCc.... GO6F 11/1453; GO6F 11/1451; GOO6F various software plugins that are executable to perform

2201/84; GOOE 11/1456; GOGF 3/065; corresponding functions in relation to the VDSM and the
GO6F 11/1461; GO6F 11/1464; GOG6F VDSs managed by the VDSM.

2201/80; GO6F 16/1748; GO6F 16/273;
GO6F 16/1756; GO6F 16/2365; GO6F 18 Claims, 19 Drawing Sheets

CPC GO6F 9/44526 (2013.01); GOOF 9/45558

Data
425 Request

VDSM
130

i Consumption
P Plugin
2

Spawn |
Consumption Consumption
Plugin Result

, Consumption
\ Lonsumption Result Other

Diing P;ﬁm """"" * Component

Data

VDS
120

US 11,263,026 B2
Page 2

(56)

2011/0145431 Al*
2011/0242554 Al1* 10/2011 Farryoooocoevennnn,
2013/0036091 Al*
2015/0227602 Al*

2018/0101547 Al*
2018/0316577 Al* 11/2018 Freeman

References Cited

U.S. PATENT DOCUM

4/2018 Greenfield

* cited by examiner

6/2011 Momchilov

2/2013 Provenzano

EINTTS

82015 Ram

iiiiiiiiiiiii

iiiiiiiiii

tttttttt

HO4L 65/605

709/231

G06Q 30/00

358/1.6

GO6F 16/1844

707/624

GOO6F 16/2365

707/634

G16B 50/00
HO4L 41/5009

U.S. Patent Mar. 1, 2022 Sheet 1 of 19 US 11,263,026 B2

System
’LOO
Virtual Data
Source Manager
(VDSM)
130
Virtual Data
Source VDS
(VDS) 120C

120A

F

M——

U.S. Patent Mar. 1, 2022 Sheet 2 of 19 US 11,263,026 B2

System
100

(Secondary) (Secondary) (Secondary)
VDSM VDSM VDSM

1308 130C 130D

—
S
"
O
———
N
S
-,
—
N
S
o
BN

U.S. Patent Mar. 1, 2022 Sheet 3 of 19 US 11,263,026 B2

System
100

e

Compute
Cluster

140

From

Data Sources
110

FIG. 1C

U.S. Patent Mar. 1, 2022 Sheet 4 of 19 US 11,263,026 B2

Topology
'7/50/5.
Data
Source \;gg
llQ e
Topology
’7308

VDS VDS
| 1204 1208

Topology
150C
! VDS
1208
VDS
120A
VDS
120C
Topology
_ :jOD
Data
Source 1\/2%2
110A ——
1200
VDS
1208

U.S. Patent Mar. 1, 2022 Sheet 5 of 19 US 11,263,026 B2

VDS
120

Data Representation
210

Translation Metadata
215

VDS Engine
220

VDS API
222

224

VDS Metadata
230

FIG. 2A

U.S. Patent Mar. 1, 2022 Sheet 6 of 19 US 11,263,026 B2

VDS Metadata
230

VDS Information
231

Source Information
232

Storage Information
233

Access Information
234

Fingerprint Information
239

Filter Information
236

Transformation Information
23/

FIG. 2B

U.S. Patent Mar. 1, 2022 Sheet 7 of 19 US 11,263,026 B2

VDSM
130

VDSM Engine
310

VDSM AP
311

User Interface Engine
312

Access Control Engine
313

Query Engine
314

Resource Manager
319

Plugins
224

VDS Regqistry
320

FIG. 3

,

VDS
Creation
19 Request

N\
\
, |
I |
' |
l |
' |
' |
l |
I |
Spawn | /DS |
/ngegt | 120 I
Plugin | 14U |
l |
' |
| Ingested .
: Data :
l)
| |
\ !
T |
|
|
|
Data |
|
|
Data /l
Source .

110 —

FIG. 4A

U.S. Patent Mar. 1, 2022 Sheet 9 of 19 US 11,263,026 B2

Data
429 Request

VDSM

Consumption
, Plugin

|

|
Spawn | |

Consumption | Consumption

Plugin | Result

|

|

- Consumption
\ Lonsumption Result Other

oo Pﬂm """"" * Component

Data

VDS
120

FIG. 4B

U.S. Patent Mar. 1, 2022 Sheet 10 of 19 US 11,263,026 B2

At-Rest |
Result I Spawn
435 - At-Rest
| P lugm
/
At-Rest _ -7
Other Result At-Rest Plugin VDS
Component 155 224 Data 120

FIG. 4C

US 11,263,026 B2

Sheet 11 of 19

Mar. 1, 2022

U.S. Patent

(SaLelqr]
Jusl[Q 10 |dY ein)

$S820Y U0/1eJI|ddy

€L
NSTA

vG 9ld

llll

d0l/
90IN0Q

eje(]

V0oL
90IN0Q

ejed]

SSOU87

US 11,263,026 B2

Sheet 12 of 19

Mar. 1, 2022

U.S. Patent

(SoLeiqry
Jusi 10 |4y eir)

auibu3
|y uojedyddy

0c}
NSTN

_‘_l_l"

,'I“

‘‘l"

,'I“

744
uibnid

0[€N,

0L}
90IN0Q

ejed

ouljedld

el ein

aseqeleq
108

U.S. Patent Mar. 1, 2022 Sheet 13 of 19 US 11,263,026 B2

600

Receiving Virtual Data Source (VDS)
Creation Request to Create Particular VDS
610

Using, in Response to VDS Creation Request,
Ingestion Routine to Create Particular VDS
That Includes Bitmap Index That is
Representative of 6?2%8 Stored at Origin

FIG. 6

U.S. Patent Mar. 1, 2022 Sheet 14 of 19 US 11,263,026 B2

700

Maintaining Virtual Data Source (VDS) Registry
for Plurality of Virtual Data Sources (VDSs)
/10

Receiving Request for Information Stored in
Set of Original Data Sources Corresponding
to Plurality of VDSs
720

Processing Request Against Plurality of VDSs

Without Accessing Set of Original Data Sources
/30

As Part of Processing Request, ldentifying,
Based on VDS metadata, at Least One of
Plurality of VDSs Having Bitmap [ndex
Corresponding to Request
(32

As Part of Processing Request, Sending,
to at Least One VDS, One or More Queries
That Are Based on Request
134

FIG. 7

U.S. Patent Mar. 1, 2022 Sheet 15 of 19 US 11,263,026 B2

Creating Virtual Data Source (VDS)

Based on Corresponding Origin
810

FIG. 8

U.S. Patent Mar. 1, 2022 Sheet 16 of 19 US 11,263,026 B2

900

Recelving Data Request From Virtual Data
Source Manager (VDSM) That Manages
Plurality of VDSs
910

Returning, to VDSM, Result of Executing
One or More Queries Against Bitmap Index
Included in Particular VDS
920

U.S. Patent Mar. 1, 2022 Sheet 17 of 19 US 11,263,026 B2

1000

Maintaining Library of Software Plugins That
Are Executable to Perform Functions Relating
to Virtual Data Sources (VDSS),

1010

Receiving Request to Create
VDS Based on Origin;
1020

Creating, Based on Request,
Particular VDS Having Bitmap Index
Representative of Data at Origin
1030

As Part of Creating, Receiving Plugin
Information That Specifies Set of Software
Plugins Included in Library of Software Plugins
1032

As Part of Creating, Confiquring Set of
Software Plugins to be Able to Perform
Functions Relating to Particular VDS
1034

FIG. 10

U.S. Patent Mar. 1, 2022 Sheet 18 of 19 US 11,263,026 B2

1100

Maintaining Set of Software Plugins in
Association With Virtual Data Source (VDS)
1110

Managing VDS Using Set of Software Plugins
1120

As Part of Managing, Receiving Request for
Data That is Stored at Origin
1122

As Part of Managing, Spawning Consumption
Software Plugin From Set of Software Plugins
to Process Request for Data
1124

FIG. 11

U.S. Patent

Mar. 1, 2022 Sheet 19 of 19

e,
Interface
1240

/0O
Devices
1250

Memory
1220

US 11,263,026 B2

1200

Interconnect 1260

Processor

Subsystem

FIG. 12

1260

US 11,263,026 B2

1

SOFTWARE PLUGINS OF DATA
VIRTUALIZATION-BASED ARCHITECTURE

BACKGROUND

Technical Field

The present disclosure relates generally to data virtual-
1zation and, more specifically, to an architecture for man-
aging virtual data sources derived from underlying data
sources.

Description of the Related Art

While there has been a growth in big data in recent years,
the promise of improved decision making based on this data
has largely been unrealized. By one estimate, business
decisions (whether made by humans or machines) are being
made based on only one percent of extant data. Many
business intelligence projects, big-data driven applications,
and artificial intelligence and machine learning initiatives
are failing in part due to lack of access to data. It has been
estimated that as much as $400+ billion 1n potential business
value 1s currently locked 1n so-called “dark™ (i.e., 1nacces-
sible) data.

Additionally, there 1s frequently a large amount of copy-
ing of data 1n organizations between an original data reposi-
tory and the point at which a decision 1s made. It 1s estimated
that as much as 85% of all data by volume 1s a copy that
results from pre-processing, pre-joining, and aggregating,
disparate data into data formats and structures that are more
performant for analytical purposes than the source systems.
For example, original data 1s often extracted in batch pro-
cesses, transformed, and copies loaded (ETL) 1nto analytical
data lakes, OLAP cubes, and materialized views so that it
can be combined and organized to make i1t more easily
analyzable. Additionally, original data 1s frequently copied
across multiple repositories located in different geographic
regions to fulfill jurisdictional requirements. Sometimes data
1s copied from edge locations containing sensors into central
locations so that 1t can be combined with the relevant
metadata needed to properly make decisions from the sensor
readings. In other cases, this copying process 1s undertaken
to move data closer to users and applications 1n diflerent
geographic regions around the world in order to make 1t
more performant. Copying information from one traditional
data repository to another can be very bandwidth intensive
and a slow process as the information 1s usually not format-
ted (or compressed) 1in a manner that reduces the size of that
information. This copying results not only in increased
security risk, but also in a high additional cost 1n storing
multiple copies or data and transporting 1t across networks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram 1llustrating example elements
of a system that includes a virtual data source manager
(VDSM) that 1s capable of managing virtual data sources
(VDSs), according to some embodiments.

FIG. 1B 1s a block diagram 1llustrating example elements
of a hierarchy of VDSMs, according to some embodiments.

FIG. 1C 1s a block diagram 1llustrating example elements
of a layout of components of the system on nodes of a
compute cluster, according to some embodiments.

FIG. 1D 1s a block diagram illustrating example topolo-
gies between data sources and VDSs, according to some
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2A 1s a block diagram illustrating example elements
of a VDS, according to some embodiments.

FIG. 2B 1s a block diagram illustrating example elements
of VDS metadata, according to some embodiments.

FIG. 3 1s a block diagram illustrating example elements of
a VDSM, according to some embodiments.

FIG. 4A 15 a block diagram illustrating example elements
of an ingest plugin, according to some embodiments.

FIG. 4B 1s a block diagram illustrating example elements
of a consumption plugin, according to some embodiments.

FIG. 4C 1s a block diagram illustrating example elements
ol an at-rest plugin, according to some embodiments.

FIG. 5A 1s a block diagram illustrating an example
implementation involving a VDSM and VDSs, according to
some embodiments.

FIG. 5B 1s a block diagram illustrating another example
implementation involving a VDSM and VDSs, according to
some embodiments.

FIG. 6 15 a flow diagram illustrating an example method
relating to creating a VDS, according to some embodiments.

FIG. 7 1s a flow diagram illustrating an example method
relating to using a VDS to process a data request, according
to some embodiments.

FIG. 8 15 a flow diagram illustrating an example method
relating to creating a VDS, according to some embodiments.

FIG. 9 1s a flow diagram 1illustrating an example method
relating to a VDS processing a data request, according to
some embodiments.

FIG. 10 15 a flow diagram 1illustrating an example method
relating to creating a VDS 1n association with software
plugins, according to some embodiments.

FIG. 11 1s a flow diagram 1llustrating an example method
relating to managing a VDS using software plugins, accord-
ing to some embodiments.

FIG. 12 1s a block diagram 1llustrating an example com-
puter system, according to some embodiments.

This disclosure includes references to “one embodiment”
or “an embodiment.” The appearances of the phrases “in one
embodiment” or “in an embodiment” do not necessarily
refer to the same embodiment. Particular features, struc-
tures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

Within this disclosure, different entities (which may vari-
ously be referred to as “units,” “circuits,” other components,
ctc.) may be described or claimed as “configured” to per-
form one or more tasks or operations. This formulation—
[entity] configured to [perform one or more tasks]—is used
herein to refer to structure (1.¢., something physical, such as
an electronic circuit). More specifically, this formulation 1s
used to indicate that this structure 1s arranged to perform the
one or more tasks during operation. A structure can be said
to be “configured to” perform some task even 1f the structure
1s not currently being operated. A “network interface con-
figured to communicate over a network™ 1s intended to
cover, for example, an integrated circuit that has circuitry
that performs this function during operation, even 1if the
integrated circuit in question 1s not currently being used
(e.g., a power supply 1s not connected to it). Thus, an entity
described or recited as “configured to” perform some task
refers to something physical, such as a device, circuit,
memory storing program instructions executable to 1mple-
ment the task, etc. This phrase 1s not used herein to refer to
something intangible. Thus, the “configured to™ construct 1s
not used herein to refer to a software entity such as an
application programming interface (API).

The term “configured to™ 1s not mntended to mean “con-
figurable to.” An unprogrammed FPGA, for example, would

US 11,263,026 B2

3

not be considered to be “configured to” perform some
specific function, although 1t may be “configurable to”

perform that function and may be “configured to” perform
the function after programming.

Reciting in the appended claims that a structure 1s “con-
figured to” perform one or more tasks 1s expressly intended
not to mvoke 35 U.S.C. § 112(1) for that claim element.
Accordingly, none of the claims 1n this application as filed
are intended to be interpreted as having means-plus-function
clements. Should Applicant wish to mvoke Section 112(1)
during prosecution, it will recite claim elements using the
“means for” [performing a function] construct.

As used herein, the terms “first,” “second,” etc. are used
as labels for nouns that they precede, and do not imply any
type of ordering (e.g., spatial, temporal, logical, etc.) unless
specifically stated. For example, 1n a processor having eight
processing cores, the terms “first” and “second” processing,
cores can be used to refer to any two of the eight processing
cores. In other words, the first and second processing cores
are not limited to processing cores 0 and 1, for example.

As used herein, the term “based on” 1s used to describe
one or more factors that affect a determination. This term
does not foreclose the possibility that additional factors may
aflect a determination. That 1s, a determination may be
solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B 1s a factor i1s used to determine A or that aflects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s determined based solely on B. As used
herein, the phrase “based on” 1s thus synonymous with the
phrase “based at least 1n part on.”

As used herein, a “module” refers to software and/or
hardware that 1s operable to perform a specified set of
operations. A module may refer to a set of software struc-
tions that are executable by a computer system to perform
the set of operations. A module may also refer to hardware
that 1s configured to perform the set of operations. A
hardware module may constitute general-purpose hardware
as well as a non-transitory computer-readable medium that
stores program instructions, or specialized hardware such as
a customized ASIC. Accordingly, a module that 1s described
as being “executable” to perform operations refers to a
soltware module, while a module that 1s described as being
“configured” to perform operations refers to a hardware
module. A module that 1s described as operable to perform
operations refers to both a software and a hardware module.

DETAILED DESCRIPTION

One approach for reducing information size and the
amount of time needed to process certain requests for
information 1s to store that information 1n a different format
than traditional database tables. Pilosa® includes an open-
source project that provides software for storing a data
repository using a set of bitmap indexes. Bitmap indexes can
be space eflicient and allow for quick bitwise operations
against the underlying information. As a result, various
cases, such as the one posed above, may take milliseconds
to implement instead of seconds, minutes, hours, or some-
times days, significantly speeding up the operation of the
system. Such systems are described, for example, mn U.S.
Pat. Nos. 9,280,780, 9,489,410; and 9,607,104.

The present disclosure describes various techniques for
implementing an infrastructure that allows data representa-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions such as bitmap 1indexes to be scaled 1n order to manage
vast amounts of data, as well as to perform a wider variety
of functionality. In various embodiments, such a system
includes a virtual data source manager (VDSM) that man-
ages virtual data sources (VDSs) that include data represen-
tations, such as bitmap indexes, stored 1n corresponding
underlying, or original, data sources. For example, a VDS
may i1nclude a bitmap index that 1s representative of data
stored 1n a relational database. The VDS may further directly
include or leverage external translation key metadata that
allows for the format of the bitmap index to be interpreted
so that data can be extracted from the bitmap index.

A VDS may be created by a VDSM 1n response to
receiving a request via an application programming interface

(API) of the VDSM. In some embodiments, the VDSM

provides a user interface that enables a user such as a system
administrator to select from various options when creating,
copying, importing, or linking a VDS. For example, the user
might select an original data source for the VDS from a list
ol data sources. The user interface may then send a request
to create a VDS via the VDSM’s APIL. In some embodi-
ments, the request to create the VDS includes information
that i1dentifies a corresponding original data source and a
configuration for ingesting data from that data source into
the data structure (e.g., a bitmap 1ndex) of the VDS. Based
on that information, the VDSM may 1nstantiate an ingestion
plugin that ingests data from the original data source into a
format that can be stored in the data structure of the VDS.

Once the VDS has been created, the VDSM may begin
processing data requests against the VDS instead of the
underlying data source—data requests may be made and
processed as the VDS 1s being populated with data. The data
requests may be received via the API and may specily SQL
queries (or other types of queries) to be executed. In some
embodiments, the VDSM ftranslates and optimizes queries
directly or through 1ts query planner into a query language
understood by VDSs and then routes those translated queries
to the appropriate VDS(s). The VDSM may further maintain
metadata about the data that 1s stored at 1ts VDSs so that the
VDSM can determine which VDSs should receive a query
being routed by the VDSM.

In some embodiments, the VDSM maintains a software
plugin repository that includes various executable software
routines that may operate on data moving into a VDS (ingest
data), data moving out of a VDS (outgest data), and data at
rest in VDS, When a VDS 1s being created, the VDS may be
associated with a set of software plugins that the VDSM may
use to manage that VDS. As an example, 11 a VDS 1s being
created based on an Oracle® database (an original data
source), then the VDSM may instantiate an ingestion plugin
that 1s designed for ingesting data from Oracle® databases.
Software plugins may also be added/associated to a VDS
during its lifecycle.

The various components (e.g., VDSs, software plugins,
etc.) that are managed by the VDSM may be instantiated
using resources managed by the VDSM, 1n various embodi-
ments. Consider an example 1n which the VDSM manages
a pool of compute nodes. The VDSM may instantiate an API
server on one of the compute nodes, a web server on another
compute node, and three VDSs on multiple compute nodes.
The VDSM may also scale up and down the resources that
are assigned to a component based on various criteria, such
as processing demand. For example, 11 the VDSM receives
a high volume of requests for data 1n a certain VDS, then the
VDSM may distribute that VDS across additional compute
nodes.

US 11,263,026 B2

S

The VDSM may implement various other functionality to
tacilitate the management of VDSs. For example, 1n various
embodiments, the VDSM implements access control
directly or through a software plugin to restrict who/what
can interact with the VDSs. In addition to managing VDSs,
the VDSM may manage and link to other VDSMs—this
results 1n hierarchies of VDSMs. For example, an upstream
VDSM may manage multiple downstream VDSMs that are
located 1n different data centers. One of those downstream
VDSMs may manage VDSs that serve as regionally located
VDSs that are managed by another one of those downstream
VDSMs. Accordingly, the upstream VDSM may ensure that
all or a selection of the data 1s replicated between the two
downstream VDSMs. (Exemplary selective data sharing
techniques are described, for example, 1n U.S. Publication
No.: 2018/0034824.) VDSMs may be linked with other
VDSMs belonging to a single company and 1ts subsidiaries
or interconnected to VDSMs that belong to other companies.

These techniques may be advantageous as they allow for
data structures, such as bitmap indexes, that “virtualize” data
from an underlying data source to be managed and exploited
by other software routines. As mentioned, bitmap indexes
are usable to process certain data requests 1 a shorter
amount of time than processing those data requests against
a traditional database. But those bitmap indexes are inet-
tectual without an infrastructure to create, manage, and use
those bitmap indexes, especially on a reasonably large scale.
The techniques of the present disclosure provide that infra-
structure with the use of VDSs and VDSMs that manage
those VDSs so that bitmap indexes (or similar data struc-
tures) can be readily built on underlying data sources and
used to operate on the represented data. By using VDSMs
and VDSs, data can be accessed and operated on from
different locations without having to create a copy of the
underlying data at the different locations. As a result, this
data abstraction-based approach (or alternatively, data rep-
resentation-based approach) can yield up to 100x reduction
in hardware footprint and data movement. This approach
simplifies, accelerates, and improves control over data both
within an organization and outside the organization 1f 1t 1s
sharing the data externally with partners and vendors. The
various topologies of VDSMs and VDSs enable users to
access data wherever they need to access it, on premises, 1n
the cloud, or on the edge, regardless of where the original
data resides. This greatly reduces data migration costs and
complexity, along with the risks typically associated with
approaches that involve copying (lifting and shifting) data to
where the user needs it.

The techniques of the present disclosure further overcome
various deficiencies of other approaches for preparing,
accessing, and analyzing data, such as a query federation
approach, a data aggregation approach, and a brute force
approach. In the query federation approach, a federated
database system acts as a type ol meta-database manage-
ment system (Meta-DBMS) that provides a unified access
interface to multiple, independent database systems. Each of
the independent database systems can implement a different
type of database (e.g., SQL database, NoSQL database, etc.)
with different query languages. When a request for data 1s
received, the federated database system obtains data from
the independent database systems as the federated databases
of the federated system do not store any actual data from
those independent database systems. The performance of the
tederated database system 1s dependent on the speed of each
of the independent database systems, thus the overall per-
formance of the composition 1s only as fast as the slowest
system. The techniques of the present disclosure, however,

10

15

20

25

30

35

40

45

50

55

60

65

6

provide for a system that can maintain data representations
of data stored at different underlying databases and can
obtain requested data from the data representations without
having to request the data from the different underlying
databases. The data representations can collectively make
use of the same data format, which can allow for more
cllicient access and analysis of the data. As such, the “data
virtualization” approach described by the present disclosure
1s not dependent on the speed of the underlying databases
unlike 1n the query federation approach.

In the data aggregation approach, data i1s physically
merged from several independent databases into one central
database. This approach wusually involves integrations
(E'TL), batch processes, the pre-computation of derivative
results, multiple copies of the original data, and a movement
of all the data (being aggregated) across a computer net-
work. Because the central database 1s normally very large in
volume, query performance 1s a sigmificant 1ssue and
requires Turther caching or loading of data into multidimen-
sional datasets (OLAP cubes) to facilitate analysis. The
techniques of the present disclosure, however, provide for a
system that can manage, at a first computer network, data
representations of data that 1s stored at an underlying data-
base without having to move a copy of that data from a
second computer network to the first computer network.
Furthermore, these data representations can maintain data in
a format that reduces the size of that data relative to the
corresponding data that 1s stored at the underlying database.
As a result, large amounts of data do not have to be moved
across a computer network and the smaller size of the data
representations allows for more eflicient query performance.

Brute force approaches are usually implemented either by
deploying complex data and analytical infrastructure or by
applying specialized, high-performance hardware to process
large volumes of computationally intensive data. The
deployment of complex data and analytical infrastructures
usually involves significant upfront and ongoing labor from
data engineering and data operations teams. Additionally,
the underlying techniques for preparing data for analysis are
no different than the techniques that are used in the data
aggregation and query federation approaches, and thus sui-
fer from the same drawbacks.

Turning now to FIG. 1A, a block diagram of an example
system 100 1s shown. System 100 includes a set of compo-
nents that may be implemented via hardware or a combi-
nation of hardware and software routines. In the illustrated
embodiment, system 100 includes orniginal data sources
110A-7, virtual data sources (VDSs) 120A-C, and a virtual
data source manager (VDSM) 130. In some embodiments,
system 100 may be implemented differently than shown. As

shown 1n FIG. 1B for example, system 100 may include a
hierarchy of VDSMs 130 1n which an upstream VDSM 130

controls a set of downstream VDSMs 130. FIG. 1D 1llus-
trates various possible topologies by which original data
source(s) 110 are connected to VDS(s) 120.

Data sources 110, 1n various embodiments, are entities
that serve as sources of data that are accessible by other
entities. In some cases, a data source 110 may be a database
comprising a collection of information that 1s structured and
organized 1n a manner that allows for access, storage, and
mampulation of that information. For example, a data source
110 may be a non-relational database (e.g., MongoDB®), a
relational database (e.g., an Oracle® database), or an appli-
cation programming interface (e.g., Salesforce.com®) that
stores 1nformation on a single or multiple storage devices
that are connected together on a network. That data source
110 may be available to an application server that accesses

US 11,263,026 B2

7

data from that data source 110 in order to generate content
that may be presented to a user. In some cases, a data source
110 may be a system that collects information about an
environment and/or from another system. For example, a
data source 110 may be an embedded system within a cell 5
tower that collects information about the operation of that
cell tower (e.g., information about whether the cell tower 1s
operating correctly). As another example, a data source 110
may be a system within a smartwatch that collects informa-
tion about a user’s health and location. In some cases, a data 10
source 110 may be a stream/pipeline to which messages are
published and consumed as part of a stream-processing
platform. For example, a data source 110 may be a Katka®
topic that 1s part of a Katka® cluster.

Virtual data sources (VDSs) 120 stand in contrast to 15
original data sources 110. A “virtual data source,” as used
herein, refers to a software construct that includes a repre-
sentation of data stored in one or more (original) data
sources, as well as metadata that identifies the VDS to a
higher-level software manager entity. These components are 20
discussed further in the context of FIG. 2A below, which
illustrates data representation 210, VDS API 222, and VDS
metadata 230. One example of the higher-level software
entity that manages a VDS 120 1s VDSM 130.

Various topologies between original data sources 110 and 25
VDSs 120 are contemplated. In FIG. 1A, VDS 120A may be
a representation of original data source 110A that 1s created
directly from source 110A. In other embodiments, such as
those shown below 1 FIG. 1D, a VDS 120 may be con-
nected to original data source 110 via one or more interme- 30
diate VDSs 120. Also, a VDS 120 may be created based on
multiple original data sources 110. Still further, one VDS
120 may be created as a subset of data from another VDS
120. For example, a first VDS 120 might correspond to
worldwide business data, while a second VDS 120 might be 35
derived from the first VDS 120 to include only North
American business data.

As an example of the representation of data stored in
another data structure, VDS 120A may include a bitmap
index (that 1s representative of data stored in a relational 40
database) and translation key metadata that indicates how
information 1s organized in the bitmap index. (Examples of
bitmap index implementations are discussed 1n greater detail
in U.S. Publication No. US 2015/0213463 Al, which 1s
incorporated by reference herein in 1ts entirety). The trans- 45
lation key metadata may be usable to interpret the bitmap
index so that requested data can be accessed and operated
on. Other data representations are contemplated. For
example, a VDS 120 may include other new and unique data
formats or existing data formats, such as key-value stores 50
(e.g., Redis® or DynamoDB®) or time-series databases
(e.g., Influx DB®).

In various embodiments, a VDS 120 also includes soft-
ware routines that are executable to maintain and operate on
its data representation (e.g., a bitmap index), including 55
processing queries against that data representation. For
example, VDSM 130 may send a request to VDS 120A for
data 1n 1ts data representation. That request may include a
query that 1s processed by the software routines of VDS
120A to return a response that includes the requested data. 60
As discussed in more detail with respect to FIG. 2A, the
software routines of a VDS 120 implement an API that
allows for enfities, such as VDSM 130, to send requests
down to that VDS 120. In various embodiments, this API
enables an ingestion routine (which may be imtiated by 65
VDSM 130) to push ingested data into the data representa-
tion of a VDS 120.

8

A VDS 120 may include additional metadata to facilitate
the flow of data 1into and out of the VDS 120. This metadata
may include, for example, source information that identifies
an underlying data source 110 (or another VDS 120) and
authentication credentials for enabling access to data from
that data source 110 so that 1t can be ingested into the data
representation of the corresponding VDS 120. Examples of
metadata that can be included 1n a VDS are discussed in
greater detail with respect to FIG. 2B.

Virtual data source manager (VDSM) 130, 1 various
embodiments, 1s a set of software routines executable to
manage one or more VDSs 120. Managing VDSs 120 may
include, for example, creating the VDSs 120, ensuring that
the data stored 1n those VDSs 120 1s up to date, requesting
data from those VDSs 120, instantiating software routines
(plugins) that operate on data of those VDSs 120, and
controlling access to those VDSs 120. In various embodi-
ments, VDSM 130 includes metadata about the VDSs 120
that 1t manages that enables VDSM 130 to perform those
enumerate functions. This metadata 1s discussed 1n greater
detail with respect to FIG. 3.

As shown, VDSM 130 manages three VDSs 120A-C
storing data that 1s representative of data stored 1n underly-
ing data sources 110. Initially, VDSM 130 may start with
creating one of the VDSs 120 (e.g., VDS 120A) and then
may add subsequent VDSs 120 (e.g., VDS 120B and 120C)
over time to 1ts configuration, arriving at the illustrated
embodiment. In some cases, when adding a VDS 120 to 1ts
configuration, VDSM 130 may create that VDS 120. This
may 1nvolve supplementing information (e.g., a location
corresponding to an underlying data source 110) provided by
a user or agent with information (e.g., a transfer protocol)
that 1s obtained by communicating with the corresponding
underlying data source 110. ('This 1s 1llustrated by the dotted
line connecting VDSM 130 with data sources 110). VDSM
130 may then instantiate an ingestion routine that ingests
data from the corresponding underlying data source 110 into
the VDS 120. In some cases, when adding a VDS 120 to 1t
configuration, VDSM 130 may load a previously created
VDS 120 that had been temporally stored.

In some cases, VDSs 120A-C may be created based on
different data sources 110. For example, VDS 120A may be
created based on a relational database operated by a first
company while VDS 120B 1s created based on a non-
relational database operated by a second, diflerent company.
In some cases, some of VDSs 120A-C may be created based
on the same data source 110 but correspond to different data
partitions of that data source 110. For example, VDS 120A
may correspond to data of a first tenant while VDS 120B
corresponds to data of a second tenant that 1s associated with
the same database.

After adding a VDS 120 to 1ts configuration, VDSM 130
may start 1ssuing requests for data against that VDS 120
instead of the corresponding data source 110. As a result, the
VDS 120 may act as a “virtual” layer between VDSM 130
and the corresponding data source 110 that virtualizes the
data from that data source 110. Virtualizing data from the
data source 110 may involve the VDS 120 storing data 1n a
different format (e.g., 1n a bitmap-based format instead of a
table-based format) that still conveys the same information
as the data that 1s stored 1n the underlying data source 110.
By using the different format, VDSM 130 may be able to
process certain requests for mformation against its VIDSs
120 1nstead of the underlying data sources 110.

Turning now to FIG. 1B, a block diagram of a hierarchy
of VDSMs 130 within system 100 1s shown. In the 1llustrated

embodiment, system 100 includes a “primary” VDSM

US 11,263,026 B2

9

130A, “secondary” VDSMs 130B-D, and VDSs 120A-K. As
turther depicted, VDSM 130B manages VDSs 120A-C,
VDSM 130C manages VDS 120D, and VDSM 130D man-
ages VDSs 120E-K. In some embodiments, system 100 may
be 1mplemented differently than shown—e.g., system 100
may not include a hierarchy of VDSMs 130 as shown in
FIG. 1A.

As 1llustrated, a VDSM 130 can manage one or more
VDSMs 130. As used herein, the term “primary VDSM”
refers to the VDSM 130 that resides at the top of a hierarchy
of VDSMs 130, the term “secondary VDSM” refers to a
VDSM 130 that resides in the next level down in that
hierarchy, and the term “‘tertiary VDSM” refers to a VDSM
130 that resides 1n the yet next level down. While not shown,

in some embodiments, a VDSM 130 may manage a com-
bination of VDSs 120 and VDSMs 130 that reside in the next

level down from that VDSM 130.

A VDSM 130 may manage multiple VDSMs 130 for
various reasons. In some cases, a company may wish to have
data replicated across multiple locations to ensure high
availability of that data or to enable data access at an edge
location. Accordingly, a secondary VDSM 130 may be
placed at each location that manages a set of VDSs 120 that
store data representing a copy of the data being partially or
tully replicated. The primary VDSM 130 may communicate
with those secondary VDSMs 130 to facilitate the exchange
of data between them in order to ensure that data 1s repli-
cated between the diflerent locations. In some cases, a
company may wish to collect particular information from
multiple devices (e.g., Internet of Things devices) that are
scattered across a geographic region. As such, a secondary
VDSM 130 may be mstantiated on each device and manage
a set of VDSs 120 that are created based on data collected
by components of that device. The secondary VDSMs 130
may further instantiate software plugins that perform an
analysis on the data using the VDSs 120. A result of the
analysis may be pushed up to the primary VDSM 130 that
stores the result using VDSs 120 managed by the VDSM
130—the primary VDSM 130 may serve as a central loca-
tion for collecting results to present to a user.

Turning now to FIG. 1C, a block diagram of an example
layout of components of system 100 on nodes 145 1s shown.
In the illustrated embodiments, system 100 includes a node
145A and a compute cluster 140 having nodes 145B-D. As
further illustrated, node 145A includes a VDSM 130, node
1458 includes VDS 120A, node 145C includes VDS 120A
and 120B, and node 145D includes VDSs 120A-C. In some
embodiments, system 100 may be implemented differently
than shown. For example, VDSM 130 might execute on a
node 1435 within compute cluster 140.

Compute cluster 140, 1n various embodiments, 1s a pool of
resources managed and used by VDSM 130—this pool of
resources may include resources that are managed by the
resource manager discussed in more detail with respect to
FIG. 3. Compute cluster 140 may be used to implement
services of VDSM 130 (e.g., an API server) and a VDS
environment having one or more VDSs 120. As shown,
compute cluster includes nodes 145B-D. In various embodi-
ments, a node 145 corresponds to a set of hardware proces-
sors, physical storage, network storage, and memory that 1s
available to VDSM 130 for executing software routines and
storing data. In some embodiments, a node 145 can be a
virtual machine—this might provide VDSM 130 with less
granular control than managing a set of hardware processors,
storage, and memory. The resources of compute cluster 140
may correspond to resources that are managed by a diflerent
entity than the entity operating VDSM 130. For example,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

compute cluster 140 may correspond to servers and storage
provided by AWS while VDSM 130 1s operated by another
party. In some embodiments, VDSM 130 may scale up and
down the resources that are included 1n compute cluster 140.

As explained, VDSM 130 may execute software routines
(e.g., API servers, VDSs 120, etc.) using the resources of
compute cluster 140. In various embodiments, a portion or
all of a VDS 120 can be compiled into an executable binary
that can be executed on one or more nodes 145 to together
implement the VDS 120. Those binaries may be operable to
communicate with each other to implement functionalities
of that VDS 120, such as a join query operation. As shown
for example, VDS 120A executes on three nodes 145 while
VDS 120C executes on only one node 145 (1.e., node 145D).
When a VDS 120 1s distributed across multiple nodes 145,
the data of that VDS 120 may be partitioned into segments/
slices/shards/partitions that are distributed across those
nodes 145. Consider an example mm which VDS 120C
includes a bitmap index having 3000 columns, each of
which may correspond to a user. VDS 120C might be
partitioned such that node 145B manages the data of col-
umns 1-1000, node 145C manages the data of columns
1001-2000, and node 145D manages the data of columns
2001-3000. In some embodiments, the metadata that 1s
associated with a VDS 120 may be replicated across mul-
tiple nodes 145 such that each node 145 stores a copy of that
metadata. For example, VDS 120C may include translation
metadata that allows for the bit strings of 1ts bitmap index to
be interpreted so that data can be accessed and operated on.
This translation metadata can be replicated to nodes 145B-D
so that they all have their own respective copy.

Turning now to FIG. 1D, a block diagram of example
topologies between original data sources 110 and VDSs 120
are shown. In the illustrated embodiment, topology 150A
includes a VDS 120 that 1s created directly from an original
data source 110. In this case, that original data source 110 1s
an “origin”” of data for that VDS 120—the data source that
1s directly used to create the VDS. In some cases, the origin
of a VDS 120 1s an “original” data source 110, as 1n topology
150A, yet 1in other cases, the origin of a VDS 120 may be a
“derived” data source 110, such as another VDS (e.g.,
belonging to a research partner) that 1s derived from an
original data source 110, as in topology 150B. A VDS 120
may also have more than one origin 1in some cases.

Topology 150B, for example, includes a VDS 120B that
1s connected to an original data source 110 via an interme-
diate VDS 120A. Within the context of topology 150B,
while VDS 120B 1s connected to data source 110, VDS
120A 1s the onigin of data for VDS 120B, not data source
110. That 1s, VDS 120B obtains 1ts data directly from VDS
120A and not data source 110 and thus VDS 120A 1s the
origin of data. In some cases, VDS 120B may be a copy of
VDS 120A——<e.g., VDS 120A might be a United States-
based VDS 120 while VDS 120B 1s a European counterpart.
As further shown, topology 150C includes two VDSs 1208
and 120C that are connected to an original data source 110
via the same mtermediate VDS 120A. For example, VDS
120A might include business data for the entire United
States while VDS 120B might include the business data for
California and VDS 120C includes the business data for
Texas. As further shown in the illustrated embodiment,
topology 150D 1includes a VDS 120C that i1s connected to
two original data sources 110A and 110B via two respective
VDSs 120A and 120B that are the origins of data for VDS
120C. Other topologies 150 are contemplated. As an
example, a topology 150 may 1nclude a series of VDSs 120
(e.g., eight VDSs 120) in which a given VDS 120 of the

US 11,263,026 B2

11

series 1s an origin of data for the next VDS 120 1n that series.
In short, the various topologies indicated in FIG. 1D, which
are by no means exhaustive, illustrate how a VDS can be
connected to an original data source 1n various ways—either
directly (no intermediate VDSs) or indirectly (via one or
more intermediate VDSs).

Turning now to FIG. 2A, a block diagram of an example
VDS 120 1s shown. In the illustrated embodiment, VDS 120
includes data representation 210, a VDS engine 220, and
VDS metadata 230. As shown, data representation 210
includes translation metadata 215, and VDS engine 220
includes a VDS API 222 and plugins 224. In some embodi-
ments, VDS 120 may be mmplemented diflerently than
shown. For example, VDS 120 may not include plugins 224.

Data representation 210, in various embodiments, 1s a
data structure that stores data that 1s representative of data
stored at one or more original data sources 110. Data
representation 210 may store 1ts data 1n a different format
than the data stored at the original data sources 110. For
example, data representation 210 may be a bitmap index
comprising multiple rows of bit strings. The bits within a
given row may be set based on data 1n the original data
sources 110. Consider an example in which an original data
source 110 1ncludes a table of user profiles, each of which
identifies the gender of 1ts corresponding user. Data repre-
sentation 210 may include a bitmap index of users, where
the bitmap index includes at least two rows: a bit string
corresponding to the gender “male” and a bit string corre-
sponds to the gender “female.” Each column of the bitmap
index may correspond to a user. Consequently, i a user 1s a
female, then the corresponding bit of the “male™ bit string 1s
set to “0” and the bit of the “female” bit string 1s set to “1.”
While the user profile table of the original data source 110
may store a character string of “female” and the user bitmap
index may include a set bit, they both convey the same
information (1.e., the gender of the user), but 1n different data
formats. In this manner, data representation 210 may store
data that 1s representative of data stored at the original data
source 110.

Translation metadata 215, 1n various embodiments,
includes information that enables the data of data represen-
tation 210 to be interpreted. Translation metadata 215 may
include, for example, value keys, record keys, and record
attributes. Continuing with the example about the two bit
strings that correspond to the two genders. The bitmap 1index
of users may include thousands of bit strings (which include
the two bit strings for gender) that are grouped together to
form a matrix of columns and rows. Translation metadata
215 may indicate the meaning of each bit string that makes
up the bitmap index of users. For example, translation
metadata 2135 may include a value key “male” that 1s linked
to the bit string corresponding to whether a user 1s a male
and a value key “income greater than 10k™ that 1s linked to
a bit string corresponding to whether a user’s income
exceeds $10,000. In various embodiments, translation meta-
data 215 categorizes record keys into groups. For example,
those two previously mentioned value keys may be grouped
under “demographic data.” Record keys may define a map-
ping between bit positions of a bit string and a corresponding,
record. For example, a record key may indicate that the first
bit of a bit string (or the {irst bit of a portion or all bit strings
in the bitmap index) corresponds to user “A”. Record
attributes may specity information associated with a record
(column) that 1s not represented by a bit string. For example,
email addresses are often unique values and as a result, 1t
might not be desirable to represent them using a bit string;
however, 1t may still be desirable to associate a record with

5

10

15

20

25

30

35

40

45

50

55

60

65

12

an email address. As such, a record attribute may specity an
email address for a record, such as the record corresponding
to user A.

As mentioned, translation metadata 215 may be replicated
across each node 145 that 1s implementing VDS 120. For

example, as depicted 1n FIG. 1C, VDS 120A 1s distributed
among nodes 143B-D. This distribution may be such that
cach node 145 manages a slice/segment of data representa-

tion 210 of VDS 120A (e.g., each node 145 may manage a

different set of columns of a bitmap index). In some embodi-
ments, a node 145 maintains, for 1ts portion of a distributed
VDS 120, only the translation metadata 215 that 1s relevant
to 1ts slice. In various embodiments, however, a node 145
maintains a complete copy of the translation metadata 215
(or a portion thereof—=e.g., only the value keys may be

copied) that pertains to the entirety of data representation
210.

As updates are made to the data of data representation 210

(c.g., based on changes to data at the origin, such as an
underlying data source 110 or another VDS 120), VDS

engine 220 may modily translation metadata 215 based on
those updates. For example, 11 a new bit string 1s added to
data representation 210 (in the case where it 15 a bitmap
index), a value key may be added to translation metadata
215 to indicate the meaning of the new bit string (e.g., “users
with a dog™). The changes that are made to translation
metadata 215 may be propagated to each node 145 that
implements the corresponding VDS 120.

VDS engine 220, 1n various embodiments, includes the
executable software routines of VDS 120 that are capable of
facilitating access and manipulation of data representation
210 and VDS metadata 230. VDS engine 220 may further
maintain data representation 210 and VDS metadata 230 by
ensuring that changes to data at the origin for VDS 120 (e.g.,
an original data sources 110) are reflected 1n index 210 and
metadata 230. As 1llustrated, for example, VDS engine 220
includes VDS API 222 and plugins 224.

VDS API 222, in various embodiments, 1s an interface
provided by VDS engine 220 to allow for enfities (e.g.,
VDSM 130) that are outside of VDS 120 to access and
mampulate the components within VDS 120. In various
embodiments, VDS API 222 includes a set of query func-
tions that are invokable to query data representation 210 for
data. Consequently, a data request received by VDSM 130
for particular data may be propagated down to the appro-
priate VDSs 120 via calls to the query functions of VDS API
222. In various cases, VDSM 130 may invoke the query
functions of one of the VDSs 120 that 1s selected by VDSM
130. The selected VDS 120 may then propagate queries from
VDSM 130 to the remaining VDSs 120 of compute cluster
140 via their VDS APIs 222.

Plugins 224, 1n various embodiments, are sets of software
routines that are executable to perform a specified set of
operations 1n relation to VDS(s) 120 and/or VDSM(s) 130.
Plugins 224 may generally fall within one of three types of
categorizations (although, there are others): ingest plugins
224 that operate on data moving into VDS 120, consumption
plugins 224 that operate on data moving out of VDS 120,
and at-rest plugins 224 that operate on data at rest within
VDS 120. Ingest plugins 224, consumption plugins 224
(alternatively, “outgest” plugins), and at-rest plugins 224 are
discussed 1n greater detail with respect to FIGS. 4A, 4B, and
4C. Other types of plugins 224 can include monitoring
plugins 224 that may collect metrics about the operation of
a VDS 120 and security plugins 224 that may enforce
security policies, execute access control directives, encrypt

US 11,263,026 B2

13

data, and/or generate secure connections between a VDS
120 and another component (e.g., another VDS 120).

In some embodiments, VDS 120 spawns plugins 224 in
response to requests received via 1ts VDS API 222 or based
on a defined trigger event (e.g., detecting a change to
particular data in data representation 210). In various
embodiments, VDS 120 relies on VDSM 130 to spawn
plugins 224 and instead stores metadata about the particular
plugins 224 associated with VDS 120. In some embodi-
ments, VDS 120 may store and spawn a subset of the plugins
224 associated with 1t while VDSM 130 may spawn other
plugins 224 that are associated with VDS 120.

VDS metadata 230, 1n various embodiments, includes
information that can be used to facilitate the movement of
data 1nto and out of VDS 120. For example, VDS metadata
230 may specily a location of an origin of data for VDS 120
(e.g., a data source 110), parameters for accessing data from
that location, and/or a location at which to store data
ingested from the origin. Examples of the different types of
information that may be included 1n VDS metadata 230 are
discussed 1n greater detail with respect to FIG. 2B. VDS
metadata 230, in various embodiments, 1s accessible to
entities outside of VDS 120. For example, an ingestion
plugin 224 (which may be spawned by VDSM 130) may
access or be provided VDS metadata 230 so that 1t can
connect with an underlying data source 110 and begin
ingesting data into data representation 210.

Turning now to FIG. 2B, a block diagram of example
VDS metadata 230 1s shown. In the illustrated embodiment,
VDS metadata 230 includes VDS information 231, source
information 232, storage information 233, access mforma-
tion 234, fingerprint information 233, filter information 236,
and transformation information 237. In some embodiments,
VDS metadata 230 may be implemented differently than
shown. For example, VDS metadata 230 may not include
fingerprint information 235.

VDS information 231, in various embodiments, includes
information describing one or more general properties per-
taining to a VDS 120. VDS information 231 may specily a
unique 1dentifier that allows for the corresponding VDS 120
to be directly referenced separately from other VDSs 120.
This unique identifier, in some embodiments, 1s assigned by
VDSM 130 to a VDS 120 upon creation of the VDS 120. IT
a VDS 120 has a data source that 1s another VDS 120 (e.g.,
topology 150B 1n FIG. 1D), then those two VDSs 120 may
be assigned different 1dentifiers. VDS mformation 231 may
specily a version associated with the corresponding VDS
120, a human-readable name separate from the unique
identifier, and/or a text description of the VDS 120, which
may be provided by a user.

Source 1nformation 232, 1n various embodiments,
includes information describing the one or more origins
(e.g., underlying data sources 110) whose data 1s represented
by a data representation 210 of a VDS 120. As mentioned,
when a user (e.g., an administrator) wishes to create a VDS
120, that user may 1dentity, e.g., one or more underlying data
sources 110 to be used to create the VDS 120—those
underlying data sources 110 may be identified by another
entity, such as a set of files stored 1n a database accessible
to VDSM 130. VDSM 130 may then store information that
it obtains about the underlying data sources 110 as source
information 232 in the VDS 120 being created. In various
embodiments, source information 232 enables VDSM 130
or another component (e.g., a plugin 224) to access data
from those underlying data sources 110 so that the data can
be operated 1mn some manner. As discussed in FIG. 4A for
example, an mgest plugin may use source information 232

10

15

20

25

30

35

40

45

50

55

60

65

14

to access the origin(s) of data for VDS 120 (e.g., underlying
data sources 110 or VDSs 120) so that 1t can ingest data from

those origins to create and/or maintain a data representation
210.

In some cases, source information 232 may specily an
underlying data source 110 that corresponds to a storage
service provided by a cloud platform. For example, source
information 232 may specily one or more Amazon® S3
buckets that store files having data objects that can be
parsed. Source mformation 232 may further specily autho-
rization credentials that allow for access to that storage
service. Continuing with the previous example, that source
information 232 may specily an Amazon Web Service®
(AWS) access 1dentifier and access secret. Source informa-
tion 232 may also specily a data format (e.g., JSON, CSV,
etc.) of the data that 1s being accessed so that 1t can be
correctly parsed.

In some cases, source mformation 232 may specily an
underlying data source 110 that corresponds to a stream-
processing platform 1n which messages are published to and
consumed from streams (or alternatively, “pipelines™). For
example, source information 232 may specily a host address
of a Katka® cluster, an identifier of a Katka® topic (a
pipeline), and/or a schema registry address. Source infor-
mation 232 may specily a data format (e.g., JSON, Avro,
etc.) of the data objects included 1n messages of a pipeline
so that they can be correctly parsed.

In some cases, source information 232 may specily an
origin that corresponds to a VDS 120—that 1s, one VDS 120
1s the source of data for another VDS 120. When the two
VDSs 120 are managed by the same VDSM 130, source
information 232 may specily an identifier of the VDS 120
that 1s being used as an origin of data. If the source VDS 120
1s managed by another VDSM 130, then source information
232 miaght specity, in addition to an i1dentifier of the source
VDS 120, an endpoint address for that other VDSM 130.

Other types of underlying data sources 110 than those
discussed above may be specified by source information
232. For example, source mformation 232 may specily a
local relational, non-relational database, or a remote API
whose data can be 1ingested. In some embodiments, a VDS
120 can have multiple underlying data sources 110 that are
of the same or different types. For example, a VDS 120
might be created based on an Amazon® S3 bucket and
another VDS 120 or based on three VDSs 120.

Storage 1nformation 233, in various embodiments,
includes information describing one or more locations where
data of data representation 210 1s stored. In various cases,
storage information 233 may specily that the data of index
210 resides locally on compute cluster 140 or a data store
managed by VDSM 130. In some cases, storage information
233 may specily a location that corresponds to a cloud
storage service, such as AWS S3. The corresponding VDS
120 may not be actively loaded/running 1n compute cluster
140, but rather offloaded at the cloud storage service until
requested—data may be loaded 1nto compute cluster 140 to
process certain requests and then offloaded back to the cloud
storage service. In some cases, storage information 233 may
specily a network-attached storage (NAS) where a VDS 120
can be offloaded while not being used and then reloaded at
another time, similar to the cloud storage service approach.
In some cases, storage information 233 may indicate the data
files are currently bundled with the corresponding VDS
120—this may allow for the VDS 120 to be transferred to
another compute cluster 140 without requiring any external
connectivity (e.g., to a cloud storage service.)

US 11,263,026 B2

15

Access 1nformation 234, 1n various embodiments,
includes information describing who can access data from
data representation 210 and what data can be accessed. For
example, access information 234 might specify that a user A
has access to columns 1-1000 and a user B has access to
columns 1-2000 of a bitmap index. In some cases, access
information 234 may simply specily who can access the
corresponding data representation 210 without limiting the
data that can be accessed. For example, access information
234 may specily that users A and B can access the corre-
sponding data representation 210 while user C cannot.

Fingerprint information 235, in various embodiments,
includes information that serves as a representation of a
VDS 120 that may be used to determine 1t VDSs 120 are
different. In some cases, fingerprint information 235 speci-
fies metrics about the data of a data representation 210. Such
metrics may include the number of rows and columns of the
data representation 210 (1f a bitmap index 1s used as 1index
210 for example), types of columns (e.g., integer, character,
etc.), and the data density of data representation 210. In
some embodiments, fingerprint information 235 specifies
the mean, median, mode for defined list of columns.

Filter information 236, 1in various embodiments, includes
information that identifies a mapping between the data of a
VDS 120 and data of the corresponding origin of data (e.g.,
an underlying data source 110). The mapping may specily
associations between data fields of the VDS 120 and data
fields of the origin. Consider an example 1n which a data
source 110 includes fields [A, B, C, D]. Filter information
236 may i1dentily a mapping of [A, B, C, D]—=[A, B, K, Z].
where [A, B, K, 7Z] are data fields in the data representation
210 of the VDS 120. Filter information 236 may specily a
field name for the VDS 120 that 1s different from the field
name of the origin—e.g., [D]—=[Z]. Filter information 236,
in various embodiments, 1s usable to filter what data 1s
selected from a data source 110. Continuing with the pre-
vious example, filter information 236 may identily a map-
ping of [A, B, C, D]—=[A, B, D]. As a result, the data from
the data field [C] of the origin 1s not included in the
corresponding VDS 120.

Transformation information 237, in various embodi-
ments, includes information that identifies a set of transtfor-
mation to perform on data that 1s being ingested from the
origin of data (e.g., an underlying data source 110) into the
VDS 120. For example, transformation information 237 may
specily a transformation from a value of a “birthday date”
field of a data source 110 to an age value that can be stored
in an “age” field of a VDS 120. In various cases, {filter
information 236 and transformation information 237 1is
accessed by an mgestion plugin 224 so that 1t can ingest data
from a data source 110 into a corresponding VDS 120.

Turning now to FIG. 3, a block diagram of an example
VDSM 130 is shown. In the i1llustrated embodiment, VDSM
130 includes a VDSM engine 310 and a VDS registry 320.
As further 1illustrated, VDSM engine 310 includes plugins
224, a VDSM API 311, a user interface engine 312, access
control engine 313, query engine 314, and resource manager
315. In some embodiments, VDSM 130 may be imple-
mented differently than shown. For example, VDSM 130
may not include plugins 224.

VDSM engine 310, 1n various embodiments, includes the
executable software routines of VDSM 130 that allow for
VDSM 130 to manage one or more VDSs 120, including
creating those VDSs 120 and processing data requests
against them. In some embodiments, the software routines of
VDSM 130 also enable VDSM 130 to manage one or more

other VDSMs 130 of a hierarchy of components that include

5

10

15

20

25

30

35

40

45

50

55

60

65

16

VDSs 120 and VDSMs 130. In some embodiments, the
execution of VDSM engine 310 1s distributed across mul-
tiple computer systems. For example, resource manager 3135
may execute on a {irst node 1435 while an API server, which
implements VDSM API 311, executes on a second, different
node 145.

VDSM API 311, in various embodiments, 1s an interface
that allows for entities (e.g., a user, another VDSM 130, etc.)
to access the functionality and information of VDSM 130
and 1ts managed VDSs 120. In various embodiments, VDSM
API 311 supports callable functions that include a create
VDS function, a delete VDS function, a list VDSs function,
a query VDS function, a backup VDS function, and a clone
VDS function. The create VDS function may be callable to
create a VDS 120 and may receive, as mnput, information that
identifies an origin of data for that VDS 120 (e.g., an
underlying data source 110) along with parameters (e.g.,
VDS metadata 230) for configuring an ingestion plugin 224
to 1ngest data from that origin into the data representation
210 of the VDS 120. In some cases, the create VDS function
may load a previously created VDS 120 from a storage
device into compute cluster 140—the create VDS function
may receive the unique i1dentifier for that VDS 120 as an
input.

The delete VDS function may be callable to delete a VDS
120 or offload the VDS 120 from compute cluster 140 to a
storage location—the delete VDS function may receive, as
input, the unique i1dentifier for that VDS 120 and an address
ol a storage location 1f applicable. The list VDSs function
may be callable to list the VDSs 120 that are managed by
VDSM 130 and information about those VDSs 120, such as
theirr VDS metadata 230, 1n some cases. The backup VDS
function may be callable to create a backup VDS 120 of a
specified VDS 120—the backup VDS 120 may be stored
away. The clone VDS function may be callable to clone a
specified VDS 120. The query VDS function may be callable
to 1ssue a query against one or more VDSs 120—this
function can be implemented by query engine 314 as dis-
cussed below.

User mterface engine 312, 1n various embodiments, pro-
vides user interfaces that serve as a frontend to VDSM API
311. These user interfaces may enable a user to select from
various options (e.g., via dropdown menus) to configure
their VDS environment. As an example, user interface
engine 312 may send user interface iformation to a coms-
puter system of the user and that computer system may then
present a user interface for creating/adding a VDS 120 based
on the user iterface information. The user may select a data
source 110 (e.g., from a dropdown menu that includes a list
of data sources 110), a location at which to store data of the
VDS 120 (e.g., selected from another dropdown menu), a
data format corresponding to the selected data source 110,
etc. The user may further select plugins 224 from a list of
plugins 224 to be used in relation to the VDS 120 being
created. The information that 1s provided by the user via the
user interface may be passed to VDSM 130 via functions of
VDSM API 311 (e.g., the create VDS function). In some
embodiments, user interface engine 312 supports command
line tools, such as the Python command line, as a way to
interact with VDSM 130 and VDSs 120.

In addition to enabling a user or another entity to invoke
the functionality of VDSs 120 and VDSM 130, user inter-
faces may present information obtained from VDSs 120 and
VDSM 130. For example, 11 a query 1s 1ssued to VDSs 120,
the results of that query may be presented to a user via a user
interface. As another example, a user may wish to see
analytical 1information about therr VDS environment.

US 11,263,026 B2

17

Accordingly, a user interface may display an amount of
storage occupied by a set of VDSs 120, an average amount
of time that a query takes to execute against the set of VDSs
120, etc.

Access control engine 313, in various embodiments,
controls access to the functionality and data of VDSM 130
and 1ts VDSs 120. In various embodiments, access control
engine 313 maintains a list of users and approved actions
that those users can perform. For example, access control
engine 313 may include an access rule that indicates that
user A can 1ssue queries to a particular VDS 120 for data.
That access rule may further indicate that user A can access
only a subset of data of that particular VDS 120—-¢.g., user
A can access data from columns 1-1000 of a bitmap index
210 included 1n the particular VDS 120. When a request 1s
recetved at VDSM 130 via VDSM API 311, 1n various
embodiments, access control engine 313 checks the request
against the list of users and approved actions to determine
whether to permit the request to be processed. It the request
1s attempting to access data or perform an action that 1s not
approved, then access control engine 313 may reject the
request; otherwise, the request may be processed by VDSM
130.

In various embodiments, VDSM 130 maintains a plugin
repository that stores various plugins 224 that may be
instantiated by VDSM 130 to perform operations in relation
to VDSs 120. As mentioned previously, there are various
types of plugins 224 that include, for example, ingest
plugins 224, consumption plugins 224, consumption plugins
224, monitoring plugins 224, and security plugins 224. In
various embodiments, VDSM 130 associates a VDS 120
with a set of plugins 224 to be used with that VDS
120—those plugins 224 might be identified by the user
whose creates that VDS 120. As an example, VDSM 130
may present a plugin store to a user and the user may pick
and choose plugins 224 from the store to be associated with
theirr VDS 120. VDSM 130 may maintain information about
how plugins 224 are being used and by what VDSs 120. Two
given VDSs 120 may be associated with different sets of
plugins 224. In some embodiments, access control engine
313 controls who can access plugins 224 and the particular
plugins 224 that they can access.

Query engine 314, 1n various embodiments, facilitates the
execution of queries against the VDSs 120 that are managed
by VDSM 130. Query engine 314 may receive, from a user
or another entity via a query function of VDSM API 311, a
data request that specifies one or more queries to be executed
against one or more VDSs 120. In some cases, the one or
more queries may be from a query language (e.g., SQL) that
1s different than the query language understood by VDSs 120
(c.g., the Pilosa Query Language). Accordingly, query
engine 314 may translate the one or more queries into the
query language that 1s understood by VDSs 120. Query
engine 314 may further determine which of the VDSs 120
that are managed by VDSM 130 are relevant to the one or
more queries. In some embodiments, query engine 314
accesses mnformation from VDS registry 320 that identifies
the data that 1s stored at the individual VDSs 120. Based on
the data being queried and the data stored at the individual
VDSs 120, query engine 314 may determine one or more
VDSs 120 that should receive the one or more queries.
Query engine 314 may then route the queries to those VDSs
120.

When routing a query to a VDS 120 whose data repre-
sentation 210 has been sliced and distributed across multiple
nodes 145, i various embodiments, query engine 314
selects one of the nodes 145 as a “representative” node that

10

15

20

25

30

35

40

45

50

55

60

65

18

1s responsible for distributing the query to the remaining
nodes 145 and returming a collective result of the VDS 120.
In some embodiments, nodes 145 elect one of the nodes 145
to be the representative node and present this election to
query engine 314 so that query engine 314 can route the
query. As such, the portion of a VDS 120 running on a given
node 145 may include metadata that identifies the other
nodes 1435 that are running the same VDS 120 and software
routines that are executable to route, based on that metadata,
the query to the appropriate nodes 145. The representative
node may receive results back from those nodes 145 and
may compile those results into a collective result that 1s
returned to query engine 314. In some embodiments, query
engine 314 randomly selects the representative node from
the nodes 145 that are implementing a particular VDS 120.
In yet some embodiments, query engine 314 implements a
selection scheme, such as a round robin scheme, or assesses
the current workload of the corresponding nodes 145 and
selects a node 145 that 1s not overloaded.

Resource manager 315, in various embodiments, allocates
and deallocates resources 1n order to facilitate the operation
of system 100, including VDSM 130 and VDSs 120. In
vartous embodiments, resource manager 3135 1s supplied
with a pool of resources that can be allocated to implement
the various functionalities of VDSM 130 and VDSs 120. For
example, the pool of resources might include 20 virtual
machines that are available on nodes 145. Consequently,
resource manager 315 may use one virtual machine to run an
API server that provides VDSM API 311, another virtual
machine to run a web server to implement user interface
engine 312, several virtual machines to implement a set of
VDSs 120, etc. As another example, the pool of resources
may correspond to a cluster managed by an orchestration
unit, such as Kubernetes™ or an AWS service. Accordingly,
resource manager 315 may interface with the orchestration
unit to implement the various functionalities of VDSM 130
and VDSs 120, which may involve providing the orchestra-
tion unit with configuration files (e.g., YAML files) that can
be used to instantiate those entities.

In various embodiments, resource manager 315 can scale
up or down the resources that are provided to a particular
entity or service. As an example, when a VDS 120 1s being
created, resource manager 315 may initially scale up the
resources (e.g., nodes 145) that are provided to implement
the mngestion plugin 224 that 1s consuming data from the
underlying data source 110. After a bulk of the data has been
consumed, such that only changes to the data of the data
source 110 need to be ingested for example, resource man-
ager 315 may scale down/deallocate the resources provided
for continuing the implementation of that mngestion plugin
224. As yet another example, if VDSM 130 1s receiving a
high volume of queries to be executed against a particular
VDS 120, then resource manager 315 may scale up the
resources (e.g., nodes 145) that are provided to implement
that particular VDS 120. Resource manager 315 may then
scale down the resources provided to that particular VDS
120 as the volume of queries decreases.

VDS registry 320, in various embodiments, stores infor-
mation about the VDSs 120 that are managed by VDSM

130. This information may include the VDS metadata 230
from each of those VDSs 120—that 1s, VDS registry 320
may store a copy of the VDS metadata 230 of each VDS 120
managed by VDSM 130. As mentioned, query engine 314
may route queries to VDSs 120 that are i1dentified based on
information in VDS registry 320. In particular, in some
cases, query engine 314 may access filter information 236
that 1s included in the VDS metadata 230 copies. As

US 11,263,026 B2

19

explained above, filter information 236 may identily a
mapping between data fields of a VDS 120 and data fields
of an underlying data source 110. As such, query engine 314
may determine which data fields are being accessed by a
query and which VDSs 120 include those data fields based
on filter information 236.

Turning now to FIG. 4A, a block diagram of an example
ingest plugin 224 1s shown. In the illustrated embodiment,
VDSM 130 recetves a VDS creation request 415—the
request may be received from a user via VDSM API 311 or
a user interface that 1s provided by user interface engine 312.
VDS creation request 415, in various embodiments, 1s a
request to create a VDS 120 from an origin (e.g., an
underlying data source 110) or to load a previously created
VDS 120 into compute cluster 140. Consequently, VDS
creation request 415 may i1dentify a location of the origin
(e.g., a unmiform resource location (URL)) and ingest infor-
mation for selecting ingest plugin 224 from a list of ingest
plugins and configuring ingest plugin 224 to ingest data
from the origin. As an example, iI data 1s being ingested
from an Oracle® database, then an 1ngest plugin configured
for Oracle® database may be selected from a list of plugins
224. That ingest plugin may be provided with the location of
the underlying data source 110 (e.g., the URL), the VPN
parameters 1i applicable, and the ingest information (e.g.,
source information 232, filter information 236, etc.).

To spawn ingest plugin 224, in various embodiments,
resource manager 315 determines whether there are suili-
cient resources (e.g., servers) in the pool of resources to run
ingest plugin 224. I there are suflicient resources, then
resource manager 315 may allocate a set of resources for
running igest plugin 224, and ingest plugin 224 may be
instantiated on those resources. If there are not suilicient
resources, however, then resource manager 315 may wait to
instantiate 1ngest plugin 224 until there are suflicient
resources. As shown, ingest plugin 224 extracts data from
data source 110 after being spawned by VDSM 130. When
extracting data, ingest plugin 224 may extract data directly
from the underlying data structure (e.g., a database table) or
from a change data capture feed that identifies changes made
to data source 110. Ingest plugin 224 may also look for
changes to data 1n a data source 110 (e.g., a file system) and
propagate those changes into VSD 120.

As depicted, ingest plugin 224 produces ingested data that
1s provided to VDS 120. In some cases, mgest plugin 224
transforms data from a first format to a second, diflerent
format that permits that data to be stored at VDS 120.
Consider an example 1n which VDS 120 includes a bitmap
index as a data representation 210 and that the underlying
data 1s being extracted from a database table. Ingest plugin
224 may create a bit string having bits that have been set to
represent values from records of the database table. The bit
string may then be added to the bitmap index of VDS 120.
Ingest plugin 224 may continually ingest updates to data 1n
the data source 110 1n order to keep VDS 120 updated.

In various cases, mgest plugin 224 may execute on the
same network as the origin (e.g., an underlying data source
110), but that network may be a different network than the
network associated with VDS 120. Consequently, ingest
plugin 224 may abstract (e.g., convert the data mto a bit
stream/format) and compress the data that 1t ingests before
sending that compressed ingested data to VDS 120—thus
may reduce the amount of network bandwidth consumed in
transporting the data. In various embodiments, ingest plugin
224 can be stacked with other plugins 224 such that the
output of ingest plugin 224 serves as the mput of another
plugin 224 (or vice versa). For example, an ingest transior-

10

15

20

25

30

35

40

45

50

55

60

65

20

mation plugin 224 may convert user birthdates from a
database table into age values and ingest plugin 224 may
store those age values 1n a bit string format.

Turning now to FIG. 4B, a block diagram of an example
consumption plugin 224 1s shown. Consumption plugin 224,
1n various embodiments, 1s a set of software routines execut-
able to perform operations on outgoing data from VDS 120.
The 1llustrated embodiment presents an example use case of
a consumption plugin 224 1mn which VDSM 130 receives a
data request 425—the request may be received from an
entity via VDSM API 311 or a user interface that 1s provided
by user interface engine 312. Instead of spawning consump-
tion plugin 224 1n response to data request 425 as discussed
below, VDSM 130 may spawn consumption plugin 224 in
response to a trigger event or set intervals of time, for
example.

Data request 425, 1n various embodiments, 1s a request for
particular data from VDS 120. Data request 425 may specily
one or more queries to execute against VDS 120 and may
specily a data format 1n which to return the results from VDS
120 to the requestor. VDSM 130 may select, based on the
format of the queries, a particular consumption plugin from
a list of consumption plugins 224 that 1s capable of con-
verting the one or more queries of data request 425 from,
e.g., SQL 1mnto a query format understood by VDS 120 so that
those queries can be executed. In some cases, consumption
plugin 224 may translate API calls written for, e.g., Cassan-
dra® or MongoDB® 1nto a query format understood by the
VDS 120 so that those calls can be carried out. VDSM 130
(or consumption plugin 224) may route the converted que-
ries to VDS 120. In some cases, a consumption transforma-
tion plugin 224 may receive a query result from VDS 120
and convert the result into the requested data format before
returning the formatted query result to VDSM 130. For
example, 11 data 1s being wrtten from VDS 120 imto a
relational database, then the consumption transiormation
plugin 224 may translate the data into the format of that
relational database.

Another example of a consumption plugin 224 1s a plugin
that ensures that data leaving VDS 120 1s compliant with
specified policies. For example, VDS 120 might be deployed
and executing within an EU country. As a result, a con-
sumption plugin 224 may be instantiated that can verity that
outgoing data 1s compliant with the General Data Protection
Regulation. Another example of a consumption plugin 224
1s a plugin that establishes a secure connection between the
VDS environment and the destination computer system so
that data 1s secure during transmission between VDS 120
and the destination computer system. Another example of a
consumption plugin 224 is a plugin that replicates changes
from one VDS 120 to another VDS 120. For example, a
consumption plugin 224 may ensure that a Furope-based
VDS 120 1s kept up to date with a US-based counterpart
VDS 120 by detecting changes to the US-based VDS 120
and propagating them to the Europe-based VDS 120.

Turning now to FI1G. 4C, a block diagram of an example
at-rest plugin 224 1s shown. At-rest plugin 224, 1n various
embodiments, 1s a set of software routines that are execut-
able to perform a set of operations on data while 1t resides
at VDS 120. In the illustrated embodiment, at-rest plugin
224 15 spawned by VDSM 130. In various cases, VDSM 130
may spawn at-rest plugin 224 1n response to receiving a
request to perform a particular task (e.g., from a user that
wants to run an analysis on the data of VDS 120); 1 yet
other cases, VDSM 130 may spawn at-rest plugin 224 1n
response to a trigger event (e.g., an update to VDS 120) or
at set intervals of time.

US 11,263,026 B2

21

Examples of at-rest plugins 224 include a plugin that
generates results from executing machine learning models
based on data in VDS 120, a plugin that generates charts and
graphs providing a visual representatlon of data in VDS 120
(e.g., a chart showing different income levels), a plugin that
performs a data integrity operation 1n order to verily that
data included i VDS 120 accurately represents data
included 1n data source 110, etc. As shown, at-rest plugin
224 generates an at-rest result 435 that 1s derived from the
operations that it performs on data from VDS 120. That
at-rest result 435 can be sent to VDSM 130 or to another
component (e.g., a user device). For example, 11 at-rest
plugins 224 1s a plugin that generates charts and graphs, then
at-rest plugins 224 may send information about the charts
and graphs to VDSM 130 as at-rest result 435 for generating
a user interface to present the charts and graphs to a user. In
some cases, at-rest result 435 may be iserted as new data
into VDS 120 or used to update data already stored in VDS
120. An at-rest transformation plugin 224 may be used to
transiorm at-rest result 4335 to a particular format before 1t 1s
stored 1n VDS 120. At-rest plugins 224 may further be used,
for example, for feature engineering, calculating fields, etc.

Turning now to FIG. SA, a block diagram of an example
implementation of VDSM 130 and VDSs 120 1s shown. In
the illustrated embodiment, the example implementation
includes multiple VDSs 120 that are managed by VDSM
130. As shown, data source 110A, which 1s a platform
provided by Zenoss®, 1s an origin of data for VDS 120A,
and data source 110B, which may be a data lake, 1s an origin
of data for VDS 120B. VDSM 130 may receive queries from
applications (via APIs or client libraries) for data stored at
the original data sources 110. Instead of executing the
queries against data source 110A and 110B, VDSM 130 may
execute the queries against VDSs 120A and 120B. Accord-
ingly, VDSM 130 may receive a result from VDSs 120A and
120B and return that result to the requesting process. In
various cases, due to the structural nature of VDSs, execut-
ing the queries agaimnst VDSs 120A and 120B can be
performed 1n a shorter amount of time relative to executing,
the queries against data sources 110A and 110B.

Turning now to FIG. 5B, a block diagram of another
example implementation of VDSM 130 and VDSs 120 1s

shown. In the 1illustrated embodiment, VDSs 120A-C
include data that 1s representative of data stored at data
source 110, which 1s a SQL database 1n the illustrated
embodiment. As shown, there 1s a change data capture
(CDC) plugin (an example of an ingest plugin 224) that can
ingest data from data source 110 and mto VDS 120A-C. This
may include updates received at the SQL database as part of
its 1ingest pipeline. As further shown, VDSM 130 interfaces
with an application and/or an Al engine (which may be an
example of a consumption plugin 224) that 1ssues requests
for data to VDSM 130. VDSM 130 can execute queries
derived from those requests against VDSs 120A-C to gen-
erate a result. VDSM 130 may then return that result to the
application and/or Al engine. When implementing Al rou-
tines, 1n various cases, VDSs 120A-C are more suitable for
the operations being performed by those Al routines than the
SQL database since VDSs 120A-C may support a higher
speed of iteration and 1f the model 1s embedded, adjacency
in the same compute fabric.

Turning now to FIG. 6, a tlow diagram of a method 600
1s shown. Method 600 1s one embodiment of a method
performed by a computer system implementing a virtual
data source manager (e.g., a VDSM 130) that 1s capable of
creating and managing virtual data sources (e.g., VDSs 120).
In some cases, method 600 may be performed by executing

10

15

20

25

30

35

40

45

50

55

60

65

22

a set of program instructions stored on a non-transitory
computer-readable medium. In some embodiments, method
600 1ncludes more or less steps than shown. For example,
method 600 may 1nclude a step 1n which the VDSM pro-
cesses a request for data included 1 a VDS.

Method 600 begins 1n step 610 with the VDSM receiving
a virtual data source (VDS) creation request (e.g., a VDS
creation request 415) to create a particular VDS. The VDS
creation request may include mformation (e.g., VDS meta-
data 230) that 1s usable to 1dentily an origin of the particular
VDS and an ingestion routine (e.g., an ingest plugin 224).
The information included 1n the VDS creation request may
identify a set of data filters usable to select a subset of the
data stored at the origin of the particular VDS—e.g., select
data from fields “income.,” “name,” and “hobbies” of data-
base table “user”. Accordingly, at least one of the data filters
may specily a mapping from a data field of the origin of the
particular VDS to a data field of the particular VDS. In some
cases, a first field name may be used for the data field of the
origin of the particular VDS and a second, different field
name 1s used for the data field of the particular VDS. The
information included i the VDS creation request may
identify a set of data transformation usable for transforming
data of the origin from a first value (e.g., a birthdate) to a
second value (e.g., an age).

In step 620, i response to the VDS creation request, the
VDSM uses the ingestion routine to create the particular
VDS that includes a bitmap index (e.g., a data representation
210) that 1s representative of data stored at the origin. In
response to a data request (e.g., a data request 425) that
corresponds to the ornigin, 1 various embodiments, the
particular VDS 1s usable to mnitiate a query to the particular
VDS without accessing the origin. In some cases, the origin
may be an original data source corresponding to a relational
database or a non-relational database. In yet some cases, the
origin 1s a second VDS created based on data stored at a
corresponding original data source—e.g., topology 150B.

In various cases, the VDSM may receive a particular data
request for data stored 1n a set of original data sources that
correspond to a set of VDSs managed by the VDSM. The set
of VDSs includes the particular VDS. Based on the particu-
lar data request, the VDSM may determine that the bitmap
index included in the particular VDS corresponds to the
particular data request. For example, the particular data
request may request access to data from a “user” database
table stored at the origin and the bitmap index included in
the particular VDS may store information representative of
the data stored 1n that “user” database table. Accordingly, the
VDSM may determine that the bitmap 1index can be used to
process the data request. The VDSM may send, to the
particular VDS, one or more queries that are based on the
particular data request (e.g., the data request may specity the
queries) to access the requested data without accessing the
origin of the particular VDS.

In some embodiments, the VDSM causes a user interface
to be displayed to a user via a user device. The user interface
may permit the user to 1nvoke functions included 1n an API
(e.g., VDSM API 311) by selecting one or more options
displayed 1n the user interface. The one or more options may
include an option to select a origin from a list of origins (e.g.,
data sources 110 and VDSs 120) upon which to create a
VDS. Accordingly, the information that 1s included 1n VDS
creation request may identily a selection by the user of the
origin of the particular VDS from the list of origins. The one
or more options may also include an option to select a set of
software plugins from a library of software plugins (e.g.,
plugins 224) maintained by the VDSM. A given software

US 11,263,026 B2

23

plugin from the library may be executable to perform a
respective set of functions (e.g., data transformation) in
relation to the particular VDS. In some cases, the particular
VDS may be associated with a first set of software plugins
that 1s different than a second set of software plugins that 1s
associated with a second particular VDS managed by the
VDSM.

In some embodiments, the VDSM manages a pool of
resources by allocating resources (e.g., servers, nodes 145,
storage devices, etc.) of the pool to the VDS and one or more
services (e.g., VDSM API 311, user interface engine 312,
ctc.) maintained by the computer system. The VDSM may
provide an application programming interface (API) (e.g.,
VDSM API 311) that permits an external entity (e.g., an
application server) to 1ssue requests to the VDSM to perform
one or more functions (e.g., access data) 1n relation to the
VDS. The API may include a delete function callable to
cause the VDSM to delete a VDS, a list function callable to
cause the VDSM to list VDSs managed by the VDSM,
and/or a clone function callable to cause the VDSM to create
a VDS by cloning another VDS. The VDSM may allocate at
least one resource (e.g., a server) from the pool as an API
server for implementing the API. In various cases, the
VDSM may allocate at least one resource (e.g., a server)
from the pool to a compute cluster for implementing the
VDS—the compute cluster may implement a plurality of
VDSs managed by the VDSM. In some cases, the VDSs may
be implemented on a set of virtual machines and the VDSM
may be implemented on a different virtual machine. In
various cases, the VDSM may allocate at least one resource
(e.g., a server) from the pool as a web server for providing
user interfaces from a user interface engine of the VDSM. In
various cases, the VDSM may allocate at least one resource
(e.g., a server) from the pool as an ingest server for imple-
menting the ingestion routine to create the particular VDS.

Turning now to FIG. 7, a tlow diagram of a method 700
1s shown. Method 700 1s one embodiment of a method
performed by a computer system implementing a virtual
data source manager (e.g., a VDSM 130) that 1s capable of
using virtual data sources (e.g., VDSs 120) to process data
requests (e.g., data requests 425). Method 700 may be
performed by executing a set of program 1instructions stored
on a non-transitory computer-readable medium. In some
embodiments, method 700 includes more or less steps than
shown. For example, method 700 may include a step 1n
which the VDSM creates a VDS.

Method 700 begins 1n step 710 with the VDSM main-
taining a virtual data source (VDS) registry (e.g., a VDS
registry 320) for a plurality of virtual data sources (VDSs).
The VDS registry may include, for a given one of the
plurality of VDSs, VDS metadata (e.g., VDS metadata 230)
that 1s indicative of data represented 1n a bitmap index (e.g.,
a data representation 210) included 1n that given VDS. In
step 720, the VDSM receives a request for information (e.g.,
data request 425) stored 1n a set of original data sources (e.g.,
data sources 110) that correspond to the plurality of VDSs.

In step 730, the VDSM processes the request against the
plurality of VDSs without accessing the set of original data
sources. In step 732, as part of the processing, the VDSM
identifies, based on the VDS metadata, at least one of the
plurality of VDSs having a bitmap index corresponding to
the request (e.g., the VDS metadata indicates that 1ts corre-
sponding bitmap index stores information for a data field
from which data 1s being requested). In step 734, as part of
the processing, the VDSM sends, to the at least one VDS,
one or more queries that are based on the request. Prior to
sending the one or more queries, the VDSM may cause

10

15

20

25

30

35

40

45

50

55

60

65

24

execution of a consumption routine (e.g., a plugin 224) to
convert the one or more queries from a first format corre-
sponding to the set of original data sources to a second,
different format corresponding to the at least one VDS. In
some cases, the VDSM may determine, whether an 1ssuer of
the request for information 1s mncluded 1n a list of 1ssuers
permitted to access information from the at least one VDS.
In some cases, the VDSM may aggregate information
returned by at least two diflerent VDSs for the one or more
queries to generate a result and return the result to the 1ssuer
of the request for information.

In various cases, the VDSM may receive a VDS creation
request to create a particular VDS. The VDSM may use, 1n
response to the VDS creation request, an ingestion routine to
create the particular VDS to include a bitmap index that 1s
representative of data stored at an origin. The VDSM may
update the VDS registry to mnclude VDS metadata for that
particular VDS.

Turning now to FIG. 8, a tlow diagram of a method 800
1s shown. Method 800 1s one embodiment of a method
performed by a computer system to create a VDS (e.g., a
VDS 120). Method 800 may be performed by executing a set
of program instructions stored on a non-transitory computer-
readable medium. In some embodiments, method 800 may
include more or less steps than shown. For example, method
800 may include a step 1n which the created VDS 1s used to
process a data request (e.g., a data request 425).

Method 800 begins 1n step 810 with the computer system
creating a virtual data source (VDS) based on a correspond-
ing origin (e.g., a data source 110). The VDS may include a
bitmap index (e.g., a data representation 210) that 1s repre-
sentative of data stored at the origin and ingestion metadata
(e.g., VDS metadata 230) that specifies a location of the
origin and a set of ingest parameters for configuring an
ingestion routine (e.g., an mgest plugin 224) to ingest data
from the origin 1nto the bitmap index.

In some cases, the origin may be an original data source
that corresponds to a storage service of a cloud-based
platform on a wide area network. The location may corre-
spond to one or more files maintained by the storage service.
Accordingly, the set of ingest parameters may specily:
access credentials that permit the ingestion routine to access
the one or more files; and at least one data format (e.g.,
JSON) of data objects included 1n the one or more files to
cnable the ingestion routine to parse ones of the data objects.
In yet some cases, the origin may be an original data source
that corresponds to a pipeline of a pipeline-based platform
(e.g., Katka® platform) that provides a data stream. As such,
the set of ingest parameters may specily: a host address
corresponding to the pipeline-based platform; a pipeline
identifier that indicates the pipeline; and at least one data
format of a set of data objects in the pipeline that enables the
ingestion routine to parse ones of the set of data objects.

In some cases, the set of ingest parameters may specily a
storage location at which to store data ingested from the
origin for inclusion 1n the bitmap 1index The storage location
may corresponds to a data store of a storage service that 1s
provided by a cloud-based platform on a wide area network.
In various cases, the computer system may store data
ingested from the origin for inclusion 1n the bitmap 1ndex at
a data store that i1s included 1 a compute cluster (e.g.,
compute cluster 140) that implements the VDS. The com-
pute cluster may be managed by the computer system (e.g.,
managed by VDSM 130 executing on the computer system).
The set of ingest parameters may specily: a mapping of a set
of data fields of one or more data objects of the origin to a

set of data fields of the bitmap index of the VDS. The set of

US 11,263,026 B2

25

data fields of the one or more data objects that 1s defined 1n
the mapping 1s a subset of all data fields of the one or more
data objects—e.g., the one or more data objects may include
four data fields but only two are mapped to the bitmap index.
The one or more data objects may include at least one
database table. The VDS may be created such that the VDS

includes an access list that i1dentifies sets of entities and
respective sets of data that can be accessed from the bitmap

index by ones of those sets of entities.

The VDS may be associated with a VDS 1dentifier that
enables the computer system to 1identily the VDS separately
from other VDSs that are managed by the computer system.
In some cases, the VDS may include fingerprint information
(e.g., ingerprint information 233) indicative of the VDS and
the fingerprint information may specily a number of rows of
the bitmap 1index, a number of columns of the bitmap index,
and a data density of the bitmap index.

Turning now to FIG. 9, a flow diagram of a method 900
1s shown. Method 900 1s one embodiment of a method
performed by a VDS (e.g., a VDS 120) executing on a
computer system to process a data request (e.g., a data
request 425). Method 900 may be performed by executing a
set of program 1nstructions stored on a non-transitory com-
puter-readable medium. In some embodiments, method 900
may include more or less steps than shown. For example,
method 900 may include a step 1n which the VDS 1s created.

Method 900 begins 1n step 910 with the VDS receiving a
data request from a virtual data source manager (VDSM)
(e.g., VDSM 130) that manages a plurality of VDSs. The
data request may 1dentily one or more queries to be executed
against a bitmap index (e.g., a data representation 210) that
1s representative of data stored 1n an origin (e.g., a data
source 110) of the VDS. The VDS may include a plurality
of portions distributed across nodes of a compute cluster
(e.g., VDS 120A distributed across nodes 145A-C). In
vartous embodiments, the data request 1s received by a
particular portion of the plurality of portions that 1s execut-
ing on a node of the compute cluster (e.g., the portion of
VDS 120A executing on node 145A). The particular portion
of the VDS may determine ones of the nodes that are
executing other ones of the plurality of portions of the VDS
(c.g., nodes 145B and 145C). The particular portion may
route the one or more queries to those nodes determined to
be executing the other portions of the VDS. The VDS may
include 1ngestion metadata (e.g., VDS metadata 230) that
specifies a location of the origin and a set of ingest param-
eters for configuring an ingestion routine to igest data from
the origin into the bitmap index. The origin may be a second
VDS created based on a corresponding original data source.

In step 920, the VDS returns, to the VDSM, a result of
executing the one or more queries against the bitmap 1index
included 1n the VDS. In some cases, the particular portion of
the VDS may receive a set of query results from the other
portions of the VDS and may aggregate the set of query
results into the result returned to the VDSM.

Turning now to FIG. 10, a flow diagram of a method 1000
1s shown. Method 1000 1s one embodiment of a method
performed by a VDSM (e.g., a VDSM 130) that 1s executing
on a computer system to create a VDS (e.g., a VDS 120)
with plugin support. Method 1000 may be performed by
executing a set ol program instructions stored on a non-
transitory computer-readable medium. In some embodi-
ments, method 1000 may include more or less steps than
shown. For example, method 1000 may include a step 1n
which the VDS used to process a data request (e.g., a data
request 425).

10

15

20

25

30

35

40

45

50

55

60

65

26

Method 1000 begins 1n step 1010 with the VDSM main-
taining a library of software plugins (e.g., plugins 224) that
are executable to perform functions (e.g., ingest data from a
data source 110 into a data representation 210 included 1n a
VDS 120) relating to virtual data sources (VDSs). In step
1020, the VDSM receives a request (e.g., a VDS creation
request 415) to create a VDS based on an origin (e.g., a data
source 110).

In step 1030, the VDSM creates, based on the request, a
particular VDS having a bitmap index (e.g., a data repre-
sentation 210) representative of data at the origin. In step
1032, as part of the creating, the VDSM receives plugin
information that specifies a set of software plugins included
in the library of software plugins. In some cases, the VDSM
may cause an interface (e.g., an interface generated by user
interface engine 312) to be displayed to a user via a user
device. The interface may present software plugins from the
library of software plugins and the user may select a set of
the software plugins to be associated with the VDS, resulting
in the VDSM receiving the plugin information. In step 1034,
as part of the creating, the VDSM configures the set of
soltware plugins to be able to perform functions relating to
the particular VDS. Configuring a plugin may include, for
example, allocating resources (e.g., processors and memory)
to execute the plugin, mstantiating the plugin using those
resources, configuring network ports to permit the plugin to
communicate with a VDS, and/or providing storage to the
plugin for storing results from its execution.

In some cases, the VDSM may receive a request (e.g., a
data request 425) for data included in the bitmap index. The
request for data may specily one or more queries (e.g., SQL
queries) 1n a first format. The VDSM may spawn a con-
sumption software plugin from the set of software plugins to
process the request for data, including by translating the one
or more queries from the ﬁrst format to a second, different
format (e.g., a VDS query language) that can be processed
against the bitmap index.

In some embodiments, the set of software plugins include
an mgest software plugin that 1s capable of accessing data of
the origin and converting that data from a first format (e.g.,
data records of a database table) used at the origin to a
second, different format (e.g., bit strings for a bitmap index)
that permits that data to be stored in the bitmap index. The
mgest soltware plugin may be capable of accessing data of
the origin by ingesting data from a Change data capture feed
that 1dentifies data changes to the origin. In some cases, the
ingest soltware plugin may be capable of accessing data of
the origin by 1dentiiying data changes 1n a file system of the
origin and propagating the data changes into the bitmap
index. The set of software plugins may include a second
ingest software plugin that 1s capable of ingesting 1ingested
data 1into the bitmap index that 1s produced by the first ingest
software plugin—plugins 224 may be stacked such that the
output of one plugin 224 1s the input of another plugin 224.
In some cases, the origin 1s located externally to the par-
ticular VDS (e.g., the origin 1s a cloud platiorm operated by
a third party). The VDSM may cause the ingest software
plugin to be executed on a computer system of a local-area
network that includes the origin (e.g., executed on the cloud
platform). The ingest software plugin may compress data
ingested from the origin before sending that ingested data
from the local-area network that includes the origin (e.g., the
cloud platform) to a different local-area network that
includes the particular VDS (e.g., another cloud platiorm).
In some cases, the set of software plugins may include a
transformation software plugin that 1s capable of performing
a set of transformations on values of one or more data fields

US 11,263,026 B2

27

of the origin to generate values for a particular data field of
the bitmap index that 1s not included 1n the data at the origin.

Turning now to FIG. 11, a flow diagram of a method 1100
1s shown. Method 1100 1s one embodiment of a method
performed by a VDSM (e.g., a VDSM 130) that 1s executing
on a computer system to manage a VDS (e.g., a VDS 120)
using a set of software plugins (e.g., plugins 224). Method
1100 may be performed by executing a set of program
instructions stored on a non-transitory computer-readable
medium. In some embodiments, method 1100 may include
more or less steps than shown. For example, method 1100
may include a step 1n which the VDS used to process a data
request (e.g., a data request 4235).

Method 1100 begins i step 1110 with the VDSM main-
taining a set of software plugins 1n association with a virtual
data source (VDS). Ones of the set of software plugins may
be executable to perform corresponding functions (e.g.,
access prevention, monitoring, data transformation, data
encryption, etc.) in relation to the VDS. In some cases, a
second VDS managed by the VDSM may be associated with
a second set of software plugins that 1s different than the set
ol software plugins associated with the VDS. In some cases,
the VDS may be created based on a second origin. The
origin and the second origin may be different types of data
sources. For example, the origin may be another VDS and
the second origin may be an original data source that
corresponds to a relational database.

In step 1120, the VDSM manages the VDS using the set
of software plugins. In step 1122, as part of the managing,
the VDSM recerves a request (e.g., a data request 425) for
data that 1s stored at an origin (e.g., a data source 110). The
VDS may include a bitmap index (e.g., a data representation
210) representative of the data stored at the origin. In step
1124, as part of the managing, the VDSM spawns a con-
sumption software plugin from the set of software plugins to
process the request for data. The consumption software
plugin may translate one or more queries included 1n the
request from a first format to a second, different format that
can be processed against the bitmap index of the VDS.

In some cases, the set of software plugins may include a
second consumption software plugin that may perform a
data integrity operation to vernify that data included 1n the
bitmap index 1s representative of data included 1n the origin.
In some cases, the set of software plugins may include a
second consumption software plugin that i1s capable of
executing one or more machine learning models against data
included in the bitmap index. In some cases, the set of
soltware plugins may include a security software plugin that
1s capable of establishing a secure connection for sending
data from the VDS to an endpoint system. In some cases, the
set of software plugins may include a security software
plugin that 1s capable of preventing accesses ol data
included 1n the bitmap index are not compliant with a
speciflied set of security policies. In some cases, the set of
soltware plugins may include a monitoring software plugin
that 1s capable of collecting a set of metrics pertaining to an
operation of the VDS. In some cases, the set of software
plugins may include a consumption software plugin that 1s
capable of operating on data being sent from the VDS to a
destination entity. The destination entity may be another
particular VDS that 1s located in a different geographic
region than the particular VDS. The consumption software
plugin may be capable of detecting changes to the VDS and
propagating the changes to the other VDS.

Exemplary Computer System

Turning now to FIG. 12, a block diagram of an exemplary

computer system 1200, which may implement system 100,

10

15

20

25

30

35

40

45

50

55

60

65

28

compute cluster 140, and/or a node 145, 1s depicted. Com-
puter system 1200 includes a processor subsystem 1280 that
1s coupled to a system memory 1220 and I/O interfaces(s)
1240 via an mterconnect 1260 (e.g., a system bus). I/O
interface(s) 1240 1s coupled to one or more I/O devices
1250. Computer system 1200 may be any of various types
of devices, including, but not limited to, a server system,
personal computer system, desktop computer, laptop or
notebook computer, mainirame computer system, tablet
computer, handheld computer, workstation, network com-
puter, a consumer device such as a mobile phone, music
player, or personal data assistant (PDA). Although a single
computer system 1200 1s shown 1n FIG. 12 for convenience,
system 1200 may also be implemented as two or more
computer systems operating together.

Processor subsystem 1280 may include one or more
processors or processing units. In various embodiments of
computer system 1200, multiple instances of processor
subsystem 1280 may be coupled to interconnect 1260. In
various embodiments, processor subsystem 1280 (or each
processor unit within 1280) may contain a cache or other
form of on-board memory.

System memory 1220 1s usable store program instructions
executable by processor subsystem 1280 to cause system
1200 perform various operations described herein. System
memory 1220 may be implemented using different physical
memory media, such as hard disk storage, floppy disk
storage, removable disk storage, flash memory, random
access memory (RAM—SRAM, EDO RAM, SDRAM,
DDR SDRAM, RAMBUS RAM, etc.), read only memory
(PROM, EEPROM, etc.), and so on. Memory 1n computer

system 1200 1s not limited to primary storage such as
memory 1220. Rather, computer system 1200 may also
include other forms of storage such as cache memory 1n
processor subsystem 1280 and secondary storage on 1/O
Devices 12350 (e.g., a hard drive, storage array, etc.). In some
embodiments, these other forms of storage may also store
program 1nstructions executable by processor subsystem
1280. In some embodiments, program instructions that when
executed 1implement a data source 110, a VDS 120, and
VDSM 130 may be included/stored within system memory
1220.

I/O 1interfaces 1240 may be any of various types of
interfaces configured to couple to and communicate with
other devices, according to various embodiments. In one
embodiment, I/O interface 1240 1s a bridge chip (e.g.,
Southbridge) from a front-side to one or more back-side
buses. 1/O mterfaces 1240 may be coupled to one or more
I/O devices 1250 via one or more corresponding buses or
other interfaces. Examples of I/O devices 1250 include
storage devices (hard drive, optical drive, removable flash
drive, storage array, SAN, or their associated controller),
network interface devices (e.g., to a local or wide-area
network), or other devices (e.g., graphics, user interface
devices, etc.). In one embodiment, computer system 1200 1s
coupled to a network via a network interface device 1250
(e.g., configured to communicate over Wik1, Bluetooth,
Ethernet, etc.).

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment 1s described with respect to a particular feature.

Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-

wise. The above description 1s intended to cover such

US 11,263,026 B2

29

alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.
The scope of the present disclosure includes any feature
or combination of features disclosed herein (either explicitly
or implicitly), or any generalization thereof, whether or not
it mitigates any or all of the problems addressed herein.
Accordingly, new claims may be formulated during pros-
ecution of this application (or an application claiming pri-
ority thereto) to any such combination of features. In par-
ticular, with reference to the appended claims, features from
dependent claims may be combined with those of the
independent claims and features from respective indepen-
dent claims may be combined 1n any appropriate manner and
not merely in the specific combinations enumerated in the
appended claims.
What 1s claimed 1s:
1. A method, comprising:
maintaiming, by a virtual data source manager (VDSM)
that 1s executing on a computer system, a library of
soltware plugins that are executable to perform func-
tions relating to virtual data sources (VDSs);

receiving, by the VDSM, a request to create a VDS based
on an origin; and

creating, by the VDSM based on the request, a particular

VDS having a bitmap index representative of data at

the origin, wherein the creating includes:

receiving plugin mformation that specifies a set of
software plugins included in the hibrary of software
plugins;

configuring the set of software plugins to be able to
perform functions relating to the particular VDS;

receiving, by the VDSM, a request for data included 1n the

bitmap 1index, wherein the request for data specifies one

or more queries 1n a first format; and

spawning, by the VDSM, a consumption software plugin

from the set of software plugins to process the request
for data, wherein the consumption software plugin 1is
capable of translating the one or more queries from the
first format to a second, different format that can be
processed against the bitmap index.

2. The method of claam 1, wherein the set of software
plugins includes an ingest software plugin that 1s capable of
accessing data of the origin and converting that data from a
first format used at the origin to a second, different format
that permits that data to be stored in the bitmap index.

3. The method of claim 2, wherein the ingest software
plugin 1s capable of accessing data of the origin by ingesting,
data from a change data capture feed that identifies data
changes to the origin.

4. The method of claim 2, wherein the ingest software
plugin 1s capable of accessing data of the origin by 1denti-
tying data changes in a file system of the ornigin and
propagating the data changes into the bitmap index.

5. The method of claim 2, wherein the set of software
plugins includes a second ingest software plugin that 1s
capable of ingesting ingested data into the bitmap index that
1s produced by the ingest software plugin.

6. The method of claim 2, wherein the origin 1s located
externally to the particular VDS, and wherein the creating
includes:

causing, by the VDSM, the ingest software plugin to be

executed on a computer system of a local-area network
that includes the origin.

7. The method of claim 6, wherein the ingest software
plugin 1s capable of compressing data ingested from the
origin before sending that ingested data from the local-area

10

15

20

25

30

35

40

45

50

55

60

65

30

network that includes the origin to a different local-area
network that includes the particular VDS.

8. The method of claim 1, wherein the set of software
plugins includes a transformation software plugin that 1s
capable of performing a set of transformations on values of
one or more data fields of the origin to generate values for
a particular data field of the bitmap index that is not included
in the data at the origin.

9. The method of claim 1, further comprising:

causing, by the VDSM, an iterface to be displayed to a

user via a user device, wherein the interface presents
software plugins from the library of software plugins,
and wherein the plugin information corresponds to a
selection of the set of software plugins by the user via
the interface.

10. A non-transitory computer readable medium having
program 1nstructions stored thereon that are executable to
cause a computer system to implement a virtual data source
manager (VDSM) capable of performing operations com-
prising;:

maintaining a library of software plugins that are execut-

able to perform functions relating to wvirtual data
sources (VDSs);

recerving a request to create a VDS based on an origin;

creating, based on the request, a particular VDS having a

bitmap 1index representative of data at the origin,

wherein the creating includes:

receiving plugin information that specifies a set of
soltware plugins included 1n the library of software
plugins; and

configuring the set of software plugins to be able to
perform functions relating to the particular VDS;

recerving a request for data included in the bitmap index,

wherein the request for data specifies one or more

queries 1n a first format; and

spawning a consumption software plugin from the set of

soltware plugins to process the request for data,
wherein the consumption software plugin 1s capable of
translating the one or more queries from the first format
to a second, different format that can be processed
against the bitmap index.

11. The medium of claam 10, wherein the operations
further comprise:

spawning a consumption software plugin imncluded in the

set of software plugins that 1s capable of performing a
set of data transformations on data being sent from the
particular VDS to a destination entity.

12. A system, comprising:

at least one processor; and

memory having program instructions stored thereon that

are executable by the at least one processor to cause the
system to perform operations comprising;

maintaining a library of software plugins that are
executable to perform functions relating to virtual
data sources (VDSs);
receiving a request to create a VDS based on an origin;
creating, based on the request, a particular VDS having
a bitmap index representative of data at the origin,
wherein the creating includes:
receiving plugin mformation that specifies a set of
software plugins included in the library of soft-
ware plugins; and
configuring the set of software plugins to be able to
perform functions relating to the particular VDS;
and

US 11,263,026 B2

31

receiving a request for data included in the bitmap
index, wherein the request for data specifies one or
more queries 1n a first format; and

spawning a consumption software plugin from the set
ol software plugins to process the request for data,
wherein the consumption software plugin i1s capable
of translating the one or more queries from the first
format to a second, different format that can be
processed against the bitmap index.

13. The system of claim 12, wherein the set of software
plugins includes a second consumption soitware plugin that
1s capable of performing a data integrity operation to verily
that data included 1n the bitmap index is representative of
data included in the origin.

14. The system of claim 12, wherein the set of software
plugins 1includes a second consumption software plugin that
1s capable of executing one or more machine learning
models against data included in the bitmap index.

10

15

32

15. The system of claim 12, wherein the set of software
plugins includes a security software plugin that 1s capable of
establishing a secure connection for sending data from the
particular VDS to an endpoint system.

16. The system of claim 12, wherein the set of software
plugins includes a security software plugin that 1s capable of
preventing accesses of data included in the bitmap 1index are
not compliant with a specified set of security policies.

17. The system of claim 12, wherein the set of software
plugins includes a monitoring software plugin that 1s capable
of collecting a set of metrics pertaining to an operation of the
particular VDS.

18. The system of claim 12, wherein a second VDS
managed by the system 1s associated with a second set of
soltware plugins that 1s different than the set of software
plugins associated with the particular VDS.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

