12 United States Patent

Ruud et al.

US011250611B1

10) Patent No.: US 11,250,611 B1

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

GRAPHICS PROCESSING
Applicant: Arm Limited, Cambridge (GB)
Inventors: Ole Magnus Ruud, Oslo (NO); Rafal

Stepuch, Cambridge (GB); Toni Viki
Brkic, Staflanstorp (SE)

Assignee: Arm Limited, Cambridge (GB)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 17/163,281

Filed: Jan. 29, 2021

Int. CI.

GO6T 15/00 (2011.01)

GO6T 15/80 (2011.01)

U.S. CL

CPC GO06T 15/005 (2013.01); GO6T 15/80

(2013.01)

Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

2015/0178983 Al* 6/2015 Akenine-Moller GO6T 15/80

345/426

2017/0263046 Al* 9/2017 Patneycccceevnen, GOO6F 3/013

45) Date of Patent: Feb. 15, 2022
2017/0293995 Al* 10/2017 Saleh GO06T 15/005
2017/0323475 Al* 11/2017 Moreton GO06T 15/30
2018/0047203 Al* 2/2018 Grossman GO6T 15/005
2018/0232936 Al* 8/2018 Nevraevo....... G06T 11/40
2018/0240268 Al* 8/2018 Nevraev GO06T 15/005
2018/0284872 Al™ 10/2018 Schluessler GO6F 9/5083
2019/0005712 Al1* 1/2019 Nevraev G06T 11/40
2019/0005713 Al* 1/2019 Nevraev GO06T 17/10
2019/0005714 Al* 1/2019 Fullercoceeen. GO06T 1/20
2020/0051290 Al1* 2/2020 Yango.oeoevvenenn, G06T 13/20

OTHER PUBLICATTIONS

DirectX Developer Blog, “Variable Rate Shading: a scalpel 1n a
world of sledgehammers™, Mar. 18, 2019, Microsoft, website,
retrieved from: https://devblogs. microsoft.com/directx/variable-rate-
shading-a-scalpel-in-a-world-of-sledgehammers/ on Dec. 3, 2021.*

* cited by examiner

Primary Examiner — Robert Bader

(74) Attorney, Agent, or Firm — Vierra Magen Marcus
LLP

(57) ABSTRACT

A method of operating a graphics processor that executes a
graphics processing pipeline that can generate a render
output using different shading rates 1s disclosed. First and
second 1nput shading rates are combined prior to rasterisa-
tion, and a combined shading rate may be propagated
through the pipeline instead of the first and second input
shading rates. The combined shading rate may then be
combined with a third input shading rate at or after the
rasterisation stage. This can reduce bandwidth, hardware
and energy requirements.

19 Claims, 5 Drawing Sheets

Polvgon list wrile

ncludas: Hofygon Hat read-back o R
1y ;r ” E Eﬂler"}magﬁ i
(c), {op) | rafs (o)

BN 4 i fr oS AT MG AR GARE WAL IMI TANE O FAML SRRL O EMM MMM S uane s e WA AN AnS OOr A e res A reu e e = Fm W PUoTe nee s caw ne e amu e wan o Wel W s e B T T T e — e o
par-drawcall VRO rate (a) : ; : (Por-file} ;
VRS combiner 0 op (op0) | vertex Eh&&‘mg E i Fragment Shading :
VS combiner 1 op {opt) Tiling : ’ s

. - e oot . E ; - i 40 5
E {op O) ; ; (c) Hop 1) ;
et i - v J A ;
b infermediate VRS : : % i
RS : S £ P g . - - ;
_ S shading rale {d) | E : {o) L ;

- per-primitive | ,, g - Vfﬁé e % RS mgé;? ; Final VRS |

(per-vertex) VRS rale (b) 1 by Orprossian : : - rate :
f | ; : :
: 402 ! 411 :

US 11,250,611 B1

Sheet 1 of 5

Feb. 15, 2022

U.S. Patent

ii

+ F F 5 F FFFFAFFET L N N N N N N N L
o

1O
.{

t

g
L

Ol
N,

AD

-

LA N N N R R R R BB BB BB EEBEEEBEEEBEEBEEEBEEREEBEBEEBEEBEBEEBEEEBEEEBEEERBEEBEERBEBEBEEBEEEBEEEBEEREBENRN.,.

LN B B B N N B N N N N B N O B O B B O B B B B B O N N N O N O N B O N O N R O N B N N B N N B OO BB

L B B B N N N R B R N N N N I R

1

-

4 o h ok h o hhhh ok hdhh A h hh o hE o h hh o h o EhhE o h hhd hh o h hE hhh ko h E ok hh R

FlG. 2

US 11,250,611 B1

.!
E
o
E
;
;
E
E
E
b
E
]
E
;
:
]
E
E
E
E
b
E
]
E
b
E
:
E
b
:
:

o
E
"
E
E
]
E
]
:
]
:
;
E
E
b
E
]
E
b
E
]
E
b
:
:
:
E
;
b
}
E

ol
S jeul

Buii
mm%mam X2148A

(L doy] (o)

Suipeyg jusuibeiy
(8i11-404)

rgi! EEEEEEEEEEEEE UEEE., WENE LEE [EE [[EE IS IS EES EES EEJ EES ENEI EE) L

Sheet 2 of §

L'-'-

(0} 812

. Go) (ndes aq) (e
oM A sbeii-ied L 00) {0do) (q) '(8)

SODNIoU]
S} 380 UCBAICH

=i

L

¥oRG-0Ral jSI UOLBAIO

Feb. 15, 2022

ii

AICLLIBIAL LB

U.S. Patent

m

n

:

E
(1) Q1B SMA (XOLIBA-IB0)
aAiLLg-1ad

R e
(L00) dO | JBUIgLUIoD
HOLUOD

(GG O 0 JBUIGLUOD SMA
(B) 212) OHA ROMEID-16d

r'-'-

r'-'-

US 11,250,611 B1

M _m _ m
m : m n
w ; : “
i
!) m g ,
= “ n w L (Q) B1RS QMA (X8lisA-IBd)
M “) m i
e “ m m | DAlUHIG-iB
,_nl_,u m : : _,_
] : ! :
W
= _] m w
7 “ “ m o
w w “ Buni g | (A0 O | JBUIGLUOD SMA
Suipeys juswibes * (G O 0 IBUIGLUCD ©M/
m jiimdog __ “ . L {B) 212 OMA HROMEID-IS]
2 b mm ma m s ok ma cEs gms EEs R EEs A EE AR EE A URE LRE LEE RS GRS RES AR RE RE R R ul e cam cms qms cma mme Em A A E R URE GRE MRS GRS REE RES GRS EES MRS R R R — mm s e cmm
0} 818 o)
M, omA afietl-iad | mwwﬂwm:mmv
2eq-pead 155 uobiio LS
— FOCGRES 45y 19 S} 380 UCBAICH
o
W
F i
AICLLIBIAL LB

U.S. Patent

U.S. Patent Feb. 15, 2022 Sheet 4 of 5 US 11,250,611 B1

Software

per-primitive {per-veriex; VRS rais (o)
output from vertex (position) shading

Cak insiructions read from meamory
” 500

per-drawcall VRS rate (&) Tiler

VRS combiner O op (opl)

VRS combinar 1 op {op1)
sent over JON

Write Compressor

Hierarchical |

3o Tiling

o o intemadile VRS
L | shading rate {d)

503 i

020

U2

iii

..

Pofygon iist write
neludes:
(@), {opi} |

Main Memory

Foivgon list read-back

shader (ore

Fotygon List Resource
Reader | Allocator

513 | 515 | 516

Vertex Loader{ |Triangle Satup

Rasterizer :
N | | per-image VRS rate
op 1) (C) L | read from memory

{d} VRS . 441
sombiner 1

aa

-
ii

U.S. Patent Feb. 15, 2022 Sheet 5 of 5 US 11,250,611 B1

Combine a’ par-primitive” and a "per-draw call’
nput shading raie o delerming an intermediate
combinad shading rate for a primitive

56 the primitive {0
“more fragments

Combine the intermediate combined shading and a “per-|
screen space” input shading rate {o determine an output |
sombined shading rats for a fagment of the one or mors|

fragments 5

...

Render the fragment using the
output combined shading rate

US 11,250,611 Bl

1
GRAPHICS PROCESSING

BACKGROUND

The technology described herein relates to the processing
of computer graphics, and 1n particular to a method of
operating a graphics processor.

Graphics processing 1s normally carried out by first split-
ting a scene (e.g. a 3-D model) to be displayed into a number
of similar basic components or “primitives”, which primi-
tives are then subjected to the desired graphics processing,
operations. The graphics “primitives” are usually in the form
of simple polygons, such as triangles or quadrilaterals, or
points or lines.

The graphics primitives are usually generated by the
applications program interface (API) for the graphics pro-
cessing system, using the graphics drawing instructions
(requests) received from the application (e.g. game) that
requires the graphics processing (render) output.

Each primitive 1s at this stage defined by and represented
as a set of vertices. Each vertex for a primitive has associated
with 1t a set of data (such as position, colour, texture and
other attributes data) representing the vertex. This “vertex
data” 1s then used, e.g., when rasterising and rendering the
primitive(s) to which the vertex relates 1n order to generate
the desired render output of the graphics processing system.

For a given output, e.g. frame to be displayed, to be
generated by the graphics processing system, there will
typically be a set of vertices defined for the output in
question. The primitives to be processed for the output will
then be indicated as comprising given vertices in the set of
vertices for the graphics processing output being generated.
Typically, the overall output, e.g. frame to be generated, will
be divided into smaller units of processing, referred to as
“draw calls”. Each draw call will have a respective set of
vertices defined for it and a set of primitives that use those
vertices.

Once primitives and their vertices have been generated
and defined, they can be processed by the graphics process-
ing system, 1n order to generate the desired graphics pro-
cessing output (render output), such as a frame for display.

This basically involves determining which sampling
points of an array of sampling points associated with the
render output area to be processed are covered by a primi-
tive, and then determining the appearance each sampling
point should have (e.g. 1n terms of 1ts colour, etc.) to
represent the primitive at that sampling point. These pro-
cesses are commonly referred to as rasterising and render-
ing, respectively.

The rasterising process determines the sample positions
that should be used for a primitive (1.e. the (X, y) positions
of the sample points to be used to represent the primitive 1n
the output, e.g. scene to be displayed). This 1s typically done
using the positions of the vertices of a primitive.

The rendering process then derives (samples) the data,
such as red, green and blue (RGB) colour values and an
“Alpha” (transparency) value, necessary to represent the
primitive at the sample points (1.e. “shades™ each sample
point). This can involve, for example, applying textures,
blending sample point data values, etc.

(The term “rasterisation” 1s sometimes used to mean both
primitive conversion to sample positions and rendering.
However, herein “rasterisation” will be used to refer to
converting primitive data to sampling point addresses only.)

These processes are typically carried out by testing sets of
one, or ol more than one, sampling point, and then gener-
ating for each set of sampling points found to include a

5

10

15

20

25

30

35

40

45

50

55

60

65

2

sample point that i1s inside (covered by) the primitive 1n
question (being tested), a discrete graphical entity usually
referred to as a “fragment” on which the graphics processing
operations (such as rendering) are carried out. Covered
sampling points are thus, 1n eflect, processed as fragments
that will be used to render the primitive at the sampling
points 1n question. The “fragments™ are the graphical entities
that pass through the rendering process (the rendering pipe-
line). Each fragment that 1s generated and processed may,
¢.g., represent a single sampling point or a set of plural
sampling points, depending upon how the graphics process-
ing system 1s configured.

Each fragment will typically have “fragment data”, such
as colour, depth and/or transparency data, associated with 1t,
with the fragment data for a given fragment typically being
derived from primitive data associated with (the vertices of)
the primitive to which the fragment relates.

A “fragment” 1s therefore effectively (has associated with
it) a set of primitive data as interpolated to a given output
space sample point or points of a primitive. It may also
include per-primitive and other state data that 1s required to
shade the primitive at the sample point (fragment position)
in question. Each graphics fragment may typically be the
same size and location as a “pixel” of the output (e.g. output
frame) (since as the pixels are the singularities 1n the final
display, there may be a one-to-one mapping between the
“fragments” the graphics processor operates on (renders)
and the pixels of a display). However, 1t can be the case that
there 1s not a one-to-one correspondence between a fragment
and a display pixel, for example where particular forms of
post-processing are carried out on the rendered 1mage prior
to displaying the final image.

It 1s also the case that as multiple fragments, e.g. from
different overlapping primitives, at a given location may
allect each other (e.g. due to transparency and/or blending),
the final pixel output may depend upon plural or all frag-
ments at that pixel location.

Correspondingly, there may be a one-to-one correspon-
dence between the sampling points and the pixels of a
display, but more typically there may not be a one-to-one
correspondence between sampling points and display pixels,
as downsampling may be carried out on the rendered sample
values to generate the output pixel values for displaying the
final 1mage. Similarly, where multiple sampling point val-
ues, ¢.g. from different overlapping primitives, at a given
location aflect each other (e.g. due to transparency and/or
blending), the final pixel output will also depend upon plural
overlapping sample values at that pixel location.

FIG. 1 shows a typical computer graphics processing
system, comprising a host processor (CPU) 1, a graphics
processing unit (GPU) 3, and a memory 5 for storing data
required by and/or generated by the host processor 1 and
graphics processor 3.

When an application 2 that 1s executing on the host
processor 1 requires graphics processing from the graphics
processor 3, such as a frame to be displayed, the application
2 will send appropriate commands and data to a driver 4 for
the graphics processor 3 that 1s running on the host processor
1. The driver 4 will then send appropriate commands and
data to the graphics processor 3 to cause 1t to generate the
render output required by the application 2. The driver 4
sends commands and data to the graphics processor 3 by
writing to the memory 3.

The commands and data provided by the driver 4 will
include commands to render primitives for the render output
to be generated by the graphics processor 3, together with

US 11,250,611 Bl

3

associated vertex data representing the vertices to be used
for the primitives for the render output.

The commands sent to the graphics processor 3 cause the
graphics processor 3 to read the vertex data from the
memory 3, and process the read vertex data to generate the
render output. The graphics processor 3 will typically use
the vertex data for a primitive to rasterise the primitive to
one or more fragments each (potentially) applying to a
region (area) of the render output. The fragments will then
be rendered.

The completed render output (e.g. frame) may be written
in a frame bufller in the memory 3, from where it may be
provided for display on a display device, such as a screen or
printer.

When rendering a render output, e.g. frame for display,
there 1s typically a balance between image quality and
processing eflort. For example, “supersampling” arrange-
ments attempt to increase image quality by increasing the
number of colours that are sampled (rendered), but this
typically involves a greater processing effort. Conversely,
decreasing the number of colours that are sampled (ren-
dered) will usually reduce processing requirements, but at
the expense of reduced 1mage quality.

“Variable rate shading” (VRS) 1s a technique that allows
this balance between 1mage quality and processing eflort to
be varied across a render output, e.g. frame for display. In
particular, “variable rate shading” (VRS) allows the area of
a render output, e.g. frame, that a single colour 1s sampled
(rendered) for, 1.e. the “shading rate”, to vary within the
render output.

Thus, 1 “variable rate shading” (VRS), different shading
rates can be used to render a render output such that, for
example, 1n some places i the output a single sampled
(rendered) colour 1s used for a single output pixel, whereas
clsewhere 1n the output, the same single sampled (rendered)
colour 1s used for each of plural output pixels 1n a block of
plural output pixels, thereby reducing the processing effort
for those pixels.

The Applicants believe that there remains scope for
improvements to graphics processors and to graphics pro-

cessing.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the technology described herein
will now be described by way of example only and with
reference to the accompanying drawings, in which:

FIG. 1 shows an exemplary graphics processing system;

FIG. 2 illustrates an exemplary primitive being rendered
according to different shading rates;

FIG. 3 shows a graphics processing pipeline arrangement
that 1s not 1n accordance with the technology described
herein;

FIG. 4 shows a graphics processing pipeline 1n accor-
dance with an embodiment of the technology described
herein;

FIG. 5 shows a graphics processing pipeline 1 accor-
dance with an embodiment of the technology described
herein; and

FIG. 6 shows a process 1 accordance with an embodi-
ment of the technology described herein.

Like reference numerals are used for like components
where appropriate in the drawings.

DETAILED DESCRIPTION

A first embodiment of the technology described herein
comprises a method of operating a graphics processor that 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

operable to execute a graphics processing pipeline that can
generate a render output using different shading rates,
wherein the graphics processing pipeline comprises one or
more earlier processing stages followed by later processing
stages, wherein the later processing stages comprise at least
a rasteriser, and a renderer that 1s operable to render a render
output using one or more output shading rates, wherein an
output shading rate used by the renderer to render a render
output may be determined using plural input shading rates
defined for the render output;

the method comprising, when generating a render output
for which a plurality of input shading rates have been
defined:

combining at least a first input shading rate defined for the
render output and a second input shading rate defined for the
render output to determine a combined shading rate for the
render output prior to the rasteriser stage of the graphics
processing pipeline, and providing the determined combined
shading rate to one or more of the later processing stages of
the graphics processing pipeline;

using the determined combined shading rate when deter-
mining an output shading rate to be used by the renderer to
render the render output; and

the renderer rendering at least some of the render output
using the determined output shading rate.

A second embodiment of the technology described herein
comprises a graphics processor that 1s operable to execute a
graphics processing pipeline that can generate a render
output using different shading rates, wherein the graphics
processing pipeline comprises one or more earlier process-
ing stages followed by later processing stages, wherein the
later processing stages comprise at least a rasteriser, and a
renderer that 1s operable to render a render output using one
or more output shading rates, wherein an output shading rate
used by the renderer to render a render output may be
determined using plural input shading rates defined for the
render output;

wherein the graphics processor comprises a combining
circuit prior to the rasteriser stage of the graphics processing
pipeline that 1s configured to combine at least a first input
shading rate defined for a render output and a second input
shading rate defined for the render output to determine a
combined shading rate for the render output, and to cause the
determined combined shading rate to be provided to one or
more of the later processing stages of the graphics process-
ing pipeline; and

wherein the renderer 1s operable to render at least some of
a render output using an output shading rate determined
using a combined shading rate determined by the combining
circuit.

The technology described herein 1s concerned with
arrangements 1 which a render output can be generated
(rendered) using one or more of plural different possible
(“output”) shading rates, such as 1n the case of “variable rate
shading” (VRS). That 1s, the technology described herein 1s
concerned with arrangements in which the area of the render
output for which a single colour 1s rendered (sampled) by the
renderer can be one of plural different possibilities.

For example, and 1n an embodiment, when a relatively
fine output shading rate 1s used, a single colour may be
sampled by the renderer for an area of the render output
corresponding to only a single pixel. When a coarser output
shading rate 1s used, however, a single colour may be
sampled by the renderer for an area of the render output
corresponding to a block of plural pixels.

In the technology described herein, an “output” shading
rate that the renderer uses, e.g. when rendering a primitive

US 11,250,611 Bl

S

for the render output, 1s based on a combination of plural
“mmput” shading rates. For example, and as will be discussed
in more detail below, the mput shading rates for a particular
primitive may (and 1n an embodiment do) include at least an
input shading rate defined for the primitive itself (e.g. based
on a provoking vertex that the primitive 1s associated with)
(a “per-primitive” mput shading rate), an input shading rate
defined for (based on) a draw call that the primitive belongs
to (a “per-draw call” input shading rate), and an input
shading rate defined for (based on) a region of the render
output within which the primitive falls (a “per-screen space”
input shading rate). The mput shading rates are combined to
determine a single “final” combined output shading rate that
1s actually used by the renderer, e.g. when rendering the
primitive 1n question.

In the technology described herein, at least some of the (at
least first and second) mput shading rates are combined into
a single, combined shading rate prior to the rasteriser (and
renderer) (1.e. prior to rasterisation).

The Applicants have recognised that while 1t may typi-
cally be the case that one or more input shading rates for a
primitive (such as a “per-screen space” shading rate) are
determined after (or during) rasterisation of that primaitive,
such that all of the input shading rates that are to be
combined to determine a “final”, output shading rate for the
primitive can only be guaranteed to be available following
rasterisation of the primitive, other input shading rates for
the primitive (such as a “per-primitive” shading rate and a
“per-draw call” shading rate) may be available prior to
rasterisation of the primitive.

This means that 1t 1s possible to combine at least some of
the input shading rates into a single, e.g. “intermediate”™
combined shading rate prior to rasterisation. This (e.g.
“intermediate”) combined shading rate can then be, and 1is,
provided to later processing stages of the graphics process-
ing pipeline (e.g. the rasteriser and/or the renderer), e.g. and
in an embodiment, mnstead of the imndividual 1nput shading
rates that were combined to determine the (e.g. “intermedi-
ate”) combined shading rate.

As will be discussed 1n more detail below, any other input
shading rates that are determined after (or during) rasteri-
sation, such as a “per-screen space” shading rate, can then
be, and 1n an embodiment are, combined with the “interme-
diate” combined shading rate following (or during) rasteri-
sation to determine the output shading rate to be used by the
renderer.

The Applicants have recognised that combining at least
some 1nput shading rates 1nto a single, (e.g. “intermediate™)
combined shading rate prior to rasterisation, and then propa-
gating the single (e.g. “intermediate”) combined shading
rate through the graphics processing pipeline 1n this manner
can reduce bandwidth, hardware and energy requirements,
e.g. as compared to propagating each of the individual input
shading rates through the pipeline and, e.g. only combining
them once all of the input shading rates can be guaranteed
to be available, 1.e. alter rasterisation.

The technology described herein can thus provide a
graphics processor having reduced bandwidth and hardware
requirements and energy consumption. This 1s generally
advantageous, but may be particularly advantageous 1in
contexts 1n which resources are limited, such as in portable
devices, e.g. mobile phones and tablets.

It will be appreciated, therefore, that the technology
described herein provides an improved graphics processor.

The render output generated by the graphics processing
pipeline of the technology described herein may comprise
any suitable render output, such as frame for display, or

5

10

15

20

25

30

35

40

45

50

55

60

65

6

render-to-texture output, etc. In an embodiment, the render
output 1s an output frame 1n a sequence of plural output
frames that the graphics processing pipeline generates. In
this case, each output frame 1s 1n an embodiment generated
in the manner of the technology described herein.

The render output will typically comprise an array of data
clements (sampling points) (e.g. pixels), for each of which
appropriate render output data (e.g. a set of colour value
data) 1s generated. The data may comprise, for example, a set
of red, green and blue, RGB values and a transparency
(alpha, a) value.

The render output may be generated for display on a
display device having a display or output comprising a
plurality of pixels, such as a computer monitor or a printer.
The render output may accordingly include, for each output
pixel of the display device, a set of one or more correspond-
ing data elements (sampling points). Each such set of data
clements (sampling points) may include only a single data
clement (sampling point). Alternatively, each set of data
clements may include plural data elements (sampling
points). In this latter case, each sampling point may eflec-
tively correspond to a part of a pixel (e.g. a sub-pixel) of the
display device, and the render output may be subjected to an
appropriate downsampling operation to generate the output
pixel values for displaying the final image on the display
device.

The render output should be, and 1n an embodiment 1s,
rendered by the renderer (circuit) using one or more of plural
possible different “output” shading rates. Thus, there 1s 1n an
embodiment a set of plural possible shading rates that the
graphics processor supports and can use.

Correspondingly, there should be, and 1n an embodiment
1s, a set of plural possible different sized render output areas
for which a single set of colour value data (a single colour)
can be sampled (rendered) by the renderer. Accordingly, the
renderer rendering at least some of the render output in an
embodiment comprises the renderer sampling one or more
sets of colour value data (colours), wherein the area of the
render output for which each set of colour value data
(colour) 1s sampled has a size in accordance with the
respective output shading rate used.

The smallest render output area 1n the set of plural
possible render output areas may be referred to as a “fine
pixel”, and the other, larger render output areas may be
referred to as “coarse pixels”. Each “fine pixel” may be the
same size and location as a pixel of the output display
device. Alternatively, each “fine pixel” may correspond to
less than one pixel of the output display device, for example
where downsampling 1s to be applied.

The area of each possible “coarse pixel” 1 an embodi-
ment corresponds to a block of plural “fine pixels™.

The different possible shading rates may be referred to 1n
terms of the number of fine pixels that the shading rate
corresponds to. For example, a 1x1 shading rate may signity
the finest possible shading mode i which a single set of
colour value data 1s sampled for an area of the render output
corresponding to a single fine pixel, whereas a 2x2 shading
rate may signify that a single set of colour value data 1s
sampled for an area of the render output corresponding to a
block of 2x2 fine pixels.

The set of plural possible shading rates can include any
suitable shading rates. In an embodiment, the set of plural
possible shading rates includes 1x1, 1x2, 2x1, 2x2, 2x4, 4x2
and 4x4 shading rates. Other shading rates would be pos-
sible.

It will be appreciated here that the same output shading
rate may be used by the renderer to render all of a render

US 11,250,611 Bl

7

output, or different output shading rates may be used by the
renderer to render diflerent regions of a render output.

The render output should be, and 1n an embodiment 1s,
generated by the graphics processing pipeline processing a
set of primitives for the render output. To do this, the
rasteriser (circuit) should, and 1 an embodiment does,
rasterise primitives ol the set of primitives (to fragments),
and the renderer (circuit) should, and in an embodiment
does, render (samples colour values for) (fragments gener-
ated from) primitives of the set of primitives.

Thus, the first input shading rate, second input shading
rate and combined shading rate are 1 an embodiment
shading rates associated with (for) a particular primitive, and
the renderer rendering at least some of the render output in
an embodiment comprises the renderer rendering (sampling
one or more sets of colour value data (colours) for) (one or
more fragments generate from) that primitive. In an embodi-
ment, a respective combined shading rate 1s determined (by
the combining circuit) for each of one or more (fragments
generated from) primitives of the set of primitives, and the
renderer renders such a (fragment generated from a) primi-
tive using a respective output shading rate determined using,
the respective combined shading rate.

As discussed above, an “output” shading rate that 1s used
by the renderer when rendering the render output should be,
and 1n an embodiment 1s, based on a combination of a set of
“mput” shading rates that includes at least a (the) first input
shading rate and a (the) second 1nput shading rate. An output
shading rate that 1s used by the renderer may be the same as,
or different to, any of the input shading rates that are
combined to determine that output shading rate.

An input shading rate can be any suitable shading rate that
can be combined with other input shading rate(s) to deter-
mine an output shading rate to be used by the renderer (for
a particular primitive or fragment). In an embodiment, an
input shading rate 1s a shading rate that i1s specified by an
application that the render output is being generated for, and
in an embodiment that the graphics processor (pipeline) can
determine directly (1.e. without combining shading rates)
from commands and data 1ssued to 1t (e.g. by a driver for the
graphics processor).

The arrangement 1s 1n an embodiment such that plural
input shading rates are specified (by the application) based
on different factors, such that plural mput shading rates
apply to the same primitive (or fragment), and so are
combined (by the graphics processor (pipeline)) to deter-
mine a single output shading rate for use by the renderer
when rendering that primitive (or fragment). Thus the input
shading rates that are combined (including the first and
second mput shading rates) to determine a combined shad-
ing rate should be, and 1n an embodiment are, shading rates
that are based on diflerent factors, but which all apply to the
same primitive (or fragment).

In an embodiment, an mput shading rate 1s specified (by
the application) for each of one or more vertices, with each
such input shading rate applying to any primitives that are
associated with (comprise) the respective vertex. Thus, the
set of mput shading rates in an embodiment includes a
“per-primitive” shading rate.

In an embodiment, an 1nput shading rate 1s (additionally
or alternatively) specified (by the application) for each of
one or more draw calls, with each such mput shading rate
applying to any primitives that belong to the respective draw
call. Thus, the set of input shading rates 1n an embodiment
includes a “per-draw call” shading rate.

In an embodiment, an 1nput shading rate 1s (additionally
or alternatively) specified (by the application) for each of

10

15

20

25

30

35

40

45

50

55

60

65

8

one or more regions of the render output, with each such
input shading rate applying to any primitives (or fragments)
that appear within the respective render output region. Thus,
the set of input shading rates 1n an embodiment includes a
“per-screen space” shading rate.

Thus, 1n an embodiment, the graphics processor (pipeline)
determines an output shading rate that the renderer uses
when rendering a (each) primitive (or fragment) by com-
bining (from) a “per-primitive” shading rate, a “per-draw
call” shading rate and a “per-screen space” shading rate that
apply to the (respective) primitive (or fragment).

However, other imnput shading rates would be possible. For
example, a “per-depth” shading rate could (additionally or
alternatively) be specified for each of one or more Z depth
ranges, with each such mput shading rate applying to any
primitives (or fragments) having a 7 depth within the
respective Z depth range, e.g. as described 1 U.S. patent
application Ser. No. 16/897,160, the entire contents of which
1s hereby incorporated by reference.

In the technology described herein, at least first and
second 1mput shading rates are combined prior to the raster-
iser stage to determine a combined shading rate. These input
shading rates (i.e. at least the first and second mput shading
rates) should thus be, and 1n an embodiment are, input
shading rates that can be determined (directly) for a primi-
tive prior to the primitive being rasterised.

In this regard, as mentioned above, the Applicants have
recognised that some “input” shading rates may be available
(determinable) prior to rasterisation, whereas the graphics
processor (pipeline) may determine other “input” shading
rates based on information determined by the rasterisation
process, such that these latter “input” shading rates may not
be available prior to rasterisation.

For example, 1n the case of a set of “per-screen space”
input shading rates being specified, with each such “per-
screen space” input shading rate applying to any primitives
(or fragments) that appear within a corresponding region of
the render output, the “per-screen space” input shading rate
that applies to a particular primitive will depend on the
position in the render output at which the primitive appears,
and the position 1n the render output at which the primitive
appears will be determined by rasterising the primitive.
Thus, a “per-screen space’” mput shading rate will typically
not be available prior to rasterisation. Similarly, a “per-
depth” input shading rate may typically not be available
prior to rasterisation.

In contrast, “per-primitive” and “per-draw call” 1nput
shading rates will typically not depend on information
determined by the rasterisation process, and thus will typi-
cally be available (determinable) prior to rasterisation.

Thus, 1n an embodiment, the first input shading rate 1s a
“per-primitive” shading rate, and the second mnput shading
rate 1s a “per-draw call” shading rate.

Where the set of input shading rates includes only shading,
rates that are available prior to rasterisation (such as only the
first and second 1nput shading rates), then all of the 1nput
shading rates may be, and 1n an embodiment are, combined
prior to rasterisation (by the combining circuit). Thus, 1n an
embodiment, the combined shading rate that 1s determined
by (the combining circuit) combining at least the first and
second iput shading rates 1s the output shading rate that 1s
used by the renderer. Thus, using the determined combined
shading rate when determining an output shading rate to be
used by the renderer to render the render output in an
embodiment comprises using the determined combined
shading rate as the output shading rate.

US 11,250,611 Bl

9

However, as mentioned above, where the set of put
shading rates includes one or more input shading rates that
are not available prior to rasterisation, then those one or
more mput shading rates may be, and 1n an embodiment are,
combined with the other input shading rates after (or during)
rasterisation.

In one such embodiment, the arrangement 1s such that all
input shading rates that are available prior to rasterisation
are combined to determine an “intermediate” combined
shading rate prior to rasterisation (1n an embodiment by the
(first) combining circuit), and then all of the mnput shading
rates that are not available prior to rasterisation are com-
bined with this “intermediate” combined shading rate after
(or during) rasterisation (in an embodiment by a second
combining circuit) to determine the “final” combined output
shading rate that 1s actually used by the renderer.

In this regard, the Applicants have recognised that since
it 1s possible to combine first, second and third mnput shading
rates to determine an output shading rate by performing a
first “partial” combining operation that combines the {first
and second 1nput shading rates into an “intermediate” com-
bined shading rate, and then performing a second “partial”
combining operation that combines the “intermediate” com-
bined shading rate with the third (or more) input shading rate
to determine the “final” combined output shading rate, 1t 1s
possible to perform the first and second “partial” combining,
operations at different processing stages of the graphics
processing pipeline. Embodiments of the technology
described herein exploit this by performing the first “partial”
combining operation prior to the rasteriser stage, and the
second “partial” combinming operation at or after the raster-
1ser stage.

Thus, 1n an embodiment, the combined shading rate that
1s determined by (the (first) combining circuit) combining at
least the first and second 1nput shading rates represents an
“intermediate” combined shading rate, which “intermedi-
ate” combined shading rate 1s then combined with at least a
third mput shading rate after (or during) rasterisation to
determine a second combined shading rate that 1s 1n an
embodiment the “final” output shading rate that 1s actually
used by the renderer.

Thus, using the determined combined shading rate when
determining an output shading rate to be used by the
renderer to render the render output in an embodiment
comprises combining at least the determined combined
shading rate and a third mput shading rate defined for the
render output to determine the output shading rate at or after
the rasteriser stage of the graphics processing pipeline.

In an embodiment, the third mmput shading rate i1s a
“per-screen space’” shading rate.

It 1s believed that the idea of combining at least first,
second and third shading rates by performing first and
second “partial” combining operations at different process-
ing stages of the graphics processing pipeline in this manner
may be novel and inventive 1n 1ts own right.

Thus, another embodiment of the technology described
herein comprises a method of operating a graphics processor
that 1s operable to execute a graphics processing pipeline
that can generate a render output using different shading
rates, wherein the graphics processing pipeline comprises
one or more earlier processing stages followed by one or
more later processing stages, wherein the one or more later
processing stages comprise at least a renderer that 1s oper-
able to render a render output using one or more output
shading rates, wherein an output shading rate used by the
renderer to render a render output may be determined using,
plural input shading rates defined for the render output;

10

15

20

25

30

35

40

45

50

55

60

65

10

the method comprising, when generating a render output
for which a plurality of input shading rates have been
defined:

combining at least a first input shading rate defined for the
render output and a second input shading rate defined for the
render output to determine an 1intermediate combined shad-
ing rate for the render output prior to the one or more later
processing stages ol the graphics processing pipeline, and
providing the determined intermediate combined shading
rate to one or more of the one or more later processing stages
of the graphics processing pipeline;

combining at least the determined intermediate combined
shading rate and a third input shading rate defined for the
render output to determine an output shading rate for the
render output at or after a processing stage of the one or
more later processing stages of the graphics processing
pipeline; and

the renderer rendering at least some of the render output
using the determined output shading rate.

Another embodiment of the technology described herein
comprises a graphics processor that 1s operable to execute a
graphics processing pipeline that can generate a render
output using different shading rates, wherein the graphics
processing pipeline comprises one or more earlier process-
ing stages followed by one or more later processing stages,
wherein the one or more later processing stages comprise at
least a renderer that 1s operable to render a render output
using one or more output shading rates, wherein an output
shading rate used by the renderer to render a render output
may be determined using plural input shading rates defined
for the render output;

wherein the graphics processor comprises:

a first combiming circuit prior to the one or more later
processing stages of the graphics processing pipeline that 1s
configured to combine at least a first mput shading rate
defined for a render output and a second 1nput shading rate
defined for the render output to determine an intermediate
combined shading rate for the render output, and to cause the
determined intermediate combined shading rate to be pro-
vided to one or more of the one or more later processing
stages of the graphics processing pipeline; and

a second combining circuit at or after a processing stage
of the one or more later processing stages of the graphics
processing pipeline that 1s configured to combine at least an
intermediate combined shading rate determined by the first
combining circuit for a render output and a third mput
shading rate defined for the render output to determine an
output shading rate for the render output;

wherein the renderer 1s operable to render at least some of
a render output using an output shading rate determined by
the second combining circuit.

These embodiments can 1nclude, as appropriate, any one
or more or all of the optional features described herein. For
example, the first mput shading rate may be a “per-primi-
tive” shading rate, the second input shading rate may be a
“per-draw call” shading rate, and the third input shading rate
may be a “per-screen space” shading rate. Moreover, the
later processing stages may comprise a rasteriser. However,
a graphics processing pipeline that does not necessarily
include a rasteriser, such as a ray tracing graphics processing
pipeline, 1s also contemplated.

In an embodiment, shading rates are combined into a
single combined shading rate according to one or more
combining functions that are 1n an embodiment specified by
the application that the render output 1s being generated for.
A combining function may combine different shading rates
by, for example, selecting one of the shading rates, such as

US 11,250,611 Bl

11

the finest or coarsest shading rate, or by determining an
average shading rate. In an embodiment, an input and/or an
output of a combining function 1s “sanitized”, 1.e. mapped to
a, e.g. the nearest, shading rate supported by the graphics
Processor.

Thus, 1n an embodiment, the at least the first input shading
rate and the second mnput shading rate are combined to
determine the single (e.g. “intermediate™) combined shading
rate according to a (defined) combining function.

In an embodiment, a first combining function 1s specified
(by the application) for (and used when) combining the at
least the first and second 1nput shading rates to determine the
“intermediate” combined shading rate, and a second com-
bining function 1s specified (by the application) for (and
used when) combining the at least the “intermediate” com-
bined shading rate and the third input shading rate to
determine the output combined shading rate.

Once an (e.g. “intermediate”) combined shading rate has
been determined (prior to rasterisation) (by the combining
circuit), the determined combined shading rate 1s provided
to one or more of the later processing stages (e.g. the
rasteriser and/or renderer). It will be appreciated here that
this means that the individual input shading rates that were
combined to determine the (e.g. “intermediate”) combined
shading rate do not need to be provided to the later process-
ing stage(s). Thus, the individual (including first and second)
input shading rates that were combined to determine the
(c.g. “intermediate”) combined shading rate are 1n an
embodiment not provided (other than provided) to the later
processing stage(s).

Similarly, 1n an embodiment, the second combining func-
tion 1s 1n an embodiment provided to the later processing
stage(s) (e.g. the rasteriser and/or renderer), but the first
combining function 1s 1n an embodiment not provided (other
than provided) to the later processing stage(s). This can
provide a reduction in terms of bandwidth, hardware, and
energy requirements.

The graphics processing pipeline that the graphics pro-
cessor executes can include any suitable and desired pro-
cessing stages for generating a (the) render output (e.g.
frame). Thus, the graphics processing pipeline can include,
and 1n an embodiment does include, in addition to the
rasteriser (stage) and/or renderer (stage), any one or one or
more, and 1n an embodiment all, of the other processing
stages that graphics processing pipelines normally include.

In an embodiment, the graphics processing pipeline com-
prises one or more vertex processing stages (circuits) that
are operable to receive and process raw vertex data to
generate transformed vertex data. In an embodiment, the
graphics processing pipeline comprises, in an embodiment
(logically) after the one or more vertex processing stages,
one or more primitive setup stages (circuits) that are oper-
able to use transformed vertex data generated by the one or
more vertex processing stages to setup primitives for ras-
terisation.

The rasteriser (circuit) 1s then 1in an embodiment (logi-
cally) after the one or more primitive setup stages (and the
one or more vertex processing stages) in the graphics
processing pipeline, and rasterises primitive setup for ras-
terisation by the one or more primitive setup stages to
generate fragments. Each fragment that 1s generated by the
rasteriser should, and 1n an embodiment does, have associ-
ated with it a set of data elements (sampling points) of the
render output, and may be used by the renderer to generate
render output data for one or more of the data elements
(sampling points) of the set of data elements (sampling
points) associated with the fragment.

10

15

20

25

30

35

40

45

50

55

60

65

12

The renderer (circuit) 1s thus 1n an embodiment (logically)
alter the rasteriser (and the one or more vertex processing
stages and the one or more primitive setup stages) in the
graphics processing pipeline, and renders fragments gener-
ated by the rasteriser. To do this, the renderer 1n an embodi-
ment comprises one or more Ifragment processing stages.

The graphics processor (and pipeline) may be an 1imme-
diate mode graphics processor (and pipeline). However, 1n
an embodiment, the graphics processor (and pipeline) 1s a
tile-based graphics processor (and pipeline). The graphics
processor (and pipeline) thus 1n an embodiment generates
the render output on a tile-by-tile basis. The render output
(area) may thus be divided into plural rendering tiles for
rendering purposes.

The tiles that the render output 1s divided into for ren-

dering purposes can be any suitable and desired such tiles.
The size and shape of the rendering tiles may normally be
dictated by the tile configuration that the graphics processor
1s configured to use and handle.
The rendering tiles are 1n an embodiment all the same size
and shape (1.e. regularly-sized and shaped tiles are 1n an
embodiment used), although this 1s not essential. The tiles
are 1 an embodiment rectangular, and 1n an embodiment
square. The size and number of tiles can be selected as
desired. In an embodiment, each tile 1s 16x16, or 32x32 data
clements (e.g. fragments or pixels) in size (with the render
output then being divided into however many such tiles as
are required for the render output size and shape that 1s being
used).

To facilitate tile-based graphics processing, the graphics
processor 1 an embodiment comprises one or more tile
buflers that store rendered data for a rendering tile being
rendered by the graphics processing pipeline, until the
graphics processing pipeline completes the rendering of the
rendering tile. The tile bufller should be, and 1n an embodi-
ment 1s, provided local to (1.e. on the same chip as) the
graphics processor, for example, and 1n an embodiment, as
part of RAM that 1s located on (local to) the graphics
processor (chip). The tile bufler may accordingly have a
fixed storage capacity, for example corresponding to the data
(c.g. for an array or arrays of sample values) that the
graphics processor needs to store for (only) a single render-
ing tile until the rendering of that tile 1s completed.

Moreover, 1n an embodiment, the graphics processing
pipeline comprises a primitive list preparing stage (circuit)
(a “tiler”) that prepares primitive lists for respective regions
of the render output. The regions of the render output that the
primitive list preparing stage (circuit) (“tiler”) can prepare
primitive lists for may correspond e.g. to single rendering
tiles, or to sets of plural rendering tiles (e.g. 1n the case of
“hierarchical tiling” arrangements).

In this case, the primitive list preparing stage 1 an
embodiment receives transformed vertex data generated by
the one or more vertex processing stages of the graphics
processing pipeline, and uses the transformed vertex data to
prepare primitive lists.

In an embodiment, the primitive list preparing stage
(circuit) 1s followed by a primitive list reading stage (circuit)
in the graphics processing pipeline that reads primitives
listed for a rendering tile by the primitive list preparing stage
(circuit) (“tiler”), and passes those read primitives to sub-
sequent stages of the graphics processing pipeline for pro-
cessing, which subsequent stages of the graphics processing
pipeline 1n an embodiment comprise the one or more primi-
tive setup stages.

Thus, the primitive list preparing stage (circuit) and
primitive list reading stage (circuit) are in an embodiment

US 11,250,611 Bl

13

(logically) between the one of more vertex processing stages
(circuits) and the one or more primitive setup stages (cir-
cuits) 1n the graphics processing pipeline, and primitives
read by the primitive list reading stage are 1n an embodiment
setup up for rasterisation by the one or more primitive setup
stages, and are then rasterised to fragments by the rasteriser,
etc.

Thus, the one or more earlier processing stages of the
graphics processing pipeline (that are prior to the rasteriser
stage) 1 an embodiment comprise one or more, and 1n an
embodiment all, of: one or more vertex processing stages; a
primitive list preparing stage; a primitive list reading stage;
and one or more primitive setup stages. The later processing
stages of the graphics processing pipeline 1n an embodiment
comprise the rasteriser and the renderer, which in an
embodiment comprises one or more fragment processing
stages.

It will be appreciated here that a later processing stage
refers to a processing stage of the graphics processing
pipeline that may perform 1ts respective processing opera-
tion(s) (1n respect of a primitive) after an earlier processing,
stage, and thus may use a processing result generated by an
carlier processing stage.

As discussed above, 1n the technology described herein at
least first and second input shading rates are combined to
determine a combined shading rate (prior to the rasteriser
stage of the graphics processing pipeline). This (first) com-
bining operation may be performed by any suitable and
desired stage or component of the graphics pipeline or
Processor.

For example, the one or more earlier processing stages of
the graphics processing pipeline (that are prior to the ras-
teriser stage) may comprise a “‘standalone” (first) combining,
stage (circuit) that performs the (first) combining operation
(prior to the rasteriser stage). Alternatively, one of the earlier
processing stages of the graphics processing pipeline (prior
to the rasteriser stage) may perform the (first) combining
operation, e.g. in addition to the other processing
operation(s) that the processing stage 1s operable to perform.
For example, a vertex processing stage or primitive setup
stage of the graphics processing pipeline may combine the
first and second input shading rates to determine a combined
shading rate (prior to the rasteriser stage).

In an embodiment (where the graphics processing pipe-
line 1s tile-based), the primitive list preparing stage (circuit)
(the “tiler”) combines at least the first input shading rate and
the second 1nput shading rate to determine the (e.g. “inter-
mediate”) combined shading rate. In an embodiment, the
primitive list preparing stage (circuit) comprises a (first)
combining circuit for this purpose.

In this regard, the Applicants have recognised that a
primitive list preparing stage (“tiler”) of a tile-based graph-
ics processing pipeline may typically be the earliest pro-
cessing stage of the pipeline where e.g. “per-primitive” and
“per-draw call” mnput shading rates for a primitive are
available. As such, combining these input shading rates in
the primitive list preparing stage (“tiler”) can minimise the
propagation of individual e.g. “per-primitive” and “per-draw
call” shading rates through the pipeline, and thus minimise
bandwidth, hardware and energy requirements.

As also discussed above, 1n embodiments of the technol-
ogy described herein at least a combined shading rate
(determined prior to the rasterisation stage) and a third
shading rate are combined to determine an output shading
rate (at or after the rasteriser stage of the graphics processing,
pipeline). This (second) combining operation may be per-

10

15

20

25

30

35

40

45

50

55

60

65

14

formed by any suitable and desired stage or component of
the graphics pipeline or processor.

For example, the later processing stages of the graphics
processing pipeline may comprise a “standalone” second
combining stage (circuit) that performs the (second) com-
bining operation (at or after the rasteriser stage). Alterna-
tively, one of the later processing stages of the graphics
processing pipeline may perform the (second) combiming
operation, e¢.g. 1n addition to the other processing
operation(s) that the processing stage i1s operable to perform.
For example, a fragment processing stage of the renderer
may combine the determined combined shading rate and
third input shading rate to determine an output shading rate.

In an embodiment, the rasteriser (circuit) combines at
least a combined shading rate (determined prior to the
rasterisation stage) and a third mput shading rate to deter-
mine the output (combined) shading rate. In an embodiment,
the rasteriser (circuit) comprises a second combimng circuit
for this purpose (and the combining circuit that combines the
first and second input shading rates (prior to the rasteriser
stage) 1s 1n an embodiment a (1n an embodiment different)
first combining circuit).

In this regard, the Applicants have recognised that a
rasteriser of a graphics processing pipeline may typically be
the earliest processing stage of the pipeline where e.g.
“per-screen space” mput shading rates are available. As
such, combining a e.g. “per-screen space’ input shading rate
in the rasteriser can minimise the propagation of individual
e.g. “per-screen space” shading rates through the pipeline,
and thus minimise bandwidth, hardware and energy require-
ments.

As also discussed above, imn the technology described
herein a combined shading rate (determined (by an earlier
processing stage) prior to the rasterisation stage) 1s provided
to a later processing stage. Where the determined combined
shading rate 1s used as the output shading rate, the deter-
mined combined shading rate should be, and 1n an embodi-
ment 1s, provided to the renderer so that the renderer can
then use that output shading rate when rendering the render
output.

Where the determined combined shading rate 1s combined
with at least a third imnput shading rate to determine the
output shading rate, the determined combined shading rate
should be, and 1n an embodiment 1s, provided to the later
processing stage that performs the (second) combimng
operation. Thus, the combined shading rate (determined
prior to the rasteriser stage) 1s 1n an embodiment provided to
the (second combining circuit of the) rasteriser. In this case,
the output combined shading rate determined by the (second
combining circuit of the) rasteriser should be, and 1n an
embodiment 1s, provided to the renderer so that the renderer
can then use that output shading rate when rendering the
render output.

As also discussed above, a second combing function may
also be, and 1s n an embodiment, provided to the later
processing stage (in an embodiment the (second combining
circuit of the) rasteriser) that performs the (second) com-
bining operation (at or after the rasterisation stage).

A (combined) shading rate and/or a (second) combining
function can be provided to a later processing stage 1n any
suitable and desired manner. In an embodiment, shading rate
information propagates from the earlier “originating” pro-
cessing stage to the later “‘receiving” processing stage
through any “intermediate” processing stages that are (logi-
cally) between the originating and receiving processing
stages 1n the graphics processing pipeline. This may involve,
for example, shading rate information propagating from a

US 11,250,611 Bl

15

processing stage to the next by the processing stage writing,
shading rate information to storage (such as to one or more
registers) that the next processing stage can access, and the
next processing stage reading that shading rate information
(and writing the shading rate information to storage), and so
on.

In an embodiment, any such “intermediate” processing
stage will, as well as propagate shading rate information for
a primitive to the next processing stage, perform a respective
processing operation 1 respect of the primitive, which
processing operation in an embodiment does not use the
shading rate information.

Thus, 1n an embodiment, the graphics processing pipeline
comprises, (logically) between the (first) combining circuit
(e.g. earlier processing stage, 1n an embodiment the primi-
tive list preparing stage) that determines the (“intermediate™)
combined shading rate and the (later) second combining
circuit (e.g. later processing stage, i an embodiment the
rasteriser) that determines the output combined shading rate,
one or more, and 1 an embodiment plural, intermediate
processing stages that are each operable to perform a respec-
tive processing operation which does not use the (“interme-
diate”) combined shading rate information, and 1 an
embodiment to propagate the (“intermediate”) combined
shading rate information to the next processing stage.

In embodiments where the combined shading rate 1s
determined by (the “originating™ processing stage 1s) the
primitive list preparing stage (circuit), providing the deter-
mined combined shading rate (and optionally the second
combining function) in an embodiment 1nvolves the primi-
tive list preparing stage (the “tiler”) writing information
indicative of the (e.g. “intermediate”) combined shading rate
(and optionally the second combining function) to one or
more primitive lists. In an embodiment, the primitive list
reading stage then reads this information when reading
primitive lists, and the information propagates to subsequent
processing stages (including the rasteriser and/or renderer),
e.g. as discussed above.

The primitive list preparing stage (circuit) (the “tiler”)
could write shading rate indicative information for each and
every primitive listed i the primitive lists. However, 1n an
embodiment, the primitive list preparing stage (circuit) (the
“tiler”) writes shading rate indicative information for a
primitive to a primitive list only when the shading rate for
that primitive 1s different to the shading rate for a previous
primitive written to that primitive list. That 1s, in an embodi-
ment, the primitive list preparing stage (“tiler”) only writes
information indicative of the shading rate to a primitive list
when there 1s a change of shading rate.

Thus, the primitive list preparing stage (circuit) (the
“tiler”) 1n an embodiment comprises a primitive list writing
circuit that 1s configured to determine whether a shading rate
for a current primitive to be written to a primitive list 1s
different to a shading rate for a previous primitive written to
the primitive list, and to, when 1t 1s determined that a shading
rate for a current primitive to be written to a primitive list 1s
different to a shading rate for a previous primitive written to
the primitive list, write information indicative of the shading
rate for the current primitive to the primitive list.

In an embodiment, the primitive list writing circuit 1s
configured to, when 1t 1s not determined that a shading rate
for a current primitive to be written to a primitive list 1s
different to a shading rate for a previous primitive written to
the primitive list (when 1t 1s determined that the shading rate
for the current primitive 1s the same as the shading rate for
the previous primitive), not write (omit writing) information

10

15

20

25

30

35

40

45

50

55

60

65

16

indicative of the shading rate for the current primitive to the
primitive list. This can further reduce energy, hardware and
bandwidth requirements.

The shading rate indicative information that the primitive
list preparing stage (circuit) (the “tiler”) writes to one or
more primitive lists could comprise the actual determined
(e.g. “intermediate’”) combined shading rate (and optionally
the second combining function). However, 1n an embodi-
ment, the shading rate indicative information comprises a
compressed representation of a determined (e.g. “interme-
diate”) combined shading rate (and optionally a second
combining function). This can further reduce bandwidth,
hardware and energy requirements.

Thus, 1n an embodiment, a compressed representation of
the (e.g. “intermediate”) combined shading rate (and option-
ally the second combining function) 1s determined (prior to
the rasterisation stage), and the compressed representation
of the (e.g. “intermediate”) combined shading rate (and
optionally the second combining function) 1s provided to the
later processing stage(s) (in an embodiment instead of the
actual “uncompressed” combined shading rate).

To facilitate this, the graphics processor 1n an embodiment
comprises a shading rate compressing circuit that 1s config-
ured to compress a (combined) shading rate (and optionally
a combining function) to determine a compressed represen-
tation of the (combined) shading rate (and optionally the
combining function) (prior to the rasteriser stage of the
graphics processing pipeline), and in an embodiment to
provide the compressed representation of the (combined)
shading rate to the later processing stage(s). In an embodi-
ment, the shading rate compressing circuit compresses a
combined shading rate determined by the (first) combining
circuit. In an embodiment, the primitive list preparing stage
(circuit) (the “tiler”) comprises the shading rate compressing
circuit, 1n an embodiment as well as the (first) combining
circuit.

Correspondingly, the graphics processor mn an embodi-
ment comprises a shading rate decompressing circuit that 1s
configured to decompress a compressed representation of a
(combined) shading rate (and optionally a second combining,
function) to determine the (combined) shading rate (and
optionally the combining function) (at or after the rasteriser
stage of the graphics processing pipeline). In an embodi-
ment, the rasteriser (circuit) or (a fragment processing stage
of the) renderer (circuit) comprises the shading rate decom-
pressing circuit, in an embodiment as well as the second
combining circuit.

A compressed representation of a (combined) shading rate
can be provided in any suitable form. In an embodiment,
cach shading rate of the set of plural possible shading rates
that the graphics processor supports 1s encoded as a respec-
tive bit pattern of a set of bits. A further bit pattern of the set
of bits may be used to encode the case where “variable rate
shading” (VRS) 1s disabled.

Similarly, a compressed representation of a (second)
combing function can be provided in any suitable form. In
an embodiment, each possible combing function i1s encoded
as a respective bit pattern of a set of bits. In an embodiment,
a Turther bit pattern of the set of bits that encodes a (second)
combing function 1s used to encode the case where “variable
rate shading” (VRS) 1s disabled.

Thus, 1n an embodiment, shading rate indicative informa-
tion written by the primitive list preparing stage (circuit) can
indicate that “varniable rate shading” (VRS) is disabled. In
this case, the primitive list preparing stage (circuit) 1s 1n an
embodiment configured to, when ‘““variable rate shading”
(VRS) 1s disabled, not write (omit writing) information

US 11,250,611 Bl

17

indicative of individual shading rates (and (only) write
information that indicates that “variable rate shading” (VRS)
1s disabled), and the primitive list reading stage (circuit) 1s
in an embodiment configured to, 1n response to reading
shading rate indicative information that indicates that “vari-
able rate shading” (VRS) 1s disabled, provide information to
subsequent processing stages ol the graphics processing
pipeline that indicates that the finest possible shading rate
(1x1) should be used (as an “output” shading rate). This
arrangement can reduce the amount of information that is
written and read, and thus bandwidth requirements and
energy consumption, when “variable rate shading™ (VRS) 1s
disabled.

Once an “output” shading rate has been determined (from
plural “input” shading rates), the renderer should, and 1n an
embodiment does, use that output shading rate when ren-
dering a primitive for the render output. This should, and 1n
an embodiment does, have the eflect that a greater number
of colours are sampled by the renderer when a finer output
shading rate 1s determined, as compared to when a coarser
output shading rate 1s determined. This can be achieved 1n
any suitable and desired manner.

For example, the rasteriser could rasterise primitives 1nto
fragments based on shading rate, such that the area of the
render output that a fragment generated by the rasteriser
corresponds to varies according to shading rate. Thus, 1n an
embodiment, the rasteriser rasterises a primitive according
to the output shading rate. For example, the rasteriser could
generate fragments that correspond to larger areas of the
render output when a coarser output shading rate 1s used, and
generate fragments that correspond to smaller areas of the
render output when a finer output shading rate 1s used. The
renderer may then sample a single set of colour value data
(a single colour) for each so-generated fragment. This waill
then have the eflect that a greater number of fragments are
generated, and so colours are sampled, when a finer shading
rate 1s used, as compared to when a coarser shading rate 1s
used.

In an embodiment, the rasteriser 1s operable to generate
fragments 1n the “normal” manner. That 1s, 1n an embodi-
ment, the rasteriser (always) operates to generate fragments
that each correspond to the same sized area of the render
output, e.g. corresponding to one pixel or sub-pixel (a “fine
pixel”) wrrespective of the output shading rate used. Frag-
ments generated i this way are then mm an embodiment
“combined” according to the output shading rate into sets of
one or more fragments, and a single set of colour value data
(a single colour) 1s sampled for each such set of one or more
fragments. For example, and in an embodiment, a greater
number of fragments are included in a set of fragments when
a coarser output shading rate 1s used, as compared to when
a finer output shading rate 1s used. This will then have the
ellect that a greater number of colours are sampled when a
finer shading rate 1s used, as compared to when a coarser
shading rate 1s used.

Once a colour (set of colour value data) has been sampled
by the renderer (circuit), the colour should be, and 1n an
embodiment 1s, “broadcast” to each (e.g. covered) sampling
position in the render output that the colour applies to. This
should, and 1n an embodiment does, have the eflect that a
single colour will be used for more sampling positions 1n the
render output when a coarser output shading rate 1s used, as
compared to when a finer output shading rate 1s used.

In an embodiment, render output data 1s “broadcast” to
cach corresponding sampling position 1n an output bufler,
¢.g. the tile bufller. This may comprise writing render output
data produced by the renderer (directly) to the output (e.g.

10

15

20

25

30

35

40

45

50

55

60

65

18

tile) buller based on the output shading rate. Alternatively,
where blending 1s required, a blender stage of the graphics
processing pipeline may appropnately blend render output
data newly generated by the renderer with render output data
already stored in the output (e.g. tile) bufler based on the
output shading rate.

The graphics processor may execute any suitable and
desired graphics processing pipeline, and may and 1n an
embodiment does, include any suitable and desired process-
ing circuits, processing logic, components and elements for
that purpose.

A (and each) processing stage (circuit) of the graphics
processing pipeline (processor) can be implemented as
desired, e.g. as a fixed function hardware unit (circuit) (i.e.
a circuit that 1s dedicated to one or more functions that
cannot be changed) or as a programmable processing circuit
(that 1s programmed to perform the desired operation).

For example, the primitive list preparing stage (the
“tiler”) may be a fixed function tiling unit (circuit), and
vertex and fragment processing stages may be executed by
one or more programmable execution units (shader cores) of
the graphics processor.

Thus, 1n an embodiment, the graphics processor com-
prises one or more programmable execution units (shader
cores), which can, and 1n an embodiment do, each execute
one or more of the processing stages of the graphics pro-
cessing pipeline. Where the graphics processor comprises
plural programmable execution units (shader cores), then
different programmable execution units may execute the
same or different processing stages of the graphics process-
ing pipeline independently and at the same time (1n parallel).
Thus, plural instances of the graphics processing pipeline
may be executed 1n parallel.

As will be appreciated by those skilled in the art, the
graphics processor of the technology described herein may
be part of an overall graphics processing system that
includes, e.g., and 1n an embodiment, a host processor that,
e.g., executes applications that require processing by the
graphics processor. The host processor will send appropriate
commands and data to the graphics processor to control 1t to
perform graphics processing operations and to produce
graphics processing output required by applications execut-
ing on the host processor. To facilitate this, the host proces-
sor should, and 1n an embodiment does, also execute a driver
for the graphics processor and optionally a compiler or
compilers for compiling (e.g. shader) programs to be
executed by (e.g. a programmable execution unit of) the
graphics processor.

The graphics processor may also comprise, and/or be 1n
communication with, one or more memories and/or memory
devices that store the data described herein, and/or the
output data generated by the graphics processor, and/or store
software (e.g. (shader) program) for performing the pro-
cesses described herein. The graphics processor may also be
in communication with a host microprocessor, and/or with a
display for displaying images based on the data generated by
the graphics processor.

The technology described herein can be used for all forms
of output that a graphics processor (and processing pipeline)
may be used to generate. For example, the graphics pro-
cessing pipeline may generate frames for display, render-to-
texture outputs, etc. The output data values from the pro-
cessing are m an embodiment exported to external, e.g.
main, memory, for storage and use, such as to a frame bufler
for a display.

The technology described herein 1s applicable to any
suitable form or configuration of graphics processor and

US 11,250,611 Bl

19

graphics processing system. It 1s particularly applicable to
tile-based graphics processors and graphics processing sys-
tems. Thus in an embodiment, the graphics processor 1s a
tile-based graphics processor (and pipeline).

In an embodiment, the various functions of the technol-
ogy described herein are carried out on a single graphics
processing platform that generates and outputs data (such as
rendered fragment data that 1s, e.g., written to the frame
butler), for example for a display device.

The technology described herein can be implemented in
any suitable system, such as a suitably configured micro-
processor based system. In an embodiment, the technology
described heremn 1s implemented 1 a computer and/or
micro-processor based system.

The technology described herein 1s 1n an embodiment
implemented 1 a portable device, such as, and 1n an
embodiment, a mobile phone or tablet.

The various functions of the technology described herein
can be carried out in any desired and suitable manner. For
example, the functions of the technology described herein
can be implemented 1n hardware or software, as desired.
Thus, for example, the various functional elements, stages,
and “means” of the technology described herein may com-
prise a suitable processor or processors, controller or con-
trollers, functional units, circuitry, circuit(s), processing
logic, microprocessor arrangements, etc., that are operable
to perform the various functions, etc., such as appropnately
dedicated hardware elements (processing circuit(s)) and/or
programmable hardware eclements (processing circuit(s))
that can be programmed to operate in the desired manner.

It should also be noted here that, as will be appreciated by
those skilled in the art, the various functions, etc., of the
technology described herein may be duplicated and/or car-
ried out 1n parallel on a given processor. Equally, the various
processing stages may share processing circuit(s), etc., if
desired.

It will also be appreciated by those skilled 1n the art that
all of the described embodiments of the technology
described herein can include, as appropnate, any one or
more or all of the optional features described herein.

The methods 1n accordance with the technology described
herein may be implemented at least partially using software
¢.g. computer programs. It will thus be seen that when
viewed from further embodiments the technology described
herein provides computer software specifically adapted to
carry out the methods herein described when 1nstalled on a
data processor, a computer program element comprising
computer soitware code portions for performing the meth-
ods herein described when the program element 1s run on a
data processor, and a computer program comprising code
adapted to perform all the steps of a method or of the
methods herein described when the program 1s run on a data
processing system. The data processing system may be a
microprocessor, a programmable FPGA (Field Program-
mable Gate Array), etc.

The technology described herein also extends to a com-
puter software carrier comprising such software which when
used to operate a graphics processor, renderer or other
system comprising a data processor causes 1 conjunction
with said data processor said processor, renderer or system
to carry out the steps ol the methods of the technology
described herein. Such a computer software carrier could be
a physical storage medium such as a ROM chip, CD ROM,
RAM, flash memory, or disk, or could be a signal such as an
clectronic signal over wires, an optical signal or a radio
signal such as to a satellite or the like.

10

15

20

25

30

35

40

45

50

55

60

65

20

It will further be appreciated that not all steps of the
methods of the technology described herein need be carried
out by computer software and thus from a further broad
embodiment the technology described herein provides com-
puter software and such software installed on a computer
soltware carrier for carrying out at least one of the steps of
the methods set out herein.

The technology described herein may accordingly suit-
ably be embodied as a computer program product for use
with a computer system. Such an implementation may
comprise a series ol computer readable instructions fixed on
a tangible, non-transitory medium, such as a computer
readable medium, for example, diskette, CD ROM, ROM,
RAM, flash memory, or hard disk. It could also comprise a
series of computer readable 1nstructions transmittable to a
computer system, via a modem or other interface device,
over either a tangible medium, including but not limited to
optical or analogue communications lines, or intangibly
using wireless techmques, including but not limited to
microwave, inirared or other transmission techniques. The
series of computer readable mstructions embodies all or part
of the functionality previously described herein.

Those skilled 1n the art will appreciate that such computer
readable instructions can be written in a number of pro-
gramming languages for use with many computer architec-
tures or operating systems. Further, such instructions may be
stored using any memory technology, present or future,
including but not limited to, semiconductor, magnetic, or
optical, or transmitted using any communications technol-
ogy, present or future, including but not limited to optical,
infrared, or microwave. It 1s contemplated that such a
computer program product may be distributed as a remov-
able medium with accompanying printed or electronic docu-
mentation, for example, shrink wrapped software, pre-
loaded with a computer system, for example, on a system
ROM or fixed disk, or distributed from a server or electronic
bulletin board over a network, for example, the Internet or
World Wide Web.

An embodiment of the technology described herein will
now be described with reference to the Figures.

When a computer graphics image 1s to be displayed, it 1s
usually first defined as a series of primitives (polygons),
which primitives are then rasterised into graphics fragments
for graphics rendering in turn. These fragments are the
processing entities that pass through the rendering process
(the renderer). During a normal graphics rendering opera-
tion, the renderer typically samples a single colour (e.g. a set
of red, green and blue, RGB values and a transparency
(alpha, a) value) for each fragment so that the fragments can
be displayed correctly. Once the fragments have fully tra-
versed the renderer, then their associated colour values are
stored 1n memory, ready for output, e.g. for display on a
display device.

Each graphics fragment will typically be the same size
and location as a “pixel” of the output display device.
Alternatively, each graphics fragment may etlectively cor-
respond to less than one pixel of the output display device,
for example where downsampling 1s to be applied.

Thus, the rendering process may typically produce a
render output comprising an array of sampling points, for
cach of which appropniate data (e.g. a set of colour value
data) 1s generated. For each output pixel, there 1s typically a
set of one or more corresponding sampling points 1n the
render output. Each such set of sampling points may include
only one sampling point, or where downsampling 1s used,
cach set of sampling points may include plural sampling
points.

US 11,250,611 Bl

21

As discussed above, “vanable rate shading” (VRS) 1s a
technique that allows different shading rates to be used to
render a render output, 1.e. such that a single colour (set of
colour value data) can be sampled (rendered) for one of
plural possible diflerent sized arecas in a render output. For
example, a single colour may be sampled for an area of the
render output corresponding to only a single pixel, or a
single colour may be sampled for an area of the render
output corresponding to each pixel i a block of plural
pixels.

Sampling (rendering) a single colour and applying it to
plural sampling points (e.g. pixels) will reduce the process-
ing effort required for those sampling points, as compared to
sampling an individual colour for each sampling point, but
will usually come at the expense of reduced 1image quality.

In “vanable rate shading” (VRS), there will typically be
a set of plural possible shading rates that a graphics proces-
sor supports and 1s able to use. That 1s, there will typically
be a set of plural possible different sized render output areas
that a single colour (set of colour value data) can be sampled
for. The smallest possible of these render output areas may
be referred to as a “fine pixel”, and the other, larger render
output areas may be referred to as “coarse pixels”.

Each “fine pixel” will typically be the same size and
location as a pixel of the output display device. However, 1t
1s also possible for each “fine pixel” to effectively corre-
spond to less than one pixel of the output display device, for
example where downsampling 1s to be applied.

The area of each possible “coarse pixel” typically corre-
sponds to a block of plural “fine pixels”. The different
possible shading rates are then referred to 1n terms of the
number of fine pixels that the shading rate corresponds to.
For example, a 1x1 shading rate will signity the finest
possible shading mode 1 which a single colour should be
sampled for a single fine pixel, whereas a 2x2 shading rate
will signily that a single colour should be sampled for an
area corresponding to a block of 2x2 fine pixels. A graphics
processor may typically support 1x1, 1x2, 2x1, 2x2, 2x4,
4%x2 and 4x4 shading rates, for example.

FIG. 2 1llustrates a comparison of an exemplary primitive
201 being rendered using 1x1 and 2x2 shading rates. FIG.
2 shows the location of the exemplary primitive 201 to be
rendered relative to a 6x6 block of fine pixels 202. Each
small square represents one of the fine pixels of the “variable
rate shading” (VRS) process.

In the case of a 1x1 shading rate, the rendering process
samples (renders) a single colour (set of colour value data)
for each fine pixel that a primitive covers. In this case, the
primitive 201 1s visible 1 (covers) 23 out of the 36 1illus-
trated fine pixels, and so the rendering process will sample
a total of 23 colours (sets of colour value data).

Each larger square in FIG. 2 represents one 2x2 coarse
pixel that 1s used 1n the 2x2 shading rate process. Each 2x2
coarse pixel encompasses a block of 2x2 fine pixels. In this
case, the rendering process samples (renders) a single colour
(set of colour value data) for each such coarse pixel that a
primitive covers. In this case, the primitive 201 covers 8 out
of the 9 1illustrated 2x2 coarse pixels, and so the rendering
process will sample only 8 colours (sets of colour values).

Thus, 1t will be appreciated that a coarser shading rate 1s
associated with a lower density of rendered colours as
compared to a finer shading rate. Moreover, 1t will be
appreciated that rendering the primitive 201 using a coarser
shading rate will reduce processing requirements, as com-
pared to rendering the primitive 201 using a finer shading
rate. However, this will typically come at the expense of
reduced 1mage quality.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

A graphics processor will typically determine the shading
rate that 1t uses to render a primitive 201 based on a
combination of plural “input” shading rates specified for that
primitive by an application that the render output i1s being
generated for. The final, “output” shading rate that the
graphics processor actually uses thus typically represents a
combined shading rate.

As discussed above, the Applicants have recognised that
propagating a single shading rate through a graphics pro-
cessing pipeline will reduce bandwidth, hardware and
energy requirements as compared to propagating plural
shading rates through the pipeline. Accordingly, the overall
bandwidth, hardware and energy requirements of a graphics
processing pipeline can be reduced by combining plural
input shading rates into a single, combined shading rate at a
relatively early point 1n the pipeline, and then propagating
the combined shading rate through the pipeline, as compared
to propagating the plural mput shading rates through the
pipeline and then combining the plural mput shading rates
into the single combined shading rate at a later point 1n the
pipeline.

Embodiments of the technology described herein exploit
this by combining plural input shading rates that are avail-
able prior to rasterisation 1nto a single “intermediate” com-
bined shading rate prior to rasterisation, and then later 1n the
pipeline (1.e. during or after rasterisation), combining the
“intermediate” combined shading rate with any mnput shad-
ing rates that are determined during or after rasterisation, to
determine an output combined shading rate that 1s actually
used when rendering a primitive.

FIG. 1 shows a graphics processing system which may be
operated 1n accordance with an embodiment of the technol-
ogy described herein. The graphics processing system com-
prises a host processor (CPU) 1, a graphics processing unit
(GPU) 3, and a memory 5 for storing data required by and/or
generated by the host processor 1 and graphics processor 3.

When an application 2 that 1s executing on the host
processor 1 requires graphics processing from the graphics
processor 3, such as a frame to be displayed, the application
2 sends appropriate commands and data to a driver 4 for the
graphics processor 3 that 1s running on the host processor 1.

In the present embodiment, these commands and data
include information from which plural input shading rates
can be determined. In particular, in the present embodiment
the application 2 can specily one or more “per-primitive”
shading rates, one or more “per-draw call” shading rates, and
one or more “per-screen space” shading rates.

Each “per-primitive” shading rate indicates a shading rate
that any primitives (and thus fragments) associated with a
particular vertex should be rendered using. A “per-primi-
tive” shading rate for a (each) vertex may be specified in
vertex data for that vertex.

Each “per-draw call” shading rate indicates a shading rate
that any primitives (and thus fragments) that belong to a
particular draw call should be rendered using. A “per-draw
call” shading rate for a (each) draw call may be specified 1n
the associated draw call descriptor.

Each “per-screen space” shading rate indicates a shading
rate that should be used to render any primitives or frag-
ments that appear within a particular region of a render
output. In the present embodiment, a render output is
divided into a plurality equally sized rectangular (such as
square) regions, and a “per-screen space” shading rate 1s
specified for each such region. An array of “per-screen
space” shading rates may thus be specified for a (each)
render output, with each element of the array corresponding
to one of the regions of the render output.

US 11,250,611 Bl

23

The application 2 may consequently specily a “per-
primitive” mput shading rate, a “per-draw call” input shad-
ing rate and a “per-screen space” mput shading rate that
apply to the same primitive or fragment, which mnput shad-
ing rates may be different to each other. There 1s thus a need
to be able to combine diflerent input shading rates that are
specified for the same primitive or fragment mnto a single
combined output shading rate that should be used when
rendering that primitive or fragment.

To allow for this, the application 2 also specifies how
different shading rates should be combined. To do this, in the
present embodiment, the application 2 specifies a first com-
bining function to be used when combining a “per-primi-
tive” shading rate and a “per-draw call” shading rate, and a
second combining function to be used when combining a
“per-screen space’ shading rate. An output combined shad-
ing rate can then be determined by combining a “per-
primitive” shading rate and a “per-draw call” shading rate
according to the first combiming function to determine an
“intermediate” combined shading rate, and then combining
the “intermediate” combined shading rate with a “per-screen
space” shading rate according to the second combining
function.

A combining function may combine different shading
rates by, for example, selecting one of the shading rates,
such as the finest or coarsest shading rate, or by determining
an average shading rate. In the present embodiment, an input
and/or an output of a combining function 1s “samtized” to
the nearest shading rate supported by the graphics processor
3.

In response to these commands and data from the appli-
cation 2, the driver 4 then sends appropriate commands and
data to the graphics processor 3 to cause 1t to generate the
render output required by the application 2. The driver 4
sends commands and data to the graphics processor 3 by
writing to the memory 5.

The commands and data provided by the driver 4 will
include commands to render primitives for the render output
to be generated by the graphics processor 3, together with
associated vertex data representing the vertices to be used
for the primitives for the render output. They will also
include information 1indicating the shading rate information
specified by the application 2.

The commands sent to the graphics processor 3 cause the
graphics processor 3 to read the vertex data from the
memory 5, and process the read vertex data to generate the
render output accordingly. The graphics processor 3 will
typically use the vertex data for a primitive to rasterise the
primitive to one or more fragments each (potentially) apply-
ing to a region (area) of the render output. The fragments
may then be rendered.

The completed render output (e.g. frame) may be written
in a frame bufler i the memory 35, from where 1t may be
provided for display on a display device, such as a screen or
printer.

FIG. 3 shows a graphics processing pipeline arrangement
in which all mnput shading rates are combined once all of the
input shading rates are available, after the rasterisation stage.
It will be appreciated that the arrangement of FIG. 3 1s not
in accordance with the technology described herein, but 1s
shown for illustrative purposes.

The graphics processing pipeline shown 1 FIG. 3 1s a
tile-based graphics processing pipeline and will thus pro-
duce tiles of a render output data array, such as an output
frame to be generated.

In tile-based rendering, rather than the entire render
output, e.g., frame, eflectively being processed 1n one go as

10

15

20

25

30

35

40

45

50

55

60

65

24

in immediate mode rendering, the render output, e.g., frame
to be displayed, 1s divided into a plurality of smaller
sub-regions, usually referred to as “tiles”. Each tile (sub-
region) 1s rendered separately (typically one-after-another),
and the rendered tiles (sub-regions) are then recombined to
provide the complete render output, e.g., frame for display.
In such arrangements, the render output 1s typically divided
into regularly-sized and shaped sub-regions (tiles) (which
are usually, e.g., squares or rectangles), but this 1s not
essential.

The advantage of such tile-based rendering 1s that graph-
ics processing commands (primitives) that do not apply to a
given tile do not have to be processed for that tile, and
therefore can be 1gnored when the tile 1s processed. This
allows the overall amount of graphics processing necessary
for a given render output to be reduced.

In a tile-based rendering system, it 1s accordingly usually
desirable to be able to 1dentify and know those commands
(primitives) that actually apply to a given rendering tile so
as to, e€.g., avoild unnecessarily processing commands and
primitives that do not actually apply to a tile.

In order to facilitate this, lists of the primitives to be
processed are prepared for different regions of the render
output. These “primitive lists” (which can also be referred to
as a “tile list” or “polygon list”) 1dentily (e.g. by reference
to a primitive indicator) the primitives to be processed for
the region 1n question. The regions of the render output that
primitive lists can be prepared for can correspond e.g. to
single rendering tiles, or to sets of plural rendering tiles.
Once the primitive lists have been prepared for the render
output regions, each rendering tile can then be processed by
rasterising and rendering the primitives listed for the
region(s) that encompass the rendering tile.

As shown 1n FIG. 3, the graphics processing pipeline 1n
this arrangement includes a geometry pipeline 300, and a
rendering pipeline 310, both of which can access the
memory 3.

The geometry pipeline 300 comprises a vertex shader and
a tiling unit. The tiling unit (“tiler”) performs the process of
“tiling™ to allocate primitives to the primitive lists, and uses
transformed vertex data provided by the vertex shader. The
primitive lists generated by the tiling unit are stored 1n the
memory 5.

As shown 1n FIG. 3, as part of 1ts processing, the geometry
pipeline 300 reads 1n “per-draw call” (a) and “per-primitive”
(b) shading rates, as well as first (op0) and second (opl)
combiner functions, and this information 1s propagated
through the pipeline and written with the primitive lists in
the memory 3.

The rendering pipeline 310 then reads the appropriate
primitive list(s) for a tile from the memory 3 to i1dentily the
primitives that are to be rendered for that tile. A rasteriser of
the rendering pipeline 310 rasterises those primitives to
fragments, and subsequent fragment processing stages of the
rendering pipeline 310 render (shade) the fragments to
generate rendered data for the rendering tile 1n question.

As part of 1ts processing, the rendering pipeline 310 reads
in “per-draw call” (a), “per-primitive” (b) and “per-screen
space” (¢) shading rates, as well as first (op0) and second
(opl) combiner functions from the memory 5. This infor-
mation 1s propagated through the pipeline to a combiming
stage 311 after the rasteriser, which combining stage 311
uses the mmformation to determine a single output (final)
combined shading rate for a fragment generated by the
rasteriser. The output (final) combined shading rate 1s then
used by the fragment processing stages of the rendering
pipeline 310 when rendering the fragment.

US 11,250,611 Bl

25

FIGS. 4 and § show a graphics processing pipeline that
may be executed by the graphics processor 3 1n accordance
with an embodiment of the technology described herein.
FIGS. 4 and 5 show the main elements and pipeline stages
of the graphics processing pipeline that are relevant to the
operation of the present embodiment. As will be appreciated
by those skilled 1n the art there may be other elements of the
graphics processing pipeline that are not i1llustrated 1n FIGS.
4 and 5. It should also be noted here that FIGS. 4 and § are
only schematic, and that, for example, 1n practice the shown
functional units and pipeline stages may share significant
hardware circuits, even though they are shown schemati-
cally as separate stages in FIGS. 4 and 5. It will also be
appreciated that each of the stages, elements and units, etc.,
ol the graphics processing pipeline as shown 1n FIGS. 4 and
5 may be implemented as desired and will accordingly
comprise, €.g., appropriate circuit(s) and/or processing
logic, etc., for performing the necessary operation and
functions.

The graphics processing pipeline shown in FIGS. 4 and 5,
like the graphics processing pipeline of FIG. 3, i1s a tile-
based graphics processing pipeline and will thus produce
tiles of a render output data array, such as an output frame
to be generated.

As shown 1n FIG. 4, the graphics processing pipeline of
the present embodiment includes a geometry pipeline 400,
and a rendering pipeline 410, both of which can access the
memory 5.

The geometry pipeline 400 comprises a vertex shader and
a tiling unit. The vertex shader takes as 1t input the raw
vertex data provided by the driver 4 that 1s stored in the
memory 5, and processes that data to provide transformed
vertex data (which it then stores in the memory 5) compris-
ing the vertex data 1in a form that 1s ready for 2D placement
in the render output (e.g. frame to be displayed).

The tiling unit (“tiler””) performs the process of “tiling” to
allocate primitives to the primitive lists, which are then used
by the rendering pipeline 410 to 1dentify the primitives that
should be rendered for each rendering tile that 1s to be
rendered to generate the render output (frame to be rendered
for display). To do this, the tiling unit takes as its input the
transformed and processed vertex data from the vertex
shader (1.¢. the positions of the primitives in the frame),
builds primitive lists using that data, and stores those primi-
tive lists 1n the memory 3.

As shown m FIG. 4, in the present embodiment the
geometry pipeline 400 includes a first “variable rate shad-
ing” (VRS) combiner circuit 401 and a *variable rate
shading” (VRS) compressor circuit 402.

The first VRS combiner 401 takes as 1t input a “per-draw
call” shading rate (a) for a primitive and a “per-primitive”
shading rate (b) for the primitive, together with a first
combining function (op0), and combines the “per-primitive”
shading rate and the “per-draw call” shading rate mto a
single “intermediate” combined shading rate (d) for the
primitive according to the first combining function (op0).
The output of the first VRS combiner 401 1s “sanitized” to
a shading rate supported by the graphics processor 3 (i.e.
I1x1, 1x2, 2x1, 2x2, 2x4, 4x2 or 4x4, in the present
embodiment).

The VRS compressor 402 takes as it mput a “sanitised”
intermediate combined shading rate (d) determined by the
first VRS combiner 401, and compresses that shading rate to
a determine compressed representation of the intermediate
combined shading rate. In the present embodiment, there are
seven supported shading rates (1x1, 1x2, 2x1, 2x2, 2x4, 4x2
and 4x4), which are encoded by the VRS compressor 402

10

15

20

25

30

35

40

45

50

55

60

65

26

using three bits. Each of the seven possible shading rates 1s
indicated by a respective bit pattern. Similarly, second
combing function (opl) nformation 1s compressed by
encoding each possible combining function as a respective
bit pattern of a set of three bits, and a further bit pattern (0x7)
1s used to encode the case where “variable rate shading”
(VRS) 15 disabled.

The compressed representation of the second combining
function (opl) information 1s written with the primitive list
information in the memory 3 for a (each) draw call, and
(when “variable rate shading” (VRS) i1s enabled) a com-
pressed representation of an intermediate combined shading
rate (d) for a (each) primitive 1s also written in the appro-
priate primitive list(s) in the memory 5.

The rendering pipeline 410 then reads the appropnate
primitive list(s) for a tile from the memory 5 to identify the
primitives that are to be rendered for that tile. It then
rasterises those primitives to fragments, and renders
(shades) the fragments to generate rendered data for the
rendering tile 1n question.

As part of this processing, the rendering pipeline 410
determines a “per-screen space” shading rate (c) that applies
to a (each) fragment 1t 1s to render (shade). This 1nvolves
using the sample position(s) associated with the fragment to
determine which region of the render output the fragment
lies within, and thus which “per-screen space” shading rate
applies.

As shown in FIG. 4, mm the present embodiment the
rendering pipeline 410 includes a second “vanable rate
shading” (VRS) combiner circuit 411. The second VRS
combiner 411 takes as 1t mput an ntermediate combined
shading rate (d) and a second combining function (opl)
based on primitive list information stored for a primitive in
the memory 5, and a “per-screen space” shading rate (c)
determined for a fragment generated by rasterising that
primitive.

The second “variable rate shading” (VRS) combiner 411
combines the intermediate combined shading rate and the
“per-screen space” shading rate into a single combined
shading rate for the fragment according to the second
combining function. The output of the second VRS com-
biner 411 1s “sanmitized” to a shading rate supported by the
graphics processor 3 (1.e. 1x1, 1x2, 2x1, 2x2, 2x4, 4x2 or
4x4, 1 the present embodiment). This output (final) com-
bined shading rate 1s then used by the fragment processing
stages of the rendering pipeline 410 when rendering that
fragment.

Combining at least “per-primitive” and “per-draw call”
input shading rates to determine an intermediate combined
shading rate at a relatively early stage in the graphics
processing pipeline 1n this manner can reduce bandwidth
requirements, hardware requirements (e.g. 1n terms of sizes
of, and number of, registers) and energy consumption asso-
ciated with propagating shading rates and combimng func-
tions through the pipeline.

For example, in the arrangement of FIG. 3, “per-draw
call” (a), “per-primitive” (b) and “per-screen space” (c)
shading rates, and first (op0) and second (opl) combining
functions are all propagated as far as the combining stage
311 after the rasteriser of the rendering pipeline 310. In
contrast, in the embodiment shown 1 FIG. 4, “per-draw
call” (a) and “per-primitive” (b) shading rates, and a {first
combining function (op0), only need to be propagated
through the graphics processing pipeline as far as the first
VRS combiner circuit 401 of the geometry pipeline 400.

Thus, 1n the arrangement 1llustrated in FIG. 3, the geom-
etry pipeline 300 writes, and the rendering pipeline 310

US 11,250,611 Bl

27

correspondingly reads, a “per-draw call” shading rate (a), a
“per-primitive” shading rate (b), a first combining function
(op0) and a second combining function (opl) for primitives
listed 1n the primitive lists(s).

In contrast, in the embodiment illustrated 1n FIG. 4, the
geometry pipeline 400 only needs to write, and the rendering
pipeline 410 correspondingly only needs to read, informa-
tion for an intermediate combined shading rate (d), instead
of for both “per-draw call” (a) and “per-primitive” (b)
shading rates. Furthermore, the geometry pipeline 400 only
needs to write, and the rendering pipeline 410 only needs to
read, information for a second combining function (opl), but
not for the corresponding first combining function (op0).

Thus, 1t will be appreciated that the embodiment of FIG.
4 will reduce bandwidth, hardware and energy requirements
as compared to the arrangement of FIG. 3.

FIG. 5 shows the graphics processing pipeline of the
present embodiment in more detail.

As shown 1n FIG. 5, the drniver 4 sends commands and
data for a draw call to the graphics processor 3 1n the form
of Command Stream Frontend (CSF) structions. The
Command Stream Frontend (CSF) 320 of the graphics
processor 3 recerves these instructions, and sends appropri-
ate commands over a Job Control Network (JCN) of the
graphics processor 3 to the tiling unit (“tiler”) 500 to cause
the tiling unit 500 to perform the “tiling” process. As
illustrated 1n FIG. 5, these commands include information
indicative of the “per-draw call” shading rate (a), and first
(op0) and second (opl) combining functions.

In the present embodiment, the tiling unit 500 operates to
distribute vertex processing tasks to the vertex shader (not
shown 1n FIG. §) to generate transformed vertex data as and
when the tiling unit 500 actually requires transformed vertex
data 1n order to prepare primitive lists. As part of this
processing, the tiling unit 500 receives “per-primitive” shad-
ing rates (b) for the vertices (primitives) being processed
from the vertex data in the memory 5.

In the present embodiment, the tiling unit 500 prepares
primitive lists for different sized, “hierarchical” regions of
the render output, and includes a hierarchical tiling unit 503
for this purpose. However, other, e.g. non-hierarchical,
arrangements would be possible.

As shown 1n FIG. 5, 1n the present embodiment, the tiling
unit 500 further includes a write compressor 502 that
operates to compress primitive list information generated by
the hierarchical tiling unit 503, and to write the compressed
primitive list information to the memory 5.

In the present embodiment, the first VRS combiner 401
and the VRS compressor 402 are provided as part of the
write compressor 502 of the tiling unit 500. In this regard,
the Applicants have recognised that a tiling unit 500 of a
tile-based graphics processing pipeline may typically be the
carliest processing stage of the pipeline where “per-primi-
tive” and “per-draw call” input shading rates for a primitive
are available. As such, locating the first VRS combiner 401
in the tiling unit 500 can mimmise the propagation of
individual “per-primitive” and “per-draw call” shading rates
through the pipeline, and thus minimise bandwidth, hard-
ware and energy requirements.

In the present embodiment, the write compressor 502
operates to compare a current intermediate shading rate for
a current primitive that 1s to be written to a primitive list with
a previous intermediate shading rate for a previous primitive
written to that primitive list, to determine 1f the current
intermediate shading rate 1s different to the previous inter-
mediate shading rate, and to only write intermediate shading,
rate information to the primitive list when it 1s determined

10

15

20

25

30

35

40

45

50

55

60

65

28

that the current intermediate shading rate 1s diflerent to the
previous intermediate shading rate. This can further reduce
energy and bandwidth requirements.

Once primitive list information has been written to the
memory 5, 1t 1s read and processed by the rendering pipeline
410, which 1n the present embodiment, as shown in FIG. 5,
1s executed by a shader core (programmable execution unit)
510 of the graphics processor 3. The graphics processor 3
may include one or more (e.g. plural) such shader cores
(execution units), each of which may execute the rendering
pipeline 1n parallel.

As shown in FIG. 5, the rendering pipeline includes
primitive list reader 513, primitive setup stages including
resource allocator 514, vertex loader 515, and triangle set-up
umt 516, and rasteriser 512. The rendering pipeline also
includes a renderer in the form of one or more fragment
processing stages (not shown).

The primitive list reader 513 reads the appropriate primi-
tive list(s) for a tile from the memory S to identity the
primitives that are to be rendered for the tile. As part of this,
the primitive list reader 513 reads 1n the second combining
function (opl) information for a (each) draw call from the
memory 3.

When the second combining function (opl) information
indicates a particular combining function, then the output of
the primitive list reader 513 indicates that that combining
function should be used as the second combining function
(opl) for primitives 1n that draw call. In this case, the
primitive list reader 513 also reads in, and outputs, the
intermediate combined shading rate (d) information for a
(each) primitive to be rendered from the memory 5.

When, however, the second combining function (opl)
information indicates that “variable rate shading” (VRS) 1s
disabled (when opl=0x7), there will be no intermediate
combined shading rate (d) information to be read from the
memory 3. In this case, the primitive list reader 513 gener-
ates an output indicating that a 1x1 shading rate (1.e. the

finest possible shading rate) should be used for all primitives
in that draw call.

The resource allocator 514 then configures the various
clements of the graphics processor 3 for rendering the
primitives that the primitive list reader 513 has 1dentified are
to be rendered for the tile. For example, the resource
allocator 514 appropriately configures a tile bufler of the
graphics processor 3 (not shown) for storing output data for
the tile being rendered.

The vertex loader 515 then reads the appropriate pro-
cessed vertex data for primitives to be rendered from the
memory 3, and provides the primitives (1.e. their processed
vertex data) to the triangle set-up unit 516.

The triangle set-up unit 516 performs primitive setup
operations to setup the primitives to be rendered. This
includes determining, from the vertices for the primitives,
edge information representing the primitive edges. The edge
information for the primitives is then passed to the rasteriser
512.

When the rasteriser 312 receives a graphics primitive for
rendering (1.e. including 1ts edge information), it rasterises
the primitive to sampling points and generates one or more
graphics fragments having appropriate positions (represent-
ing appropriate sampling positions) for rendering the primi-
tive.

In the present embodiment, the rasteriser 312 also reads 1n
an array of “per-screen space” shading rates from memory
5, and uses this information to determine a “per-screen
space” shading rate (¢) for a (each) fragment.

US 11,250,611 Bl

29

As shown in FIG. 5, imn the present embodiment, the
second VRS combiner 411 1s provided as part of the raster-
iser 512. The second VRS combiner 411 combines an
intermediate combined shading rate (d) determined from
primitive list information read by the primitive list reader
513 with a “per-screen space” shading rate (¢) according to
a second combining function (opl) determined from primi-
tive list information read by the primitive list reader 513, to
determine an output (final) combined shading rate to be used
when rendering a fragment.

Fragments generated by the rasteriser 512 pass to the
fragment processing stages (not shown) for fragment pro-
cessing (rendering), and are rendered using an output com-
bined shading rate determined in this manner.

Output data generated for a fragment 1s then written
appropriately to the tile buller (not shown), and the output
shading rate information 1s used to control this output
operation. For example, 1n the case of a 1x1 shading rate, a
single set o output data values will be written to one or more
sampling points 1n the tile bufler corresponding to a (only)
single fine pixel. In the case of a coarser shading rate, a
single set o output data values will be written to one or more
sampling points 1n the tile buller corresponding to a block of
plural fine pixels. For example, in the case of a 1x2 shading
rate, a single set of output data values will be written to one
or more sampling points 1n the tile bufler corresponding to
a block of 1x2 fine pixels. Other shading rates will be
handled 1n a corresponding manner.

Once the rendering pipeline has completed the processing,
of a tile of the render output, the rendered data for the tile
1s exported to the memory 5 (e.g. to a frame bufler in the
main memory 3) for storage. The next tile 1s then processed
by the rendering pipeline 410, and so on, until suflicient tiles
have been processed to generate the entire render output
(e.g. frame (1mage) to be displayed). The overall process 1s
then repeated for the next render output (e.g. frame), and so
on.

Other arrangements for the graphics processing pipeline
would be possible.

For example, although the above has been described with
reference to an intermediate combined shading rate being
determined by a tiling stage of a tile-based graphics pro-
cessing pipeline, an intermediate combined shading rate
could be determined by another processing stage of the
pipeline prior to the rasteriser, such as by a vertex processing,
stage or a primitive setup stage.

Furthermore, although the above has been described with
reference to a tile-based graphics processing pipeline, other
forms ol graphics processing pipelines, such as immediate
mode graphics processing pipelines, would be possible. In
the case of an immediate mode graphics processing pipeline,
the generation of an intermediate combined shading rate
may be performed, for example, by a vertex processing stage
or a primitive setup stage.

FIG. 6 shows a “variable rate shading” (VRS) rendering
process according to an embodiment. As shown 1n FIG. 6, at
step 610 a “per-primitive” mput shading rate and a “per-
draw call” input shading rate are combined according to a
first combining function to determine an 1intermediate coms-
bined shading rate for a primitive. At step 620, the primitive
1s rasterised by the rasteriser 512 into one or more frag-
ments. At step 630, the intermediate combined shading rate
and a “per-screen space” mput shading rate for one of the
fragments are combined according to a second combining
function to determine a final output combined shading rate
for the fragment. At step 640, the fragment 1s rendered
(shaded) using the output combined shading rate.

10

15

20

25

30

35

40

45

50

55

60

65

30

It will be appreciated from the above that the technology
described herein, 1 its embodiments at least, provides
arrangements 1n which the bandwidth and hardware require-
ments, and energy consumption, of a graphics processor can
be reduced. This 1s achieved, in the embodiments of the
technology described herein at least, by combining plural
input shading rates to determine (1into) a combined shading
rate 1n an embodiment prior to rasterisation (and 1n an
embodiment at the tiling stage), and then propagating the
combined shading rate through the pipeline instead of the
plural input shading rates.

The foregoing detailed description has been presented for
the purposes of 1llustration and description. It 1s not intended
to be exhaustive or to limit the technology described herein
to the precise form disclosed. Many modifications and
variations are possible 1n the light of the above teaching. The
described embodiments were chosen 1n order to best explain
the principles of the technology described herein and its
practical applications, to thereby enable others skilled 1n the
art to best utilise the technology described herein, in various
embodiments and with various modifications as are suited to
the particular use contemplated. It 1s intended that the scope
be defined by the claims appended hereto.

What 1s claimed 1s:

1. A method of operating a graphics processor that 1s
operable to execute a graphics processing pipeline that can
generate a render output using different shading rates,
wherein the graphics processing pipeline comprises one or
more earlier processing stages followed by later processing
stages, wherein the later processing stages comprise at least
a rasteriser, and a renderer that 1s operable to render a render
output using one or more output shading rates, wherein an
output shading rate used by the renderer to render a render
output may be determined using plural input shading rates
defined for the render output;

the method comprising, when generating a render output

for which a plurality of mput shading rates have been
defined:

combining at least a first input shading rate defined for the

render output and a second input shading rate defined
for the render output to determine a combined shading,
rate for the render output prior to the rasteriser stage of
the graphics processing pipeline, and providing the
determined combined shading rate to one or more of
the later processing stages of the graphics processing
pipeline;

using the determined combined shading rate when deter-

mining an output shading rate to be used by the
renderer to render the render output; and

the renderer rendering at least some of the render output

using the determined output shading rate.

2. The method of claim 1, wherein the first input shading
rate 1s a shading rate associated with a primitive that the
renderer 1s to render when rendering the at least some of the
render output, and the second 1nput shading rate 1s a shading
rate associated with a draw call that the renderer 1s to render
when rendering the at least some of the render output.

3. The method of claim 1, wherein using the determined
combined shading rate when determining an output shading
rate to be used by the renderer to render the render output
comprises combining at least the determined combined
shading rate and a third mput shading rate defined for the
render output to determine the output shading rate at or after
the rasteriser stage of the graphics processing pipeline.

4. The method of claim 3, comprising providing to one or
more of the later processing stages, mformation indicating
how the determined combined shading rate and the third

US 11,250,611 Bl

31

input shading rate should be combined, and omitting pro-
viding to the one or more of the later processing stages,
information indicating how the first input shading rate and
the second input shading rate should be combined.

5. The method of claim 3, wherein the third mnput shading
rate 1s a shading rate associated with a region of the render
output that the renderer 1s to render when rendering the at
least some of the render output.

6. The method of claim 1, wherein the graphics processor
1s a tile-based graphics processor, and the one or more earlier
processing stages comprise a primitive list preparing stage;
the method comprising:

the primitive list preparing stage combining the at least

the first input shading rate and the second input shading
rate defined for the render output to determine the
combined shading rate for the render output, and pro-
viding the determined combined shading rate to the one
or more of the later processing stages of the graphics
processing pipeline.

7. The method of claim 6, wherein the primitive list
preparing stage providing the determined combined shading,
rate to the one or more of the later processing stages
comprises the primitive list preparing stage writing infor-
mation indicating the determined combined shading rate to
one or more primitive lists.

8. The method of claam 7, wherein the primitive list
preparing stage writing information indicating the deter-
mined combined shading rate to one or more primitive lists
comprises the primitive list preparing stage only writing
information indicating the determined combined shading
rate to the one or more primitive lists when there 1s a change
of shading rate.

9. The method of claim 1, comprising determining a
compressed representation of the determined combined
shading rate prior to the rasteriser stage of the graphics
processing pipeline, and providing the compressed repre-
sentation of the determined combined shading rate to the one
or more of the later processing stages.

10. A graphics processor that 1s operable to execute a
graphics processing pipeline that can generate a render
output using different shading rates, wherein the graphics
processing pipeline comprises one or more earlier process-
ing stages followed by later processing stages, wherein the
later processing stages comprise at least a rasteriser, and a
renderer that 1s operable to render a render output using one
or more output shading rates, wherein an output shading rate
used by the renderer to render a render output may be
determined using plural input shading rates defined for the
render output;

wherein the graphics processor comprises a combining

circuit prior to the rasteriser stage of the graphics

processing pipeline that 1s configured to combine at

least a first input shading rate defined for a render

output and a second input shading rate defined for the

render output to determine a combined shading rate for

the render output, and to cause the determined com-
bined shading rate to be provided to one or more of the
later processing stages of the graphics processing pipe-
line; and

wherein the renderer 1s operable to render at least some of

a render output using an output shading rate determined
using a combined shading rate determined by the
combining circuit.

11. The graphics processor of claim 10, wherein the first
input shading rate i1s a shading rate associated with a
primitive that the renderer 1s to render when rendering at
least some of a render output, and the second 1nput shading

10

15

20

25

30

35

40

45

50

55

60

65

32

rate 1s a shading rate associated with a draw call that the
renderer 1s to render when rendering at least some of a
render output.

12. The graphics processor of claim 10, wherein the
graphics processor comprises a second combining circuit
that 1s configured to combine at least a combined shading
rate determined by the combining circuit for a render output
and a third 1input shading rate define for the render output to
determine an output shading rate at or after the rasteriser
stage of the graphics processing pipeline; and

wherein the renderer 1s operable to render at least some of

a render output using an output shading rate determined
by the second combining circuit.

13. The graphics processor of claim 12, wherein the
graphics processing pipeline 1s operable to provide to one or
more of the later processing stages, information indicating
how a combined shading rate determined by the combiming
circuit and a third mnput shading rate should be combined by
the second combining circuit, and to omit providing to the
one or more ol the later processing stages, information
indicating how a first input shading rate and a second 1nput
shading rate should be combined by the combining circuit.

14. The graphics processor of claim 12, wherein the third
input shading rate 1s a shading rate associated with a region
of a render output that the renderer 1s to render when
rendering at least some of the render output.

15. The graphics processor of claim 10, wherein the
graphics processor 1s a tile-based graphics processor and
comprises a primitive list preparing circuit;

wherein the primitive list preparing circuit comprises the

combining circuit.

16. The graphics processor of claim 15, wherein the
primitive list preparing circuit 1s configured to provide a
combined shading rate determined by the combining circuit
to the one or more of the later processing stages by writing
information indicating the determined combined shading
rate to one or more primitive lists.

17. The graphics processor of claim 16, wherein the
primitive list preparing circuit 1s configured to write nfor-
mation indicating the determined combined shading rate to
one or more primitive lists by only wrting information
indicating the determined combined shading rate to the one
or more primitive lists when there 1s a change of shading
rate.

18. The graphics processor of claim 10, comprising a
shading rate compressor circuit configured to determine a
compressed representation of a combined shading rate deter-
mined by the combining circuit prior to the rasteriser stage
of the graphics processing pipeline, and to provide the
compressed representation of the determined combined
shading rate to the one or more of the later processing stages.

19. A non-transitory computer readable storage medium
storing soitware code which when executing on a processor
performs a method of operating a graphics processor that 1s
operable to execute a graphics processing pipeline that can
generate a render output using different shading rates,
wherein the graphics processing pipeline comprises one or
more earlier processing stages followed by later processing
stages, wherein the later processing stages comprise at least
a rasteriser, and a renderer that 1s operable to render a render
output using one or more output shading rates, wherein an
output shading rate used by the renderer to render a render
output may be determined using plural input shading rates
defined for the render output;

the method comprising, when generating a render output

for which a plurality of mput shading rates have been

defined:

US 11,250,611 Bl
33

combining at least a first input shading rate defined for the
render output and a second input shading rate defined
for the render output to determine a combined shading
rate for the render output prior to the rasteriser stage of
the graphics processing pipeline, and providing the 5
determined combined shading rate to one or more of
the later processing stages of the graphics processing
pipeline;

using the determined combined shading rate when deter-
mining an output shading rate to be used by the 10
renderer to render the render output; and

the renderer rendering at least some of the render output
using the determined output shading rate.

¥ oH H ¥ ¥

34

	Front Page
	Drawings
	Specification
	Claims

