12 United States Patent

Mukherjee

US011263015B1

US 11,263,015 B1
Mar. 1, 2022

(10) Patent No.:
45) Date of Patent:

(54) MICROARCHITECTURAL SENSITIVE TAG

(71)
(72)

(73)

(%)

(21)
(22)

(60)

(1)

(52)

(58)

(56)

FLOW

Applicant: Marvell Asia Pte, Ltd., Singapore (SG)

Inventor:

Assignee:

Notice:

U.S.C. 154(b)
Appl. No.: 17/081,113

Filed: Oct. 27, 2020

Shubhendu Sekhar Mukherjee,
Southborough,

MA (US)

Marvell Asia Pte, Ltd., Singapore (SG)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

by 0 days.

Related U.S. Application Data

Provisional application No. 62/944,251, filed on Dec.

D, 2019.

Int. CI.

GO6F 9/30 (2018.01)

GO6F 9/38 (2018.01)

U.S. CL

CPC ... GO6F 9/30192 (2013.01); GOOF 9/30145

(2013.01); GO6F 9/30189 (2013.01); GO6F

9/3814 (2013.01); GO6F 9/3838 (2013.01);
GO6F 9/3851 (2013.01)

Field of Classification Search

None

See application file for complete search history.

References

Cited

U.S. PATENT DOCUMENTS

9,436,603 B1*
9,824,225 Bl

9/2016 Pohlack
11/2017 Polansky
9,852,070 B2* 12/2017 Seo

tttttttttttttttt

ttttttttttttttttttttt

GO6F 21/556

GO6F 12/0864

10,719,632 B2* 7/2020 Persson GOG6F 21/55
10,740,220 B2* 8/2020 Mola GO6F 12/0837
10,771,236 B2* 9/2020 Courtney GO6F 7/58
10,846,399 B2* 11/2020 Park GO6F 21/54
10,860,215 B2* 12/2020 Jagtapcovvvnnn.. GO6F 3/068
10,891,235 B2* 1/2021 Garcia GO6F 12/0891
10,929,535 B2* 2/2021 Sukhomlmov HO04L 9/005
10,936,714 B1* 3/2021 Mclntosh GO6F 21/53
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO0-2019180402 Al * 9/2019 GOO6F 12/0897

iiiiiiiii

OTHER PUBLICATIONS

Wu. M. et al.,, Elimmnating Timing Side-Channel Leaks using
Program Repair, 2018, ACM, 12 pages. (Year: 2018).*

(Continued)

Primary Examiner — Eric Coleman

(74) Attorney, Agent, or Firm — Young Basile Hanlon &
MacFarlane, P.C.

(57) ABSTRACT

Described herein are systems and methods for microarchi-
tectural sensitive tag flow. For example, some methods
include detecting dependence of data stored in a second data
storage circuitry on the {first instruction, where the first
instruction will output a value to be stored in the second data
storage circuitry, and wherein the second data storage cir-
cuitry 1s associated with a third tag indicating whether the
second data storage circuitry has been designated as storing,
sensitive data; responsive to the dependence of data stored
in the second data storage circuitry on the first istruction,
checking whether the second tag indicates a sensitive
instruction; and, responsive to the second tag indicating a
sensitive instruction, updating the third tag to indicate that
data stored 1n the second data storage circuitry has been
designated as sensitive.

0,887,833 B2* 2/2018 Sethumadhavan ... GO6F 21/556 30 Claims, 15 Drawing Sheets
i 100
PROCESSOR CORE 102 IC T
| i 101 STORAGE
REGISTER |H . - DEVICE
E : 118A
> o 5 116 '
PIPELINE e - ~—
/O DEVICE
104 PROCESSOR ; - 1%R
MEMORY ;
— SYSTEM
108 : 5
i a
—% : '«—p| VFODEVICE |
T ? | 118C E
: - 110
'Yy R |
INTERCONNECTION NETWORK. | E VO DEVICE |
112 » | VOBRIDGE | __| NN %
T : : 1i4 : ;
i : "'\._...---- 3
013 I ;
N;_\ | :
MAIN MEMORY | . | MEMORY MODULE [T
L2 | eee |LLC CONTROLLER -t -
\ 122 % é 124

\ 120

US 11,263,015 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

11,144,468 B2 * 10/2021 Basak GO6F 12/1408
11,163,857 B2 11/2021 Moritz et al.

2008/0126766 Al 5/2008 Chheda et al.
2009/0089564 Al 4/2009 Brickell et al.
2019/0114422 Al 4/2019 Johnson et al.
2019/0163512 Al 5/2019 Hackett
2020/0065112 Al 2/2020 Gotze
2020/0133679 Al 4/2020 Brandt et al.
2021/0096872 Al 4/2021 LeMay
2021/0173651 Al 6/2021 Mukherjee
2021/0173657 Al 6/2021 Mukherjee

OTHER PUBLICATIONS

Heo, I., et al., Implementing an Application-Specification Instruction-

Set Processor for System-Level Dynamic Program Analysis Engines.,

2015, ACM, pp. 53:1-53:32. (Year: 2015).*

Ben El Ouahma, Ines et al., Side channel robustness analysis of
masked assembly codes using a symbolic approach, Mar. 2019,
Springer-Verlag,pp. 9:231-242. (Year: 2019).*

Siddiui, A. S. et al., Secure Design Flow of FPGA Based RISC-V
Implementation, 2019, IEEE, pp. 37-42., (Year: 2019).*

Coppens, B., et al., Practical Mitigations for Timing-Based Side-
Channel Attacks on Modern x86 Processors, 2009 IEEE pp. 45-60.
(Year: 2009).*

Townley et al., “SMT-COP: Defeating Side-Channel Attacks on
Execution Units in SMT Processors,” 2019 28th International
Conference on Parallel Architectures and Compilation Techniques
(PACT), Seattle, Wa, USA, 2019, pp. 13-54.

Aldaya et al., “Port Contention for Fun and Profit”, 2019 IEEE
Symposium on Security and Privacy, pp. 870-887, Tate of Confer-
ence: May 19-23, 2019, date published online for download avail-
ability: Sep. 16, 2019.

Suh et al., “Secure Program Execution via Dynamic Information

Flow Tracking”, MIT Computer Science and Artificial ntelligence
Laboratory Technical Report, Jul. 21, 2003.

Yue Zhang, Ziyuan Zhu, Dan Men. “DDM: A Demand-based
Dynamic Mitigation for SMT Transient Channels” arXiv:1910.
12021 (Year: 2019).

* cited by examiner

US 11,263,015 Bl

Sheet 1 of 15

Mar. 1, 2022

U.S. Patent

I Ol

ST
HOIAAA O/1

J8I11
HOIAAA O/1

das11

AIIAAA O/1

VS8II
HOIAAA
ADOVHOLS

Ol1

el

| ATNAON AYOWAN

PIT
AHdIdd O/1

001

PR NI B A BN I IS AN NN N N NN NI RN ENN NN EEN NN _ NEN BN _EBEN _ BEE _ NEN _ SEE _SNEE_ SEN _SEE_ BIEE_ NEE_ INIEE_ INEE_ NIE~N NER~R BEJMN JN:EN _HEZWN _JEIN _HIEN _IEN BN _IEN_ NN Y

|
7

Ol1 L e e

—

@
AT TTOUINOD
AMOWAN NIVIN

JIl| e

40
AJOMLAN NOLLIOANNOODSHLNI

801
INHLSAS
ANJOWAIN
JOSSH)O0Ud

901

14
dALSIDAY

N

140!

01 410D d0OS5HO0Ud

ANI"TddId

U.S. Patent Mar. 1, 2022 Sheet 2 of 15 US 11,263,015 B1

220
BRANCH
FETCH CIRCUITRY PREDICTION
200 CIRCUITRY
201
204 ﬂi 203
DECODE CIRCUITRY \ v '
U ACTUAL PREDICTED
202 BRANCH BRANCH

RESULT RESULT

THREAD HAZARD

ISSUE CIRCUITRY 206 CIRCUITRY
230

211

208A

L

>*
S
E
>~

214A

208B

1
T
5
>

.
L
I wat
o
T

{\J

!

COMMIT STAGE CIRCUITRY
217

FIG. 2A

U.S. Patent Mar. 1, 2022 Sheet 3 of 15 US 11,263,015 B1

227
BRANCH
FETCH CIRCUITRY PREDICTION
200 CIRCUITRY
201
I 504 7|__~——‘\l/ /03
- ' \ ACTUAL PREDICTED
DECODE CIRCUITRY BRANCH BRANCH
202 RESULT RESULT
I ISSUE CIRCUITRY 240 I
RR CIRCUITRY 242
THREAD HAZARD
DISPATCH CIRCUITRY 244 CIRCUITRY
280
250
BEU 260 EU 262 EU 264 EU 266 EBEU 268
_ ® 00
(ALU) (LSU) (FPU) (CRYPTO) (ALU)
RW CIRCUITRY 270 I
COMMIT STAGE CIRCUITRY i
217

FIG. 2B

US 11,263,015 Bl

Sheet 4 of 15

Mar. 1, 2022

U.S. Patent

¢ Dld

02€ AYLNA HOVO
| - 7 ® ©
20€
AJOWHAN NIVIN |
I
_ ~ NAVM

9T€ "OdANI SNILVL
P2 AD01d

7

Olt d1d

80¢
H1dV.LHdDVd

| a |

_ _ 4 4 LLAS

T0¢ |
AHOVD 11
90¢ O
ATV M
NIAIN
#0¢
a1l

801 WWHLSAS AdOWHAN dOSSd00dd

U.S. Patent Mar. 1, 2022 Sheet 5 of 15 US 11,263,015 B1

400

410

FETCH INSTRUCTION OF FIRST THREAD

l e 420

DETECT THAT THE INSTRUCTION HAS BEEN DESIGNATED
AS SENSITIVE

430
/"

RESPONSIVE TO DETECTION OF THE SENSITIVE
INSTRUCTION, DISABLE EXECUTION OF INSTRUCTIONS OF
THREADS OTHER THAN THE FIRST THREAD DURING
EXECUTION OF THE SENSITIVE INSTRUCTION

440
/

EXECUTE THE SENSITIVE INSTRUCTION

450

RESPONSIVE TO COMPLETION OF EXECUTION OF THE
SENSITIVE INSTRUCTION, ENABLE EXECUTION OF
INSTRUCTIONS OF THREADS OTHER THAN THE FIRST
THREAD

l e 460

EXECUTE AN INSTRUCTION OF A SECOND THREAD IN
PARALLEL WITH A SECOND ISTRUCTION OF THE FIRST
THREAD

FIG. 4

U.S. Patent Mar. 1, 2022 Sheet 6 of 15 US 11,263,015 B1

INTEGRATED CIRCUIT
500
PROCESSOR CORE
510
PROCESS STATE REGISTER
520
SH EN |
522
PIPELINE
104

PROCESSOR
MEMORY

SYSTEM

108

FIG. S

U.S. Patent Mar. 1, 2022 Sheet 7 of 15 US 11,263,015 B1

DETECT THAT IS8T INSTRUCTION OF I1ST PROCESS HAS
BEEN DESIGNATED AS A SENSITIVE INSTRUCTION

l e 620

CHECK WHETHER SH EN BIT IS ENABLED

650 630
, 4 ya v ya

RESPONSIVE TO DISABLEMENT RESPONSIVE TO DETECTION OF THE
OF THE SH_EN BIT, EXECUTE SENSITIVE INSTRUCTION AND
THE 1ST INSTRUCTION WITHOUT ENABLEMENT OF THE SH EN BIT,

THE CONSTRAINT INVOKE CONSTRAINT FOR
EXECUTION OF THE 1ST INSTRUCTION

040

EXECUTE THE 1ST INSTRUCTION
SUBJECT TO THE CONSTRAINT

660
/‘
EXECUTE 2ZND INSTRUCTION OF THE 18T PROCESS
WITHOUT THE CONSTRAINT
670

UPDATE VALUE OF SH EN BIT BASED ON AN INSTRUCTION
FROM A 2ND PROCESS WITH HIGHER PRIORITY

FIG. 6

U.S. Patent Mar. 1, 2022 Sheet 8 of 15 US 11,263,015 B1

700

710
/"

DECODE SENSITIVE-START INSTRUCTION

720

RESPONSIVE TO THE SENSITIVE-START INSTRUCTION,
INDENTIFY INSTRUCTION(S) PRECEDED BY THE SENSITIVE-

START INSTRUCTION AS SENSITIVE INSTRUCTION(S) AS
EXECUTION CONTINUES SUBJECT TO THE CONSTRAINT

730

DECODE A SENSITIVE-STOP INSTRUCTION

l e 740

RESPONSIVE TO THE SENSITIVE-STOP INSTRUCTION,
CONTINUE EXECUTION WITHOUT THE CONSTRAINT

FIG. 7

U.S. Patent Mar. 1, 2022 Sheet 9 of 15 US 11,263,015 B1

300

310
/"

RECEIVE FROM A PROCESS A REQUEST TO AUTHORIZE
SENSISTIVE INSTRUCTION HANDLING

320

RESPONSIVE TO THE REQUEST, DETERMINE WHETHER TO
AUTHORIZE SENSITIVE INSTRUCTION HANDLING FOR THE
PROCESS BASED ON A SECURITY POLICY

l e 330

UPDATE VALUE OF THE SH EN BIT FOR THE PROCESS

FIG. 8

U.S. Patent Mar. 1, 2022 Sheet 10 of 15 US 11,263,015 B1

INTEGRATED CIRCUIT
900
@
®
®
| DATA STORAGE CIRCUITRY |
022
PROCESSOR CORE
910
®
®
®
SET OF TAGS DATA STORAGE CIRCUITRY
FOR DATA (REGISTER)
240 930
SET OF TAGS
FOR INSTRUCTION BUFFER
INSTRUCTIONS
o6 050

FIG. 9

U.S. Patent Mar. 1, 2022 Sheet 11 of 15 US 11,263,015 B1

1000

DATA STORAGE CIRCUITRY (REGISTER)
1010

1020

DATA STORAGE CIRCUITRY (REGISTER)
1012

1022

FIG. 10

U.S. Patent Mar. 1, 2022 Sheet 12 of 15 US 11,263,015 B1

1100

TUPLE OF TAGS
FOR PAGE 0 OF MEMORY
1110

TUPLE OF TAGS
FOR PAGE M-1 OF MEMORY

1112

TAG O o0 TAG N-1

1124 1126

FIG. 11

U.S. Patent Mar. 1, 2022 Sheet 13 of 15 US 11,263,015 B1

1200

1210

DETECT DEPENDENCE OF 18T INSTRUCTION ON DATA IN 18T DSC

1220
/-‘

RESPOSIVE TO DEPENDENCE, CHECK WHETHER 18T TAG INDICATES
SENSITIVE DATA IN 18T DSC

1230

RESPONSIVE TO 1ST TAG INDICATING SENSITIVE DATA, UPDATE 2ND TAG
TO INDICATE 1ST INSTRUCTION HAS BEEN DESIGNATED AS SENSITIVE

1240

CHECK WHETHER 2ND TAG INDICATES A SENSITIVE INSTRUCTION

~ 1250

RESPONSIVE TO 2ND TAG INDICATING SENSITIVE INSTRUCTION, INVOKE
CONSTRAINT FOR EXECUTION OF THE 18T INSTRUCTION

1260

EXECUTE THE 1ST INSTRUCTION SUBJECT TO THE CONSTRAINT

FIG. 12

U.S. Patent Mar. 1, 2022 Sheet 14 of 15 US 11,263,015 B1

1300

1310

DETECT DEPENDENCE OF DATA IN 18T DSC ON IST INSTRUCTION

1320

RESPOSIVE TO DEPENDENCE, CHECK WHETHER TAG ASSOCIATED WITH 18T
INSTRUCTION INDICATES SENSITIVE INSTRUCTION

l /1330

RESPONSIVE TO TAG INDICATING SENSITIVE INSTRUCTION, UPDATE TAG
ASOOCIATED WITH THE 1ST DSC TO INDICATE DATA STORED IN THE 18T
DSC HAS BEEN DESIGNATED AS SENSITIVE

FIG. 13

U.S. Patent Mar. 1, 2022 Sheet 15 of 15 US 11,263,015 B1

1400

1410

FETCH SENSITIVE RESET INSTRUCTION

1420

RESPOSIVE TO THE SENSITIVE RESET INSTRUCTION, UPDATE ALL TAGS IN A
SET OF TAGS TO INDICATE ABSENCE OF SENSITIVE DATA

l e 1430

RESPOSIVE TO THE SENSITIVE RESET INSTRUCTION, UPDATE ALL TAGS IN A
2ND SET OF TAGS TO INDICATE NON-SENSITIVE INSTRUCTION

US 11,263,015 Bl

1

MICROARCHITECTURAL SENSITIVE TAG
FLOW

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Application Patent Ser. No. 62/944,251, filed
Dec. 5, 2019, the entire disclosure of which 1s hereby
incorporated by reference.

TECHNICAL FIELD

This disclosure relates to microarchitectural sensitive tag
tlow.

BACKGROUND

A processor pipeline includes multiple stages through
which instructions advance, a cycle at a time. In a scalar
processor, 1nstructions proceed one-by-one through the
pipeline, with at most a single nstruction being committed
per cycle. In a superscalar processor, multiple instructions
may proceed through the same pipeline stage at the same
time, allowing more than one 1nstruction to 1ssue per cycle,
depending on certain conditions (called hazards), up to an
1ssue width. Some processors 1ssue instructions in-order
(according to a program order), with consecutive instruc-
tions proceeding through the pipeline 1 program order.
Other processors allow instructions to be reordered and
issued out-of-order, which potentially increases overall
pipeline throughput. If reordering i1s allowed, instructions
can be reordered within a sliding instruction window (whose
s1ze can be larger than the 1ssue width), and a reorder butler
can be used to temporarily store results (and other informa-
tion) associated with instructions in the instruction window
to enable the instructions to be committed in-order (poten-
tially allowing multiple instructions to be committed 1n the
same cycle as long as they are contiguous in the program
order).

SUMMARY

Disclosed herein are implementations of microarchitec-
tural sensitive tag flow.

A first aspect of the disclosed implementations 1s an
integrated circuit for executing instructions that includes a
first data storage circuitry associated with a first tag indi-
cating whether the first data storage circuitry has been
designated as storing sensitive data, and a processor core
configured to: detect dependence of a first istruction on
data stored 1n the first data storage circuitry, where the first
instruction will access a value stored in the first data storage
circuitry; responsive to the dependence of the first mstruc-
tion on the data stored in the first data storage circuitry,
check whether the first tag indicates sensitive data; respon-
s1ve to the first tag indicating sensitive data, update a second
tag associated with the first instruction to indicate that the
first instruction has been designated as sensitive; check
whether the second tag indicates a sensitive instruction;
responsive to the second tag indicating a sensitive mstruc-
tion, 1nvoke a constraint for execution of the first instruction;
and execute the first instruction subject to the constraint.

A second aspect of the disclosed implementations 1s a
method that includes detecting dependence of data stored in
a second data storage circuitry on the first instruction, where
the first mstruction will output a value to be stored in the

10

15

20

25

30

35

40

45

50

55

60

65

2

second data storage circuitry, and wherein the second data
storage circuitry 1s associated with a third tag indicating
whether the second data storage circuitry has been desig-
nated as storing sensitive data; responsive to the dependence
of data stored 1n the second data storage circuitry on the first
istruction, checking whether the second tag indicates a
sensitive 1nstruction; and, responsive to the second tag
indicating a sensitive instruction, updating the third tag to
indicate that data stored in the second data storage circuitry
has been designated as sensitive.

A third aspect of the disclosed implementations an inte-
grated circuit for executing instructions that includes a first
data storage circuitry associated with a first tag indicating
whether the first data storage circuitry has been designated
as storing sensitive data, and a processor core configured to:
detect dependence of data stored in the first data storage
circuitry on a first instruction, where the first instruction will
output a value to be stored in the first data storage circuitry;
responsive to the dependence of data stored 1n the first data
storage circuitry on the first 1nstruction, check whether a
second tag associated with the {first istruction indicates a
sensitive 1nstruction; and, responsive to the second tag
indicating a sensitive struction, update the first tag to
indicate that data stored 1n the first data storage circuitry has
been designated as sensitive.

These and other aspects of this disclosure are disclosed 1n
the following detailed description of the implementations,
the appended claims and the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure 1s best understood from the following
detailed description when read in conmjunction with the
accompanying drawings, wherein like reference numerals
refer to like parts throughout the several views. It 1s empha-
s1zed that, according to common practice, the various fea-
tures of the drawings are not to-scale. On the contrary, the
dimensions of the various features are arbitrarily expanded
or reduced for clarity.

FIG. 1 1s a high-level block diagram of an example of a
computing system 100.

FIG. 2A 1s an example of a configuration of the pipeline
of FIG. 1.

FIG. 2B 1s an example of a configuration of the pipeline
of FIG. 1.

FIG. 3 1s an example of a configuration of the processor
memory system of FIG. 1.

FIG. 4 1s a flow chart of an example of a technique for
secure multithread execution.

FIG. 5 1s a block diagram of an example of an integrated
circuit for executing instructions with special handling for
dynamically designated sensitive instructions.

FIG. 6 1s a flow chart of an example of a technique for
executing 1nstructions with special handling for dynamically
designated sensitive instructions.

FIG. 7 1s a flow chart of an example of a technique for
detecting that one or more instructions of a process have
been designated as sensitive instructions.

FIG. 8 1s a flow chart of an example of a technique for
updating an authorization for sensitive handling of mnstruc-
tions for a process using a higher priority process.

FIG. 9 1s a block diagram of an example of an integrated
circuit for executing instructions with microarchitectural
structures for tracking the flow of sensitive information to
identily sensitive instructions.

US 11,263,015 Bl

3

FIG. 10 1s a block diagram of an example of a register file
including data storage circuitries with respective integrated
sensitivity tags.

FIG. 11 1s a block diagram of an example of a set of
sensitivity tags including tuples of tags for pages of a
memory, with individual tags corresponding to subblocks of
a page.

FIG. 12 1s a flow chart of an example of a technique for
propagating a sensitive designation from a data storage
circuitry to an instruction that will access the data storage
circuitry.

FIG. 13 15 a flow chart of an example of a techmque for
propagating a sensitive designation from an instruction that
will output to a data storage circuitry to the data storage
circuitry.

FIG. 14 15 a flow chart of an example of a techmque for
resetting sensitive data tags 1n a processor microarchitecture
using a specialized reset instruction.

DETAILED DESCRIPTION

Described herein are systems and methods for microarchi-
tectural sensitive tag tlow. Side-channel attacks on proces-
sors, such as Portsmash, have been discovered recently. A
side-channel attack 1s one 1n which a spy can discover
information about a victim entity using knowledge of the
implementation, rather than weakness in an implemented
algonithm 1itself. For example, 1f a spy can discover what
instructions are executing on a victim process 1n a computer
system by measuring timing information about the spy itself,
then 1t would be considered a side-channel attack. Software
or hardware may mark instructions as “sensitive” instruc-
tions to execute, which would tell the hardware to “protect™
the sensitive instructions appropriately. A problem, however,
1s that data dependences from the sensitive mstructions can
reveal secret information via side channels. For example, 1
a floating point divide can take diflerent number of cycles
depending the data itself. So, a data dependence tlowing
from a sensitive instruction and going through a subsequent
floating point divide can reveal what kind of data the
sensitive instruction generated, thereby revealing the secret
via a side channel.

To protect against such side-channel attacks, a micro-
architectural mechanism may be implemented to propagate
sensitive information along various data and control depen-
dences 1n a processor execution. For example, registers that
are written by sensitive instructions would be sensitive as
well. Similarly, instructions reading sensitive registers may
be designated as sensitive as well. However, some systems
(c.g., systems using dynamic information flow tracking
(DIFT)) that propagate sensitive information, may cause a
problem. Once sensitive information starts propagating
through registers, soon most registers may become sensitive.
In turn most nstructions may become sensitive. This may
lead to a saturation eflect making hardware protect all
instructions that become sensitive.

Some 1mplementations described herein may solve or
mitigate this 1ssue of over-protection by hardware. For
example, to avoid the problem of saturation 1n memory, a
tuple (e.g., a vector) ol bits may be provided with each bit
would represent a region 1n a page of memory. For example,
if there are 4 bits for a 4K page, each region would be 4
k/4=1024 bytes.

In some 1implementations, a mechanism 1s provided where
hardware can mark entire register set periodically as sensi-
tive or non-sensitive. The {first one protects critical regions
aggressively. The latter un-protects these regions.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Some 1implementations may provide advantages over ear-
lier systems, such as: better tracking of sensitive as well as
non-sensitive instructions, which may allow hardware to
selectively protect instructions appropriately, thereby reduc-
ing performance overhead.

Described herein are systems and methods for dynamic
designation of mstructions as sensitive. Side-channel attacks
on processors, such as Portsmash, have been discovered
recently. A side-channel attack 1s one 1n which a spy can
discover information about a victim entity using knowledge
of the implementation, rather than weakness 1n an imple-
mented algorithm 1tself. For example, 11 a spy can discover
what 1nstructions are executing on a victim process 1n a
computer system by measuring timing information about the
spy 1tself, then 1t would be considered a side-channel attack.

In some instances, the victim may {easibly designate
which istructions or which section of code could be vul-
nerable to side-channel attacks. Or rather which instructions
or code, 11 attacked, would cause serious harm. AES encryp-
tion 1nstructions are examples of such a class of instructions.

Typically, the operating system or hypervisor handles
resource allocation and makes policy decision 1n a proces-
sor, whereas the hardware may be providing primitives. For
example, the operating system decides how to allocate
memory pages, whereas the hardware provides the primi-
tives for virtual memory. Similarly, security can be viewed
as a similar problem where the OS/hypervisor decides how
to protect “sensitive” instructions and code. The hardware
may provide primitives to support that.

This disclosure describes how software can designate
certain instructions as sensitive or not. Whether an instruc-
tion 1s sensitive or not may be blessed by a higher privilege
level process after a request has been made by a lower
privilege level process. For example, in ARM, an ELO user
process can request to mark an instruction as sensitive.
However, 1f the hardware allows the instruction to be
marked as sensitive, then this could be used for malicious
purposes (e.g., to slow down the computing system). To
address this 1ssue, whether an instruction can be marked as
sensitive may be controlled by a higher privilege level
soltware process (e.g., a hypervisor process).

Different ways of marking instructions as sensitive
instructions may be employed, which can be blessed by
higher level software. A first mechanism uses an additional
bit 1 every nstruction. Thus, every instruction can be
independently designated as sensitive or non-sensitive. Soft-
ware can 1ssue either version of the instruction. There may
be a separate system control register in which higher level
software would designate 1f a lower privilege execution
process’ sensitive mstruction would be recognized as such.
For example, 11 the system control register bit 1s not set, then
hardware may not recognize the instruction as sensitive and
would not invoke a constraint on execution to protect the
execution of the struction. For example, if the system
control register bit 1s set, then hardware may execute the
instruction as a sensitive instruction, subject to a constraint
that serves to enhance security of the process that includes
the sensitive instruction.

A second mechanism may designate a subsequence of
istructions (e.g., a region of instructions) as sensitive.
Lower level software may make an upcall to set a system
control bit, which would now indicate that all subsequent
instructions are sensitive. If higher level software allows the
bit to be set, then hardware will take appropriate actions.
Subsequently, lower level software may make another upcall
to unset the bait.

US 11,263,015 Bl

S

The systems and techniques described herein may provide
advantages over conventional systems and techniques, such
as, for example, providing a clean separation between poli-
cies (1mplemented by software) and primitives (1mple-
mented by hardware), allowing hardware to provide appro-
priate protection based on software designation for sensitive
instructions, and/or allowing software to provide feedback
to hardware to do the appropriate protection mechanism
(e.g., Invoking a constraint on execution).

Described herein are systems and methods for secure
multithread execution. Side-channel attacks on Simultane-
ous Multithreading (SMT) processors have been discovered
recently. A side-channel attack 1s one 1 which a spy can
discover information about a victim entity using knowledge
of the implementation, rather than weakness 1in implemented
algonithm 1itself. For example, 11 a spy can discover what
istructions are executing on a victim process 1n a computer
system by measuring timing information about the spy itself,
then 1t would be considered a side-channel attack.

SMT processors are a class of multithreaded processors 1n
which multiple hardware threads can execute within the
same physical processor core. For example, Intel Xeon
supports Hyperthreading, which 1s a form of SMT process-
ing. Simultaneous execution of SMT threads imply that
instructions from multiple threads can populate the pipeline
and execute simultaneously in the execution units. The
advantage of SMT processing 1s that idle slots not used by
one thread can be filled and used by other threads, thereby
boosting performance.

However, a new class of side-channel attacks, called
Portsmash, have been disclosed in SMT processors. In such
attacks, the spy process discovers information about the
victim by timing 1ts own execution. For example, consider
a victim process only executing one of two instructions in a
loop: VICTIMO and VICTIMI1. Also, assume that VICTIMO
can only execute 1n 1n execution unit 0 (called port0) and
VICTIM1 can execute only i execution unit 1 (called
portl). Similarly, assume that the spy can execute the
istructions SPYO0 and SPY1. Similarly, SPYO executes 1n
portO and SPY1 executes in portl. For simplicity, assume in
this example, that the victim only executes VICTIMO con-
tinuously or VICTIMI continuously.

The question 1s can the spy figure out which of the two
instructions the victim process 1s executing? The answer 1s
yes. This 1s how. Let us say the victim 1s executing con-
tinuously either VICTIMO or VICTIMI1. The spy first
executes SPYO continuously and measures time t0 to
execute these instructions. Then spy executes same number
of SPY1 continuously and measures time t1 to execute these
instructions. If t0>t1, then that means the victim was execut-
ing VICTIMO instructions. If t0<tl, then the victim was
executing VICTIMI1 instructions. This 1s because both SPYO
and VICTIMO execute i portO. Thus, if VICTIMO was
executing, 1t will take SPYO longer to execute than SPY1,
which goes to portl.

The above 1s simpler version of the more complicated

technique described 1n Aldaya, A. C., Brumley, B. B., ul
Hassan, S., Garcia, C. P., & Tuveri, N. (2018) Port Conten-
tion for Fun and Profit, IACR Cryptology ePrint Archive,
2018, 1060, but the basics are the same. A spy process
measures how long 1t takes to executes 1ts instructions that
may compete for the same port as the victim and discover
what algorithm the victim may be runming. Brumley et al.
shows how to break P-384 elliptical curve cryptography
using such a mechanism.

One approach to preventing a Portsmash attack 1s to
completely disable SMT processing. That 1s, you only allow

10

15

20

25

30

35

40

45

50

55

60

65

6

one thread to execute at a time i1n a physical core. This
approach does not achieve high performance because 1t does
not use the full capabilities of a processor.

Another approach to preventing a Portsmash attack 1s to
employ temporal or spatial partitioning of pipeline
resources. In temporal partitioning, a processor pipeline can
be used only by one thread at a time. Thus, a spy process
cannot use port contention to measure how much delayed 1t
might get because of port contention with the victim process.
In spatial partitioming, an execution unit and possibly other
resources 1n a processor pipeline are hard-partitioned among,
threads, such that instructions from two threads do not
execute on the same port. Temporal partitioning i1s sub-
optimal 1n performance because i1t disallows instructions
from a second thread to enter the pipeline when the first
thread executes. Spatial partitioning may be diflicult to
design because 1n many instances only one port may support
a particular kind of execution resource. Spatial partitioning
requires as many ports as there are threads for the same
execution resource.

This disclosure discusses techmiques for preventing these
side-channel attacks on multithread processors (e.g., SMT
Processors).

Instead of using thread-level granularity to partition
resources, this disclosure uses instruction-level granularity
to partition resources 1n a multithread pipeline (e.g., an SMT
pipeline). At a high-level, these techniques may include: 1.)
recognizing that an instruction (potentially 1n a victim
process) 1s “sensitive.” A sensitive instruction may be one
that could expose secrets. Examples of sensitive mstructions
may include Advanced Encryption standard (AES) single
round decryption or AES single round encryption, efc.

2.) If a sensitive mstruction executes 1n a cycle, then only
allow 1nstructions from the same thread executing the sen-
sitive 1nstruction to execute 1n the execution units. Thus, 1n
the above example, SPYO0 or SPY 1 will take equally long to
execute (t0~=t1) when VICTIMO or VICTIMI executes.

Normally, the i1ssue and dispatch logic of a processor
pipeline will decide 11 an 1nstruction can be 1ssued to a port
in the execution umt. This decision may include resolving
structural hazards, constraints, and RAW (read-aiter-write)
dependences. In some 1implementations, the 1ssue logic will
additionally now resolve a new “thread hazard.” This 1s a
new rule that states 11 a sensitive istruction has been chosen
to execute from one thread, then instructions from no other
thread can execute simultancously for the one or more
cycles during which the sensitive instruction 1s executing.

Some 1mplementations may provide advantages over ear-
lier systems, such as: preventing side channel attacks (e.g.,
Portsmash attacks) while maintaining high performance 1n
terms of average instruction throughput.

Further details of techmiques for secure multithread
execution are described herein with initial reference to a
system 1n which they can be implemented, as shown 1n
FIGS. 1 through 3.

FIG. 1 1s a high-level block diagram of an example of a
computing system 100. The computing system 100 includes
an integrated circuit 101 with at least one processor core
102, which can be a single central processing unit (CPU) or
one of multiple processor cores 1n a multi-core architecture.
In a multi-core architecture each processor core (or simply
“core”) can include an individual CPU with associated
circuitry. In this example of a multi-core architecture, each
processor core 102 can include a processor pipeline 104, one
or more register files 106, and a processor memory system
108. Each register file of the register files 106 can include
one or more individually addressable registers.

US 11,263,015 Bl

7

Each processor core 102 can be connected to an uncore
110. The uncore 110 can 1nclude an interconnection network
112 and an external memory system 113. The interconnec-
tion network 112 can be a bus, a cross-bar switch, a mesh
network, or some other interconnection network. The inter-
connection network 112 can enable communication between
cach processor core 102 and an external memory system 113
and/or an put/output (I/0O) bridge 114.

The I/O bridge 114 can enable communication, such as
over an I/O bus 116, with various different I/O devices
including a storage device 118A and other I/O devices
118B-118D. Non-limiting examples of the other I/O devices
118B-118D can include a network interface, a display
adapter, or user input devices such as a keyboard or a mouse.

The storage device 118A can be a disk drive or some other
large capacity storage device. The storage device 118A can
typically be a non-volatile storage device. In some
examples, the storage device 118 A, or a portion thereof, can
be used 1n a virtual memory scheme. For example, a portion
of the storage device 118A can serve as secondary storage
(or a ‘backing store’) 1in a virtual memory scheme for the
(typically volatile and/or capacity-limited) main memory.
Examples of main memory include the processor memory
system 108 or an external memory system, such as described
below with respect to an external memory system 113.

The processor memory system 108 and the external
memory system 113 together form a hierarchical memory
system. The hierarchy can include any number of levels. The
levels may be denoted or referredtoas L1,L2, ..., LN. The
L1 level 1s a lower level memory than the L2 memory
system, which 1n turn 1s a lower level than the L3 memory
system, and so on. Typically, each level of the hierarchical
memory system can include memory (e.g., a memory sys-
tem) that 1s slower to access than that of the immediately
lower level and/or each level of the hierarchical memory
system can 1nclude memory (e.g., a memory system) that 1s
faster to access, more limited 1n capacity, and/or more
expensive than that of a higher level. Each level of the
hierarchical memory system can serve as a cache.

A first level (L1) cache can be within (e.g., a part of) the
processor memory system 108. Any number of higher level
(L2, L3, .. .) caches can be within the external memory
system 113. The highest (1.e., last) level cache within the
external memory system 113 can be referred to as the last
level cache (LLC). In an example, the LLC can be the L2
cache.

At each level, the cache can include a first module that
provides an instruction cache for caching instructions and a
second module that provides a data cache for caching data.
The memory system of a level of the hierarchical memory
system can load blocks of instructions or data into entries
and evict (e.g., removes, over-writes, etc.) blocks of mstruc-
tions or data from entries 1 units of cache blocks (also
called cache lines). Cache lines are further described with
respect to FI1G. 3.

In addition to the L1 instruction cache and data cache, the
processor memory system 108 can include a translation
lookaside butfler (TLB) for caching recent translations, and
various other circuitry for handling a miss 1n the L1 mnstruc-
tion or data caches or 1n the TLB. For example, that circuitry
in the processor memory system 108 of a processor core 102
can include a write butler for temporarily holding values to
be written from a store 1nstruction being executed within the
processor pipeline 104. The TLB 1s further described with
respect to FIG. 3.

As already mentioned, the highest level cache within the
external memory system 113 1s the LLC (such as an LLC

10

15

20

25

30

35

40

45

50

55

60

65

8

120). The LLC 120 can be accessed (e.g., searched, etc.) just
before main memory. Of course, this 1s only an example. The
exact division between which level caches are within the
processor memory system 108 and which are 1n the external
memory system 113 can be different 1n other examples. For
example, the L1 cache and the .2 cache can both be internal
to the processor core 102 (1.e., part of the processor memory
system 108) and the L3 (and higher) caches can be external
to the processor core 102.

In an example, each processor core 102 can have 1ts own
internal L1 cache, and the processor cores can share an L2
cache. The external memory system 113 can also include a
main memory controller 122. The main memory controller
122 can be connected to any number of memory modules
124. Each of the memory modules 124 can serve as (e.g., can
be) the main memory. In a non-limiting example, one or
more of the memory modules 124 can be Dynamic Random
Access Memory (DRAM) modules.

In a typical example, the content of a memory address 1s
searched for 1n a level (e.g., L1) of the hierarchical memory
system. If not found, then the next higher level (e.g., L2) 1s
searched; and so on. Searching for a memory address
amounts to answering the question: does this memory level
of the hierarchical memory system include the content of the
memory address? Or, alternatively, 1s the memory address
cached 1n this memory of the hierarchical memory system?

That 1s, 1n a particular cache level of the hierarchy of the
hierarchical memory system, each cache entry includes
space for storing the data words of a particular memory
block along with bits for determining whether a particular
word from a memory block 1s present in that cache level
(1.e., a ‘hit’) or not present 1n that cache level (1.e., a “miss’).
After a miss 1n one level, the cache system attempts to access
(1.e., read or write) the memory block from a higher level
cache, or from the main memory (in the case of a miss 1n the
LLC).

The processor pipeline 104 can include multiple stages
through which instructions advance, a cycle at a time. The
stages can include an instruction fetch (IF) stage or stages,
an instruction decode (ID) stage or stages, an operand fetch
(OF) stage or stages, an instruction execution (IE) stage or
stages, and/or a write back (WB) stage or stages. The
pipeline can include other stages, as further described with
respect to FIG. 2A and FIG. 2B. The processor pipeline 104
may be configured to execute instructions from two or more
threads 1n parallel using execution units of the processor
pipeline. For example, the core 102 may be a simultaneous
multithreading (SMT) processor. The core 102 may include
a Some stages occur 1n a front-end portion of the pipeline.
Some other stages occur i a back-end portion of the
pipeline. The front-end portion can include pre-execution
stages. The back-end portion of the pipeline can include
execution and post-execution stages. For example, the pro-
cessor pipeline 104 may be the processor pipeline 220 of
FIG. 2A. For example, the processor pipeline 104 may be
the processor pipeline 222 of FIG. 2B.

The integrated circuit 101 may include a thread hazard
circuitry configured to detect that an instruction of a first
thread has been designated as a sensitive instruction, and,
responsive to detection of the sensitive instruction, block
instructions of threads other than the first thread from being
executed using execution unmts of processor pipeline while
the sensitive 1nstruction 1s being executed by an execution
unit of the processor pipeline. For example, a thread hazard
circuitry may be part of or interface with the processor
pipeline 104. In some implementations, the thread hazard
circuitry may serve to prevent certain side channel attacks

US 11,263,015 Bl

9

(c.g., a Portsmash attack), while maintaining the perfor-
mance advantages of an SMT processor during executions
of many or most instructions.

First, an instruction 1s fetched (e.g., in the IF stage or
stages). An 1nstruction can be fetched based on a program
counter (PC). The PC 1s a pointer that can be used to 1identily
instructions within memory (e.g., within a portion of the
main memory, or within an instruction cache of the core
102). The PC can advance through addresses of a block of
compiled instructions (called a “basic block™). The PC can
be incremented by a particular number of bytes. The par-
ticular number of bytes for incrementing the PC can depend
on how long (e.g., in bytes) each instruction 1s and on how
many instructions are fetched at a time.

After being fetched, the mstruction 1s then decoded (e.g.,
in the ID stage or stages) to determine an operation and one
or more operands. Alternatively, 1n some pipelines, the IF
and ID stages can overlap. If the mnstruction includes oper-
ands, the operands are fetched (e.g., in the OF stage or
stages).

The instruction 1s then ready to be issued. Issuing an
instruction starts progression of the instruction through
stages 1n a back-end portion of the pipeline to execute the
instruction. In an example, execution of the instruction can
involve applying the operation of the instruction to the
operand(s) to produce a result for an arithmetic logic unit
(ALU) instruction. In an example, execution of the instruc-
tion can 1nvolve storing or loading to or from a memory
address for a memory 1nstruction. In an example, execution
of the instruction can involve evaluating a condition of a
conditional branch instruction to determine whether or not
the branch should be taken.

After an 1nstruction has completed execution, the instruc-
tion can be committed (1.e., retired) so that any eflect of the
instruction 1s made globally visible to software. Committing
an 1nstruction may ivolve storing a result 1n a register file
(c.g., 1n the WB stage or stages), for example. In most
implementations, even 1f any 1nstructions were 1ssued out-
of-order, all mstructions are generally committed in-order.

FIG. 2A 1s an example of a configuration of a processor
pipeline 220. The processor pipeline 220 may be configured
to execute instructions from two or more threads in parallel
using execution units of the processor pipeline.

The processor pipeline 220 can include circuitry for the
various stages (e.g., the IF, ID, and OF stages). For one or
more istruction fetch stages, an mnstruction fetch circuitry
200 provides a PC to an istruction cache in a processor
memory system, such as the processor memory system 108
of FIG. 1, to fetch (e.g., retrieve, read, etc.) instructions to
be fed (e.g., provided to, etc.) mto the processor pipeline
220. For example, the PC can be a virtual address of the next
instruction, 1 which case the PC can be incremented by the
length of a virtual address 1n the case of sequential execution
(1.e., without taking any branches). Virtual addresses are
described with respect to FIG. 3.

The mstruction fetch circuitry 200 can also provide the
program counter, PC, to a branch prediction circuitry 201.
The branch prediction circuitry 201 can be used to provide
a predicted branch result 203 for branch instructions. The
predicted branch result 203 enables the processor pipeline
220 to continue executing speculatively while an actual
branch result 204 1s being determined. The branch prediction
circuitry 201 can also store branch history information that
1s updated based on receiving the actual branch result 204.
In some implementations, some or all of the branch predic-
tion circuitry 201 can be considered to be a part of the
istruction fetch circuitry 200.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an example of the out-of-order execution, for one or
more instruction decode (ID) stages, instruction decode
circuitry 202 can store information 1n an issue queue for
instructions 1n an instruction window waiting to be 1ssued.
The 1ssue queue (which can also be referred to as an
instruction queue) 1s such that an mstruction 1n the queue can
leave the queue when the operands of the instruction become
avallable. As such, the instruction can leave before earlier
(e.g., older) mstructions 1 a program being executed. The
instruction window refers to a set of instructions that can
execute out-of-order.

An 1ssue circuitry 206 can determine a respective cycle 1n
which each of the instructions 1n the issue queue are to be
1ssued. Issuing an instruction makes the 1instruction available
to progress through circuitry of instruction execution (IE)
stages, such as a first execution stage 208A, a second
execution stage 208B, and a third execution stage 208C, of
the processor pipeline 220. For simplicity of explanation,
only three execution stages are illustrated in FIG. 2A.
However, the disclosure herein 1s not so limited: more or
fewer execution stages are possible.

The integrated circuit 101 includes a thread hazard cir-
cuitry 230. In this example, the thread hazard circuitry 230
1s part of an 1ssue circuitry 206 of the processor pipeline 220.
The thread hazard circuitry 230 may be configured to detect
that an instruction of a first thread has been designated as a
sensitive 1nstruction, and, responsive to detection of the
sensitive instruction, block instructions of threads other than
the first thread from being executed using execution units of
processor pipeline 220 while the sensitive instruction 1s
being executed by an execution unit of the processor pipe-
line 220.

In some 1implementations, sensitive instructions may be
statically designated (e.g., a certain type of instruction 1s
always considered sensitive). For example, the thread hazard
circuitry 230 may be configured to detect a sensitive mstruc-
tion based on an opcode of the mstruction. In some 1mple-
mentations, sensitive mstructions may be dynamically des-
ignated (e.g., an instruction may be marked as sensitive by
solftware using a flag). For example, the thread hazard
circuitry 230 may be configured to detect a sensitive instruc-
tion based on a flag included in the instruction (e.g., a
sensitive bit). For example, the thread hazard circuitry 230
may be to detect a sensitive instruction based on a flag 1n an
architectural register.

A variety of different 1nstructions may be considered as
sensitive, depending on the applications being executed. For
example, the sensitive 1nstruction may be a cryptographic
istruction. For example, the sensitive instruction may be an
AES single round decryption instruction. For example, the
sensitive instruction may be an AES single round encryption
istruction.

The processor pipeline 220 can include one more commit
stages, such as a commit stage 210. A commit stage commits
(c.g., writes to memory) results of instructions that have
made their way through the IE states 208A, 208B, and 208C.
For example, a commit stage circuitry 217 may write back
a result into a register file, such as the register file 106 of
FIG. 1. However, some instructions may not be commaitted
by the commut stage circuitry 217. Instead, the results of the
instructions may be committed by other circuitry, such as
circuitry in another stage of the back-end or a stage of the
front-end, possibly based on information from the commut
stage.

Between adjacent stages of the processor pipeline 220, the
various paths through the pipeline circuitry include pipeline
registers. For example, shown in FIG. 2A are pipeline

US 11,263,015 Bl

11

registers 211 for the IE stages 208A, 208B, and 208C. The
pipeline registers can be used for storing results of an
upstream stage to be passed downstream to a next stage. The
pipeline registers 211 may be clocked by (i.e., receive a
clock signal derived from) a common clock (not shown).
Thus, each clock cycle, each pipeline register 211 (also
called a latch, or a set of flip-flops) can pass a result from 1ts
input to 1ts output and becomes ready to receive a new result
in 1ts mput after that result has been produced by the
circuitry of that stage.

There may be multiple separate paths through the IE
stages. The IE stages can include various circuitry for
executing different types of instructions. For illustration
purposes, only two paths 212A and 212B are shown 1n FIG.
2A. However, the execution stages can include any number
ol paths with corresponding circuitry, which can be sepa-
rated by pipeline registers, such as the pipeline registers 211.

The number of paths through the instruction execution
stages can generally be dependent on the specific architec-
ture. In an example, enough paths can be included such that
a number of structions up to a maximum number of
instructions that can progress through the same execution
stages 1n the same cycles. The maximum number of instruc-
tions that can progress through the same execution stages in
the same cycles can be referred to as the 1ssue width.

The number of stages that include functional circuitry for
a given path may also differ. In the example of FIG. 2A, a
first path 212A includes tunctional circuitry 214A, 214B,
and 214C located 1n the first execution stage 208A, the
second execution stage 208B, and the third execution stage
208C, respectively. The second path 212B includes func-
tional circuitry 216A and 216B located 1n the first execution
stage 208A and the second execution stage 208B, respec-
tively. In the second path 212B, the third execution stage
208C 1s a “silo stage” that passes a result along without
performing further computation thereby ensuring that each
path passes through the same number of stages through the
pipeline.

In an example, a path can include circuitry for executing
instructions using units for various operations (e.g., ALU,
multiplier, floating point unit, etc.). In an example, another
path can include circuitry for executing memory access
instructions. The memory access instructions can include
load 1instructions that read data values from the memory
system. The memory access mstructions can include store
istructions to write data values to the memory system. The
circuitry for executing memory access mnstructions can also
initiate translation of virtual addresses to physical addresses,
when necessary, as described in more detaill below with
respect to FIG. 3.

In addition to branch prediction, as described with respect
to the branch prediction circuitry 201, the processor pipeline
220 can be configured to perform other types of speculative
execution. In an example of another type of speculative
execution, the processor pipeline 220 can be configured to
reduce the chance of stalling (such as in the event of a cache
miss) by prefetching. Stalling refers to the situation 1n which
processor execution of instructions is stopped/paused.

A prefetch request can be used to preload a cache level
(c.g., of a data cache) so that a future memory request 1s
likely to hit 1n that cache level instead of having to access a
higher cache level or a main memory. For example, a
speculative memory access request can include prefetch
requests that are sent to preload an instruction cache or data
cache based on a predicted access pattern.

A prefetch request can be or can include a software
prefetch request such that an explicit prefetch instruction

10

15

20

25

30

35

40

45

50

55

60

65

12

that 1s inserted into the processor pipeline 220 includes a
particular address to be prefetched. A prefetch request can be
or can include a hardware prefetch that 1s performed by
hardware within the processor (e.g., the processor core 102)
without an explicit prefetch mstruction being mserted into
its pipeline (e.g., the processor pipeline 220).

In some cases, prefetching can include recognizing a
pattern (e.g., a stream) within the memory accesses of a
program, or can include speculatively performing a load
instruction within a program (e.g., using a speculative
address for that load mstruction) before that load instruction
1s actually 1ssued as part of program execution.

Various types of external instructions can be received
from other processor cores. Such externally received
instructions can be inserted into the processor pipeline 220
by the 1ssue circuitry 206 to be handled at the appropriate
stage. An example of such an externally recerved instruction
1s a TLB mvalidation (TLBI) instruction for imvalidating
entries 1n the TLB of that particular processor core (1.¢., the
receiving core). Another example of an external instruction
that can be recerved 1s a GlobalSync instruction, which may
be broadcast to processor cores as a side eflect of a memory
barrier operation performed by a processor core to ensure
that the eflects of any previously broadcast TLBIs have been
completed. Said another way, an originating processor core
that 1ssues a broadcast TLBI instruction can subsequently
issue a data synchromization barrier (DSB) 1nstruction,
which 1n turn causes GlobalSync instructions to be received
by every other processor core. In response to the Global
Sync mstruction, when a recerving processor core completes
the TLBI instruction, the receiving processor core sends, or
causes to be sent, an acknowledgement to the originating
process core. Once the originating process core receives
acknowledgements from all recerving processor cores, the
originating process core can proceed with istruction execu-
tion. In some cases, an external instruction may cause an
interrupt in a program that is being executed.

FIG. 2B 1s an example of a configuration of a processor
pipeline 222. The processor pipeline 222 may be configured
to execute 1nstructions from two or more threads 1n parallel
using execution units of the processor pipeline.

The processor pipeline 222 can include circuitry for the
various stages (e.g., the IF, 1D, and OF stages). For one or
more instruction fetch stages, an instruction fetch circuitry
200 provides a PC to an instruction cache in a processor
memory system, such as the processor memory system 108
of FIG. 1, to fetch (e.g., retrieve, read, etc.) instructions to

be fed (e.g., provided to, etc.) into the processor pipeline
222. For example, the PC can be a virtual address of the next
instruction, 1n which case the PC can be incremented by the
length of a virtual address 1n the case of sequential execution
(1.e., without taking any branches). Virtual addresses are
described with respect to FIG. 3.

The 1instruction fetch circuitry 200 can also provide the
program counter, PC, to a branch prediction circuitry 201.
The branch prediction circuitry 201 can be used to provide
a predicted branch result 203 for branch instructions. The
predicted branch result 203 enables the processor pipeline
222 to continue executing speculatively while an actual
branch result 204 1s being determined. The branch prediction
circuitry 201 can also store branch history information that
1s updated based on recerving the actual branch result 204.
In some implementations, some or all of the branch predic-
tion circuitry 201 can be considered to be a part of the
instruction fetch circuitry 200.

In an example of the out-of-order execution, for one or
more instruction decode (ID) stages, instruction decode

US 11,263,015 Bl

13

circuitry 202 can store information in an issue queue for
instructions 1n an instruction window waiting to be 1ssued.
The 1ssue queue (which can also be referred to as an
instruction queue) 1s such that an mstruction in the queue can
leave the queue when the operands of the instruction become
avallable. As such, the instruction can leave betore earlier
(e.g., older) mstructions 1n a program being executed. The
instruction window refers to a set of instructions that can
execute out-of-order.

An 1ssue circuitry 240 can determine a respective cycle 1n
which each of the instructions 1n the 1ssue queue are to be
1ssued. Issuing an instruction makes the instruction available
to progress through circuitry of an instruction execution (IE)
stage, such as an execution stage 250, of the processor
pipeline 222. For simplicity of explanation, only one execu-
tion stage 1s 1llustrated 1n FIG. 2B. However, the disclosure
herein 1s not so limited: more or fewer execution stages are
possible.

A register read circuitry 242 may be configured to read
register values (e.g., from the one or more register files 106)
when they become available for use as input arguments for
executing an instruction in the execution stage 250.

A dispatch circuitry 244 may be configured to assign an
instruction to one of the execution units (e.g., 260, 262, 264,
266, or 268) of the execution stage 250 for execution. For
example, the dispatch circuitry 244 may select an execution
unit based on availability of the execution unit and a match
between the instruction type and the type of the execution
unit.

The execution stage 250 includes multiple execution units
(c.g., 260, 262, 264, 266, and 268) that may be used 1n
parallel. Depending on the instruction type, an instruction
may take one or more clock cycles to execute 1n one of the
execution units (e.g., 260, 262, 264, 266, and 268). In this
example, the execution unit 260 i1s an arithmetic logic unit
(ALU), the execution unit 262 1s a load-store unit (LSU), the
execution unit 264 1s a floating-point unit (FPU), the execu-
tion unit 266 1s a cryptographic execution unit, the execution
unit 268 1s another arithmetic logic unit (ALU). For
example, by executing two 1nstructions 1n different execu-
tion units of the execution stage 250 1n a given clock cycle,
the processor pipeline 222 may execute the two instructions
in parallel.

A register write circuitry 270 may be configured to write
values to destination registers (e.g., from the one or more
register files 106) when the values become available as an
output of an execution unit (e.g., 260, 262, 264, 266, or 268)
in the execution stage 250.

The integrated circuit 101 includes a thread hazard cir-
cuitry 280. In this example, the thread hazard circuitry 280
1s part of the dispatch circuitry 244 of the processor pipeline
222. The thread hazard circuitry 280 may be configured to
detect that an instruction of a first thread has been designated
as a sensitive instruction, and, responsive to detection of the
sensitive instruction, block instructions of threads other than
the first thread from being executed using execution units of
processor pipeline 220 while the sensitive instruction 1s
being executed by an execution unit of the processor pipe-
line 220.

In some implementations, sensitive mnstructions may be
statically designated (e.g., a certain type of instruction 1s
always considered sensitive). For example, the thread hazard
circuitry 280 may be configured to detect a sensitive mstruc-
tion based on an opcode of the instruction. In some 1mple-
mentations, sensitive instructions may be dynamically des-
ignated (e.g., an instruction may be marked as sensitive by
software using a flag). For example, the thread hazard

10

15

20

25

30

35

40

45

50

55

60

65

14

circuitry 280 may be configured to detect a sensitive instruc-
tion based on a flag included in the instruction (e.g., a
sensitive bit). For example, the thread hazard circuitry 280
may be to detect a sensitive instruction based on a flag in an
architectural register.

A variety of different 1nstructions may be considered as
sensitive, depending on the applications being executed. For
example, the sensitive 1nstruction may be a cryptographic
instruction. For example, the sensitive instruction may be an
AES single round decryption instruction. For example, the
sensitive instruction may be an AES single round encryption
instruction.

FIG. 3 1s an example of a configuration of the processor
memory system 108 of FIG. 1. In example illustrated i FIG.
3, the processor memory system 108 includes a memory
management unit (MMU) 300 that manages access to the
memory system. The MMU 300 can manage the translation
of virtual addresses to physical addresses.

In some implementations, the MMU 300 can determine
whether a copy of a stored value (e.g., data or an mstruction)
at a given virtual address 1s present 1n any of the levels of the
hierarchical cache system, such as 1n any of the levels from
an L.1 cache 301 up to the LLC 120 (FIG. 1) if necessary. If
s0, then the 1nstruction accessing that virtual address can be
executed using a cached copy of the value associated with
that address. If not, then that instruction can be handled by
miss circuitry to be executed after accessing the value from
a main memory 302.

The main memory 302, and potentially one or more levels
of the cache system, may need to be accessed using a
physical address (PA) translated from the virtual address
(VA). To this end, the processor memory system 108 can
include a TLB 304 that stores translations, defined by
VA-to-PA mappings, and a page table walker 306 for access-
ing a page table 308 if a translation 1s not found 1n the TLB
304. The translations stored i1n the TLB can include recently
accessed translations, likely to be accessed translations,
some other types of translations, or a combination thereof.

The page table 308 can store entries, including a page
table entry (PTE) 310, that contain all of the VA-to-PA
mappings currently in use. The page table 308 can typically
be stored in the main memory 302 along with physical
memory pages that represent corresponding mapped virtual
memory pages that have been “paged 1n” from secondary
storage (e.g., the storage device 118A of FIG. 1). Such a miss
in a page table that causes a page fault 1s another example
of an interrupt that may be caused during program execu-
tion.

A memory page can include a number of cache blocks. A
cache block can include a number of words. A word 1s of a
predetermined number (e.g., 2) of bytes. A byte 1s a group of
bits (e.g., 8 bits), which can be operated on as a unit. A byte
can be considered a unit of memory size.

Alternatively, i a virtualized system with one or more
guest operating systems managed by a hypervisor, virtual
addresses (VAs) may be translated to intermediate physical
addresses (IPAs), which are then translated to physical
addresses (PAs). In a virtualized system, the translation by
a guest operating system of VAs to IPAs may be handled
entirely in software, or the guest operating system may have
some hardware assistance from the MMU 300.

The TLB 304 can be used for caching recently accessed
PTEs from the page table 308. The caching of recently
accessed PTEs can enable the translation to be performed
(such as 1n response to a load or a store instruction) without
the page table walker 306 having to perform a potentially
multi-level page table walk of a multiple-level data structure

US 11,263,015 Bl

15

storing the page table 308 to retrieve the PTE 310. In an
example, the PTE 310 of the page table 308 can store a
virtual page number 312 and a physical page number 314,
which together serve as a mapping between a VA and a PA
that defines a translation of that VA.

An address (1.e., a memory address) can be a collection of
bits. The bits of the memory address can be divided into
low-order bits and high-order bits. For example, assuming
32-bit addresses, an example of a memory address 1is
01101001 00101000 00001101 01011100. The low-order
bits are the rightmost 16 bits (1.e., 00001101 01011100); and
the high-order bit are the leftmost 16 bits (1.e., 01101001
00101000). The low-order bits of a memory address can be
used as a page oilset. The low-order bits can be 1dentical for

a VA and 1ts mapped PA. Thus, the high-order bits of a

memory address can be used as a memory page number to
specily the mapping.

The PTE 310 can also include status information (SI) 316.
The SI 316 can indicate whether or not the page 1s resident
in the main memory 302 or whether the page should be
retrieved from secondary storage. When the PTE 310 1s
stored 1n an entry of any of the TLB 304, there may also be
additional information for managing the transier of PTEs
between the page table 308 and the TLB 304, and for
invalidating PTEs 1n the TLB 304. In an example, invali-
dating PTEs 1in the TLB 304 can be accomplished by
toggling a bit (that indicates whether the entry 1s valid or
not) to a state (1.e., a binary state) that indicates that the entry
1s 1nvalid. However, other ways of invalidating PTEs are
possible.

If a valid entry 1n the TLB 304 that matches with a portion
of a VA to be translated 1s found (i.e., a “TLB hit”), then the
PTE stored in that entry 1s used for translation. If there 1s no
match (1.e., a “TLB miss”), then the page table walker 306
can traverse (or “walk’) the levels of the page table 308
retrieve a PTE.

The L1 cache 301 can be implemented 1n any number of
possible ways. In the implementation illustrated in FIG. 3,
the L1 cache 301 1s illustrated as being implemented as an
N-way set associative cache module. Each cache entry 320
of the L1 cache 301 can include bits for storing a particular
cache block 324 that has been copied from a physical page
in the main memory 302 (possibly via higher level cache
module).

The cache entry 320 can also include bits for storing a tag
322. The tag 322 can be made up of a number of the most
significant bits of a virtual address, which are common to the
words of that entry. For a virtually indexed, virtually tagged
(VIVT) type of cache module, 1n addition to comparing a tag
portion of a virtual address of desired data, the cache module
can compare an index portion of the virtual address (which
can be made up of middle bits between the tag and a block
oflset) to determine which of multiple sets may have a cache
entry containing those desired data.

For an N-way set associative cache, the tag comparison
can be performed N times (possibly in parallel) for the
selected “set” (1). The comparison can be performed once for
cach of N “ways” 1n which a cache block containing the
desired data may be stored.

The block offset can then be used to select a particular
word from a cache block that 1s found 1n the cache entry (1.¢.,
a ‘cache hat’). If the tag does not match for any of the ways
of the selected set (1.e., a ‘cache miss’), then the cache
system can attempt to retrieve the cache block from a higher
level cache or from the main memory 302 (1in the case of the
LLC). The cache entry 320 can also include bits for storing

10

15

20

25

30

35

40

45

50

55

60

65

16

status information 326. The status information 326 can
include, for example, a valid bit and/or any flags or error
correction bits.

When establishing a translation from a particular virtual
address to a particular physical address or to an intermediate
physical address, various types of context information can
be used to distinguish otherwise 1dentical virtual addresses
from each other. The context information can enable mul-
tiple independent virtual address spaces to exist for diflerent
processes or diflerent virtual machines or any of a variety of
other differentiating characteristics that support different
virtual address spaces.

Various portions of the context information can be used
for differentiating between virtual addresses that are 1n use
within different VA-to-PA translations, or in the case that
intermediate physical addresses (IPAs) are used, VA-to-IPA
translations, or IPA-to-PA translations.

For example, an operating system can use an address
space 1dentifier (ASID) (e.g., 16 bits) to 1dentily a memory
space (a virtual address space) associated with a running
process. A hypervisor can use a virtual machine i1dentifier
(VMID) (e.g., 16 bits) to identily a memory space (i.e., an
intermediate physical address space) associated with a guest
operating system of a virtual machine.

Certain parameters can be associated with different
classes ol processes or soltware environments that are
available 1n an architecture, such as a security state with
values of secure (S) or non-secure (NS), or an exception
level (also called a ‘priority level”) with values of ELO-EL3
(for a 2-bit exception level), for example.

All or a subset of this context information together
constitute a context (also called a “translation context” or a
“software context”) for a particular virtual address.

A context identifier (CID) can represent either the full
context information or partial context information. In some
architectures, for example, the full context information can
include 35 bits: a 2-bit exception level (EL), a 1-bit non-
secure/secure (NS/S) value, a 16-bit VMID, and a 16-bit
ASID.

It 1s to be noted, though, that there can potentially be
significant overhead 1n terms of integrated circuit area
devoted to the storage for the data structure that tracks
validity for different CIDs. To reduce the overhead, the CID
can include partial context information, such as only the
16-bit VMID and the 2-bit EL. Such partial context infor-
mation can umquely i1dentity different subsets of contexts.
Alternatively, instead of simply concatenating subsets of bits
from the full context information, techniques can be used to
essentially compress full context information into fewer bits.
For example, circuitry that computes the CIDs can be
configured to include fewer bits than the full context infor-
mation, where those bits can be assigned based on a stored
mapping between CIDs and a corresponding full context
information string.

While the mapping 1itself takes space on the integrated
circuit, more space can be saved in the data structure that
tracks validity of different active CIDs. Additional details
about techniques for compressing context mformation can
be found, for example, in U.S. Pat. No. 9,779,028, entitled
“MANAGING TRANSLATION INVALIDATION,” which
1s 1incorporated herein by reference.

FIG. 4 1s a flow chart of an example of a techmque 400
for secure multithread execution. The technique includes
fetching 410 an instruction of a first thread from a memory
into a processor pipeline; detecting 420 that the instruction
has been designated as a sensitive mstruction; responsive to
detection of the sensitive istruction, disabling 430 execu-

US 11,263,015 Bl

17

tion of instructions of threads other than the first thread in
the processor pipeline during execution of the sensitive
istruction by an execution unit of the processor pipeline;
executing 440 the sensitive nstruction using an execution
unit of the processor pipeline; responsive to completion of
execution of the sensitive instruction, enabling 450 execu-
tion of mnstructions of threads other than the first thread in
the processor pipeline; and executing 460, using execution
units of the processing pipeline, an instruction of a second
thread in parallel with a second instruction of the first thread.
For example, the techmque 400 may be implemented using
the integrated circuit 101 of FIG. 1. For example, the
technique 400 may be implemented using the processor
pipeline 220 of FIG. 2A. For example, the technique 400
may be implemented using the processor pipeline 222 of
FIG. 2B.

The technique 400 includes fetching 410 an instruction of
a first thread from a memory (e.g., via the processor memory
system 108) into a processor pipeline (e.g., the processor
pipeline 104) that 1s configured to execute instructions from
two or more threads 1n parallel using execution units of the
processor pipeline. For example, the processor pipeline may
be mcluded 1n a simultaneous multithreading processor.

The technique 400 1ncludes detecting 420 that the instruc-
tion has been designated as a sensitive instruction. In some
implementations, sensitive instructions may be statically
designated (e.g., a certain type ol struction 1s always
considered sensitive). For example, the sensitive instruction
may be detected 420 based on an opcode of the instruction.
In some 1mplementations, sensitive instructions may be
dynamically designated (e.g., an instruction may be marked
as sensitive by software using a flag). For example, the
sensitive instruction may be detected 420 based on a flag
included in the nstruction (e.g., a sensitive bit). For
example, the sensitive instruction may be detected 420
based on a flag 1n an architectural register. For example, the
technique 600 of FIG. 6 may be implemented to detect 420
that the instruction has been designated as a sensitive
istruction.

A variety of different instructions may be considered as
sensitive, depending on the applications being executed. For
example, the sensitive instruction may be a cryptographic
instruction. For example, the sensitive mstruction may be an
AES single round decryption instruction. For example, the
sensitive instruction may be an AES single round encryption
instruction.

The technique 400 includes, responsive to detection of the
sensitive mstruction, disabling 430 execution of instructions
of threads other than the first thread 1n the processor pipeline
during execution of the sensitive istruction by an execution
unit of the processor pipeline. In some 1mplementations,
disabling 430 execution of instructions of threads other than
the first thread 1n the processor pipeline includes blocking
1ssue of mstructions of threads other than the first thread. In
some 1mplementations, disabling 430 execution of 1nstruc-
tions of threads other than the first thread 1n the processor
pipeline includes blocking dispatch of instructions of threads
other than the first thread. For example, disabling 430
execution of instructions of threads other than the first thread
may cause a uniform delay across all ports (1.e., execution
units of the processor pipeline), rather than only increasing,
delays for the port used by the sensitive instruction. Thus,
disabling 430 execution of instructions of threads other than
the first thread may prevent parallel execution of instructions
from multiple threads while a sensitive mstruction 1s being
executed, which may prevent certain side channel attacks on
the first thread (e.g., a Portsmash attack).

"y

5

10

15

20

25

30

35

40

45

50

55

60

65

18

The technique 400 includes executing 440 the sensitive
instruction using an execution unit of the processor pipeline.
Executing 440 the sensitive mstruction using an execution
unit (e.g., the execution unit 260, the execution unit 262, the
execution unit 264, the execution unit 266, or the execution
unit 268) may take one or more clock cycles. For example,
some 1nstructions (e.g., a square root instruction or certain
cryptographic instructions) may take multiple clock cycles
to complete execution.

The technique 400 includes, responsive to completion of
execution of the sensitive instruction, enabling 4350 execu-
tion of mnstructions of threads other than the first thread in
the processor pipeline. Enabling 450 execution of instruc-
tions of threads other than the first thread after completion
of the sensitive istruction may limit the amount of time that
1ssue/dispatch logic 1n the processor pipeline 1s constrained.

The technique 400 1ncludes executing 460, using execu-
tion units of the processing pipeline, an instruction of a
second thread 1n parallel with a second instruction of the first
thread. Better performance in terms of instruction through-
put may be achieved allowing instructions from diflerent
threads to execute in parallel when no sensitive instruction
1s being executed, since it may increase the utilization of the
execution units of the processor pipeline. These perior-
mance gains may be achieved without substantially com-
promising security where 1t 1s known that no sensitive
instruction 1s currently being executed while difierent
threads share the execution stage (e.g., the execution stage
250) of the pipeline.

For simplicity of explanation, the technique 400 1s
depicted and described as a series of blocks, steps, or
operations. However, the blocks, steps, or operations 1in
accordance with this disclosure can occur 1n various orders
and/or concurrently. Additionally, other steps or operations
not presented and described herein may be used. Further-
more, not all 1llustrated steps or operations may be required
to implement a technique 1n accordance with the disclosed
subject matter.

FIG. 5 1s a block diagram of an example of an integrated
circuit 500 for executing instructions with special handling
for dynamically designated sensitive instructions. The inte-
grated circuit 500 includes a processor core 510, which
includes the processor pipeline 104, processor memory
system 108, and a process status register 520 including a
sensitive handling enable bit 522. The sensitive handling
cnable bit 522 may indicate whether an associated process 1s
authorized to utilize special execution subject to a constraint
for certain instructions that the process designates as sensi-
tive (e.g., a cryptographic instruction). The constraint may
reduce performance of the processor core 510 in exchange
for enhanced security (e.g., protection from side channel
attacks) the process ivoking the constraint. To reduced
performance impairment and prevent attacks exploiting the
constraint, the value of the sensitive handling enable bit 522
may be controlled by a high priority process (e.g., a hyper-
visor process) running on the integrated circuit 500. For
example, the integrated circuit 500 may be used to 1imple-
ment the technique 600 of FIG. 6.

The integrated circuit 500 includes the processor pipeline
104, which may be configured to execute 1nstructions from
two or more threads 1n parallel using execution units of the
processor pipeline 104. For example, the processor pipeline
104 may be included in a simultaneous multithreading
processor. In some implementations, the constraint prevents
parallel execution of mstructions from other threads while a
sensitive instruction 1s being executed by an execution unit
of the processor pipeline 104. For example, the processor

US 11,263,015 Bl

19

pipeline 104 may be the processor pipeline 220 of FIG. 2A.
For example, the processor pipeline 104 may be the proces-
sor pipeline 222 of FIG. 2B.

The itegrated circuit 500 includes a register 520 that
includes a sensitive handling enable bit 522. In this example,
the register 520 1s a process state register storing a state of
the first process. A value of the sensitive handling enable bit
522 may either correspond to an enabled state (1.e., the
associated process 1s authorized for execution subject to the
constraint) or correspond to a disabled state (i.e., the asso-
ciated process 1s not authorized for execution subject to the
constraint). The sensitive handling enable bit 522 may be
interpreted as active low or active high 1n different imple-
mentations. For example, write access to the sensitive han-
dling enable bit 522 may be restricted to a high priority
process (e.g., a hypervisor process or an operating system
Process).

The tegrated circuit 500 1includes a processor core 510
with access to the register 520. In this example, the register
1s part of the processor core 510. The processor core may be
configured to limit access to special execution subject to a
constraint based on the sensitive handling enable bit 522.
The processor core 510 may be configured to allow dynamic
designation of individual instructions or sequences of
instructions as sensitive instructions. For example, the pro-
cessor core 510 may be configured to detect that a first
istruction of a first process has been designated as a
sensitive instruction; check whether the sensitive handling
enable bit 1s enabled; responsive to detection of the sensitive
instruction and enablement of the sensitive handling enable
bit, invoke a constraint for execution of the first instruction;
execute the first mnstruction subject to the constraint; and
execute a second instruction (e.g., which has not been
designated as sensitive) of the first process without the
constraint. Thus, an authorized process may be enabled to
judiciously apply special handling for sensitive structions
to enhance security while limiting any negative impact on
performance of the processor core 510.

In some 1mplementations, the first instruction includes a
sensitive bit, and the processor core 510 1s configured to
detect that the first instruction has been designated as a
sensitive mstruction by evaluating the sensitive bit of the
first mmstruction. For example, an instruction set supported by
the processor core 510 may include a sensitive bit 1n some
or all instructions of the istruction set, and software using
the mstruction set may dynamically set the sensitive bit for
a particular instruction based on the needs of an application.

For example, the processor core 510 may be configured to
fetch a first instruction, wherein the instruction includes a
sensitive bit that indicates the first instruction 1s sensitive:
based on the sensitive bit and a current value i1 the sensitive
handling enable bit, invoke a constraint for execution of the
first instruction; execute the first istruction subject to the
constraint; and execute a second 1nstruction (e.g., which has
not been designated as sensitive) without the constraint.

In some implementations, the first instruction 1s preceded
by a sensitive-start instruction and followed by a sensitive-
stop 1nstruction 1n a sequence of instructions of the first
process, and the processor core 510 1s configured to detect
that the first instruction has been designated as a sensitive
instruction based on detection of the sensitive-start instruc-
tion. For example, the first mnstruction may be a member of
a subsequence of instructions that 1s immediately preceded
by the sensitive-start instruction and immediately followed
by the sensitive-stop instruction in the sequence of mnstruc-
tions of the first process, and the processor core 310 may be
configured to execute all members of the subsequence of

5

10

15

20

25

30

35

40

45

50

55

60

65

20

instructions subject to the constraint. For example, the
technique 700 of FIG. 7 may be implemented to detect
subsequences ol one or more sensitive instructions that are
designated by software using a sensitive-start instruction and
sensitive-stop 1nstruction.

The processor core 510 may be configured to update a
value of the sensitive handling enable bit 522 based on an
istruction of a second process that has a higher priority than
the first process. For example, the second process may be a
hypervisor process. For example, the second process may be
an operating system process.

The processor core 510 may prevent use ol execution
subject to the constraint for processes that lack authorization
as 1indicated by an associated sensitive handling enable bit
522. For example, when the register 520 1s loaded with state
information for a third process that lacks authorization, the
third process may be prevented from executing an instruc-
tion the third process has designated as sensitive using the
constraint. For example, the processor core 310 may be
configured to detect that a third 1nstruction of a third process
has been designated as a sensitive nstruction; check whether
the sensitive handling enable bit 522 1s enabled; and, respon-
sive to disablement of the sensitive handling enable bit 522,
execute the third mnstruction of the third process without the
constraint.

FIG. 6 1s a flow chart of an example of a technique 600
for executing instructions with special handling for dynami-
cally designated sensitive instructions. The techmque 600
includes detecting 610 that a first mnstruction of a first
process has been designated as a sensitive instruction;
checking 620 whether a sensitive handling enable bit 1s
cnabled; if (at step 625) the sensitive handling enable bit 1s
enabled, then, responsive to detection of the sensitive
instruction and enablement of the sensitive handling enable
bit, invoking 630 a constraint for execution of the first
instruction; executing 640 the first instruction subject to the
constraint; and executing 660 a second instruction of the first
process without the constraint. For example, the technique
600 may be implemented using the integrated circuit 101 of
FIG. 1. For example, the technique 600 may be implemented
using the integrated circuit 500 of FIG. 5.

The technique 600 includes detecting 610 that a first
instruction of a first process has been designated as a
sensitive mstruction. For example, the first instruction may
be a cryptographic instruction (e.g., an AES single round
encryption instruction or an AES single round decryption
istruction). In some i1mplementations, soltware may
dynamically designate an instruction as sensitive by setting
or clearing a sensitive bit of the instruction. For example,
detecting 610 that the first instruction has been designated as
a sensitive mstruction may include evaluating a sensitive bit
included 1n the first mstruction. In some 1implementations,
software may dynamically designate a subsequence of
instructions as sensitive using specialized instructions (e.g.,
a sensitive-start instruction and a sensitive-stop instruction)
in a sequence of 1nstructions to 1ndicate the start and stop of
sensitive handling that executes instructions subject to the
constramnt. For example, the first instruction may be pre-
ceded by a sensitive-start instruction and followed by a
sensitive-stop istruction 1n a sequence of mnstructions of the
first process. That the first instruction has been designated as
a sensitive mstruction may be detected 610 based on detec-
tion of the sensitive-start mstruction. For example, the first
instruction may be a member of a subsequence of instruc-
tions that 1s immediately preceded by the sensitive-start
instruction and immediately followed by the sensitive-stop
instruction 1n the sequence of instructions of the first pro-

US 11,263,015 Bl

21

cess, and all members of the subsequence of instructions
may be executed subject to the constraint. For example, the
technique 700 of FIG. 7 may be implemented to detect 610
that the first instruction of the first process has been desig-
nated as a sensitive instruction.

The technique 600 includes checking 620 whether a

sensitive handling enable bit 1n a process state register
storing a state of the first process 1s enabled. A value of the
sensitive handling enable bit may either correspond to an
enabled state (1.e., the associated process 1s authorized for
execution subject to the constraint) or correspond to a
disabled state (i.e., the associated process 1s not authorized
for execution subject to the constraint). In some 1mplemen-
tations, the sensitive handling enable bit may be interpreted
as active low. In some implementations, the sensitive han-
dling enable bit may be interpreted as active high.

The technique 600 includes, 1f (at step 625) the sensitive
handling enable bit 1s enabled, then, responsive to detection
of the sensitive instruction and enablement of the sensitive
handling enable bit, invoking 630 a constraint for execution
of the first instruction. For example, invoking 630 the
constraint for execution of the first mstruction may include
updating a microarchitectural state of a processor core to
cause a processor pipeline (e.g., the processor pipeline 104)
to execute the first instruction subject to the constraint. For
example, a processor pipeline may be configured to execute
instructions from two or more threads in parallel using
execution units of the processor pipeline, and the constraint
may prevent parallel execution of instructions from other
threads while the first instruction 1s being executed 640 by
an execution unit of a processor pipeline.

The technique 600 includes executing 640 the first
instruction subject to the constraint. The constraint may
impair performance of a processor core implementing the
technique 600 while enhancing security of the first process.
For example, executing 640 the first mstruction subject to
the constraint may prevent or mitigate side channel attacks
(c.g., a Portsmash attack).

The technique 600 includes, 1f (at step 625) the sensitive
handling enable bit 1s disabled, then, responsive to disable-
ment of the sensitive handling enable bit associated with the
first process, executing 650 the first mstruction of the first
process without the constraint. For example, forcing the first
istruction to be executed 650 without the constraint may
preserve performance of a processor core implementing the
technique 600 and prevent attacks by malicious processes
using a dynamic designation ol instructions as sensitive
instructions.

The technique 600 includes executing 660 a second
istruction (e.g., an 1mstruction that has not been designated
as sensitive) of the first process without the constraint.
Executing 660 a second instruction without the constraint
may preserve performance of a processing core implement-
ing the techmque 600. By allowing an authorized process to
designate individual istructions or subsequences of istruc-
tions as sensitive, performance of a processing core 1mple-
menting the technique 600 may be improved relative to

processors that only allow designation of sensitive processes
or threads.

The technique 600 includes updating 670 a value of the
sensitive mstruction enabled bit based on an 1nstruction of a
second process that has a higher priority than the first
process. For example, the second process may be a hyper-
visor process. For example, the second process may be an
operating system process. For example, the second process

10

15

20

25

30

35

40

45

50

55

60

65

22

may 1mplement the technique 800 of FIG. 8 to manage
requests for authorization to utilize execution subject to the
constraint.

For simplicity of explanation, the technique 600 1s
depicted and described as a series of blocks, steps, or
operations. However, the blocks, steps, or operations 1in
accordance with this disclosure can occur 1n various orders
and/or concurrently. For example, step 670 may be per-
formed asynchronously 1n response to an instruction from
the second process (e.g., a hypervisor process). Additionally,
other steps or operations not presented and described herein
may be used. Furthermore, not all illustrated steps or opera-
tions may be required to implement a technique in accor-
dance with the disclosed subject matter.

FIG. 7 1s a flow chart of an example of a technique 700
for detecting that one or more 1nstructions of a process have
been designated as sensitive instructions. The technique 700
includes decoding 710 a sensitive-start instruction; and
responsive to the sensitive-start instruction, identitying 720
one or more instructions preceded by the sensitive-start
instruction as sensitive instructions while execution contin-
ues subject to a constraint for sensitive instructions. Execu-
tion of 1nstructions of the process subject to the constraint
may continue until a sensitive-stop instruction i1s decoded
730. The technique 700 includes, responsive to the sensitive-
stop 1nstruction, continuing 740 execution of mstructions of
the process without the constraint. For example, a sequence
ol 1nstructions of the process may include a subsequence of
instructions (e.g., a region ol code) that 1s 1mmediately
preceded by the sensitive-start instruction and immediately
followed by the sensitive-stop instruction. The technique
700 may be mmplemented to execute all members of the
subsequence of instructions subject to the constraint, while
executing instructions of the process outside of the subse-
quence ol instructions without the constraint to enhance
security while limiting the impact on processor perior-
mance. For example, the technique 700 may be implemented
using the integrated circuit 101 of FIG. 1. For example, the
technique 700 may be mmplemented using the integrated
circuit 500 of FIG. 5.

FIG. 8 1s a flow chart of an example of a technique 800
for updating an authorization for sensitive handling of
instructions for a process using a higher priority process.
The technique 800 includes receiving 810 from a process a
request to authorize sensitive instruction handling (.e.,
execution ol designated sensitive mnstructions subject to a
constraint); responsive to the request, determining 820
whether to authorize sensitive instruction handling for the
process based on a security policy; and updating 830 a value
of a sensitive handling enable bit (e.g., the sensitive handling
cnable bit 3522) based on the determination 820. For
example, the value of the sensitive handling enable bit may
be updated 830 using a specialized instruction and/or by
writing to a register of an integrated circuit with restricted
write permissions. For example, the technique 800 may be
implemented by a high priority process (e.g., a hypervisor
process or an operating system process) that runs on an
integrated circuit (e.g., the ntegrated circuit 101 or the
integrated circuit 500) and 1s used to manage access to
hardware resources of the integrated circuit. A process
secking to utilize execution of designated sensitive instruc-
tions subject to the constraint may send the request (e.g.,
using a system call function causing an i1nter-process com-
munication) in order to activate this feature before 1ssuing
instructions that the process will dynamically designate as
sensitive. In some implementations, the high priority process
may respond with a message back to the process that either

US 11,263,015 Bl

23

confirms grant of the request or denies the request. In some
implementations, the high priority process does not provide
any feedback to the process indicating whether the request
has been granted, which may serve to thwart some malicious
Processes.

FIG. 9 15 a block diagram of an example of an integrated
circuit 900 for executing instructions with microarchitec-
tural structures for tracking the flow of sensitive information
to 1dentify sensitive mnstructions. The integrated circuit 900
includes a memory 920, which includes a data storage
circuitry 922; and a processor core 910, which includes a
data storage circuitry 930, a set of tags for data 940
associated with respective data storage circuitries (e.g., 922
and 930), an instruction builer 950, and a set of tags for
instructions 960. Tags in the set of tags for data 940 may
indicate whether their respective data storage circuitries are
storing sensitive data. Tags 1n the set of tags for mstructions
960 may 1indicate whether respective data istructions stored
in the instruction bufler 950 have been designated as sen-
sitive, which may trigger execution of these instructions
subject to a constraint. The processor core 910 may be
configured to propagate designations of sensitivity from data
to 1instructions and from instructions to data based on
dependency relationships between instructions and data stor-
age circuitries of the integrated circuit 900 that store inputs
or outputs of the instructions. For example, the integrated
circuit 900 may be used to implement the technique 1200 of
FIG. 12. For example, the integrated circuit 900 may be used
to implement the technique 1300 of FIG. 13. For example,
the integrated circuit 900 may be used to implement the
technique 1400 of FIG. 14.

The integrated circuit 900 includes a memory 920 (e.g., a
random access memory (RAM)) that 1s addressable. The
memory 920 may include many data storage circuitries that
can be accessed using an addressing scheme. The memory
920 includes the data storage circuitry 922, which 1s a block
of contiguously addressed memory cells 1n the memory 920.
The data storage circuitry 922 1s associated with a tag
indicating whether the data storage circuitry 922 has been
designated as storing sensitive data For example, the tag
associated with the data storage circuitry 922 may be part of
a tuple of tags (e.g., the tuple of tags 1110) that are each
associated with respective subblocks of a page of the
memory 920.

The mtegrated circuit 900 includes a data storage circuitry
930 that 1s a register. For example, the data storage circuitry
930 may be one of many registers included in the processor
core 910 (e.g., registers of the register file 106). The data
storage circuitry 930 may be associated with a tag indicating
whether the data storage circuitry 930 has been designated
as storing sensitive data. In some implementations, the tag is
stored 1n a bit of the data storage circuitry 930. For example,
the data storage circuitry 930 may be the data storage
circuitry 1010 of FIG. 10.

The integrated circuit 900 1ncludes a set of tags for data
940 associated with respective data storage circuitries (e.g.,
including the data storage circuitry 922 and/or the data
storage circuitry 930). For example, tags 1n the set of tags for
data 940 may be stored 1n microarchitectural registers of the
processor core 910. In some 1implementations, the set of tags
for data 940 includes tags stored in bits of their respective
data storage circuitries. For example, the set of tags for data
940 may include the tag 1020 and the tag 1022 of FIG. 10.
For example, the set of tags for data 940 may include the set
of sensitivity tags 1100 of FIG. 11.

The integrated circuit 900 includes an instruction bufler
950 of the processor core 910. For example, the instruction

10

15

20

25

30

35

40

45

50

55

60

65

24

bufler 950 may be a fetch buller. For example, the instruc-
tion builer 950 may be a decode bufler. For example, the
istruction buller 950 may be an 1ssue buller. For example,
the instruction bufler 950 may be a dispatch bufler. For
example, the 1nstruction bufler 950 may be a cache line of
an L1 istruction cache (e.g., the L1 cache 301).

The itegrated circuit 900 includes a set of tags for
istructions 960 associated with respective instructions 1n
the mstruction bufler 950. For example, tags in the set of
tags for mnstructions 960 may be stored 1n microarchitectural
registers of the processor core 910.

The mtegrated circuit 900 a processor core 910 (e.g., the
processor core 102 or the processor core 510). The processor
core 910 may be configured to allow dynamic designation of
individual instructions as sensitive instructions based on a
flow of sensitive information in the processor core. For
example, the processor core 910 may be configured to detect
dependence of a first mnstruction (e.g., an mstruction stored
in the istruction bufller 950) on data stored 1n a first data
storage circuitry (e.g., the data storage circuitry 922 or the
data storage circuitry 930), where the first instruction will
access a value stored in the first data storage circuitry;
responsive to the dependence of the first instruction on the
data stored 1n the first data storage circuitry, check whether
a first tag (e.g., a tag of the set of tags for data 940) indicates
sensitive data, wherein the first tag 1s associated with the first
data storage circuitry and indicates whether the first data
storage circuitry has been designated as storing sensitive
data; responsive to the first tag indicating sensitive data,
update a second tag (e.g., a tag of the set of tags for
istructions 960) associated with the first instruction to
indicate that the first instruction has been designated as
sensitive; check whether the second tag indicates a sensitive
instruction; responsive to the second tag indicating a sensi-
tive 1nstruction, invoke a constraint for execution of the first
instruction; and execute the first instruction subject to the
constraint. For example, the integrated circuit 900 may be
configured to implement the technique 1200 of FIG. 12.
Thus, an authorized process may be enabled to judiciously
apply special handling for sensitive instructions operating on
sensitive data to enhance security while limiting any nega-
tive 1impact on performance of the processor core 910.

For example (although not shown 1n FIG. 9), the proces-
sor core 910 may include a processor pipeline (e.g., the
processor pipeline 104) configured to execute instructions
from two or more threads 1n parallel using execution units of
the processor pipeline. For example, the processor pipeline
may be included 1n a simultaneous multithreading processor.
In some implementations, the constraint prevents parallel
execution of instructions from other threads while a sensi-
tive mstruction 1s being executed by an execution unit of the
processor pipeline. For example, the processor pipeline may
be the processor pipeline 220 of FIG. 2A. For example, the
processor pipeline may be the processor pipeline 222 of FIG.
2B.

The processor core 910 may also be configured to desig-
nate data as sensitive based on dependence on a sensitive
instruction. In some implementations, the integrated circuit
900 includes a second data storage circuitry (e.g., the data
storage circuitry 922 or the data storage circuitry 930)
associated with a third tag (e.g., a tag of the set of tags for
data 940) indicating whether the second data storage cir-
cuitry has been designated as storing sensitive data, and the
processor core 910 1s configured to detect dependence of
data stored 1n the second data storage circuitry on the first
instruction, where the first instruction will output a value to
be stored 1n the second data storage circuitry; responsive to

US 11,263,015 Bl

25

the dependence of data stored in the second data storage
circuitry on the first instruction, check whether the second
tag (e.g., a tag of the set of tags for instructions 960)
indicates a sensitive instruction; and, responsive to the
second tag indicating a sensitive mstruction, update the third
tag to indicate that data stored in the second data storage
circuitry has been designated as sensitive. For example, the
integrated circuit 900 may be configured to implement the
technique 1300 of FIG. 13.

After executing sensitive instructions, sensitive designa-
tions may be propagated to numerous data storage circuitries
of the integrated circuit 900, which may have a negative
impact on performance of the processor core 910. It may be
advantageous to clear all indications of sensitive data from
the integrated circuit 900 at opportune times. In some
implementations, a specialized instruction, called a sensitive
reset instruction, may be used by software to clear sensitivity
designation from the integrated circuit 900. For example, the
processor core 910 may be configured to, responsive to a
sensitive reset istruction, update all tags 1n the set of tags
to i1ndicate absence of sensitive data. Sensitivity designa-
tions for currently buflered instructions may also be reset.
For example, the processor core 910 may be configured to,
responsive to the sensitive reset mnstruction, update all tags
in the second set of tags to indicate a non-sensitive mstruc-
tion. For example, the integrated circuit 900 may be con-
figured to implement the technique 1400 of FIG. 14.

FIG. 10 1s a block diagram of an example of a register file
1000 including data storage circuitries with respective inte-
grated sensitivity tags. The register file 1000 includes mul-
tiple data storage circuitries that are registers, including the
data storage circuitry 1010 and the data storage circuitry
1012. The data storage circuitry 1010 stores a tag 1020. For
example, the tag 1020 may be stored 1n a bit (e.g., a tlip-tlop)
of the data storage circuitry 1010. The data storage circuitry
1012 stores a tag 1022. For example, the tag 1022 may be
stored 1n a bit (e.g., a flip-tlop) of the data storage circuitry
1012. For example, the register file 1000 may included 1n the
register file 106 of FIG. 1.

FIG. 11 1s a block diagram of an example of a set of
sensitivity tags 1100 including tuples of tags for pages of a
memory, with mdividual tags corresponding to subblocks of
a page. The set of sensitivity tags 1100 includes multiple
tuples of tags associated with respective pages ol a memory
(e.g., the memory 920), including the tuple of tags 1110 and
the tuple of tags 1112. The tuple of tags 1110 1includes N tags
that are each associated with respective subblocks of a page
of the memory, including the tag 1120 and the tag 1122. The
tuple of tags 1112 includes N tags that are each associated
with respective subblocks of a page of the memory, includ-
ing the tag 1124 and the tag 1126. For example, the set of
sensitivity tags 1100 may be stored in microarchitectural
registers of a processor core (e.g., the processor core 910).

FIG. 12 1s a flow chart of an example of a technique 1200
for propagating a sensitive designation from a data storage
circuitry to an instruction that will access the data storage
circuitry. The technmique 1200 includes detecting 1210
dependence of a first instruction on data stored 1n a first data
storage circuitry; responsive to the dependence of the first
istruction on the data stored in the first data storage
circuitry, checking 1220 whether the first tag indicates
sensitive data; responsive to the first tag indicating sensitive
data, updating 1230 a second tag associated with the first
instruction to indicate that the first instruction has been
designated as sensitive; checking 1240 whether the second
tag indicates a sensitive mstruction; and, responsive to the
second tag indicating a sensitive mstruction, mvoking 1250

10

15

20

25

30

35

40

45

50

55

60

65

26

a constraint for execution of the first mnstruction; executing
the first mstruction subject to the constraint. For example,
the technique 1200 may be implemented using the integrated
circuit 101 of FIG. 1. For example, the technique 1200 may
be implemented using the itegrated circuit 900 of FIG. 9.

The technique 1200 includes detecting 1210 dependence
of a first instruction on data stored 1n a first data storage
circuitry (e.g., the data storage circuitry 922 or the data
storage circuitry 930), where the first instruction will access
a value stored 1n the first data storage circuitry. The first data
storage circuitry 1s associated with a first tag indicating
whether the first data storage circuitry has been designated
as storing sensitive data. For example, the first tag may be
a member of the set of tags for data 940. For example, the
first data storage circuitry may be source register of the first
instruction. In some implementations, the first data storage
circuitry may be a physical register that has been renamed
(e.g., as reflected 1n a rename table) to store a value of an
architectural register of an instruction set that 1s designated
as a source register of the first instruction. For example, the
first tag may be stored 1n a bit (e.g., a tlip-flop) of the first
data storage circuitry. In some implementations, the first
data storage circuitry 1s a register (e.g., the data storage
circuitry 1010) and the first tag (e.g., the tag 1020) 1s stored
in a bit of the first data storage circuitry. In some 1mple-
mentations, the first data storage circuitry 1s a block of
contiguously addressed memory cells 1n a memory (e.g., the
memory 920). For example, the first data storage circuitry
may be a block of memory cells at source address associated
with the first instruction. In some implementations, the first
tag 1s part of a tuple of tags that are each associated with
respective subblocks of a page of the memory. For example,
the first tag may be a member of the set of sensitivity tags
1100.

The technique 1200 includes, responsive to the depen-
dence of the first mstruction on the data stored in the first
data storage circuitry, checking 1220 whether the first tag
(associated with the first data storage circuitry) indicates
sensitive data. For example, the first tag may be active low
or active high. For example, checking 1220 whether the first
tag indicates sensitive data may include comparing the first
tag to zero.

The technique 1200 includes, responsive to the first tag
indicating sensitive data, updating 1230 a second tag asso-
ciated with the first istruction to indicate that the first
istruction has been designated as sensitive. For example,
the second tag may be a member of the set of tags for
instructions 960. For example, where the second tag 1s active
high, updating 1230 a second tag associated with the first
instruction to indicate that the first instruction has been
designated as sensitive may include setting the second tag to
one. For example, where the second tag 1s active low,
updating 1230 a second tag associated with the first mnstruc-
tion to indicate that the first instruction has been designated
as sensitive may include clearing the second tag to have
value zero.

The techmque 1200 includes checking 1240 whether the
second tag indicates a sensitive instruction. For example,
checking 1240 whether the second tag indicates a sensitive
instruction may include comparing the second tag to zero.

The technique 1200 includes, responsive to the second tag
indicating a sensitive mstruction, mnvoking 1250 a constraint
for execution of the first istruction. In some 1mplementa-
tions, the constraint prevents parallel execution of nstruc-
tions from other threads while the first istruction 1s being
executed 1260 by an execution unit of a processor pipeline
(e.g., the processor pipeline 104). For example, the proces-

US 11,263,015 Bl

27

sor pipeline may be configured to execute nstructions from
two or more threads 1n parallel using execution units of the
processor pipeline. For example, invoking 1250 the con-
straint for execution of the first instruction may include
updating a microarchitectural state ol a processor core to
cause the processor pipeline to execute the first instruction
subject to the constraint.

The technique 1200 includes executing 1260 the first
instruction subject to the constraint. The constraint may
impair performance ol a processor core implementing the
technique 1200 while enhancing security of a process that
includes the first mnstruction. For example, executing 1260
the first instruction subject to the constraint may prevent or
mitigate side channel attacks (e.g., a Portsmash attack). The
constraint may be applied at an istruction resolution to
avoid overly severe reductions 1n performance of a proces-
sor core. For example, the technique 1200 may also include
executing a second 1nstruction (e.g., an 1struction that has
not been designated as sensitive), of a same process as the
first 1struction, without the constraint. Executing a second
instruction without the constraint may preserve performance
ol a processing core implementing the technique 1200. By
allowing an authorized process to designate individual
istructions as sensitive, performance of a processing core
implementing the technique 1200 may be improved relative
to processors that only allow designation of sensitive pro-
cesses or threads.

For example, the technique 1200 may also include propa-
gating a sensitive designation from an instruction that will
output to a data storage circuitry to the data storage circuitry.
In some implementations the technique 1300 of FIG. 13 1s
used to propagating a sensitive designation from the first
instruction to a data storage circuitry that will receive output
of the first instruction. For example, the technique 1200 may
include detecting dependence of data stored 1n a second data
storage circuitry on the {first instruction, where the first
instruction will output a value to be stored in the second data
storage circuitry, and wherein the second data storage cir-
cuitry 1s associated with a third tag indicating whether the
second data storage circuitry has been designated as storing
sensitive data; responsive to the dependence of data stored
in the second data storage circuitry on the first instruction,
checking whether the second tag indicates a sensitive
instruction; and responsive to the second tag indicating a
sensitive mnstruction, updating the third tag to indicate that
data stored in the second data storage circuitry has been
designated as sensitive.

Allowing sensitivity designations to tflow from data to
instructions and from instructions to data may lead to spread
over time of sensitivity designation to many data storage
circuitries. This can impair performance of a processor core,
thus 1t may be advantageous to quickly remove these built up
sensitivity designations when the need for security ends or
1s lessened. In some 1implementations, a processor core may
support a specialized reset instruction which software can
use to quickly restore performance level of a processor core
alter executing code that includes sensitive data and instruc-
tions. For example, the technique 1400 of FIG. 14 may be
implemented after the technique 1200.

FI1G. 13 1s a flow chart of an example of a technique 1300
for propagating a sensitive designation from an instruction
that will output to a data storage circuitry to the data storage
circuitry. The techmique 1300 includes detecting 1310
dependence of data stored 1n a first data storage circuitry on
a first instruction; responsive to the dependence of data
stored 1n the first data storage circuitry on the first istruc-
tion, checking 1320 whether a second tag associated with the

10

15

20

25

30

35

40

45

50

55

60

65

28

first mstruction indicates a sensitive mstruction; and, respon-
sive to the second tag indicating a sensitive instruction,
updating 1330 the first tag to indicate that data stored 1n the
first data storage circuitry has been designated as sensitive.
For example, the technique 1300 may be implemented using
the integrated circuit 101 of FIG. 1. For example, the
technique 1300 may be implemented using the integrated
circuit 900 of FIG. 9.

The technique 1300 includes detecting 1310 dependence
of data stored in the first data storage circuitry on a {first
instruction, where the first instruction will output a value to
be stored 1n the first data storage circuitry. For example, the
first data storage circuitry may be a destination register of
the first instruction. In some implementations, the first data
storage circuitry may be a physical register that has been
renamed (e.g., as reflected 1n a rename table) to store a value
of an architectural register of an 1instruction set that is
designated as a destination register of the first instruction.
The first data storage circuitry 1s associated with a first tag
indicating whether the first data storage circuitry has been
designated as storing sensitive data. For example, the first
tag may be a member of the set of tags for data 940. In some
implementations, the first data storage circuitry 1s a register
(e.g., the data storage circuitry 1010) and the first tag (e.g.,
the tag 1020) 1s stored 1n a bit (e.g., a thip-tflop) of the first
data storage circuitry. In some implementations, the first
data storage circuitry 1s a block of contiguously addressed
memory cells 1n a memory (e.g., the memory 920). For
example, the first data storage circuitry may be a block of
memory cells at destination address associated with the first
instruction. In some implementations, the first tag 1s part of
a tuple of tags that are each associated with respective
subblocks of a page of the memory. For example, the first tag
may be a member of the set of sensitivity tags 1100.

The technique 1300 includes, responsive to the depen-
dence of data stored 1n the first data storage circuitry on the
first 1nstruction, checking 1320 whether a second tag asso-
ciated with the first instruction indicates a sensitive mstruc-
tion. For example, the second tag may be a member of the
set of tags for mstructions 960. For example, the second tag
may be active low or active high. For example, checking
1320 whether the second tag indicates a sensitive mstruction
may include comparing the second tag to zero. For example,
the technique 600 of FIG. 6 and/or the technique 700 of FIG.
7 may have been used to identily and designate the first
instruction as a sensitive mstruction, which may have caused
the second tag to be updated to indicate a sensitive mstruc-
tion.

The technique 1300 includes, responsive to the second tag,
indicating a sensitive instruction, updating 1330 the first tag
to 1indicate that data stored in the first data storage circuitry
has been designated as sensitive. For example, where the
first tag 1s active high, updating 1330 the first tag to indicate
that data stored 1n the first data storage circuitry has been
designated as sensitive may include setting the first tag to
one. For example, where the first tag 1s active low, updating
1330 the first tag to indicate that data stored 1n the first data
storage circuitry has been designated as sensitive may
include clearing the first tag to have value zero.

FIG. 14 1s a flow chart of an example of a technique 1400
for resetting sensitive data tags 1n a processor microarchi-
tecture using a specialized reset nstruction. For example,
the specialized reset instruction may have a reserved opcode
in an 1nstruction set supported by a processor core 1mple-
menting the technique 1400. The specialized reset nstruc-
tion may be called a sensitive reset instruction. The tech-
nique 1400 includes {fetching 1410 a sensitive reset

US 11,263,015 Bl

29

instruction; responsive to the sensitive reset instruction,
updating 1420 all tags 1in a set of tags (e.g., the set of tags
for data 940), including the first tag, associated with respec-
tive data storage circuitries to indicate absence of sensitive
data; and, responsive to the sensitive reset 1instruction,
updating 1430 all tags 1n a second set of tags (e.g., the set
of tags for instructions 960), including the second tag,
associated with respective instructions 1n an 1nstruction
bufler to indicate a non-sensitive mstruction. For example,
the sensitive reset 1nstruction may be fetched 1410 from a
memory via an L1 instruction cache by a fetch stage of
processor pipeline (e.g., the processor pipeline 104). For
example, the technique 1400 may be implemented using the
integrated circuit 101 of FIG. 1. For example, the technique

1400 may be implemented using the integrated circuit 900 of
FIG. 9.

The word “example” 1s used herein to mean serving as an
example, imstance, or illustration. Any aspect or design
described herein as “example™ 1s not necessarily to be
construed as being preferred or advantageous over other
aspects or designs. Rather, use of the word “example” 1s
intended to present concepts 1n a concrete fashion. As used
in this application, the term “or” 1s intended to mean an
inclusive “or’” rather than an exclusive “or.” That 1s, unless
specified otherwise or clearly indicated otherwise by the
context, the statement “X includes A or B” 1s intended to
mean any of the natural inclusive permutations thereotf. That
1s, 1f X 1ncludes A; X includes B; or X includes both A and
B, then “X includes A or B” 1s satisfied under any of the
foregoing instances. In addition, the articles “a” and “an” as
used 1n this application and the appended claims should
generally be construed to mean “one or more,” unless
specified otherwise or clearly indicated by the context to be
directed to a singular form. Moreover, use of the term “an
implementation” or the term “one implementation” through-
out this disclosure 1s not intended to mean the same 1mple-
mentation unless described as such.

Implementations of the integrated circuit 101 (and the
algorithms, methods, instructions, etc., stored thereon and/or
executed thereby) can be realized in hardware, software, or
any combination thereof. The hardware can include, for
example, computers, intellectual property (IP) cores, appli-
cation-specific integrated circuits (ASICs), programmable
logic arrays, optical processors, programmable logic con-
trollers, microcode, microcontrollers, servers, microproces-
sors, digital signal processors, or any other suitable circuit.
In the claims, the term “processor” should be understood as
encompassing any of the foregoing hardware, either singly
or 1n combination. The terms “signal” and “data” are used
interchangeably.

Further, all or a portion of implementations of this dis-
closure can take the form of a computer program product
accessible from, for example, a computer-usable or com-
puter-readable medium. A computer-usable or computer-
readable medium can be any device that can, for example,
tangibly contain, store, communicate, or transport the pro-
gram for use by or in connection with any processor. The
medium can be, for example, an electronic, magnetic, opti-
cal, electromagnetic, or semiconductor device. Other suit-
able mediums are also available.

The above-described implementations and other aspects
have been described 1n order to facilitate easy understanding,
of this disclosure and do not limit this disclosure. On the
contrary, this disclosure 1s intended to cover various modi-
fications and equivalent arrangements included within the
scope of the appended claims, which scope 1s to be accorded

15

20

25

30

35

40

45

50

55

60

65

30

the broadest interpretation as 1s permitted under the law so
as to encompass all such modifications and equivalent

arrangements.

What 15 claimed 1s:
1. An integrated circuit for executing instructions, com-
prising:
a first data storage circuitry associated with a first tag
indicating whether the first data storage circuitry has
been designated as storing sensitive data; and

a processor core configured to:

detect dependence of a first instruction on data stored 1n
the first data storage circuitry, where the first imnstruc-
tion will access a value stored 1n the first data storage
circuitry;

responsive to the dependence of the first istruction on
the data stored in the first data storage circuitry,
check whether the first tag indicates sensitive data;

responsive to the first tag indicating sensitive data,
update a second tag associated with the first imstruc-
tion to indicate that the first istruction has been
designated as sensitive;

check whether the second tag indicates a sensitive
instruction:

responsive to the second tag indicating a sensitive
instruction, ivoke a constraint for execution of the
first 1nstruction; and

execute the first instruction subject to the constraint.

2. The mtegrated circuit of claim 1, comprising a second
data storage circuitry associated with a third tag indicating
whether the second data storage circuitry has been desig-
nated as storing sensitive data, and 1 which the processor
core 1s configured to:

detect dependence of data stored in the second data

storage circuitry on the first instruction, where the first
instruction will output a value to be stored 1n the second
data storage circuitry;

responsive to the dependence of data stored 1n the second

data storage circuitry on the first instruction, check
whether the second tag indicates a sensitive mstruction;
and

responsive to the second tag indicating a sensitive instruc-

tion, update the third tag to indicate that data stored 1n
the second data storage circuitry has been designated as
sensitive.

3. The mtegrated circuit of claim 1, comprising a set of
tags, including the first tag, associated with respective data
storage circuitries, and in which the processor core 1s
configured to:

responsive to a sensitive reset instruction, updating all

tags 1n the set of tags to indicate absence of sensitive
data.

4. The mtegrated circuit of claim 3, comprising a second
set of tags, including the second tag, associated with respec-
tive 1nstructions 1n an instruction bufler, and in which the
processor core 1s configured to:

responsive to the sensitive reset instruction, updating all

tags 1n the second set of tags to indicate a non-sensitive
instruction.

5. The 1mtegrated circuit of claim 1, 1n which the {first tag
1s stored 1n a bit of the first data storage circuitry.

6. The integrated circuit of claim 1, in which the first data
storage circuitry 1s a register.

7. The mtegrated circuit of claim 1, comprising a memory,
and in which the first data storage circuitry 1s a block of
contiguously addressed memory cells 1n the memory.

US 11,263,015 Bl

31

8. The integrated circuit of claim 7, 1n which the first tag
1s part of a tuple of tags that are each associated with
respective subblocks of a page of the memory.

9. The ntegrated circuit of claim 1, comprising:

a processor pipeline configured to execute instructions
from two or more threads in parallel using execution
units of the processor pipeline; and

in which the constraint prevents parallel execution of
istructions from other threads while the first mstruc-
tion 1s being executed by an execution unit of the
processor pipeline.

10. A method comprising:

detecting dependence of a first instruction on data stored
in a first data storage circuitry, where the first instruc-
tion will access a value stored 1n the first data storage
circuitry, and wherein the first data storage circuitry 1s
associated with a first tag indicating whether the first
data storage circuitry has been designated as storing
sensitive data;

responsive to the dependence of the first instruction on the
data stored 1n the first data storage circuitry, checking
whether the first tag indicates sensitive data; and

responsive to the first tag indicating sensitive data, updat-
ing a second tag associated with the first instruction to
indicate that the first instruction has been designated as
sensitive.

11. The method of claim 10, comprising:

detecting dependence of data stored in a second data
storage circuitry on the first instruction, where the first
instruction will output a value to be stored 1n the second
data storage circuitry, and wherein the second data
storage circuitry 1s associated with a third tag indicating
whether the second data storage circuitry has been
designated as storing sensitive data;

responsive to the dependence of data stored in the second
data storage circuitry on the first instruction, checking
whether the second tag indicates a sensitive istruction;
and

responsive to the second tag indicating a sensitive instruc-
tion, updating the third tag to indicate that data stored
in the second data storage circuitry has been designated
as sensitive.

12. The method of claim 10, comprising:

responsive to a sensitive reset instruction, updating all
tags 1n a set of tags, including the first tag, associated
with respective data storage circuitries to indicate
absence of sensitive data.

13. The method of claim 12, comprising:

responsive to the sensitive reset mstruction, updating all
tags 1n a second set of tags, including the second tag,
associated with respective instructions 1n an instruction
bufler to indicate a non-sensitive instruction.

14. The method of claim 10, 1n which the first data storage
circuitry 1s a register and the {irst tag 1s stored 1n a bit of the
first data storage circuitry.

15. The method of claim 10, 1n which the first data storage
circuitry 1s a block of contiguously addressed memory cells
In a memory.

16. The method of claim 15, in which the first tag 1s part
of a tuple of tags that are each associated with respective
subblocks of a page of the memory.

17. The method of claim 10, comprising:

checking whether the second tag indicates a sensitive
instruction;

responsive to the second tag indicating a sensitive instruc-
tion, 1nvoking a constraint for execution of the first
instruction;

5

10

15

20

25

30

35

40

45

50

55

60

65

32

executing the first instruction subject to the constraint;
and
executing a second struction, of a same process as the
first 1nstruction, without the constraint.
18. The method of claim 17, in which the constraint
prevents parallel execution of instructions from other
threads while the first instruction 1s being executed by an
execution unit of a processor pipeline, wherein the processor
pipeline 1s configured to execute instructions from two or
more threads in parallel using execution units of the pro-
cessor pipeline.
19. An integrated circuit for executing instructions, com-
prising;:
a first data storage circuitry associated with a first tag
indicating whether the first data storage circuitry has
been designated as storing sensitive data; and
a processor core configured to:
detect dependence of data stored 1n the first data storage
circuitry on a first instruction, where the first instruc-
tion will output a value to be stored in the first data
storage circuitry;

responsive to the dependence of data stored 1n the first
data storage circuitry on the first mstruction, check
whether a second tag associated with the first instruc-
tion indicates a sensitive instruction; and

responsive to the second tag indicating a sensitive
instruction, update the first tag to indicate that data
stored 1n the first data storage circuitry has been
designated as sensitive.

20. The mtegrated circuit of claim 19, in which the first
data storage circuitry 1s a register and the first tag 1s stored
in a bit of the first data storage circuitry.

21. The integrated circuit of claim 19, comprising a
memory, and in which the first data storage circuitry is a
block of contiguously addressed memory cells 1n the
memory.

22. The mtegrated circuit of claim 21, in which the first
tag 1s part of a tuple of tags that are each associated with
respective subblocks of a page of the memory.

23. The integrated circuit of claim 19, comprising a set of
tags, including the first tag, associated with respective data
storage circuitries, and in which the processor core 1s
configured to:

responsive to a sensitive reset instruction, updating all
tags 1n the set of tags to indicate absence of sensitive
data.

24. The integrated circuit of claim 23, comprising a
second set of tags, including the second tag, associated with
respective instructions 1n an istruction bufler, and 1n which
the processor core 1s configured to:

responsive to the sensitive reset mnstruction, updating all
tags 1n the second set of tags to indicate a non-sensitive
istruction.

25. The mtegrated circuit of claim 19, in which the

processor core 1s configured to:

responsive to the second tag indicating a sensitive instruc-
tion, mvoke a constraint for execution of the first
instruction; and

execute the first mstruction subject to the constraint.

26. The mtegrated circuit of claim 25, comprising:

a processor pipeline configured to execute instructions
from two or more threads in parallel using execution
units of the processor pipeline; and

in which the constraint prevents parallel execution of
istructions from other threads while the first mstruc-
tion 1s being executed by an execution unit of the
processor pipeline.

US 11,263,015 Bl

33

27. A method comprising:

detecting dependence of data stored 1n a first data storage
circuitry on a first mstruction, where the first mstruc-
tion will output a value to be stored in the first data
storage circuitry, and wherein the first data storage
circuitry 1s associated with a first tag indicating whether
the first data storage circuitry has been designated as
storing sensitive data;

responsive to the dependence of data stored in the first

data storage circuitry on the first instruction, checking
whether a second tag associated with the first mnstruc-
tion 1ndicates a sensitive instruction; and

responsive to the second tag indicating a sensitive instruc-

tion, updating the first tag to indicate that data stored in
the first data storage circuitry has been designated as
sensitive.

28. The method of claim 27, comprising:

responsive to a sensitive reset instruction, updating all

tags 1n a set of tags, including the first tag, associated
with respective data storage circuitries to indicate
absence of sensitive data.

29. The method of claim 28, comprising:

responsive to the sensitive reset instruction, updating all

tags 1n a second set of tags, including the second tag,
associated with respective instructions 1n an instruction
bufler to 1indicate a non-sensitive nstruction.

30. The method of claim 27, 1n which the first data storage
circuitry 1s a register and the first tag 1s stored 1n a bit of the
first data storage circuitry.

31. The method of claim 27, 1n which the first data storage
circuitry 1s a block of contiguously addressed memory cells
1n a memory.

32. The method of claim 31, 1n which the first tag 1s part
of a tuple of tags that are each associated with respective
subblocks of a page of the memory.

33. The method of claim 27, comprising:

checking whether the second tag indicates a sensitive

instruction;

responsive to the second tag indicating a sensitive instruc-

tion, 1nvoking a constraint for execution of the first
instruction;

executing the first mstruction subject to the constraint;
and

executing a second instruction, of a same process as the
first instruction, without the constraint.

34. The method of claim 33, in which the constraint
prevents parallel execution of instructions from other
threads while the first instruction i1s being executed by an
execution unit of a processor pipeline, wherein the processor
pipeline 1s configured to execute instructions from two or
more threads in parallel using execution units of the pro-
cessor pipeline.

35. An integrated circuit for executing instructions, com-
prising;:

a first data storage circuitry associated with a first tag
indicating whether the first data storage circuitry has
been designated as storing sensitive data;

means for detecting dependence of data stored in the first
data storage circuitry on a first istruction, where the
first 1nstruction will output a value to be stored 1n the
first data storage circuitry;

means for, responsive to the dependence of data stored 1n
the first data storage circuitry on the first istruction,
check whether a second tag associated with the first
instruction indicates a sensitive instruction; and

5

10

15

20

25

30

35

40

45

50

55

60

65

34

means for, responsive to the second tag indicating a
sensitive 1nstruction, update the first tag to indicate that
data stored in the first data storage circuitry has been
designated as sensitive.

36. The mtegrated circuit of claim 35, 1n which the first
data storage circuitry 1s a register and the first tag 1s stored
in a bit of the first data storage circuitry.

37. The integrated circuit of claim 335, comprising a
memory, and in which the first data storage circuitry is a
block of contiguously addressed memory cells 1n the
memory.

38. The mtegrated circuit of claim 37, in which the first
tag 1s part of a tuple of tags that are each associated with
respective subblocks of a page of the memory.

39. The integrated circuit of claim 35, comprising:

a set of tags, including the first tag, associated with

respective data storage circuitries; and

means for, responsive to a sensitive reset instruction,
updating all tags 1n the set of tags to indicate absence
ol sensitive data.

40. The mtegrated circuit of claim 39, comprising:

a second set of tags, including the second tag, associated
with respective instructions 1n an mstruction bufler; and

means for, responsive to the sensitive reset instruction,
updating all tags 1n the second set of tags to indicate a
non-sensitive instruction.

41. The integrated circuit of claim 35, comprising;

means for, responsive to the second tag indicating a
sensitive instruction, imvoking a constraint for execu-
tion of the first instruction; and

means for executing the first mstruction subject to the
constraint.

42. The mtegrated circuit of claim 41, comprising:

a processor pipeline configured to execute instructions
from two or more threads in parallel using execution
units of the processor pipeline; and

in which the constraint prevents parallel execution of
istructions from other threads while the first mstruc-
tion 1s being executed by an execution unit of the
processor pipeline.

43. An imtegrated circuit for executing instructions, com-

prising;:

a first data storage circuitry associated with a first tag
indicating whether the first data storage circuitry has
been designated as storing sensitive data;

means for detecting dependence of a first istruction on
data stored 1n the first data storage circuitry, where the
first 1nstruction will access a value stored 1n the first
data storage circuitry;

means for, responsive to the dependence of the first
istruction on the data stored in the first data storage
circuitry, checking whether the first tag indicates sen-
sitive data; and

means for, responsive to the first tag indicating sensitive
data, updating a second tag associated with the first
instruction to indicate that the first instruction has been
designated as sensitive.

44. The integrated circuit of claim 43, in which the first
data storage circuitry 1s a register and the first tag 1s stored
in a bit of the first data storage circuitry.

45. The integrated circuit of claim 43, comprising a
memory, and in which the first data storage circuitry is a
block of contiguously addressed memory cells 1n the
memory.

46. The itegrated circuit of claim 45, 1n which the first
tag 1s part of a tuple of tags that are each associated with
respective subblocks of a page of the memory.

US 11,263,015 Bl

35

47. The itegrated circuit of claim 43, comprising:

a set of tags, mcluding the first tag, associated with
respective data storage circuitries; and

means for, responsive to a sensitive reset instruction,
updating all tags 1n the set of tags to indicate absence
ol sensitive data.

48. The integrated circuit of claim 47, comprising:

a second set of tags, including the second tag, associated
with respective instructions 1n an mstruction bufler; and

means for, responsive to the sensitive reset mstruction,
updating all tags 1n the second set of tags to indicate a
non-sensitive instruction.

49. The integrated circuit of claim 43, comprising:

means for, responsive to the second tag indicating a
sensitive instruction, mvoking a constraint for execu-
tion of the first instruction; and

means for executing the first instruction subject to the
constraint.

50. The ntegrated circuit of claim 49, comprising:

a processor pipeline configured to execute instructions
from two or more threads in parallel using execution
units of the processor pipeline; and

in which the constraint prevents parallel execution of
istructions from other threads while the first mstruc-
tion 1s being executed by an execution unit of the
processor pipeline.

¥ H H ¥ ¥

10

15

20

25

36

	Front Page
	Drawings
	Specification
	Claims

