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INSTRUCTION INITIALIZATION IN A
DATAFLOW ARCHITECTURE

BACKGROUND OF THE INVENTION

Field of the Invention

The present mvention relates in general to computing

systems, and more particularly to, various embodiments for
implementing 1nstruction initialization in a dataflow archi-
tecture 1n a computing environment by a processor.

10

Description of the Related Art

In today’s society, consumers, business persons, educa- 19
tors, and others use various computing network systems
with increasing frequency in a variety of settings. Computer
systems may be found in the workplace, at home, or at
school. Computer systems may include data storage sys-
tems, or disk storage systems, to process and store data. In 2Y
recent years, both software and hardware technologies have
experienced amazing advancement. With the new technol-
ogy, more and more functions are added, and greater con-

venience 1s provided for use with these computing systems.
25

SUMMARY OF THE INVENTION

Various embodiments for implementing instruction 1ni-
tialization 1 a dataflow architecture using one or more
processors 1n a computing environment are provided. In one 30
embodiment, by way of example only, a method for imple-
menting instruction initialization 1 a dataflow architecture
in a computing environment, again by a processor, 1S pro-
vided. Initialization data 1s organized as data packets having,
one or more thts. A data packet may be transmitted from a 35
selected node to one or more of a plurality of nodes using
one or more existing data paths 1n an 1nitialization network.

A determination operation 1s performed to determine
whether one or more of a plurality of nodes 1s a target node
intended for the data packet. Those of the plurality of nodes 40
determined to be a target node initialize one or more
components of the target node using the data packet. The
data packet may be forwarded by each of the one or more of
a plurality of nodes to a subsequent node 1n the mitialization
network. 45

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be
readily understood, a more particular description of the 50
invention briefly described above will be rendered by ret-
erence to specific embodiments that are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the 55
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings, 1n which:

FIG. 1 1s a block diagram depicting an exemplary com-
puting node according to an embodiment of the present 60
imnvention;

FIG. 2 1s an additional block diagram depicting an exem-
plary cloud computing environment according to an embodi-
ment of the present invention;

FIG. 3 1s an additional block diagram depicting abstrac- 65
tion model layers according to an embodiment of the present
invention;

2

FIG. 4 1s an additional block diagram depicting dataflow
architecture in which aspects of the present invention may

be realized;

FIG. 5 1s a diagram depicting a state diagram for imple-
menting instruction initialization in a dataflow architecture
in accordance with aspects of the present ivention;

FIG. 6 1s a block diagram depicting an initialization
network 1n which aspects of the present invention may be
realized;

FIG. 7 1s an additional block diagram depicting 1nitial-
1zation packet format 1n which aspects of the present inven-
tion may be realized; and

FIG. 8 1s a flowchart diagram depicting an exemplary
method for implementing instruction 1nitialization 1n a data-
flow architecture in a computing environment by a proces-

sor, again 1n which aspects of the present invention may be
realized.

DETAILED DESCRIPTION OF THE DRAWINGS

As a preliminary matter, a data network facilitates data
transiers or “data tlows” between two or more data process-
ing systems in a computing environment (e.g., a datatlow
architecture). For example, an application executing 1n one
data processing system acts as the sender of the data, and
another application executing in another data processing
system acts as the receiver of the data. Between the sender
system and the receiver system, the data follows a data path
that comprises a series of links between networking com-
ponents, such as routers and switches. A link 1s also known
as a hop. For example, a data network exists between a
network interface in the sender system and a network
interface 1n the receiver system.

Additionally, a computing environment may include a
deep learning application comprised of one or more kernels
which are embarrassingly data parallel. Conventional pro-
cessors, which are based on Von-Neumann architecture, are
unable to exploit the data level parallelism present 1n these
application to the full extent. For example, an instruction
fetch and decode engine 1s too excessive for simplistic
operations that deep learning operations entail, leading to
sub-optimal silicon processor efliciency and lower perfor-
mance per unit of power.

Also, dataflow architectures may be composed of several
tightly coupled compute nodes, which may perform arith-
metic operation or facilitate data transfer, and are suited for
processing regular datatflow-onented algorithms. A compute
node executes a program from an istruction bufler (e.g., an
“IBuil™) that 1s local to each compute node. The instruction
bufter 1s 1nitialized betore the start of execution. However,
there 1s no instruction fetch from outside the compute node
during execution. Each compute node receives instructions
from 1ts instruction bufler (e.g., an “IBufl”) and continues
with a decode operation and execute phase simplifying a
processor’s frontend design and efliciency. Each node may
contain, 1n addition to an instruction bufler, other state data,
such as local registers for values used 1n computation or bits
which control the operation of the node. Accordingly, the
present mvention provides a novel way of initializing the
instruction bufler (e.g., an “IBuil”) and other state data of
cach compute node/unit 1 a dataflow architecture by use of
one or more existing data paths for initialization thereby
avoilding the use of a separate initialization bus and other
associated logic.

In one aspect, the present invention provides a solution for
implementing nstruction 1nitialization in a dataflow archi-
tecture 1n a computing environment. Initialization data 1s




US 11,223,703 B2

3

organized as data packets having one or more flits. A “tlit”
may be defined as a flow-control unit, the smallest unit of
data steered by a network’s flow control. Each data packet
may be transmitted from a first compute node to one or more
of a plurality of compute nodes using one or more existing
data paths. One or more components of a target compute
node may be 1mitialized using a received data packet and the
received data packet may be forwarded to a subsequent
compute node.

In one aspect, the present invention utilizes an existing
data path to transfer imitialization data (including IBuil and
other state data). The mitialization data may be organized as
packets that include one or more flits. Each initialization
data packet may include a header, which identifies one or
more target compute nodes, as well as the data packet length.
Each 1nitialization data packet for a root compute node may
be transmitted to all of the compute nodes connected to the
root compute node by the imtialization network. Each com-
pute node checks the header to determine 11 1t 1s one of the
intended recipients and uses the mmitialization data packet
contents to i1nitialize 1ts mstruction bufler and other state
data, while also forwarding the data to its child or children
nodes 1n the initialization network.

Also, as used herein, a computing system may include
large scale computing called “cloud computing” 1n which
resources may interact and/or be accessed via a communi-
cations system, such as a computer network. Resources may
be software-rendered simulations and/or emulations of com-
puting devices, storage devices, applications, and/or other
computer-related devices and/or services run on one or more
computing devices, such as a server. For example, a plurality
of servers may communicate and/or share information that
may expand and/or contract across servers depending on an
amount of processing power, storage space, and/or other
computing resources needed to accomplish requested tasks.
The word *““cloud” alludes to the cloud-shaped appearance of
a diagram of interconnectivity between computing devices,
computer networks, and/or other computer related devices
that interact 1n such an arrangement.

It should be noted that one or more computations or
calculations may be performed using various mathematical
operations or functions that may involve one or more
mathematical operations (e.g., solving differential equations
or partial differential equations analytically or computation-
ally, using addition, subtraction, division, multiplication,
standard deviations, means, averages, percentages, statisti-
cal modeling using statistical distributions, by finding mini-
mums, maximums or similar thresholds for combined vari-
ables, etc.).

Other examples of various aspects of the illustrated
embodiments, and corresponding benefits, will be described
turther herein.

It 1s understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment and/or computing systems
assoclated with one or more vehicles. Rather, embodiments
ol the present invention are capable of being implemented 1n
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
ellort or interaction with a provider of the service. This cloud
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4

model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as Follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence i1n that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts ). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as Follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications runming on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as Follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure 1s shared by
several organizations and supports a specific community that
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has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oil-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing

between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modulanty, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 10
1s only one example of a suitable cloud computing node and
1s not mtended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10 1s
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 10 there 1s a computer system/
server 12, which 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable 1nstructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown 1n FIG. 1, computer system/server 12 1n cloud
computing node 10 1s shown in the form of a general-
purpose computing device. The components ol computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-

tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
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6

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 12 typically includes a vaniety of
computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
12, and 1t includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media 1 the form of volatile memory, such as random-
access memory (RAM) 30 and/or cache memory 32. Com-
puter system/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system
storage media. By way of example only, storage system 34
can be provided for reading from and writing to a non-
removable, non-volatile magnetic media (not shown and
typically called a “hard drnive). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 18 by one
or more data media interfaces. As will be further depicted
and described below, system memory 28 may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in system memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the mvention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used 1n conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 30 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 34C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
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virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 30 to offer iirastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54A-N
shown 1n FIG. 2 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(¢.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
2) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Device layer 55 includes physical and/or virtual devices,
embedded with and/or standalone electronics, sensors,
actuators, and other objects to perform various tasks in a
cloud computing environment 50. Each of the devices 1n the
device layer 535 incorporates networking capability to other
functional abstraction layers such that information obtained
from the devices may be provided thereto, and/or informa-
tion from the other abstraction layers may be provided to the
devices. In one embodiment, the various devices inclusive of
the device layer 55 may incorporate a network of entities
collectively known as the “internet of things” (IoT). Such a
network of entities allows for intercommunication, collec-
tion, and dissemination of data to accomplish a great variety
of purposes, as one of ordinary skill in the art will appre-
ciate.

Device layer 53 as shown includes sensor 52, actuator 53,
“learning” thermostat 56 with integrated processing, sensor,
and networking electronics, camera 37, controllable house-
hold outlet/receptacle 58, and controllable electrical switch
59 as shown. Other possible devices may 1nclude, but are not
limited to various additional sensor devices, networking
devices, electronics devices (such as a remote-control
device), additional actuator devices, so called “smart™ appli-
ances such as a relrigerator or washer/dryer, and a wide
variety ol other possible interconnected objects.

Hardware and software layer 60 include hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture-based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, soltware compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provides cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
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rity provides i1dentity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provides pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94. transaction processing 93; and, in the context of the
illustrated embodiments of the present invention, various
workloads and functions 96 for instruction initialization 1n a
dataflow architecture. In addition, workloads and functions
96 for instruction initialization 1n a dataflow architecture
may 1nclude such operations as data analytics, data analysis,
and as will be further described, cryptographic switching

functionality. One of ordinary skill 1n the art will appreciate
that the workloads and functions 96 for instruction initial-
1ization 1n a dataflow architecture may also work 1n conjunc-
tion with other portions of the various abstractions layers,
such as those in hardware and software 60, virtualization 70,
management 80, and other workloads 90 (such as data
analytics processing 94, for example) to accomplish the
vartous purposes of the illustrated embodiments of the
present 1nvention.

As previously mentioned, the mechanisms of the 1llus-
trated embodiments provide novel approaches for imple-
menting instruction initialization 1n a datatlow architecture.
In one aspect, the dataflow architecture may include mul-
tiple nodes and an existing data network connecting the
nodes. The data network may include an initialization net-
work, which may be a tree sub-graph of the existing data
network. A root node of the initialization network may
transmit each data packet to one or more other nodes of the
initialization network. The internal nodes of the 1nitializa-
tion network may transmit received data packets to one or
more other nodes of the initialization network. Each node
(e.g., root, internal nodes and leaf nodes) of the mitialization
network may analyze the header of each received data
packet to determine whether the data packet 1s intended for
that particular node, and 1f so, one or more components of
that node may be initialized with data from that data packet.
An 1nstruction bufler 1n a node of the mitialization network
may be initiated upon determining, by that node 1) that a
received 1mtialization data packet 1s intended for that node;
and 2) that said received imitialization data packet contains
instruction data.

The root node and every internal node of the initialization
network may forward every received imitialization data
packet to that node’s child/children node in the mitialization
network. The 1mitialization phase may be exited upon expi-
ration of a selected time period following the root node
sending a final mitialization data packet. In an additional
aspect, the root and every internal node of the mitialization
network may forward every received data packet up to and
including a packet imntended for that node and every node of
the mitialization network may exit the mitialization phase
upon expiration of a selected time period following receiv-
ing a packet intended for that node.
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In one aspect, when a node 1s 1n the 1mitialization state: the
node may 1) read imtialization data from its 1nitialization
input data port every cycle, with no handshaking or other
protocol which may be normally be used in the existing data
communications network 1 execution phase, 2) store the
data 1n the node’s mitialization logic; and/or 3) forward the
data to the node’s 1mitialization data output port or ports, 1f
any, after a delay of a predetermined number of cycles
(usually one cycle later), with no handshaking or other
protocol.

Turning now to FI1G. 4, a block diagram depicts a datatlow
architecture 400 1n which 1illustrative embodiments may be
implemented. In one aspect, one or more of the components,
modules, services, applications, and/or functions described
in FIGS. 1-3 may be used in FIG. 4. The core architecture
captures a customized datatlow with scratchpad memory.

As 1llustrated, the datatlow architecture 400 may include
one or more of a variety of compute node/units such as, for
example, those compute nodes labeled by way of example
only as LX0-1, compute nodes labeled by way of example
only as LOX0-1 and LOY0-1, one or more special function
units (SFU) labeled by way of example only as SFU0-0, and
one or more processing element (PE) labeled by way of
example only as PE00-11. More specifically, each of the
PE’s are connected to each of the four nearest neighbors.
The compute node SFU0-1, LOX0-1, LX0-1, and LOY0-1
are connected to each of the two nearest neighbors.

In one aspect, the PE compute nodes may be responsible
for most, 11 not all, the computational operations. The other
compute node nodes such as, for example, the LOXO0-1,
[.X0-1, and LOY0-1 facilitate in data transfer by bringing
data 1 from a scratchpad memory to enable a compute
structure formed by an array of the PE compute nodes
labeled as PE00-11 to work upon/execute the data based on
a set of structions.

That 1s, each of the compute nodes of the dataflow
architecture 400, but not necessarily all of the core may take
part 1n executing a program on this datatlow architecture/
array. Each compute node/unit of FIG. 4 1n the core partici-
pating 1n execution optionally needs to mmtialize some
internal structures such as register files (e.g., a local register
file “LRF”’) and other control structures and the 1nstruction
bufler (e.g., an “IBufl”). The instruction bufler (e.g., an
“IBufl”) needs to be initialized with a sequence of instruc-
tions that may be executed during an execution phase. The
initialization data for a compute node/unit may be organized
as a data packet that may include a header flit followed by
one or more payload tlits. The header flit has the information
regarding the length and content of the payload flit so that an
initialization state machine 1n a compute node/unit can steer
the payload content to one or more 1nternal structures (e.g.,
LRF, IBufl, etc). The total initialization data for any given
application/program may include one or more 1nitialization
data packets. The initialization routing/datatiow topology 1s
selectively chosen such that the mtialization data flows
occur over existing interconnect network that are used to
transfer data during execution phase. Also, to simplily
routing decisions, all initialization data packets pass through
all compute nodes/units. Fach compute node/unit has an
initialization state machine that may decode the imitialization
header to determine 1f the incoming mitialization data packet
1s meant for that particular compute node/unit or not. If the
incoming initialization data packet 1s intended/meant for that
particular compute node/unit, then the payload contents are
copied into the relevant internal structures (LRFE, IBuil, etc.).
Regardless of the destination for the mmitialization data
packet, each mitialization data packet 1s forwarded to further
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node(s) of the imitialization network until the mitialization
data packet 1s recerved by one or more leal nodes of the
initialization network.

Turning now to FIG. 5, block diagram 500 depicts imple-
menting mstruction nitialization 1n 1n an mitialization net-
work. In one aspect, one or more of the components,
modules, services, applications, and/or functions described
in FIGS. 1-4 may be used 1n FIG. 5. Repetitive description
of like elements, components, modules, services, applica-
tions, and/or functions employed in other embodiments
described herein 1s omitted for sake of brevity. As shown, the
various blocks of functionality are depicted with arrows
designating the blocks™ 500 relationships with each other
and to show process flow/state change. Additionally,
descriptive information 1s also seen relating each of the
functional blocks 500.

Starting 1n block 502, a state machine may transition from
an 1dle state into a header state on the rising edge of an
initialization signal (e.g., “1_init” signal), as 1n block 504. A
first recerved flit may be the header flit. The contents of the
header flit of the header 504 is further illustrated 1n FIG. 7.

If a FLIT COUNT field (e.g., total tlit count of FIG. 7) 1n
the header flit 1s O, the state machine remains in header state
504.

If the FLIT COUNT 1s greater than zero (“0”) and a
decoded target unit mask does not match the unit’s decoded

identifier (“ID”"), the state machine enters into a discard
packet (“DiscardPkt”) state 506.

If the FLIT COUNT 1s greater than zero (*0”) and a local
register file (“LRF”) COUNT>0, the state machine enters
into an LRF state, as in block 510. If the FLIT COUNT 1s
greater than zero (“0”) and LRF COUNT equal to zero (*07),
the state machine enters 1nto an 1nstruction bufler (“IBuil™)
state 508.

In one aspect, the DiscardPkt state 506 indicates that the
current imitialization packet 1s not destined for this particular
unit. The state machine waits for the FLIT COUNT number
of flits before exiting 11 the current initialization packet 1s the
last one. The state machine waits for FLIT COUNT number
of tlits before transitioning back to the header state 504 1f the
current 1nitialization packet 1s not the last one.

The LRF may hold some internal state of the unit. For
certain programs, LRFs may be required to be initialized
with certain values. The state machine waits for LRF
COUNT number of flits, imitializes the LRF 1ndices indi-
cated by the LRF INDEX 0, LRF INDEX 1, up to LRF
INDEX “X” (where x 1s LRF COUNT muinus “17). After the
LRF COUNT flits, the state machine transitions back to the
header state 504 if the FLIT COUNT equals the LRF
COUNT and the current initialization packet 1s not the last

one (e.g., indicated by the last initialization packet “INIT
PKT” field 1n the header flit).

After the LRF COUNT flits, the state machine may
stop/exit, as m block 512, if FLIT COUNT equals the LRF
COUNT and the current 1nitialization packet 1s the last one.

After the LRF COUNT flits, the state machine transitions
to the IBull state 508 1f FLIT COUNT 1s greater than the
LRF COUNT.

In an additional aspect, the IBUFF 508 may hold the
istructions to be executed by a given unit. Fach unit can
hold up to a certain number of instructions (e.g., 64). For
FLIT COUNT—LRF COUNT (e.g., FLIT COUNT minus
the LRF COUNT) number of flits, the state machine 1nitial-
izes the local instruction bufler with each incoming {flit 1n
successive locations starting from 0. After FLIT COUNT—
LRF COUNT (e.g., FLIT COUNT minus the LRF COUNT)

flits, the state machine transitions back to the header state
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504 1if the current mitialization packet was not the last one.
After FLIT COUNT—LRF COUNT (e.g., FLIT COUNT
minus the LRF COUNT) flits, the state machine may exit/
stop 1f the current “1” 1mtialization packet 1s the last one, as
in block 512.

Turning now to FIG. 6, block diagram 600 depicts opera-
tions for mmitialization of the nodes 1 an imitialization
network. In one aspect, a memory 632 (e.g., scratch pad
memory) may be in direct contact with a compute node/unit
606 (c.g., a Lx load unit “LU”"). The computational node/unit
606 may also be the closest compute node/unit to the
memory 602.

The compute node/unit 606 may also be 1n direct com-
munication with a core global component 604. In one aspect,
the core global component 604 may be a global control logic
that may control whether all of the compute nodes/units are
in a special iitialization state. If a compute node/unit 1s not
in the mitialization state, the compute node/unit 1s 1n a
functional state. The functional states may include, for
example, execution and quiescent states and a logic/program
within a compute node/unit controls transitions between
functional states. Each of the compute nodes/units have at
least one path (or connection, or port) to mput data from
another unit and at least one port to output data to one or
more other units. In a functional state, a compute node/unit
may use a communication protocol to control when and
whether to mnput or output data on these ports. The protocol
can 1include handshaking signals (as commonly practiced).
The compute node/unit’s implementation of that protocol
will use the state of the compute node/unit’s internal logic,
and may depend on a program being executed by the
compute node/unit. The data on an output port of a unit
similarly depends on the state of a unit’s internal logic and
the execution of its program. One port on a unit for func-
tional nput data 1s also its initialization input data port
(stmilarly for output). When a unit 1s 1n the imtialization
state: the unit reads initialization from 1ts 1nitialization 1input
data port every cycle, with no handshaking or other protocol;
that data goes to the unit’s 1itialization logic; that data 1s
also transmitted on the umit’s mitialization data output port
after a delay of a predetermined number of cycles (usually
one cycle later), with no handshaking or other protocol.

At a high level overview, 1n one aspect, the core global
component 604 (“core global”) may commence an 1nitial-
ization phase by sending an initialization signal indicating to
the compute node/unit 606 for mitiating the mmitialization
data prior to executing one or more applications in an
execution phase.

The compute node/unit 606 (e.g., “root node” 1 an
initialization network) may organize initialization data as
data packets having one or more {flits. The compute node/
unit 606 may send/transmit each initialization data packet
from the compute node/unit 606 to one or more of a plurality
of compute nodes such as, for example, compute node 610
(e.g., “L0O-Y LU”), compute node 612 (e.g., “LO-Y SU”),
compute node 616 (e.g., “L0-X LU”), and compute node
618 (e.g., “L0-Y SU”) using one or more existing data paths.

Each of the compute nodes such as, for example, compute
node 610, compute node 612, compute node 616, and
compute node 618 may be leal or internal nodes of the
initialization network with compute node/unit 606 as root
node. Each of the compute nodes such as, for example,
compute node 610, compute node 612, compute node 616,
and compute node 618 may analyze a header of the data
packet to determine the recerved data pack from the first
node 1s mtended for that compute node. Each of the compute
nodes such as, for example, compute node 610, compute
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node 612, compute node 616, and compute node 618 may
torward the recerved data packet to a subsequent compute
node such as, for example, compute node 610 may forward
a recerved 1itialization data packet to SFU 614, and com-
pute node 616 may forward a received mitialization data
packet to compute node 620 (e.g., PE 0, 0), compute node
622 (e.g., PE 0, 1), and/or compute node 624 (¢.g., PE 0, X).

More specifically, initialization data for each compute
node (e.g., compute nodes 606, 608, 610, 612, 614,616, 618,
620, 622, and/or 624) may be organized as an initialization
data packet consisting of several 16B (16-byte) tlits. Initial-
ization flits may be sent over a 16B data interface. Each
compute node may be listening for mitialization flits on a
predefined data interface. The mitialization data packet may
include a predefined behavior which dictates if a compute
node 1s going to forward the iitialization tlits or drop the
initialization flits. An initialization data packet may have
multiple target compute nodes/units, which may be specified
in the header. For example, 1f the LRF data and the instruc-
tion buller code 1s common across PE nodes, all of those
nodes may be mnitialized by one packet. In one aspect, the
mitialization may not necessarily update all IBuils/LRFs,
but may select any subset of LRFs or any sequential region
of IBufl starting for a selected index (e.g., “index 07). The
steering of mitialization data packets by the compute nodes
may result 1n all imitialization data packet reaching all nodes
in the mmtialization network. In one aspect, each of the
compute nodes may broadcast every initialization data
packet to all child nodes, 11 any, 1n which case all compute
nodes receive every initialization data packet.

In an additional aspect, each node may stop transmitting,
packets after 1t receives a packet specilying itself as a target.
In this case, the data packets are ordered 1n memory so data
packets to more distant nodes 1n the nitialization network
are distributed first. Also, in this case, once a node finishes
processing and forwarding a packet with that node as target,
it may 1gnore further packets at its 1imitialization 1nput port
while still 1n mitialization mode. An 1nitialization sequence
for a slice O (same sequence for all the slices) may be
selected such as, for example, compute nodes 624

(PE07), . .., compute nodes 622 (PE01), compute node 620
(PE00), compute node 608 (Lx SU0), compute node 618
(L0-X SU0), compute node 616 (L0-X LUO), compute node
612 (LO-Y SUO0), compute node 614 (SFUO0), compute node
610 (LO-Y LUO0), compute node 606 (Lx LUO0). A different
sequence (or any other sequence) may also work but the
above sequence achieves first initializes the {farthest to
nearest element in relations to the memory 602. The 1nitial-
1zation connection may fan out from compute node 606 (Lx
LU) where all mitialization data packets be sent via all 4

connections such as, for example, compute node 606 (Lx
LU) to compute node 618 (LL0-X LU), compute node 608

(L0-X SU), compute node 610 (LO-Y LU), and compute
node 612 (L0-Y SU). One or more additional compute nodes
may be covered via compute node 610 (L0-Y LU) such as,
for example, compute node 614 (SFU). Also, additional
compute nodes may be covered via compute node 610
(L0-X LU) such as, for example, compute node 620 (PEO0,0),
compute node 622 (PE0,1), . . ., compute node 624 (PE-7),
and/or compute node 608 (Lx SU).

In one aspect, some nodes 1n the 1initialization network are

leal nodes which receive imitialization data but do not
forward 1t, e.g. node 614 (SFU) and 624 (PE0,7). Some
nodes are internal nodes, such as 610 (L0O-YLU) which

recerve and forward initialization data. One node, such as
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606 (LX LU) 1s the root node which gets mitialization data
from the scratchpad memory and forwards it to the rest of
the 1mtialization network.

In an additional aspect, for example, the PE (e.g., compute
node 620 (PE 0,0), compute node 622 (PE 0,1), and/or
compute node 624 (PE 0, X)) may listen for imitialization
tlits on a first interface and forwards all incoming flits on an
alternative interface. The Pes may use an existing two-cycle
first-in-first-out (“FIFO”) data path: operand latch and FIFO
latch to forward initialization data on a link, which may add
a multiplexer (“MUX”) select control, but no mux ports or
cross-unit buses. All incoming initialization flits may always
be consumed (e.g., no backpressure) during the initialization
phase.

Thus, as mentioned, the present invention provides for
entering 1nto an initialization phase and exiting from the
iitialization phase.

To enter the mitialization phase, an initialization compo-
nent (e.g., core global component 604) may broadcast a
signal (e.g., a core level “1_1mit” generation and distribution
signal). The “1_init” may be a synchronous, timed signal
operating at 2 gigahertz (“GHz”). The core global compo-
nent 604 may generate the “1_1mt” signal to initiate the
initialization process. The “1_init” from the core global
component 604 goes to a root node such as, for example,
compute node 606 (Lx Lu). The “1_init” signal distribution
from the root node to all other compute nodes follows the
same hops as initialization data. A node which 1s a root or
internal node may register the 1_init signal for up to two
cycles and then forwards the initialization signal to the same
nodes to which 1t forwards initialization data. For example,
606 (Lx Lu) in each lane may register the signal for up to
two cycles to match an 1nitial data path depth and forwards

the signal to compute node 608 (Lx SU), compute node 616
(L0-X LU), compute node 618 (LL0-X SU), compute node

610 (LO-Y LU) and compute node 612 (LLO-Y SU).

The LO LU’s (e.g., compute nodes 610, 616, and 618)
register the signal for up to two cycles and forward the signal
to a nearest PE (e.g., compute node 620 (PE 0, 0)). The
nearest PE (e.g., compute node 620 (PE 0, 0)) registers the
signal for up to two cycles and forwards the signal to a
neighbor. The process continues until the signal reaches the
tarthest PE (e.g., compute node 624 (PE 0, X)) 1n the lane.
Hence, each unit may receive the signal (e.g., the “1_nit”
signal) at different times (e.g., up to 20 cycles apart) but
prior to the mitialization data can reach 1t. A unit level (e.g.,
“local_1mit”) signal may be generated in each compute
node/unit by registering the “1_init” signal twice to generate
a “local_imit” and each compute node/unit may use the
generated “local_init” signal for initialization, which 1s the
same “1_1nit” signal sent to the next compute node/unit (e.g.,
no separate latching)

To exit the mitialization phase, the root node 606 (Lx LU),
after sending the last flit of the last initialization data packet
(identified by a “last” field in the header), sets the 1_init
signal of its child nodes to ‘false,” exits 1nitialization mode
and enters execution mode. Each internal node of the
initialization network forwards this false value 1n turn to the
1_1mit signals of its child nodes, and also exits 1mitialization
mode. Once all nodes in the network have a false 1 1nit
signal, there 1s no longer any mitialization data in the
network, and all nodes have left initialization mode.

Turning now to FIG. 7, block diagram 700 depicts an
initialization data packet format for implementing instruc-
tion 1nitialization 1n a dataflow architecture, which may, for
example, be implemented 1n FIGS. 1-6. In one aspect, the
initialization data packet format may include a header 710,
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one or more LRF such as, for example, LRF 720A and LRF
720B, and/or and instruction bufler such as, for example,
instruction bufier 730.

In one aspect, the first flit of a data packet may be the
header 710 which contains 1) a target unit mask, 2) a flit
count, 3) an LRF count, 4) a bit indicating that this packet
1s the last initialization packet (“pkt”), and 5) one or more
LRF indexes. The target unit mask may indicate that each
unit (e.g., PE, LU, SU, and/or SFU of FIG. 6) 1n a lane 1s
assigned a unique 15 bit one-hot mask. Upon receiving the
header flit, each computational node/umt uses 1ts 1dentifier
“ID” as a mask against the target unit mask field to deter-
mine if 1t 1s an intended recipient of the packet or an
umintended recipient. The fht count 1s the number of flits
(16B transfers) in the data packet (excluding the header).
The number of LRF to be initialized 1s given in the LRF
count. The last ini1tialization packet indicates to the root node
(e.g., LX LU) that this 1s the last mitialization packet. The
node uses the LRF count number of the one or more LRF
index fields to determine which LRFs to initialize with data
from following {flits.

In an additional aspect, initialization may be performed
(e.g., may be optional) for one or more LRFs (e.g., LRF

720A and 720B). A {lit may only have LRF data 11 the “Flit
count” field of header 710 1s greater than land the “LRF
count” field of the header 710 1s greater than 0. It should be
noted that there may be as many LRF flits as indicated by the
“LRF count” field. Also, “LRFIndex0” through “LRFInd-
exF” of the header 710 may contain the LRF indexes for
cach LRF flit, which may be 1n sequence.

In an additional aspect, mitialization may be performed
(e.g., may be optional) for mnitialization of the instruction
bufler 730 (e.g., mitialization of one or more 1nstructions
such as, for example instruction “inst” 0, inst 1, inst 2, inst
3, and a return instruction). I the “tlit count” field of header
710 1s greater than 1 plus the LRF count (e.g., tlit count 1s
greater than 1+“LRF count™), then the flits the last LRF flit
(or after the header if there are no LRF flits) may have
instruction tlits.

Turning now to FIG. 8, a method 800 for implementing,
instruction initialization i a datatlow architecture in a
computing environment by a processor 1s depicted, in which
various aspects of the illustrated embodiments may be
implemented. The functionality 800 may be implemented as
a method executed as 1nstructions on a machine, where the
istructions are included on at least one computer readable
medium or one non-transitory machine-readable storage
medium. The functionality 800 may start 1n block 802.

Initialization data 1s organized as initialization data pack-
ets having one or more flits, as 1n block 804. Each imitial-
ization data packet may be transmitted from a first compute
node to one or more of a plurality of compute nodes using
one or more existing data paths, as i block 806. One or
more components of a target compute node may be 1nitial-
1zed using a received initialization data packet and the
received 1nitialization data packet may be forwarded to a
subsequent compute node, as 1n block 808. The functionality
800 may end, as in block 810.

In one aspect, in conjunction with and/or as part of at least
one block of FIG. 8, the operations of method 800 may
include each of the following. The operations of method 800
may define the first compute node as a root node and having
both a closest distance and a direct connection to a scratch
pad memory, define the each of the plurality of compute
nodes as leat nodes 1n relation to the root node, and/or define
the data packets as mitialization data packets intended for
the one or more of the plurality of compute nodes. The
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operations of method 800 may also define the data packet to
include a header that i1dentifies each target compute node
intended for recerving the data packet and a defined length
of the data packet.

The operations of method 800 may mitialize an nstruc-
tion bufller associated with the target compute node upon
determining, by the target compute node, the recerved data
pack from the first node 1s intended for the target compute
node. The operations of method 800 may analyze a header
of the data packet to determine the received data pack from
the first node 1s mtended for the target compute node.

The operations of method 800 may commence an 1nitial-
1zation phase by sending an initialization signal indicating to
the first compute node, the one or more of the plurality of
compute nodes, or a combination thereof a time period for
initiating the imitialization data prior to executing one or
more applications 1 an execution phase, and/or exit the
initialization phase upon expiration of a selected time period
tollowing the first compute node sending a final data packet.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
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machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowcharts and/or block diagram block or blocks.
These computer readable program 1instructions may also be
stored 1n a computer readable storage medium that can direct
a computer, a programmable data processing apparatus,
and/or other devices to function 1n a particular manner, such
that the computer readable storage medium having instruc-
tions stored therein comprises an article of manufacture
including mstructions which implement aspects of the func-
tion/act specified 1n the flowcharts and/or block diagram
block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
charts and/or block diagram block or blocks.

The flowcharts and block diagrams in the Figures 1llus-
trate the architecture, functionality, and operation of possible
implementations ol systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the tlow-
charts or block diagrams may represent a module, segment,
or portion of instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
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cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality ivolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks in the block dia-
grams and/or flowchart 1llustrations, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The 1nvention claimed 1s:

1. A method for implementing instruction mmitialization 1n
a dataflow architecture in a computing environment by a
processor, comprising:

transmitting mnitialization data organized as a data packet,

from a selected node to one or more of a plurality of
nodes being 1 an iitialization mode, using one or
more existing data paths 1n an initialization network,
wherein the 1mitialization mode 1s entered by each of
the plurality of nodes upon receiving, at an initializa-
tion mput data port, a core-level mitialization and
distribution (*1_1nit”) signal comprising a synchronous,
timed signal operating at a predefined frequency;
responsive to receiving the data packet, reading and
storing the initialization data of the data packet from
the 1nitialization input data port at each cycle during the
iitialization state without performing a handshake
protocol otherwise used 1n an execution phase, and
further determining, by each respective node of the one
or more of a plurality of nodes, whether the respective
node performing the determining i1s a target node
intended for the data packet, wherein those of the
plurality of nodes determined to be the target node
initialize one or more components of the target node
using the initialization data of the data packet;
commensurate with determiming that the respective node
1s not the target node, forwarding the data packet by the
respective node to a subsequent node 1n the 1nitializa-
tion network, wherein the initialization data 1s trans-
mitted on an mitialization output data port without

performing the handshake protocol following a delay of

a predetermined number of cycles; and

commensurate with determiming that the respective node
1s the target node, ceasing forwarding of and 1gnoring
any subsequent data packets received at the nitializa-
tion mput data port of the respective node while 1n the
initialization mode, wherein the initialization mode 1s
exited by each of the plurality of nodes upon receiving
a Talse value of the 1_init signal propagated throughout
cach of the plurality of nodes in the imtialization
network.

2. The method of claim 1, further including analyzing a
header of the data packet for determining those of the
plurality of nodes intended as the target node.

3. The method of claim 1, further including initializing an
instruction builer 1n the target node using instructions within
the 1mitialization data from of the data packet upon deter-
mimng those of the plurality of nodes 1s the target node.

4. The method of claim 1, further including commencing,
an 1itialization phase by sending an initialization signal
indicating to the selected node, the plurality of nodes, or a
combination thereol at a selected time period for imitiating
the data packet prior to executing one or more applications
in an execution phase.
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5. The method of claim 4, wherein forwarding the data
packet includes forwarding the data packet received by each
of the one or more of a plurality of nodes to one or more
child nodes 1n the mitialization network.

6. A system for implementing instruction mnitialization in
a dataflow architecture in a computing environment, com-
prising:

one or more computers with executable instructions that

when executed cause the system to:
transmit 1nitialization data organized as a data packet,
from a selected node to one or more of a plurality of
nodes being 1n an iitialization mode, using one or
more existing data paths 1n an initialization network,
wherein the 1nitialization mode 1s entered by each of
the plurality of nodes upon receiving, at an 1nitializa-
tion mput data port, a core-level initialization and
distribution (*1_in1t”) signal comprising a synchronous,
timed signal operating at a predefined frequency;

responsive to recerving the data packet, read and store the
iitialization data of the data packet from the initial-
1zation 1mput data port at each cycle during the initial-
1zation state without performing a handshake protocol
otherwise used 1n an execution phase, and further
determine, by each respective node of the one or more
of a plurality of nodes, whether the respective node
performing the determining 1s a target node intended
for the data packet, wherein those of the plurality of
nodes determined to be the target node 1nitialize one or
more components of the target node using the 1nitial-
ization data of the data packet;
commensurate with determining that the respective node
1s not the target node, forward the data packet by the
respective node to a subsequent node in the initializa-
tion network, wherein the initialization data 1s trans-
mitted on an i1mitialization output data port without
performing the handshake protocol following a delay of
a predetermined number of cycles; and

commensurate with determining that the respective node
1s the target node, cease forwarding of and 1gnoring any
subsequent data packets received at the initialization
input data port of the respective node while n the
initialization mode, wherein the 1nitialization mode 1s
exited by each of the plurality of nodes upon receiving
a false value of the 1_1init signal propagated throughout
cach of the plurality of nodes in the initialization
network.

7. The system of claim 6, wherein the executable instruc-
tions analyze a header of the data packet for determiming
those of the plurality of nodes intended as the target node.

8. The system of claim 6, wherein the executable instruc-
tions 1nitialize an 1nstruction bufler in the target node using
instructions within the initialization data from of the data
packet upon determining those of the plurality of nodes 1s
the target node.

9. The system of claim 6, wherein the executable 1nstruc-
tions commence an imtialization phase by sending an 1ni-
tialization signal indicating to the selected node, the plural-
ity of nodes, or a combination thereof at a selected time
period for imtiating the data packet prior to executing one or
more applications 1n an execution phase.

10. The system of claim 9, wherein forwarding the data
packet includes forwarding the data packet received by each
of the one or more of a plurality of nodes to one or more
child nodes 1n the mitialization network.

11. A computer program product for i1mplementing
instruction iitialization in a dataflow architecture by a
processor 1n a computing environment, the computer pro-
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gram product comprising a non-transitory computer-read-
able storage medium having computer-readable program
code portions stored therein, the computer-readable program
code portions comprising:
an executable portion that transmits nitialization data
organized as a data packet, from a selected node to one
or more of a plurality of nodes being 1n an 1nitialization
mode, using one or more existing data paths 1 an
initialization network, wherein the initialization mode
1s entered by each of the plurality of nodes upon
receiving, at an initialization input data port, a core-
level 1mitialization and distribution (*1_imt”) signal
comprising a synchronous, timed signal operating at a
predefined frequency;
an executable portion that, responsive to receiving the
data packet, reads and stores the initialization data of
the data packet from the 1nitialization input data port at
cach cycle during the initialization state without per-
forming a handshake protocol otherwise used i an
execution phase, and further determines, by each
respective node of the one or more of a plurality of
nodes, whether the respective node performing the
determining 1s a target node intended for the data
packet, wherein those of the plurality of nodes deter-
mined to be the target node initialize one or more
components of the target node using the mitialization
data of the data packet;
an executable portion that initializes one or more com-
ponents of the target node using the data packet;
an executable portion that, commensurate with determin-
ing that the respective node 1s not the target node,
forwards the data packet by the respective node to a
subsequent node 1n the mitialization network, wherein
the nitialization data 1s transmitted on an 1mitialization
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output data port without performing the handshake
protocol following a delay of a predetermined number
of cycles; and

an executable portion that, commensurate with determin-

ing that the respective node 1s the target node, ceases
forwarding of and 1gnoring any subsequent data pack-
cts received at the mitialization iput data port of the
respective node while m the mitialization mode,
wherein the mitialization mode 1s exited by each of the
plurality of nodes upon recerving a false value of the
1_1ni1t signal propagated throughout each of the plurality
of nodes 1n the mitialization network.

12. The computer program product of claim 11, further
including an executable portion that analyzes a header of the
data packet for determining those of the plurality of nodes
intended as the target node.

13. The computer program product of claim 11, further
including an executable portion that initializes an 1nstruction
bufler 1n the target node using 1nstruction instructions within
the 1nitialization data from of the data packet upon deter-
mining those of the plurality of nodes 1s the target node.

14. The computer program product of claim 11, further
including an executable portion that:

commence an i1nitialization phase by sending an 1nitial-

1zation signal indicating to the selected node, the plu-
rality of nodes, or a combination thereof at a selected
time period for mtiating the data packet prior to
executing one or more applications 1n an execution
phase; and

forwards each data packet received by each of the one or

more of a plurality of nodes to one or more child nodes
in the mitialization network.
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