12 United States Patent
Bhimireddy et al.

US011249884B2

US 11,249,884 B2
Feb. 15, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

DEVICE FOR SOFTWARE CRASH
SIMULATION FOR A SOFTWARE
PRODUCTION ENVIRONMENT

Applicant: Bank of America Corporation,
Charlotte, NC (US)

Inventors: Venkata R. Bhimireddy, Charlotte, NC
(US); Pavan Chayanam, San
Francisco, CA (US); Srinivas
Dundigalla, Charlotte, NC (US);
Sandeep Verma, Haryana (IN)

Assignee: Bank of America Corporation,
Charlotte, NC (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 16/880,720
Filed: May 21, 2020

Prior Publication Data

US 2021/0365353 Al Nov. 25, 2021

Int. CIL.

GO6F 11/36 (2006.01)

GO6N 20/00 (2019.01)

Goo6l 11/34 (2006.01)

U.S. CL

CPC GoO6l’ 11/3664 (2013.01); GO6F 11/3409

(2013.01); GO6N 20/00 (2019.01)

Field of Classification Search
CPC .. GO6F 11/3664; GO6F 11/3409; GO6N 20/00
S PO i e e rer s 717/124-167

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,666,297 A * 9/1997 Brittcccooeeeiiinnennnn, GOO6F 17/12
703/18
8,494,832 B2* 7/2013 Krishnan GOO6F 11/3696
703/22
8,510,308 Bl 82013 Gill et al.
9,519,869 B2 12/2016 Hwang
10,013,334 B1* 7/2018 Careyc.cc..... GOO6F 11/3636
2010/0088546 Al 4/2010 Chilimbi et al.
2013/0139128 Al* 5/2013 Jonescccce.... GOO6F 11/3664
717/128
2016/0342499 Al* 11/2016 Cheng GO6F 11/3664

OTHER PUBLICATIONS

Kumar, Ram Shankar Siva, et al. “Failure modes in machine

learning systems.” arXiv preprint arXiv:1911.11034 (2019).pp.1-12
(Year: 2019).*
Z1ola, Artur. “Verification of road accident simulation created with

the use of PC-Crash software.” Zeszyty Naukowe. Transport/
Politechnika Slaska (2018).pp.211-221 (Year: 2018).*

(Continued)

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm — Banner & Witcofl, Ltd.

(57) ABSTRACT

A crash test simulator device for re-creating a soitware crash
scenar1o within a virtual environment using artificial intel-
ligence processes to consider a large group of variables that
may be relevant to the crash incident. The crash test simu-
lator device includes a production environment monitoring
engine configured to momitor a user’s interaction with an
application implemented within a production environment,
and generate mformation used to re-create a crash incident

within a virtual environment.

20 Claims, 6 Drawing Sheets

'''

Crash Simuiator Device

— e T e T o —— —— —— e e —— e o = = = —— o = —— o T M m— — — . — —— o ——— o —

— e T e o o = . — —— e o = M = —— o e T = = = ———— . —— o —

T T T T T TS T T TR T ETT T T TS T T T T T T TS T TR T TSI TR

Eroduction Environment
Monitaring Enging

- - A MR R o oy a

Logeing System 5 ’ ™

- - Crash Activity E -
106 A ET i e L. : h egation | | _ 114
T Crash Event Array ldentification ECras Aggregauc - -
- o Processor
108 ; Processor o 119
%‘ . -

. Production environment
118

Virtuad Enviranment

US 11,249,884 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Fazzini, Mattia, et al. “Automatically translating bug reports into
test cases for mobile apps.” Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis. 2018.

pp.141-152 (Year: 2018).*

Oki, Brian M., and Barbara H. Liskov. “Viewstamped replication:
A new primary copy method to support highly-available distributed
systems.” Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing. 1988.pp.8-17 (Year: 1988).*
Ferreira, Kurt, et al. “Evaluating the viability of process replication
reliability for exascale systems.” Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis. 2011.pp.1-12 (Year: 2011).*

Moran, Kevin, et al. “Automatically discovering, reporting and
reproducing android application crashes.” 2016 IEEE international

conference on software testing, verification and validation (icst).
IEEE, 2016.pp.33-44 (Year: 2016).*

* cited by examiner

US 11,249,884 B2

Sheet 1 of 6

Feb. 15, 2022

U.S. Patent

1 'Ol

lll

8Lt
TUDLBUOIIAUS UOIINPOIJ

0¢T
IUSWIUOSALT [BNIIIA

ll

¥

10553004
UOREDHIUP]
AARIY yses)

JOSS8304 mmm

S0
Aeily JUBAT Useln

‘e e e e e e . .

uonedalddy yser

uisuy BulIoOUON
WUBLIUCHAUT BORINDOIY

207
DN JOIEINIG YSEID

R R R R R R R R R R R R R R R R R R s R R R R R R R R R R R R R R R R R R R

LR R B R B R R R E R E R

L

B T T R i I T e e e e R N T T I T e T R T S A R S T T I R R S S iy

wasAs Su18307

g ST S U A N N H S N N S S S S S S A S A A EA S N M S D N S SN N S S S S S S E S R E S S

T T TTTTT Tt e}

US 11,249,884 B2

Sheet 2 of 6

Feb. 15, 2022

U.S. Patent

FF

$EE SSE|DIBW0ISNIYNSY
T3¢€ SSe{DAUSMO| Y _
DRE SSB{IIDNENUOISIIBG| OZE BPOIUO N BZLIGINYS1EP 1| BA
S7T ssedduiyseq _

g7/ ¢ ssei{uondAiouy
/€ sseinzadAinug

CLE sseIHUNS

O7¢ ssejiied _

SOE SSEDIENUOISIOBQ] Tt AUSplIBwolsn)Blep|ep
§9E sse(DszA|euyysiy _
dl mmm_umc E SEH

% HEDJUO R e JUuayyiny

GIT OPOJUONEZLIOYINYPUSS

ORI EIE PTE UDIIED NUBYINYSIERIUY
QCT ssendensiood
T GGE SSE|BWOISNILYIa4

FGE ssepAusgmolly

ZGE ssejeNuotsadl OTE uoisanDadua (jeydAen
0G€ s5gDT0MBYD

BPE sseadusiirydaiepliea
.w..mw. mmm_umc Emmz

Z0¢
3dA 0|4

U P{IUDTSNDRIED I BA.

ove mmm_uhwxmimoﬁuma
QEC ssepevzAleuysiy
gt sse|dduysey

FEE ssepyuondAiiouy
CEE s5eINYald

omm mmm_uo_ mbmpoom

0T

**

911 Ol
90z b0z 707
IR P B{NPON SINPOA
Jupjoeaj ysesy | BuppseinNeieg ¢ 1 aoulByeup

A%
3QS5330Q4d
uoieda438y ysesd

“ E B B B N B B W N B N N B N N N N N N N O N N S N N N S N N B N N B N N I N N N N O N N O N N N SN N E N N I N N N N N N N N N N N N N N NN NN N E N N N N NN N N N N N N N SN N N N N NN NN N N N N N N N N NN N SN N NN NN NN NNNNNNNGN

US 11,249,884 B2

Sheet 3 of 6

Feb. 15, 2022

U.S. Patent

Ol4

r

F K

P

L]

A - [[l i e a4 -
“im P e xoa - .
R e s - e R
a e e O owp . . . P R T
. T e . s, xh ko T
= ok i drow LFC LN T, oA A A w koA A L
a T

viv
7 Uoiien07

9y
€ UO0i3ed07

L J
-

Lo ol
-E EEEETEEETEEEEEEw
T T T T T T TT T T T T

rd o drodrs

b oo

LT Cwoma -
T e .
e w
R .
S,
X -
C
LI
T .
bl
"
i
|
- .
a
5
"y
™
X
X
-
.
.
.
....._.
5
A
L
pamee e e e e e e e e e e e e e e e e e)
L]
b "a
' 1 :
h 5 L]
k
. L]
] L]
b 1 -
N L] L]
] “ '.n
]
: e “
" . .] M
k ' 1 x
N - L] :.n
: & i -
L]
k
L]
-.l..l-.l..l..l-.l..l..l-.l..l..l- - “
5
[]
r
v
-
[]
>
I
»
r
d
q-
X
.l
+*
-
]
a
u
-
1
v
L}
-
[
L
L
5
-
x
"
r
F
T
2
4
L
A
r
L]
-
&
B
F
--‘- T
T e T Ml & A A & m m o m m e aay x
L]
]
' ! .
. . . Il N
L] r
¥]
' L] T
. . i .
— .]
]
L}
] " ¥
] ‘el L
N L] r
' H ‘ NHW ‘ x
. q .
k
. .]
] [] 4
" »
N L] L]
L] L
d
r
™
»
T
»
-
T
.
T
.
r
a
r
-
¥
T
-

o
" oa .5'&!..
....tn_...... " . &3
™ o F . e "y Ly -I- .
LI - . ag i - i
R I - : L :
- L . b) w,
LA ok koa R > " | 1
LT AL P - - A . A i , ..l!..%.i. o
Sl ko o . S : i ;
oy, R R 4 . L K. !
P e . _— : -y
: L . -
= LC A | i
3 - L
STt A - Y :
Fle b . . . |
. a s
M e |
- .
b, " oA 4 : u;
"
Rl P ..
. >
.
i
w, -
._l-t‘nﬁl,. [
i
N
e
o - -
- !
T
., r
L}
X
"
b
5
r
.t.elﬂ_-.. f
r
.
.E. .
p! M L -
[R R i T T T ey n!n!n!n!n!ul.n!n!ul.n!ul.l.l.r [R R S R R A T e ey Ly nn.n!ul.nn.n!ul.l.n-.ul.n-.n!ul.l.n!r o
v
1]
'] .] i
']] r
' R] R .
'] .]
'
!] .]
' k b r
' .]]
' k k -
' . ’ .] . - ' .
!] .] r
!]] i
: e ! ' e i
' . .] X
']]
'] A -
1 h .] A
'
']] i
K A] . b T
. c * ' ' . r . *
'] .] -
] ']
4
2,
2, *-*-ru
- N W v . ror
Wy FETFF Fhod ok p s
" LT - AL L AN x I
x ;
N
x ¥
*
o
-
.t ™
[
-
X
-
i
»
*
¥
x
T
»
»>
-IJ.
-
- . -
- x ! 1
Y -
- 1
L . e e o o o o o] L]
L .._ 4
¥ 1 , .
1
9 . . i
- 1
L 1
'3 .._ 1
. . 1
u " —— M
g M
9 i
L 1 i
" -
» | i
. . i
" " i
e e . 4
"
“a
5
x
o
[l
L |
-
L
v ™
bl a . e P e U Y el "ra [T [(R R LS e h 9,11 AN [T e
-k oy P | L L LA |
e EeT Cart PO .
"ok iroa o
L L -
T ok ode e

ok ok ok

X oE

US 11,249,884 B2

Sheet 4 of 6

Feb. 15, 2022

U.S. Patent

¢ Ol

A"
JUSLUOIIAUS
ENLHA JuUSWd U

615
e1eq NSEIN

11

B1eP JI151I910RIBLD o SIUBAD
YSedd 21843U95 ~ysesn urwianed Apusp

—_—————e— e e e e e e e e e e e . o . —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— — — — — — ————— ——— — ——— f—_——,—,—,e—e—e— e e e e e e e e e e e e e i —— — — — — — i — — — — — — — — — — — — —— — ——

DA sed 03 Jotid 5T _
PISN STSSED BIBMYOS | JUSAS Ysedd Ajuapy %ﬁﬁssa
uspuadap AJauspi m

|||

ll

15
piedsig

R

= W T T T T T T YT ST T T T T T T T T ST T T T T T T T T ST T

01S
¢ M3U MO}

e — — — e — — — — — — — — ——]

,ﬁ
e1ep %aa JUSWIUOHAUS UDIPNPOoLd
walsAs SuiSdoj an@09y | YIIM UOIDBISIUL JOUUOW |

|||

US 11,249,884 B2

Sheet 5 of 6

Feb. 15, 2022

U.S. Patent

019
105593040

uonedalgde ysesd ajepdn _

||

309

IURLLOIIAUD UOIIINPOId

Ut 45840 SsalPPYy

ll

9 "Did

L] L]
L] L]
L] L]
L] L]
; “ “
- ¥ .
1 L] L]
1 *
ks L] L]
. . Y &
L 1 1
- . ard » .
. B”“.H.H.. bl o e uﬁ.’i.’ii.’i’iiiiii"
i » "
.l L L]
..] L]
* L]
*

" ¢ paledl _”Q Iy yseud y > __..vO._n_ U _MOW S1eiaUaL) 2120 JUsA9 YSRUD JAI3DIY

009

US 11,249,884 B2

Sheet 6 of 6

Feb. 15, 2022

721
123

r 2k Kk b oaomororomoa ki
N RN LI AR RN

r

om

LA N N A N N A a W i
]

kR e e e e e U e A b xR

DATA
INTERFACE

Operating
System

PSR S S TR SO T SO SO TR T A SO S S SN S T S SO S S SO T S U T S SAg SO T S A S T S S SO S S SO T SO SO S S SO T S AR SO T SO S SR TN TN S S S S SO T S SO S S SO T T SUR SO T S S S T S S S S A SO T S SO S T SO T S U SO S S

729

719 ~_| APPLICATIONS

INTERNET

M
Module

U.S. Patent

703 L PROCESSOR

709 — | Input'Output
100
73

705

FIG. 7

741

US 11,249,884 B2

1

DEVICE FOR SOFTWARE CRASH
SIMULATION FOR A SOFTWARE
PRODUCTION ENVIRONMENT

TECHNICAL FIELD

Aspects of this disclosure generally relate to crash simu-
lator devices. In particular, aspects of the disclosure relate to
a device that momitors user interactions with applications
implemented within a production environment, i1dentifies
clements common to one or more crash events experienced
within the production environment, and implements a virtual
replication of the one or more crash events.

BACKGROUND

Crash testing may involve re-creating a scenario experi-
enced within a solftware production environment that
resulted in one or more errors, or crashes, that prevented the
software from accomplishing one or more intended tasks.
The re-created scenario may be used to evaluate the cause of
the errors such that they may be resolved for future use of
the production environment. However, re-creation of the
scenario that resulted 1n the crash may imvolve many dif-
ferent variables. Further, it may be desirable to determine the
extent to which the crash 1s unique or may be experienced
by multiple different users, at multiple diflerent times, in the
process ol carrying out multiple different tasks, or using
multiple different software elements or platforms to access
the production environment, among others. As such, given
the high number of variables as inputs to the crash re-
creation, the determination of the scope of the crash testing
1s complex and labor-intensive. Further, no device exists that
accomplishes automatic determination of the appropriate
conditions for re-creation of a crash test, and implementation
ol those conditions within a virtual environment such that
the testing does not need to be carried out within a produc-
tion environment.

BRIEF SUMMARY

In light of the foregoing background, the following pres-
ents a simplified summary of the present disclosure 1n order
to provide a basic understanding of some aspects of the
various implementations of this disclosure. This summary 1s
not an extensive overview of the embodiments described
herein. It 1s not intended to identify key or critical elements,
or to delineate the scope of the embodiments described 1n
this disclosure. The following summary merely presents
some concepts of the embodiments of this disclosure in a
simplified form as a prelude to the more detailed description
provided below.

In one aspect, this disclosure relates to a crash test
simulator device that includes a production environment
monitoring engine that i1s configured to monitor a user’s
interaction with an application implemented within a pro-
duction environment. The production environment monitor-
ing engine may include a crash activity identification pro-
cessor. This crash activity identification processor may be
configured to receive information from a logging system that
stores mformation about a user’s interaction with the appli-
cation. The crash activity identification processor may also
be configured to filter the received data 1n order to identify
a crash event. Additionally, the crash activity identification
processor may i1dentily dependent soitware classes utilized
during the user’s interaction with the production environ-
ment prior to the crash event, and store 1n a crash event array

10

15

20

25

30

35

40

45

50

55

60

65

2

information about the crash event in combination with
identified dependent soitware classes. The crash simulator
device may additionally include a crash aggregation proces-
sor that 1s configured to receive crash event information
from the crash event array, and identily a pattern in crash
events from the received crash event information. The crash
aggregation processor may also be configured to output
crash characteristic data associated with the identified pat-
tern. The crash simulator device may also have a virtual
environment engine that 1s configured to receive the crash
characteristic data from the crash aggregation processor, to
implement a virtual environment corresponding to the crash
characteristic data, and output an 1nterface that replicates the
production environment and the crash event.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. The Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

The present disclosure 1s illustrated by way of example
and 1s not limited 1n the accompanying figures 1n which like
reference numerals indicate similar elements.

FIG. 1 schematically depicts a crash simulator device,
according to one or more aspects described herein;

FIG. 2 schematically depicts a crash aggregation proces-
sor, according to one or more aspects described herein;

FIG. 3 schematically depicts an example of a data struc-
ture stored within a crash event array, according to one or
more aspects described herein;

FIG. 4 schematically depicts additional data stored within
the crash event array, according to one or more aspects
described herein;

FIG. § 1s a flowchart diagram of a process that 1s used to
define and implement a simulation of a crash test within a
virtual environment, according to one or more aspects
described herein;

FIG. 6 1s a flowchart diagram of a process for accessing
a simulated crash event within a wvirtual environment,
according to one or more aspects described herein; and

FIG. 7 shows an illustrative operating environment in
which various aspects of the disclosure may be imple-
mented, according to one or more aspects described herein.

DETAILED DESCRIPTION

In the following description of wvarious illustrative
embodiments, reference 1s made to the accompanying draw-
ings, which form a part hereof, and in which 1s shown, by
way of 1llustration, various embodiments 1n which aspects of
the disclosure may be practiced. It 1s to be understood that
other embodiments may be utilized, and structural and
functional modifications may be made, without departing
from the scope of the present disclosure.

Various connections between elements are discussed 1n
the following description. It 1s noted that these connections
are general and, unless otherwise specified, may be direct or
indirect, wired or wireless, and that the specification 1s not
intended to be limiting 1n this respect.

FIG. 1 schematically depicts a crash stmulator device 102,
according to one or more aspects described herein. It 1s
contemplated that the crash simulator device 102 may be
implemented as one or more hardware elements that include
one or more application-specific mtegrated circuits. In addi-

US 11,249,884 B2

3

tion, or as an alternative, the regression test generator device
102 may 1nclude software and/or firmware elements in order
to 1mplement the functionality described herein. Further
examples of implementation solutions of the crash simulator
device 102 are presented in proceeding sections of this
disclosure.

The crash simulator device 102 may include a production
environment momtoring engine 104. The production envi-
ronment monitoring engine 104 may be configured to moni-
tor user interaction with a production environment 118, and
with one or more applications running within the production
environment 118. In one example, production environment
118 may include hardware, firmware, and/or software con-
figured to host one or more applications with which one or
more users interact. These one or more users may be
co-located with the production environment 118, or may be
distributed, and may access the production environment
through one or more wired or wireless communication
networks. It 1s contemplated that any implementation of
production environment 118 may be used with the crash
simulator device 102, including any combination of pur-
pose-built and/or general-purpose hardware, firmware, and/
or software using one or more computational processors or
cores housed 1n one or more server devices. The production
environment 118 may also be implemented using, among
others, virtualization or container solutions. Further, the
crash simulator device 102 may communicate with a pro-
duction environment 118 from a remote location, or may be
co-located with the production environment 118. It 1s further
contemplated that the production environment 118 may
facilitate a single application, or many instances of a same
or different applications. The applications hosted and
deployed within the production environment 118 may have
any functionality, and may be accessed by one or more users
across a private network, or through a wide area network,
such as the Internet. It 1s further contemplated that the crash
simulator device 102 may be 1n operative communication
with a single production environment 118, or multiple
production environments, without departing from the scope
of this disclosure.

The crash simulator device 102 may include a logging
system 106 that 1s configured to monitor a user’s 1nteraction
with one or more applications executed within the produc-
tion environment 118. In one implementation, the logging
system 106 may receive from the production environment
118 information about the user, hardware and software used
by the user to access the production environment 118, and
information about a user’s actions within the production
environment 118. Accordingly, the information received by
the logging system 106 from the production environment
118 may include biographic information associated with the
user, user login credential information, a type of device and
network hardware used by the user to access the production
environment 118 (a smartphone, a desktop computer, a
tablet, a public wifl network, a private will network, a wired
network, a cellular network, a router type, an internet service
provider, a cellular service provider, among others), a type
of software used by the user to access the production
environment 118 (an operating system type and version, an
application type including a web browser type and version
or standalone application type and version, a time, date,
duration of access of the production environment, among
others), user interfaces within the production environment
118 accessed/interacted with prior to one or more crash
events, tasks carried out within the production environment
prior to the crash event, details of an interface and tasks with
which the user 1s 1nteracting at the time of the crash event,

10

15

20

25

30

35

40

45

50

55

60

65

4

interface buttons interacted with, text entered, among others.
The data points received tfrom the production environment
118 by the logging system 106 may be stored within any data
structure type, and 1n any form, without departing from the
scope of these disclosures. Accordingly, the logging system
106 may include one or more storage devices for storing
information received from the production environment 118,
or may access information stored within one or more storage
devices external to the logging system 106 and/or crash
simulator device 102.

The crash simulator device 102 may additionally include
a production environment monitoring engine 104 that 1s
configured to execute further processes to monitor a user’s
interaction with the production environment 118. Accord-
ingly, the production environment monitoring engine 104
may receive mformation from the logging system 106. In
one example, the production environment monitoring engine
104 includes a crash activity identification processor 110
that 1s configured to receive data from the logging system
106 and filter the received data to 1dentily one or more crash
events. A crash event may otherwise be referred to as a bug,
fault, exception, error, or any other event that i1s associated
with a failure of an application to execute one or more
processes to bring about a desired action for the user or for
another software element 1n a larger software system. As
will be apparent to those of skill in the art, the actions to
which this type of crash may be applicable are wide and
varied, and may include any process that a software appli-
cation 1s intended to perform, without departing from the
scope of these disclosures.

In one example, the crash activity identification processor
102 polls the logging system 106 and searches through one
or more databases of the logging system 106 to i1dentily a
crash event. In another example, the logging system 106
sends one or more crash event details to the crash activity
identification processor 110 upon recerving an indication of
a crash from the production environment 118. In one
example, the crash activity identification processor 110 may
execute one or more filtering processes to parse the infor-
mation received from the logging system 106, and to 1den-
tify a crash incident from the received data. These one or
more filtering processes may include one or more search
processes configured to 1dentily error codes, flags, or excep-
tion indicators, among others. Further, these one or more
filtering processes may employ any known data filtering
methodologies, without departing from the scope of these
disclosures.

The crash activity identification processor 110 may addi-
tionally be configured to identify dependent soitware classes
utilized during a user’s interaction with the production
environment 118 prior to the identified crash event. In one
example, an application running within the production envi-
ronment 118 may be built from one or more sub-compo-
nents. These sub-components may utilize one or more
soltware classes. Accordingly, the crash activity identifica-
tion processor 110 may 1dentily from the data received from
the logging system 106, software classes that a user accesses
when interacting with the application running within the
production environment 118. In one example, the crash
activity identification processor 110 may determine a func-
tional path that 1s followed through one or more software
classes. This functional path may be based upon the user’s
actual interaction with the application within the production
environment 118, or upon a predicted path associated with
a prediction of a task or activity that a user intends to
perform within an application, as identified by the crash
aggregation processor 112.

US 11,249,884 B2

S

The crash activity 1dentification processor 110 may addi-
tionally execute one or more processes to determine whether
a specific or generalized crash type, or functional path
followed through the identified software classes utilized
during the user’s interaction with the production environ-
ment 118 represents a new path or a path already encoun-
tered by the crash activity identification processor 110
during a previous interaction with the production environ-
ment 118 by a same or a diflerent user. In one example, 11 the
functional path i1s determined to be a new path, the crash
activity i1dentification processor 110 may execute one or
more processes to store information about the functional
path in the crash event array 108. In another example, the
crash activity identification processor 110 may store all
identified information about one or more crash events 1n a
crash event array 108, which includes both unique and
non-unique crash events. This stored information may be
combined with those dependent software classes 1dentified
by the crash to be i1dentification processor 110.

The crash event array 108 of the production environment
monitoring engine 104 may be implemented as a database
using any data structures and/or formats and using any data
management processes. In one example, the data stored
within the crash event array 108 may duplicate information
received from the logging system 106. Additionally or
alternatively, the crash event array 108 may store references,
pointers, or links to data stored within the logging system
106 such that information 1s not duplicated within the crash
simulator device 102.

The production environment monitoring engine 104 may
also include a crash aggregation processor 112 that 1is
configured to receive crash event information from the crash
event array 108. In one example, the crash aggregation
processor 112 may execute one or more processes to poll or
request crash event information from the crash event array
108. Additionally, the crash aggregation processor 112 may
execute one or more pattern recognition processes on the
received crash event information. Further, the crash aggre-
gation processor 112 may utilize artificial mtelligence pro-
cesses to 1dentily patterns within the data receirved from the
crash event array 108. This artificial intelligence process
functionality 1s described in further detail n relation to FIG.
2. Advantageously, the artificial intelligence processes
executed by the crash aggregation processor 112 may be
utilized to more eflectively i1dentity and/or generate crash
characteristic data associated with crash event stored within
the crash event array 108. In one example, the crash aggre-
gation processor 112 may be utilized to output crash char-
acteristic data that generalizes a crash event experienced by
an individual user to encompass an error in the production
environment 118 that may be experienced by the individual
user on a recurring basis, and/or a large group of users with
a multitude of different characteristics that might otherwise
not be considered to have any commonality with the crash
experienced by the individual user.

Further, the crash aggregation processor 112 may be
utilized to identify crash characteristic data that considers a
plurality of different variables in a plurality of different
configurations with a computational complexity and speed
that 1s beyond that which could be considered by a human.
Further, the computational complexity and speed with which
the crash aggregation processor 112 outputs crash charac-
teristic data may be facilitated by the artificial intelligence
processes executed by the crash aggregation processor 112,
and the number of variables and complexity may be beyond
that which could be computed by conventional processing,
without artificial intelligence processes. The crash charac-

10

15

20

25

30

35

40

45

50

55

60

65

6

teristic data outputted by the crash aggregation processor
may include a plurality of state information and settings
associated with one or more tasks or processes that may be
implemented within an application running within the pro-
duction environment 118. The state information settings data
points may have any data structure form, without departing
from the scope of these disclosures.

The crash simulator device 102 may additionally include
a virtual environment engine 114 that 1s configured to
receive the crash characteristic data from the crash aggre-
gation processor 112. The virtual environment engine 114
may utilize the received crash characteristic data to 1mple-
ment a virtual environment 120 that corresponds to the crash
characteristic data. In one example, the virtual environment
120 may replicate functionality of one or more applications
running within the production environment 118, but may be
configured to execute a copy of the application separate to
the production environment, and using specific settings
associated with a user who experienced a crash within the
production environment 118. The virtual environment 120
may set up the application such that the crash 1s replicated
in accordance to how it was experienced by the user within
the production environment 118. In addition, the crash
characteristic data used to setup the application running
within the virtual environment 120 may create a crash event
common to more than one user, with this commonality
identified by the artificial intelligence processes of the crash
aggregation processor 112. The virtual environment 120
may replicate software, firmware and hardware of the pro-
duction environment 118 and a user interacting with the
production environment 118, and using a partly or wholly
soltware 1mplementation to replicate these software, firm-
ware, and hardware elements.

The virtual environment engine 114 may be configured to
output an interface that replicates the production environ-
ment 118 and a crash event. This replication of the produc-
tion environment may be within the virtual environment
120. Further, one or more quality assurance users may be
provided with access to the virtual environment 120 such
that the crash event may be analyzed without requiring
access to the production environment 118. Accordingly, the
quality assurance users may interact with the application
within the virtual environment 120 without changing the
application running within the production environment 118.
Further, the automated setup of the virtual environment 120
by the virtual environment engine 114 may sigmificantly
reduce the time needed to set up a replication of a crash
event, and may reproduce a crash event that 1s more widely
applicable than a single crash event observed for a specific
user within the production environment 118. As such, the
virtual environment 120 implemented by the virtual envi-
ronment engine 114 may provide enhanced results beyond
those that are possible using manual observation of crash
event information reported from the production environment
118, and provide the quality assurance users with a crash
simulation that 1s more broadly applicable to users of an
application running within the production environment 118.
This broad applicability may result from the complexity of
the vaniables and permutations analyzed by the crash aggre-
gation processor 112.

It 1s noted that the crash simulator device 102 includes an
interface device 116 that facilitates wired or wireless com-
munication between the crash simulator device 102 and
clements external to the crash simulator device 102. As
depicted i FIG. 1, the interface device 116 {facilitates
communication between the production environment 118,
the virtual environment 120, and the crash simulator device

US 11,249,884 B2

7

102. It 1s contemplated that the interface 116 1s implemented
with hardware, firmware, and/or software used to facilitate
communication using one or more protocols. Indeed, 1t 1s
contemplated that the iterface 116 may be utilized to
communicate using any communication protocol, without
departing from the scope of these disclosures.

FIG. 2 schematically depicts a more detailed view of the
crash aggregation processor 112, according to one or more
aspects described herein. In particular, the crash aggregation
processor 112 may include an intelligence module 202. The
intelligence module 202 may be configured to execute one
or more processes, including artificial intelligence pro-
cesses, to 1dentily patterns within the crash event informa-
tion received from the crash event array 108. These 1denti-
fied patterns within the crash event information may be used
to generate crash characteristic data that 1s applicable to
multiple users using the production environment 118 in
different ways. For example, the crash characteristic data
may be used to generate a crash simulation that 1s applicable
to users accessing the production environment 118 using
differing hardware, differing software, from different geo-
graphic locations, at different times, using diflerent versions
ol a same application or operating system, and attempting to
execute a same or different but related tasks within the
production environment 118. In addition, the intelligence
module 202 may be configured to implement one or more
artificial itelligence processes to predict an activity that a
user 1s mtending to carry out within an application of the
production environment 118. For example, the intelligence
module 202 may execute one or more machine learming
processes to receive data from a user’s interaction with an
application running within the production environment 118,
and match this received data to one or more stored data
patterns associated with one or more tasks available within
the application of the production environment 118. In one
example, the intelligence module 202 1s configured to gen-
erate crash characteristic data that includes a list of depen-
dent software classes and/or software services that are
applicable to a given crash incident. This list of dependent
soltware classes and/or services may be used to generate a
virtual environment 1n order to simulate/re-create a specific
crash incident and/or a generalized crash incident that is
applicable to multiple users accessing the production envi-
ronment 118 under differing circumstances (e.g., differing
hardware, software, credentials, time, location, actions
executed within the production environment 118, among
others).

Advantageously, the intelligence module 202 may be
utilized to exclude extraneous information from the data
received from the crash event array 108 1n order to predict
a task that a user intends to carry out. For example, a user
may follow a chaotic path through various levels of an
interface of a software application running within the pro-
duction environment 118 in an attempt to carry out one or
more specific tasks. The intelligence module 202 may be
adapted to recognize a pattern from the user data, and
identify a known path through the application to accomplish
the predicted activity. In certain examples, the intelligence
module 202 may not be able to match the observed data to
a predicted task or activity associated with an application of
the production environment 118. In such instances, the
intelligence module 202 may store one or more new, learned
tasks associated with the recerved data. In one example, the
learned tasks may be associated with an identifier based
upon a destination interface with which a user interacts
within an application running 1n the production environment
118. Further, the one or more learned tasks may be stored as

10

15

20

25

30

35

40

45

50

55

60

65

8

software paths within the crash event array 108. In one
example, the mtelligence module 202 may access the data-
base of previously stored soiftware paths within the crash
event array 108 1n order to match observed user 1nteraction
data to a predicted task. The artificial intelligence and/or
machine learning processes associated with the intelligence
module 202 are described in further detail below.

In one example, a framework for machine learning may
involve a combination of one or more components, which
may include three components: (1) representation, (2) evalu-
ation, and (3) optimization components. Representation
components refer to computing units that perform steps to
represent knowledge in different ways, including but not
limited to: as one or more decision trees, sets of rules,
instances, graphical models, neural networks, support vector
machines, model ensembles, and/or others. Evaluation com-
ponents refer to computing units that perform steps to
represent the way hypotheses (e.g., candidate programs) are
evaluated, including but not limited to as accuracy, predic-
tion and recall, squared error, likelihood, posterior probabil-
ity, cost, margin, entropy k-L divergence, and/or others.
Optimization components refer to computing units that
perform steps that generate candidate programs 1n different
ways, mcluding but not limited to combinatorial optimiza-
tion, convex optimization, constrained optimization, and/or
others. In some embodiments, other components and/or
sub-components ol the aforementioned components may be
present 1n the system to further enhance and supplement the
alorementioned machine learming functionality.

Machine learning algorithms sometimes rely on unique
computing system structures. Machine learning algorithms
may leverage neural networks, which are systems that
approximate biological neural networks (e.g., the human
brain). Such structures, while significantly more complex
than conventional computer systems, are beneficial in 1imple-
menting machine learning. For example, an artificial neural
network may be comprised of a large set of nodes which,
like neurons in the brain, may be dynamically configured to
cllectuate learming and decision-making. Moreover,
machine learning tasks are sometimes broadly categorized
as either unsupervised learning or supervised learning. In
unsupervised learning, a machine learning algorithm 1s left
to generate any output (e.g., to label as desired) without
teedback. The machine learning algorithm may teach itself

(e.g., observe past output), but otherwise operates without

(or mostly without) feedback from, for example, a human
administrator.

In an embodiment involving supervised machine learning,
a graph module corresponding to an artificial neural network
may receive and execute mstructions to modily the compu-
tational graph. A supervised machine learning model may
provide an indication to the graph module that output from
the machine learning model was correct and/or incorrect. In
response to that indication, the graph module may modify
one or more nodes and/or edges to improve output. The
modifications to the nodes and/or edges may be based on a
prediction, by the machine learning model and/or the graph
module, of a change that may result 1n an improvement. The
modifications to the nodes and/or edges may be based on
historical changes to the nodes and/or edges, such that a
change may not be continuously made and unmade (an
undesirable trend which may be referred to as oscillation).
Feedback may be additionally or alternatively received from
an external source, such as an administrator, another com-

puting device, or the like. Where feedback on output 1s

US 11,249,884 B2

9

received and used to reconfigure nodes and/or edges, the
machine learning model may be referred to as a supervised
machine learning model.

In supervised learming, a machine learning algorithm 1s
provided feedback on 1ts output. Feedback may be provided 5
in a variety ol ways, including via active learning, semi-
supervised learning, and/or reinforcement learning. In active
learning, a machine learning algorithm 1s allowed to query
answers from an administrator. For example, the machine
learning algorithm may make a guess 1 a face detection 10
algorithm, ask an administrator to identily the photo 1n the
picture, and compare the guess and the administrator’s
response. In semi-supervised learning, a machine learning
algorithm 1s provided a set of example labels along with
unlabeled data. For example, the machine learning algorithm 15
may be provided a data set of one hundred photos with
labeled human faces and ten thousand random, unlabeled
photos. In reinforcement learning, a machine learning algo-
rithm 1s rewarded for correct labels, allowing it to iteratively
observe conditions until rewards are consistently earned. For 20
example, for every face correctly identified, the machine
learning algorithm may be given a point and/or a score (e.g.,
“75% correct”™).

In one example, a machine learning engine may identify
relationships between nodes that previously may have gone 25
unrecognized, for example, using collaborative filtering
techniques. This realization by the machine learning engine
may increase the weight of a specific node; and subsequently
spread weight to connected nodes. This may result 1n
particular nodes exceeding a threshold confidence to push 30
those nodes to an updated outcome from a Boolean false to
a Boolean true. Other examples of machine learning tech-
niques may be used in combination or in lieu of a collab-
orative filtering technique.

In addition, one theory underlying supervised learming 1s 35
inductive learning. In imnductive learning, a data representa-
tion 1s provided as input samples data (x) and output samples
of the function (1(x)). The goal of inductive learning is to
learn a good approximation for the function for new data (x),
1.¢., to estimate the output for new mput samples 1n the 40
future. Inductive learning may be used on functions of
various types: (1) classification functions where the function
being learned 1s discrete; (2) regression functions where the
function being learned 1s continuous; and (3) probability
estimations where the output of the function 1s a probability. 45

In practice, machine learning systems and their underly-
ing components may be manually tuned to perform numer-
ous steps to perfect machine learning systems. The process
1s sometimes 1terative and may entail looping through a
series of steps: (1) understanding the domain, prior knowl- 50
edge, and goals; (2) data integration, selection, cleaning, and
pre-processing; (3) learning models; (4) interpreting results;
and/or (35) consolidating and deploying discovered knowl-
edge. This may further include conferring with domain
experts to refine the goals and make the goals clearer, given 55
the nearly infinite number of variables that can possible be
optimized 1n the machine learning system.

In some embodiments, one or more of the processes
executed by the intelligence module 202 may use a system
of machine learning and/or artificial intelligence to improve 60
accuracy of the determinations made by said device 202, and
using one or more of the processes previously described in
relation to artificial intelligence. As explained herein, a
framework for machine learning may imnvolve a combination
of supervised and unsupervised learning models. 65

The crash aggregation processor 112 additionally includes
a data masking module 204. The data masking module 204

10

may be configured to execute one or more processes 1o
mask, delete, anonymize, hash, or otherwise render secure
information outputted from the crash aggregation processor
112. In one example, the data masking module 204 may be
configured to mask biographic information associated with
one or more users prior to crash characteristic data being
outputted to the virtual environment engine 114. Data mask-
ing module 204 may utilize any data masking methodologies
and/or processes, without departing from the scope of these
disclosures.

The crash aggregation processor 112 may additionally
include a crash tracking engine 206. The crash tracking
engine 206 may be configured to receive data from the crash
aggregation processor 112 regarding a crash event, and to
generate a login profile that replicates characteristics of one
or more users. The login profile may be used to access the
virtual environment 120, such that a quality assurance user
accessing the virtual environment 120 has login credentials
that mimic those of the user of the production environment
118, 1n order to replicate a crash experienced within the
production environment 118.

FIG. 3 schematically depicts an example of a data struc-
ture stored within the crash event array 108, according to
one or more aspects described hereimn. As previously
described, the crash aggregation processor 112 may be
configured to store, in the crash event array 108, a path
through an application implemented within the production
environment 118. In one example, a path through an appli-
cation implemented within the production environment 118
may otherwise be referred to as a “flow,” whereby a flow 1s
associated with a type of task that a user 1s able to carry out
within an application. A given flow may utilize diflerent
services that are implementing the application running
within the production environment 118. Further, the services
may be made up from different dependent soitware classes.
Accordingly, the crash aggregation processor 112 may store
within the crash event array 108 a tlow that 1dentifies a type
of task, and one or more services associated with that flow.
Additionally, for each of the one or more services, one or
more dependent classes may be stored. The crash aggrega-
tion processor 112 may search within the crash event array
108 for one or more classes 1dentified by the intelligence
module 202. Further, the crash aggregation processor 112
may 1dentily one or more software services and flows
associated with the classes found within the crash event
array 108. The crash aggregation processor 112 may output,

within the crash characteristic data, one or more flows
associated with the i1dentified classes that are identified as
being responsible or related to one or more crashes within
the production environment 118.

FIG. 3 schematically depicts two example tlow types 302
and 304 stored within the crash event array 108. It 1s
contemplated that the crash event array 108 may store
thousands or millions of different flow types in combination
with associated services and classes. In the depicted
example, services 306-312 are used by FlowTypeA 302 and
services 314-322 are used by FlowIypeB 304. Further,
dependent software classes 330-356 arc used by one or more
of the services 306-312 and dependent software classes
358-384 are used by one or more of the services 314-322. In
one e¢xample, one or more dependent classes may be
repeated within the data structure of the crash event array
108 as multiple different flows and/or services use a same
software class. Similarly, one or more services may be
repeated within the crash event array 108 as multiple dif-
ferent tlows utilize a same software service module.

US 11,249,884 B2

11

In one specific example, the crash aggregation processor
112 may 1dentify that an EncryptionClass 1s involved 1n a
crash event observed 1n the production environment 118. In
response, the crash aggregation processor 112 may search
through the crash event array 108 for mstances of Encryp-
tionClass. The crash aggregation processor 112 may identify
the EncryptionClass 334 as being used within the Validate-
Customerldentity 308 service and the VerityChallengeQues-
tion 310 service of FlowTypeA 302, and the ValidateCus-
tomerldentity 316 service and ValidateAuthorizationCode
320 service of FlowTypeB 304. The crash aggregation
processor 112 may include each of the services 308, 310,
316, and 320, and/or all or part of FlowTypeA 302 and/or
FlowTypeB 304 in the outputted crash characteristic data
sent to the virtual environment engine 114.

FIG. 4 schematically depicts additional data stored within
the crash event array 108, according to one or more aspects
described herein. As described in relation to FIG. 3, the
crash event array 108 may store information regarding
software services and dependent classes used by multiple
flows of one or more applications running within the pro-
duction environment 118. As previously discussed, the crash
event array 108 may additionally store information received
from the logging system 106 regarding the crash experi-
enced within the production environment 118. This addi-
tional information may include an operating system type and
version, an application type including a web browser type
and version or standalone application type and version, a
time, date, duration of access of the production environment,
biographic/login information about the user accessing the
production environment 118, among others.

FIG. 4 schematically depicts a data structure 400 that
stores interconnections between different operating system
types or version types (OS_1 402 and OS_2 404), diflerent
action types within a given application (Action_1 406,
Action_2 408, Action_3 410), and different location types
from which the application i1s accessed (Location_1 412,
Location_2 414, Location_3 416). It 1s noted that the data
structure 400 15 a greatly simplified example of a structure
that stores three diflerent types of information and 1ntercon-
nections therebetween. It 1s contemplated that any address-
ing, linking, pointing or other communication methodology
to store the interconnections between the depicted elements
may be utilized. Accordingly, in one example, the intelli-
gence module 202 may identily Action_1 416 as being
responsible for, relevant to, or otherwise related to one or
more crash events observed within the production environ-
ment 118. In one simple example, the ntelligence module
202 may 1dentily related data elements that are associated
with Action_1 416. In the schematic depiction of FIG. 4, the
intelligence module 202 may 1dentity those elements within
the schematic boundary 418 as being related to Action_1
406. As such, the intelligence module 202 may determine,
based upon stored interconnections between the elements,
that all of OS_1 402 and OS_2 404, and Location 1 412,
Location_2 414, Location_3 416 may need to be replicated
within the virtual environment 120 in order to replicate a
given crash event associated with Action_1 406. Accord-
ingly, information associated with OS_1 402 and OS_2 404,
and Location_1 412, Location_2 414, Location_3 416 may
be provided as part of the crash characteristic data generated
by the crash aggregation processor 112 and received by the
virtual environment engine 114. In one example, the 1ntel-
ligence module 202 may exclude Action_2 408, Action_3
410.

While FIG. 4 1s a highly simplified depiction of intercon-
nections between different variables that may be used to

10

15

20

25

30

35

40

45

50

55

60

65

12

re-create the conditions at the time of a crash within the
production environment 118, this definition of the scope of
variables applicable and those that may be excluded from a
re-creation of a crash 1s a highly complex and computation-
ally expensive problem, given the very large number of
input variables to the application running within the pro-
duction environment 118. This definition of the scope of the
crash characteristic data 1s too complex for manual calcu-
lation, or calculation using conventional deterministic com-
putational processes 1n a reasonable amount of time. Advan-
tageously, the crash simulator device 102 utilizes the
artificial intelligence processes of the intelligence module
202 i order to define the crash characteristic data 1n
comparatively shorter time than conventional processing
that 1s intended to find an absolute, optimal, brute-force, or
close to optimal solution.

FIG. 5 15 a flowchart diagram of a process 500 that 1s used
to define and implement a simulation of a crash test within
a virtual environment 120, according to one or more aspects
described herein. It 1s contemplated that the process 500, or
any other process described throughout this disclosure, may
be implemented with using sub-set of the blocks depicted in
FIG. 5, or with additional elements that are not depicted 1n
FIG. 5 but are otherwise described in this disclosure. A
process may be executed at block 502 to monitor interaction
with a production environment, such as production environ-
ment 118. In one example, the monitoring of the interaction
may be executed by the production environment monitoring
engine 104 of the crash simulator device 102. The produc-
tion environment monitoring engine 104 may store infor-
mation related to the production environment 118 in the
logging system 106. A process may be executed at block 504
to recerve logging system data from the logging system 106.
This process may be executed by the production environ-
ment monitoring engine 104. Further, the production envi-
ronment monitoring engine 104 may execute a process at
block 3506 to identily a crash event within the recerved
logging system data. This 1dentification of a crash event may
filter the data received from the logging system 106 and
identify one or more flags, indicators, notifications or other
data elements that indicate a crash event that occurred within
the production environment 116. Additionally, the produc-
tion environment monitoring engine 104 may execute a
process to 1dentily dependent software classes used prior to
the crash event. These dependent software classes may
additionally include other data points related to the crash
event, mcluding a data flow through dependent software
classes and services, and information related to the task and
conditions under which the crash occurred within the pro-
duction environment 118. The process to identily dependent
soltware classes used prior to the crash event may be
executed at block 508 of flowchart 500, and by the crash
activity i1dentification processor 110.

Decision block 510 may execute one or more processes to
determine whether the i1dentified software flow associated
with block 308 1s new and not previously reported to or
identified by the production environment monitoring engine
104. The one or more processes associated with decision
block 510 may be executed by the crash activity identifica-
tion processor 110. If 1t 1s determined that the data flow 1s not
new, flowchart proceeds to block 512, and the information
associated with the identified crash event 1s discarded. In
another example, upon determining that the data tlow 1s not
new, the crash activity identification processor may store an
indication of a repeated occurrence of the crash event, such
as in the crash event array 108. If, however, block 510
determines that the data tlow 1s new, tlowchart 300 proceeds

US 11,249,884 B2

13

to block 514, and one or more processes may be executed by
the crash activity identification processor 110 to store the
flow data 1n the crash event array 108. A process may be
executed at block 516 to identily a pattern in crash events
from the received crash event information. This process may
be executed by the crash aggregation processor 112 upon
receipt of crash event information from the crash event array
108. A process may be executed to generate crash charac-
teristic data at block 518. This process may be executed by
the crash aggregation processor 112.

The data masking module 204 may execute a process to
mask crash characteristic data generated by the crash aggre-
gation processor 112. This process may be executed at block
519 prior to receipt of the crash characteristic data by the
virtual environment engine 114. Accordingly, the wvirtual
environment engine 114 may execute one or more processes
to receive the crash characteristic data from the crash
aggregation processor 112 and implement a virtual environ-
ment 120 corresponding to the crash characteristic data.
These one or more processes to implement the wvirtual
environment may be executed at block 520.

FIG. 6 1s a flowchart diagram of a process 600 for
accessing a simulated crash event within the virtual envi-
ronment 120, according to one or more aspects described
herein. The crash tracking engine 206 may execute one or
more processes to receive crash event data from the crash
aggregation processor 112. These one or more processes to
receive crash event data may be executed at block 602.
Further, the crash tracking engine 206 may generate login
profile data that replicates login information associated with
a user of the production environment 118. This login profile
data may replicate characteristics of the user, and may be
used to access the virtual environment 120 1n a manner
similar to how the user accessed the production environment
118. These one or more processes to generate the login
profile may be executed at block 604. The login profile may
be used by a quality assurance user 1 order to access the
virtual environment 120 that has been configured by the
virtual environment engine 114. Decision block 606 repre-
sents one or more processes executed to determine whether
the crash was replicated within the virtual environment 120
using the configuration built and implemented by the virtual
environment engine 114 and the login profile generated by
the crash tracking engine 206. These one or more processes
executed at decision block 606 may be executed by the crash
activity identification processor 110. IT 1t 1s determined that
the crash has been replicated within the virtual environment
120, flowchart 600 proceeds to block 608. Accordingly, at
block 608, the virtual environment engine 114 may execute
one or more processes to 1dentily elements that may need to
be altered within the application running within the produc-
tion environment 118. If the crash activity identification
processor 110 detects that the crash 1s not replicated, tlow-
chart 600 may proceed to 610. The crash activity i1dentifi-
cation processor 110 may execute, at block 610, one or more
processes to instruct the crash aggregation processor 112 to
update the crash characteristics 1n response to determining
that the crash was not successfully replicated within the
virtual environment 120. These updates to the crash char-
acteristics may include narrowing the pattern to more
closely replicate the i1dentified crash event within the pro-
duction environment 118 such that the crash characteristics
are less broadly applicable to other crash incidents beyond
the specific crash experience within the production environ-
ment 118. In one example, 11 the login profile cannot be used
to access the virtual environment, the crash tracking engine
206 may execute one or more processes to provide access to

10

15

20

25

30

35

40

45

50

55

60

65

14

the production environment 118 using the login profile
generated by the crash tracking engine 206.

One or more aspects of the disclosure may be embodied
in computer-usable data or computer-executable instruc-
tions, such as in one or more program modules, executed by
one or more computers or other devices to perform the
operations described herein. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and the like that perform particular tasks or implement
particular abstract data types when executed by one or more
processors 1 a computer or other data processing device.
The computer-executable instructions may be stored as
computer-readable instructions on a computer-readable
medium such as a hard disk, optical disk, removable storage
media, solid-state memory, RAM, and the like. The func-
tionality of the program modules may be combined or
distributed as desired 1n various embodiments. In addition,
the functionality may be embodied in whole or 1n part in
firmware or hardware equivalents, such as integrated cir-
cuits, application-specific itegrated circuits (ASICs), field
programmable gate arrays (FPGA), and the like. Particular
data structures may be used to more eflectively implement
one or more aspects of the disclosure, and such data struc-
tures are contemplated to be within the scope of computer
executable instructions and computer-usable data described
herein.

Various aspects described herein may be embodied as a
method, an apparatus, or as one or more computer-readable
media storing computer-executable instructions. Accord-
ingly, those aspects may take the form of an entirely
hardware embodiment, an entirely software embodiment, an
entirely firmware embodiment, or an embodiment combin-
ing software, hardware, and firmware aspects 1n any com-
bination. In addition, various signals representing data or
events as described herein may be transferred between a
source and a destination in the form of light or electromag-
netic waves traveling through signal-conducting media such
as metal wires, optical fibers, or wireless transmission media
(e.g., air or space). In general, the one or more computer-
readable media may be and/or include one or more non-
transitory computer-readable media.

As described herein, the various methods and acts may be
operative across one or more computing servers and one or
more networks. The functionality may be distributed 1n any
manner, or may be located in a single computing device
(e.g., a server, a client computer, and the like). For example,
in alternative embodiments, one or more of the computing
platforms discussed herein may be combined into a single
computing platform, and the various functions of each
computing platform may be performed by the single com-
puting platform. In such arrangements, any and/or all of the
above-discussed communications between computing plat-
forms may correspond to data being accessed, moved,
modified, updated, and/or otherwise used by the single
computing platform. Additionally or alternatively, one or
more of the computing platforms discussed above may be
implemented 1n one or more virtual machines that are
provided by one or more physical computing devices. In
such arrangements, the various functions of each computing
plattorm may be performed by the one or more virtual
machines, and any and/or all of the above-discussed com-
munications between computing platforms may correspond
to data being accessed, moved, modified, updated, and/or
otherwise used by the one or more virtual machines.

The various elements described throughout this disclosure
may be implemented as standalone hardware elements, or as
a combination of hardware, firmware, and software compo-

US 11,249,884 B2

15

nents. For example, each of the elements of any of FIGS. 1-4
may be implemented as standalone hardware eclements
embodied as application-specific integrated circuits or simi-
lar hardware elements. In another example, two or more of
the elements of FIGS. 1-4 may be combined together and
implemented as dedicated hardware elements. In yet another
example, one or more elements of FIGS. 1-4 may be
implemented as firmware and/or software modules. Further,
one or more of the elements of FIGS. 1-4 may be embodied
using a general-purpose or specialized computing system,
such as computing system 700 from FIG. 7.

As such, the crash simulator device 102, or one or more
of the modules of the apparatus 102 may be implemented as
one or more network-linked computer devices, such as
device 701 from FIG. 7. Thus, the crash simulator device
102 may be implemented on consolidated computing hard-
ware, such as computing device 701, at a single geographic
location, and/or on a single integrated circuit, and the like.
In another example, the crash simulator device 102 may be
implemented across multiple computing devices at a com-
mon, or dispersed geographic locations. In one example, the
device 701 may be 1n communication with devices 741 and
751 using one or more networking technologies (725, 729,
and/or 731) described 1n further detail 1in the description that
follows.

In one example implementation, computing device 701
may have a processor 703 for controlling overall operation
of device 701 and 1ts associated components, including
RAM 705, ROM 707, an input/output (I/0) module 709, and
memory 715. In one example, as will be apparent to those of
ordinary skill in the art, memory 715 may comprise any
known form of persistent and/or volatile memory, such as,
among others, a hard disk drive, a solid state disk, optical
disk technologies (CD-ROM, DVD, Blu-ray, and the like),
tape-based stored devices, ROM, and RAM, or combina-
tions thereol. In this way, memory 715 may comprise a
non-transitory computer-readable medium that may com-
municate mstructions to processor 703 to be executed.

I/O module 709 may include a microphone, keypad, touch
screen, and/or stylus through which a user of the computing
device 701 may provide mnput, and may also include one or
more of a speaker for providing audio output and a video
display device for providing textual, audiovisual and/or
graphical output. Soiftware may be stored within memory
715 and/or storage to provide instructions to the processor
703 for allowing the computing device 701 to perform
vartous functions. For example, memory 715 may store
software used by the computing device 701, such as an
operating system 717, application programs 719, and an
associated database 721. The processor 703 and its associ-
ated components may allow the computing device 701 to run
a series of computer-readable instructions to process and
format data.

The computing device 701 may operate i a networked
environment supporting connections to one or more remote
computers, such as computing devices 741 and 751. In one
example, the computing devices 741 and 751 may be
personal computers or servers that include many, or all, of
the elements described above relative to the computing
device 701. Specifically, the computing device 741 may
represent one or more elements of the remote environment
120 and computing device 751 may represent one or more
clements of the destination environment 140. Alternatively,
computing device 741 and/or 751 may be a data store that 1s
allected by the operation of the computing device 701. The
network connections depicted in FIG. 7 include a local area

network (LAN) 725 and a wide area network (WAN) 729,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

but may also include other networks. When used in a LAN
networking environment, the computing device 701 1s con-
nected to the LAN 725 through a network interface or
adapter 723. When used 1n a WAN networking environment,
the computing device 701 may include a modem 727 or
other means for establishing communications over the WAN
729, such as the Internet 731. It will be appreciated that the
network connections shown are illustrative and other means
of establishing a communications link between the comput-
ers may be used. In one implementation, the various ele-
ments described in relation to the protocol-agnostic file
transier apparatus 102 may be configured to accept inbound
networking communications and/or transfer outbound net-
working communications to one or more networking pro-
tocols. These networking protocols may include any of
various well-known protocols such as TCP/IP, Ethemet, File

Transter Protocol (FTP), Hypertext Transfer Protocol
(HT'TP), FTP over SSL (FTPS), HTTP over SSL (HTTPS),
SSH File Transfer Protocol (SFTP), Secure Copy (SCP),
Web Distributed Authoring and Versioning (WebDAV),
Secure Web Distributed Authoring and Versioning (Web-
DAVS), Trivial File Transfer Protocol (TFTP), Applicability
Statement 2 (AS2), Odette File Transter Protocol (OFTP),
and Accelerated File Transfer Protocol (AFTP). Communi-
cation between one or more of computing devices 701, 741,
and/or 751 may be wired or wireless, and may utilize Wi-Fi,
a cellular network, Bluetooth, infrared communication, or an
Ethernet cable, among many others.

An application program 719 used by the computing

device 701 according to an illustrative embodiment of the
disclosure may include computer-executable mstructions for
invoking functionality related to a crash simulator device
102. The computing device 701 and/or the other devices 741
or 751 may also be mobile devices, such as smart phones,
personal digital assistants (PDAs), and the like, which may
include various other components, such as a battery, speaker,
and antennas (not shown).
The disclosure 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the disclosure include, but are not limited
to, personal computers, server computers, hand-held or
laptop devices, multiprocessor systems, miCroprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputers, mainframe comput-
ers, and distributed computing environments that include
any of the above systems or devices, and the like.

The disclosure may be described 1n the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and the like that perform particular tasks or implement
particular abstract data types. The disclosure may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked, for example, through a communications network. In
a distributed computing environment, program modules may
be located 1n both local and remote computer storage media
including memory storage devices.

The present disclosures provide technical advantages. In
one 1mplementation, crash simulator device 102 1s config-
ured to generate a virtual environment that replicates a crash
event by processing a number of variables over a timescale
that was previously not achievable due to the complexity of
the number of variables and permutations involved in the

computations. The crash simulator device 102 achieves this

US 11,249,884 B2

17

reduction in time and improvement in computational com-
plexity using artificial intelligence processes facilitated by
the mtelligence module 202. Accordingly, the crash simu-
lator device 102 1s configured to greatly reduce the time
needed to manually assess a crash within a production
environment 118, and to facilitate assessment that considers
more complex sets of data variables than were previously
possible. Further advantageously, the crash simulator device
102 15 configured to monitor and interpret tens of thousands,
hundreds of thousands, or millions of user interactions with
a production environment 118. In one example, the crash
simulator device 102 may execute monitoring and simula-
tion processes 1n real time. This real-time processing 1s not
otherwise possible using conventional computational sys-
tems due to the speed with which users in aggregate are
interacting with production environment 118 and the com-
plexity of monitoring tlows through one or more applica-
tions implemented within the production environment. In
one example, the crash simulator device 102 achieves sig-
nificantly higher efliciency than conventional crash moni-
toring processes by using artificial intelligence to aid in
defining the scope and reducing the number of elements
applicable to a virtual environment simulation of a crash.
The crash simulator device 102 may additionally be used to
monitor multiple user’s interactions with a same or diflerent
applications running within the production environment 118.
In certain examples, the crash simulator device 102 may be
configured to monitor thousands, tens of thousands, hun-
dreds of thousands, or one million or more users simulta-
neously accessing applications within the production envi-
ronment 118. Accordingly, the crash simulator device 102
facilitates 1dentification of data flows through applications
that are otherwise too numerous or complex for manual
identification, even with the aid of computational process-
ng.

The various embodiments described herein may be imple-
mented by general-purpose or specialized computer hard-
ware. In one example, the computer hardware may comprise
one or more processors, otherwise referred to as micropro-
cessors, having one or more processing cores configured to
allow for parallel processing/execution of instructions. As
such, the various disclosures described herein may be imple-
mented as software coding, wherein those of skill in the
computer arts will recognize various coding languages that
may be employed with the disclosures described herein.
Additionally, the disclosures described herein may be uti-
lized in the implementation of application-specific 1inte-
grated circuits (ASICs), or in the implementation of various
clectronic components comprising conventional electronic
circuits (otherwise referred to as off-the-shelf components).
Furthermore, those of ordinary skill in the art will under-
stand that the various descriptions included 1n this disclosure
may be implemented as data signals communicated using a
variety of different technologies and processes. For example,
the descriptions of the various disclosures described herein
may be understood as comprising one or more streams of
data signals, data instructions, or requests, and physically
communicated as bits or symbols represented by differing
voltage levels, currents, electromagnetic waves, magnetic
fields, optical fields, or combinations thereof.

One or more of the disclosures described herein may
comprise a computer program product having computer-
readable medium/media with instructions stored thereon/
therein that, when executed by a processor, are configured to
perform one or more methods, techniques, systems, or
embodiments described herein. As such, the instructions
stored on the computer-readable media may comprise

10

15

20

25

30

35

40

45

50

55

60

65

18

actions to be executed for performing various steps of the
methods, techniques, systems, or embodiments described
herein. Furthermore, the computer-readable medium/media
may comprise a storage medium with instructions config-
ured to be processed by a computing device, and specifically
a processor associated with a computing device. As such the
computer-readable medium may include a form of persistent

or volatile memory such as a hard disk drive (HDD), a solid
state drive (SSD), an optical disk (CD-ROMs, DVDs), tape

drives, floppy disk, ROM, RAM, EPROM, EEPROM,
DRAM, VRAM, flash memory, RAID devices, remote data
storage (cloud storage, and the like), or any other media type
or storage device suitable for storing data thereon/therein.
Additionally, combinations of different storage media types
may be implemented 1nto a hybrid storage device. In one
implementation, a first storage medium may be prioritized
over a second storage medium, such that different workloads
may be implemented by storage media of diflerent priorities.

Further, the computer-readable media may store software
code/instructions configured to control one or more of a
general-purpose, or a specialized computer. Said software
may be utilized to facilitate interface between a human user
and a computing device, and wherein said software may
include device drivers, operating systems, and applications.
As such, the computer-readable media may store software
code/mstructions configured to perform one or more 1mple-
mentations described herein.

Those of ordinary skill in the art will understand that the
various 1illustrative logical blocks, modules, circuits, tech-
niques, or method steps of those implementations described
herein may be implemented as electronic hardware devices,
computer software, or combinations thereof. As such, vari-
ous 1illustrative modules/components have been described
throughout this disclosure 1n terms of general functionality,
wherein one of ordinary skill 1n the art will understand that
the described disclosures may be implemented as hardware,
software, or combinations of both.

The one or more implementations described throughout
this disclosure may utilize logical blocks, modules, and
circuits that may be implemented or performed with a
general-purpose processor, a digital signal processor (DSP),
an application-specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general-purpose
processor may be a microprocessor, or any conventional
processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of
computing devices, €.g., a combination of a DSP and a
microprocessor, a plurality ol microprocessors, one or more
microprocessors 1 conjunction with a DSP core, or any
other such configuration.

The techniques or steps of a method described 1n con-
nection with the embodiments disclosed herein may be
embodied directly 1n hardware, 1n software executed by a
processor, or 1 a combination of the two. In some embodi-
ments, any software module, software layer, or thread
described herein may comprise an engine comprising firm-
ware or soltware and hardware configured to perform
embodiments described herein. Functions of a software
module or software layer described herein may be embodied
directly in hardware, or embodied as soitware executed by
a processor, or embodied as a combination of the two. A
solftware module may reside mm RAM memory, flash
memory, ROM memory, EPROM memory, EEPROM

memory, registers, hard disk, a removable disk, a CD-ROM,

US 11,249,884 B2

19

or any other form of storage medium known 1n the art. An
exemplary storage medium 1s coupled to the processor such
that the processor can read data from, and write data to, the
storage medium. In the alternative, the storage medium may
be integral to the processor. The processor and the storage
medium may reside in an ASIC. The ASIC may reside 1n a
user device. In the alternative, the processor and the storage
medium may reside as discrete components 1n a user device.

In one aspect, this disclosure includes a crash simulator
device that has a production environment monitoring engine
that 1s configured to monitor a user’s interaction with an
application running within a production environment. The
production environment monitoring engine may also include
a crash activity identification processor that 1s configured to
receive data from a logging system that stores user interac-
tions with the application. The crash activity identification
processor may also be configured to filter the received data
to 1dentily a crash event and to 1dentify dependent software
classes utilized during the user’s interaction with the pro-
duction environment prior to the crash event. The crash
activity 1dentification processor may also store 1n a crash
cvent array, information about the crash event in combina-
tion with i1dentified dependent software classes. A crash
aggregation processor ol the production environment moni-
toring engine may be configured to receive crash event
information from the crash event array, identily a pattern 1n
crash events from the received crash event information, and
output crash characteristic data associated with the identified
pattern. The crash simulator device may also include a
virtual environment engine that 1s configured to receive the
crash characteristic data from the crash aggregation proces-
sor, implement a virtual environment corresponding to the
crash characteristic data, and output an interface that repli-
cates the production environment and the crash event.

The crash aggregation processor of the crash simulator
device may also identily a pattern 1n the crash events using
a machine learning process module.

In one example, the crash aggregation processor may be
configured to identily, using the machine learning process
module, a task that the user itends to carry out within the
production environment.

The virtual environment implemented by the virtual envi-
ronment engine may replicate the crash event applicable to
the dependent software classes used by the user and other
dependent software classes utilized by another user within
the 1dentified pattern.

The crash aggregation processor may further include a
data masking module that 1s configured to mask the crash
characteristic data prior to the crash characteristic data being
outputted to the virtual environment engine.

The crash simulator device may also include a crash
tracking engine that 1s configured to receive data from the
crash aggregation processor about the crash event, generate
a login profile that replicates characteristics of the user,
wherein the login profile 1s used to access the wvirtual
environment.

In one example, 11, upon accessing the virtual environ-
ment, the crash activity identification processor detects that
the crash event 1s not replicated, the crash activity i1dentifi-
cation processor may execute processes to send istructions
to the crash aggregation processor to update the crash
characteristics.

In one example, the updating of the crash characteristics
may include narrowing the pattern to more closely replicate
the 1dentified crash event.

10

15

20

25

30

35

40

45

50

55

60

65

20

If the login profile cannot be used access the virtual
environment, the crash tracking engine may provide access
to the production environment using the login profile.

In another aspect, a crash simulator device may include a
processor, and a non-transitory computer-readable medium
comprising computer-executable instructions that, when
executed by the processor, are configured to: monitor a
user’s interaction with an application running within a
production environment, receive data from a logging system
that stores user interactions with the application, filter the
received data to i1dentily a crash event, identily dependent
soltware classes used during the user’s interaction with the
production environment prior to the crash event, store 1n a
crash event array, information about the crash event 1n
combination with 1dentified dependent soitware classes,
identily a pattern 1n crash event stored in the crash event
array, generate crash characteristic data associated with the
identified pattern, implement a virtual environment corre-
sponding to the crash characteristic data, and output an
interface that replicates a production environment and the
crash event.

The non-transitory computer-readable medium compris-
ing computer-executable instructions may further be con-
figured to identify the pattern in the crash events using a
machine learning process module.

The machine learning process module may be configured
to 1dentily a task that the user intends to carry out within the
production environment.

The virtual environment may replicate the crash event
applicable to the dependent soitware classes used by the user
and other dependent software classes utilized by another
user within the 1dentified pattern.

The non-transitory computer-readable medium may com-
prise computer-executable instructions that when executed
by the processor are configured to mask the crash charac-
teristic data prior to the crash characteristic data being
implemented 1n the virtual environment engine.

The non-transitory computer-readable medium may com-
prise computer-executable instructions that when executed
by the processor are configured to receive data from the
crash aggregation processor about the crash event, and
generate a login profile that replicates characteristics of the
user, wherein the login profile 1s used to access the virtual
environment.

In another aspect, a method for crash test simulation may
include: monitoring a user’s mteraction with an application
running within a production environment, receiving data
from a logging system that stores user interactions with the
application, filtering the received data to identily a crash
event, 1dentifying dependent software classes utilized during
the user’s interaction with the production environment prior
to the crash event, storing in a crash event array, information
about the crash event 1n combination with identified depen-
dent software classes, identifying a pattern in crash event
stored 1n the crash event array, generating crash character-
1stic data associated with the identified pattern, implement-
ing a virtual environment corresponding to the crash char-
acteristic data, and outputting an interface that replicates a
production environment and the crash event.

The method may also include i1dentifying the pattern 1n

the crash events using a machine learming process module.

The machine learning process module may be configured
to 1dentify a task that the user imtends to carry out within the
production environment.

US 11,249,884 B2

21

The virtual environment may replicate the crash event
applicable to the dependent soitware classes used by the user
and other dependent software classes used by another user
within the identified pattern.

The method may also include masking the crash charac-
teristic data prior to the crash characteristic data being
implemented but 1n the virtual environment engine.

Accordingly, 1t will be understood that the invention 1s not
to be limited to the embodiments disclosed herein, but is to
be understood from the following claims, which are to be
interpreted as broadly as allowed under the law.

What 1s claimed 1s:
1. A crash simulator device comprising:
a processor executing a production environment monitor-
ing engine configured to monitor a user’s interaction
with an application of a production environment, the
production environment monitoring engine Iurther
comprising;
a crash activity identification processor implemented as
an application-specific integrated circuit hardware ele-
ment, configured to:
receive data from a logging system that stores user
interactions with the application;

filter the received data to i1dentity a crash event;

identify dependent software classes utilized during the
user’s interaction with the production environment
prior to the crash event;

store 1n a crash event array, information about the crash
event 1n combination with 1dentified dependent soft-
ware classes:

a crash aggregation processor implemented as an appli-
cation-specific integrated circuit hardware eclement,
configured to:

receive crash event information from the crash event
array;

identily a pattern 1n crash events from the received crash
event information;

output crash characteristic data associated with the i1den-
tified pattern;

a virtual environment engine, configured to:
recerve the crash characteristic data from the crash
aggregation processor;

implement a virtual environment corresponding to the
crash characteristic data; and

output an 1nterface that replicates the production environ-
ment and the crash event.

2. The crash simulator device of claim 1, wherein the
crash aggregation processor identifies the pattern in the
crash events using a machine learning process module.

3. The crash simulator device of claim 2, wherein the
crash aggregation processor 1s configured to i1dentify, using
the machine learning process module, a task that the user
intends to carry out within the production environment.

4. The crash simulator device of claim 1, wherein the
virtual environment implemented by the virtual environment
engine replicates the crash event applicable to the dependent
software classes used by the user and other dependent
soltware classes utilized by another user within the i1denti-
fied pattern.

5. The crash simulator device of claim 1, wherein the
crash aggregation processor further comprises a data mask-
ing module and 1s configured to mask the crash character-
istic data prior to the crash characteristic data being output-
ted to the virtual environment engine.

6. The crash simulator device of claim 1, further com-
prising a crash tracking engine, configured to:

5

10

15

20

25

30

35

40

45

50

55

60

65

22

receive data from the crash aggregation processor about
the crash event;

generate a login profile that replicates characteristics of
the user, wherein the login profile 1s used to access the
virtual environment.

7. The crash simulator device of claim 6, wherein 11, upon
accessing the virtual environment, the crash activity identi-
fication processor detects that the crash event i1s not repli-
cated, the crash activity identification processor sends
instructions to the crash aggregation processor to update the
crash characteristics.

8. The crash simulator device of claim 7, wherein updat-
ing the crash characteristics includes narrowing the pattern
to more closely replicate the identified crash event.

9. The crash simulator device of claim 6, wherein 11 the
login profile cannot be used to access the virtual environ-
ment, the crash tracking engine provides access to the
production environment using the login profile.

10. A crash simulator device comprising:

a Processor;

a non-transitory computer-readable medium comprising
computer-executable instructions that, when executed
by the processor, are configured to:

monitor a user’s interaction with an application of a
production environment;

receive data from a logging system that stores user
interactions with the application;

filter the recetved data to i1dentify a crash event;

identify using a crash activity identification processor
implemented as an application-specific integrated cir-
cuit hardware element, dependent soitware classes uti-
lized during the user’s interaction with the production
environment prior to the crash event;

store 1n a crash event array, information about the crash
event 1 combination with i1dentified dependent sofit-
ware classes:

identily using a crash aggregation processor implemented
as an application-specific integrated circuit hardware
clement a pattern 1n crash events stored in the crash
event array;

generate crash characteristic data associated with the
identified pattern;

implement a virtual environment corresponding to the
crash characteristic data; and

output an 1nterface that replicates a production environ-
ment and the crash event.

11. The crash simulator device of claim 10, wherein the
non-transitory computer-readable medium comprises com-
puter-executable instructions that when executed by the
processor are further configured to:

identily the pattern in the crash events using a machine
learning process module.

12. The crash simulator device of claim 11, wherein the
processor executing the machine learning process module
and 1s configured to i1dentify a task that the user intends to
carry out within the production environment.

13. The crash simulator device of claim 10, wherein the
virtual environment replicates the crash event applicable to
the dependent software classes used by the user and other
dependent software classes utilized by another user within
the 1dentified pattern.

14. The crash simulator device of claim 10, wherein the
non-transitory computer-readable medium comprises com-
puter-executable instructions that when executed by the
processor are further configured to:

mask the crash characteristic data prior to the crash
characteristic data.

US 11,249,884 B2

23

15. The crash simulator device of claim 10, wherein the
non-transitory computer-readable medium comprises com-
puter-executable instructions that when executed by the
processor are Iurther configured to:

receive data about the crash event; 5

generate a login profile that replicates characteristics of

the user, wherein the login profile 1s used to access the
virtual environment.

16. A method for crash test simulation, comprising:

monitoring a user’s mteraction with an application run-

ning within a production environment;

receiving data from a logging system that stores user

interactions with the application;

10

filtering the received data to identily a crash event;

identifying using a crash activity 1dentification processor
implemented as an application-specific itegrated cir-
cuit hardware element, dependent software classes uti-
lized during the user’s interaction with the production

environment prior to the crash event;

storing 1n a crash event array, information about the crash
cvent 1 combination with i1dentified dependent sofit-
ware classes:

identifying using a crash aggregation processor imple-
mented as an application-specific integrated circuit
hardware element a pattern 1n crash events stored in the
crash event array;

24

generating crash characteristic data associated with the
identified pattern;

implementing a virtual environment corresponding to the
crash characteristic data; and

outputting an interface that replicates a production envi-
ronment and the crash event.

17. The method of claim 16, further comprising:

identifving the pattern 1n the crash events using a machine
learning process module.

18. The method of claam 17, wherein the processor

executing the machine learning process module and 1is
configured to 1dentily a task that the user intends to carry out

15

within the production environment.

19. The method of claim 16, wherein the virtual environ-

ment replicates the crash event applicable to the dependent

SO

tware classes used by the user and other dependent

SO

tware classes utilized by another user within the 1denti-

20 fied pattern.
20. The method of claim 16, further comprising;

masking the crash characteristic data prior to the crash

characteristic data being outputted.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

