12 United States Patent

Armitage et al.

US011221870B2

US 11,221,870 B2
*Jan. 11, 2022

(10) Patent No.:
45) Date of Patent:

ield of Classification Searc
34) AGENT FLOW ARRANGEMENT 58) Field of Classification S h
MANAGEMENT CPC .. GO6F 9/466; GO6F 11/1471; GOoF 11/1474;
GO6F 11/3409; GO6F 2201/84
(71) Applicant: International Business Machines See applica‘[ion file for Comp]e‘[e search history_
C tion, Armonk, NY (US
OrPOTAton, OH (US) (56) References Cited
(72) Inventors: Joshua H. Armitage, Ellenbrook (AU); US PATENT DOCUMENTS
Michael P. Clarke, Ellenbrook (AU); o N
John A. W. Kaputin, Rockingham 6,457,041 Bl 9/2002 Hutchison
(AU); King-Yan Kwan, Perth (AU); 7,712,096 B2 5/2010 Kaczynski et al.
Andrew Wright, Eastleigh (GB) (Continued)
(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US)
CN 100375038 C 3/2008
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 79 days.
‘ _ ‘ ‘ ‘ Armitage et al., “Agent Flow Arrangement Management,” U.S.
Th1.s patent 1s subject to a terminal dis- Appl. No. 16/388,990, filed Apr. 19, 2019.
claimer. .
(Continued)
(21) Appl. No.: 16/292,987 Primary Examiner — Wissam Rashid
A— Mar 5. 2010 (74) Attorney, Agent, or Firm — Nathan M. Rau
iled: ar. 3,
(22) (37) ABSTRACT
635 Prior Publication Data Disclosed aspects relate to agent flow arrangement manage-
P g g g
ment 1n a distributed commuit processing environment. A first
US 2019/0196863 Al Jun. 27, 2019 set of agent utilization data may be collected with respect to
a first commit processing agent. A second set ol agent
Related U.S. Application Data utilization data may be collected with respect to a second
(63) Continuation of application No. 15/496,153, filed on commit processing agen. An agent ﬂ(fjw arrangement may
Apr. 25, 2017, now Pat. No. 10,261,825. be determined based on a first value with respect to the first
’ ’ S set of agent utilization data exceeding a second value with
respect to the second set of agent utilization data. The agent
(51) Int. CL P S &
GOGF 9/46 (2006.01) flow arrangement may have the first commit processing
GO6F 11/14 (2006.035) agent subsequent to the second commit processing agent.
GOGF 11/34 (2006.O:L) The distributed commit operation may be processed using
(52) U.S. Cl) the agent flow arrangement which has the first commit
CPC ' GOG6F 9/466 (2013.01): GO6F 11/1471 processing agent subsequent to the second commit process-

(2013.01); GOGF 11/1474 (2013.01); GO6F
11/3409 (2013.01); GO6F 2201/84 (2013.01)

ing agent.

20 Claims, 8 Drawing Sheets

. -~

“““

Caotlect a Birst sel of

agent utllrzaiion dala
420

{Collect a second sel of
agent utilizaiion datd

449

Dctermunc an
aveit Flow arrangement

460

Process the distributed

connit operation
480

US 11,221,870 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,086,911 B2 7/2015 Mitchell et al.
2006/0136887 Al* 6/2006 Kaczynski GO6F 9/466
717/151
2009/0187913 Al1* 7/2009 Wikinson GO6F 9/466
718/103
2015/0261563 Al* 9/2015 Guerinoceeee... GO6F 9/466
707/703
2016/0156587 Al 6/2016 Day
2016/0162537 Al 6/2016 Mitchell et al.
2016/0179875 A 6/2016 Brooks et al.
OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related,
Signed Apr. 19, 2019, 2 pages.
Barnes et al., “Logging Last Resource Optimization for Distributed
Transactions 1n Oracle WebLogic Server,” EDBT 10: Proceedings
of the 13th International Conference on Extending Database Tech-
nology, Mar. 2010, 6 pages, ACM, New York, NY. DOI: 10.1145/
1739041.1739119.
Mell et al., “The NIST Definition of Cloud Computing,” Recom-
mendations of the National Institute of Standards and Technology,
Special Publication 800-145, Sep. 2011, 7 pages, National Institute
of Standards and Technology, Gaithersburg, MD.
Armitage et al., “Agent Flow Arrangement Management,” U.S.
Appl. No. 15/496,155, filed Apr. 25, 2017.
Armitage et al., “Agent Flow Arrangement Management,” U.S.
Appl. No. 15/730,181, filed Oct. 11, 2017,
List of IBM Patents or Patent Applications Treated as Related,

Signed Mar. 5, 2019, 2 pages.

* cited by examiner

U.S. Patent

-
r .'.".'.".'.".'.".'..'.'.".'.".'.".'.".'.".'.".

ok ok kb ko kb kb bk bk kb ok kb
iﬁiiﬁiiﬁiiﬁiiﬁiiﬁiiﬁiiﬁi.l

L

a

-

N
A O O R R R R R

-

WO interfaceds)

Jan. 11, 2022

Flemory

wl

i Firpnwars

_ C .
- Il
H ﬂ ?ﬁél N)
. ,E K
1 .
: . . .
;
. - r
' - - El
K. o

T r e’ T T
-.-.-.-.-.-.-.-.-.-.-.-.-.-'.-

l-fa-‘a-‘-h‘#‘a‘a‘#‘a‘a‘#‘b‘a‘ W

1 4 4 4

TN R R R R R R R R R

Network Adapter

ity .o .
-: S
:4 . R -3
] . . .
. . _
4 -
. v
| ¥
L) 'T"
v o
v o
v e
¥
]
¥
]
¥
]
¥
]
¥
]
¥
]
¥
]
¥
]
¥
]
"y

Sheet 1 of 8

e e e e e e e dp e dp e de e e e e e e e e

'I‘-l."--------------------.-#‘

-
-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'-l'I'I'I'I'I'I'I'I'I'I'I’I’I’I’I’I’I’I’I’I’I’I’I"
FE EFEEFEESFEESFEESEESE SN BFEESEESE SN D

A

o g 0 0 0l ol Wy

US 11,221,870 B2

5;;:.
e e -1:‘
. e Setet ey1..,._,_1,_:::_: o
* T S s a A bk AP :-f-:-i“*"*‘“"‘?lwﬂ?gi
Sy SR ;
Siorage
R

* F F F FEFEEFEFEFEFFEFFFEFEFFEFENFFES

(Sl [

LN NN
L

i O N N N N N N
L L

180

1

- = % %" =" " T, T T W WV W FW_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_EWR_W_W_™
E A A A B R I A R A R A A A R A R A R R R A R A E A A A A A R N

.‘ﬁ

i;- '

\ . i‘t.:'
H-. . __..;..""."h

U.S. Patent Jan. 11, 2022 Sheet 2 of 8 US 11,221,870 B2

- -
P L
- T s+ T“.

PR, ML .
- :-.’ LM . ..:-'I:l
L™ .."_g-"'- ok
- w4 e L
1.-1:-'-"-*‘-" . o - . :l:
LI B R - -
ek . =" J,'l.
et . mx"s oy
- o -t *_.r
. '; l.-'." h.l-'.'r‘ ..*4,"
“'-.ﬁi""‘ L il & F
! - "
--"."i-:-"" * wn "t
S g |
ﬁ‘ -i .:.'.."- - . ‘. ‘r*h._“"‘ - '-..‘*.'.-.I-.- _——) l‘,. - : . v -":‘ - i
:i 'y W et st ot) " " - -
. '::l) e LT - A N JF TNy
I' .ﬂ _rl‘l' p-.'!_ ¥ ;‘ ':" 1 "" w ."J I|'-'-: "‘i
] A rI"Il 1 = gt] L] o - -ll'll""'ll r! * "
r 14 L) " _] d [s 1
. LY.] [[y .-, n - ik = o,
- I__l" 'r.t. .4" A e M M _*q-a --_."l‘ B LN h.
:; ‘:-:: :::: Ey = ol e e """:- :J':-: :k:'r -, .:-il'.) l.‘ ..li-‘-‘ -ﬁ:;r l-"'-‘-'.' L o .-'_-'-'* o -"'-.- -.", a.
E N . - i L e ‘m b LR My
P .1-' . . ‘l' . T - :‘:"ﬁ*-.i - .“._-I*-IL..M...I..L-}-I‘.' . *l . - a':m - "l.lb :‘- - .
5) . ah L i L e - e ¥ ' ‘.-:r
L] ' . - T A N - %
5 4 o . . - . A am :l d‘::'-_l aa m » ‘4,. - I'-.}
" T - A * r T
. .I|t HI'"F‘ ‘: ’] "ﬂ:‘: . -t ' .l-..!' - LI :-' "‘.':""‘.l‘ ‘. j
L] aE * - A .1-1 ;*-.. " . - L . .- ‘k{ 4-:| L l-I
F T . , L - at r w, . S0
RN & H.._f o |;] - - o -t - ° -] LI
| | L] . i - T . - A, F - L | [] -
N s ‘L |'J'_h‘ hq--‘ 'rillh"\ e] fﬁ , . l.“..;'_4 rh{l.i ..E. --r. 4 '- t_"l
M i . L] " ama 3 I"'""" a .ﬁ' *I;-“'.\.H "l- P . L] :r*- -
1 ' ; - [N U L% iy " ..IF,# ’ .'r"l' | | . |] | |
L o ., LT -t it aw ,.-"* W, - "-l'.' LS - . . ".ip.ﬂ -':-'11_'? T
-"I. - '-*1.- 'I. . - '|.- ' - -
I‘|.|- E . - _-l-4l [: . o n™ - l_lrlrx- .__p: ‘.'-.".I-.“I ;.;
' Pt g Tty T - - L
-.:-:1- 1 L i P l-'.-.-_'t:- -‘: LIcH § _‘_‘_-_r‘-'“*“ AL -:"'. _ ‘h-_ _i"
[LA - - i.:_n-lr.':*i"".q. :'-I by, A 1 -t -l e N YR =
L] r-i 1" - »y i.l'"!_” - LIF | | 1= ".q_-'l' = L
v & Y T P i T » 0 ¥ - vt T
- ': LA s T 4 At . h‘ s B } W - P AR
é] w '*‘I.I__ . "y om_a A 'I* i _ 4= [] |_|| 1.1_.' o B e
L o R LN g T, EN e w N " 2y r i \ -_-q-i'l-"q‘
.l. . r q..-_ ™ l-‘.i-'."-;“, ..h 1:: h -i .‘ l: _l_- L] 2
: . - . Bl IS
iy . . L i [SO]
: R NP LR R U -
¥ e L LN . L v‘}
L ".-:.---H."- -.:"
.,:g'
{; i
I.-i
.
.T'll

- -:-i-"-"*dr'i-'q*"'-‘-.l-; -
=t s LR

e o ", W

i

£l e LM s ™ ..;"‘:
ﬂ4'.'\-.,'(‘: o o o oV SN "".' ""'-.-{_ .. o

) K - W - . .
- . Lo~ - .*""#..;--'?' '
e | . _.‘- ‘F ”'J'
3 U %
L L) .
T '-.._T-_‘ .-Tl- :::: . {‘E
:l.ﬁ-') X “

-
o

.t-q.:.ﬂ:'.r-mhv_‘- .

mb., & .__r;l_..*l_.l____‘;,.:..ﬁe - . .Ff‘.
L] . L L] Il'._

..’l_- N .:‘.
Pl . - h

l,-l". = : " ' L

I Y
-i-t -
*
a
'
-
-
a
e o orow
- -
i l————

i

N
LA
LA '
e : -
R 'lh =1 r |
- ¥, . .y Sl S
-.. f] vt * . - 1.. -‘.- 'l -..| .
-.' f] ! 1- -*.- 'l . -.'4
k, - S o k.
'..J 1 1.- -*.- '. . .' 1 = .
i . »]]
. oy o ¥ * {'
" P P ‘. s,
. »] 5
1-. 2 - :i :4-: I: =: L] .H;l
* a - " LI) » [-
[I | ¥ ¥ a o i ol
] L] L | 4 = . [) » [y - .
5 & *) s i bt] "W
2 o v Ll 1- Wt o --'4 T +
) ¥ A o . o . ¥
1': . Rl v r o, " . -
RN Nl . Wl ¥ ¥ . . : }.
*] L | L ' L » ¥ N
A o ¥, . o i g . :) k.
] i . » - S . 'y - [
LM K o & r ;-'5. . : . {
)] L | |]
5 X ¥) .{p
)) . L E - - - .- - 5
IR B . i ; f . R G {
+) a L] Ul [- m’ -2 -) -.m -
1-: :Jl :-l ' :4 |-: : _l-: » . * "_l‘..') - o ‘r‘] . 1;.! : ..
s o v o -:J . . . -~ - “:F-FI 1..".'—'.: ,:
)] L | L - K . ! % .
S0 . N * - T =" r W ¥ . '1'-"“ = e :d"'l'; -
: j :I_ , :4 o T damm -’-“' I: B :._: . - L .:':. .'.‘I..'I-.-.'_ p) . ' *lf ":."-",.'
3 l N . .: . .: . :._: [e] : - -.'.‘.
¥ 4 P N S S S S R :4 b: :.| “u :l - -:J 3 L] - ' .' - -.'-:-'.‘-j,"-"-#_-_"l_q o - ""‘."% ' ¥
; ; o T - ¥ 2 < o ¥ ;] o e e, w2 j
e . ' | el 3 3 44 S " 5 C . - . :
J .. » ‘. K] - *-I I|4 .-I * .l . -._J r
}]] - 4]] 4 L] =4 L -
H - i r 1 E) L ¥ K ¥ f
14 ..-:-?.l.i':h .+- i.-:.h.l.i'l:‘ 3 ‘I. K § o+ *4 '4 ..| .i = -._J . -)
4 o) " -:: e . A . o ¥,] " - & : . - }.
o ' [] f | .. b * f] » F] " - -
1’ . o LI | * . ! i) E) L ¥ » ~
.I'f R o * e T . g : o at " . -
. :n. J n:.:: :. - . & I A AP A L o :l . ¥ . - " . » ’
N I how " 4] -]
a o L ! o . LT k. sk) -
" ") a a2 7 T ———— ' 1 n . . I~ " r . ']
a1 u-'] .|I * . '.'-.. . - - - 3
[a4 [S} L] F] 1 [] -, -) L] . = '
.l j 3 I. -ll ‘.. [* L] -. L o k. . k. a4 3 — - ' ‘..j-.j-.j-. F— 'i.}.l.}-h"- “ a [] 4 {'
:l “_| A N |.: .:: :.." - " B - "1 . - :‘ -.4-‘| I: 1 ':-i ‘-. . I'.'.‘*
. . . a ‘- L] k el ol] N -) ’
4 L) * " 1 r A LB + . - 'y
[e . - . . a r] 1 R [] - L
o s 4 N - . g oy L * - : = 'y
. . W | . L] | I] [8 1 *
:n. :i' I ..:.:: :. - - 1 kN r . . :‘ ..:': .: : . _:l. .: '-.i' I T é
» Y [) a - r] ¥k ¥ 1 £ . Tp——— I
] u-' 1] L - = . - » =1t ['] + - - » I.'
M ' A . .] . F} i &k [} 1 Lt T | | e S
. I.' :. :-i' . II: - . 1.. b * " I‘ ll: I': I: B *-I- N 'r‘*l-*-l-*l-*l-*l'i-*l'i-*l-*l-*l'l-*l-’q-* -
> A K} : - N R : . Y LI DI ra - »”
" - bl a e * | I] Ul W * Er .
X . X Mn . : - y - 2 R G L S | R
s T b * - 1'4. . - .‘ ..'J .‘I .i " ! 1."' .. . " £l "
N ' + N ! * " g kK L S 1 N .
* - § bk [g 1 I | o M
}; w 1 L] E Y) [iy | [) ot - [- E
1 - - t - .- :4 . |: :q :l :i_ . : 1.: :. . _,: i
E : . : s . ’ . A O LR : s
) b . L 1 b *; . : |‘ . "| ... 1 ! 1" .. ' -- l"-
L K = -~ + L] e) 1 C 3 ;-.._ | | 1]
= . * | R g 4 . i = " " 1.* t,] il ' * . k
.'l ..: - ._-.b] * r 1.: ! A ;;
fl. - "-. 'w-lll-‘."l-. - = T .?"* _— L] ¥ '» ..
i) - - O I n + s 1.
,,,!u‘\-"'..".: 5"-' e] . wnm - » »]
] i’ - :il :4- L :-I *y -a-'a-"i'i*a-'i"i"i"'i'i*ﬁ'i"i'ﬁ*i q}
:' 'H" I B i.*:: W " :"‘ X
. o 2 Yl]) » .
:i -:l :il : :4- .h :4 L] . :4- q!g'
“*-.-.E.'.'.,--"" o SR B kg ¥ . !
. . - - . 1] " L} - . - q * l i '
e, I-'J.' hr_,'_':___'.“.‘ - " L] . .1 I :* .h . :4 = i.“‘ H
Ot R Wy W :
R 3 ol
:il :;k :4 #-. i
e SN s o
O T W .
o e "y W ._';-li:-
. - .
.1 , .-Il .h . .l -ﬁ';- . _i_.-.-"!‘""
i 3 u ' s SR
.! .

|-I_ ------------ - » -
JRRRRRR, ﬂﬁﬁﬂﬂﬁﬁﬁﬁﬁﬂﬁﬁﬁh.h:h:h:h:h:h,:-.l : ..
L[]

')]
i-*h*“iil‘.-'.“‘;-'.-'..i-.q‘.‘.‘.‘I.-'.-"i--.‘.‘.‘F:----‘t':-'.q-.‘;-‘.-'.-'- .-'.“l.-'.-'.-l-f.-'.-' .-'.-'.\-.‘i-*.- ..
.L"I- *""WWWWWMW%‘&*; Wl
R S P S s R T ‘,’-.afi-‘:'.'-ﬂ IR R RN
- |]

- et L PO L L I L] l'«'«l Ll L FCTE] L L] L] L BCE Ll | O]
’." I|._ll_la_l- Jrfi_q-_:__. ATy *_Jr.l:fi:#:a- -u:f:'la-t:- Ly h oy ::'r_ar :‘?q:ar&_*_q- -\I:i:l-.::l it N

L LN]
= = dd

‘qa:,........._..:__r-'__. . \ :h‘ ;
A AR SRSt g

)) = = = n
..... - e e e e e e e e e e e e e e e e . alala A elalatla,

e
-“.I*I*I¥I*I*I I*I*I 'I*I [] I*I¥Ih‘- I‘. I"I'. I‘-I'. I"I'. I"I'. I‘-I'. I"I'. I"I'. I‘-b. b'b- I*I¥I I*I*I*I"-!*'!*-.‘-*-q- T '-'- ‘l‘:’ '|-'*|I
R R S R i R e A AL -

+
LR I R R E RN I R I I I O '-_‘

S A i A A A e e e Y X

L T .

_;-.:-l-.;-l-.:-l-.:-.:-.:-.:-.;-.:-.:-.;-.:-l-.:-l-.;-l-.:-.:-.:-.:-l-.:-.;-uﬁuﬁuﬁuﬁuﬁuﬁuﬁuﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ@.ﬁ.ﬁ.ﬁa.ﬁ.ﬁaa

. L
* i s
Vs it

-

LA A B A R U R R R A B B AU A AL T A R R R R

O 0 O e e e e e e e e

- -
i A PR s & " %

: N w0 L
th" Emwl:{ R P

hhhhhhhhhhhhhhhhhhhhhhhhhhh

I..I*'r‘-t e e e T e
. ' ey

F1G. 2

U.S. Patent

Jan. 11, 2022

Sheet 3 of 8

US 11,221,870 B2

PR S U R R R R g

O T T N R W R R R R R g

- Management |,

Software
o
Developent Vutual Tyat - - . Flow
Navigation 1ife c;*él - Education Processing Processing Arrangement
g | Delivery Managemoeny

Warkloads

/

340

Resource
Provisiomng

Metermg
and Pricmg

User Portal

service Level / / SLA Planning | ' Cloud
- Management /' Sand Fulfilbnent | Manager

Managemerit

/

330

Virtyal
Servers

Virtualization

Virtual
Storage

=

Virtual
Networks

Virtual
Applications

Virtual
Chents

Mamirames

Hardware and Software

1BM ®

RISC ® IBM® ® Storage Networking — Network Database
f 1 enerbi O | ° . Application Sﬁﬁ.'ﬂ"ﬁfﬂ'
:"kl’%hlitbﬁil ¢ 2&.{1‘! es BladeCenter Py
Y Ayt . L S _ Sy o
SCTVETS ¥sicin Systems .‘&-,n er
Software

e
| e e

p
310

F1G. 3

U.S.

Patent Jan. 11, 2022 Sheet 4 of 8
400
 Begio 401

.............................
--
|||||||||

agent utilization data
420

Collect a second set of

- Determine an ~
agent flow arrangement
o 464 '

Process the distributed
commit operation |
480

iiiiiiiiiiiiiiiiiiiiii

.
‘‘‘

US 11,221,870 B2

I'_'.'-'.'-'."-'.'-'.'-'._'-'.'-'.'-'._'-'.'-'.'-'._'-'.'-'.'-'._'-'.'-'.'-'._'-'.'-'.'-'._'-'.".

406

llllllllllllllllllllllllllllllllllllll

U.S. Patent Jan. 11, 2022 Sheet 5 of 8 US 11,221,870 B2

iiiiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllllllllll
.................

B DL ._L_ o L . I . L . L . I . L . i . I _._a &&"7
llllllllllllllllllllllllll

P g g g g g g g g e e e e g g g g g

Coliecting

' Determjni

###

: Include prepare operation;
i for second agent L

‘‘‘

III

Processing

280

U.S. Patent Jan. 11, 2022 Sheet 6 of 8 US 11,221,870 B2

i Qu EH]ti ty (} F ;E | . REEREEEEEEE L PV R EE R LR T U EE E LT T
: work performed §rafisesssss i : Quantity of distinct

: Quaﬂtit)’ of & e
\N(}I‘k :@Xpe cted e SRR ey

lll
iiiii
L] l"'l' ''''''

- x T
iii

ll |
-- [N - -
¥ ll"._" . - ll_.!l-_ll) :._' d -
¥ .
L TR
L
P
L
.-
|
*l'

Qu anti t}’ of recove £y Y
- log WIile OPETALIONS i mmsssssssssmsssssssnsiis onsssnsss st
' 63\ Quantity of hardware
B mEmmmmm——_T - processor usage

EE “"bl‘lln‘le Of rech{ery Lo, o, L Sppvpupupuppupappuppeppopapupopge Qﬂl:-":% ----------------------

» .
lllllllllllllll

""""""""""""""""""""""""""""""

LNl Nl T el Tl Rl el o Tl Ml Rl Tl i e e e Tk Tl il o e e e Tl Sk Tl e Tk Tl Ml il Tl Tl Sl Rl Tl Tl Tl Tl Tl Rl il

Collecting

- *

_______ n

Processing
630

U.S. Patent Jan. 11, 2022 Sheet 7 of 8 US 11,221,870 B2

L .. "l'l‘.'l'l‘.'l'll.'l'l‘.'l'l‘.'l'l‘_'l'l‘.'l'l‘.'l'l‘_'l'l‘.'l'l‘.'lt-;‘.

LI O R NNNUR N RPN WU N U WU S RNy
lllllllllllllllllllllllllll

I g g g g g g g g e e e g e g e e e

Collecting

Collecting

""""""""""""""""""""""""""""""""""

Third set of agent
utilization data

"""""""""""""""""""""""""""""""

iii

] .
‘‘

Processing

""""""""""""""

&
[] . Er
‘‘‘

U.S. Patent

| new coordinating agent

Jan. 11, 2022 Sheet 8 of 8

iiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllllllll
- »*

......
IIIIIIIIIIIIIIIIIIIIIIII

Determine metric data

Return metric data to
coordinating agent
820

Select last agent/

Prepare systems
840

Call to commut for
last agent
85U

Commut last agent

"""""""""""""""""

"""""""""""""""""""

US 11,221,870 B2

US 11,221,870 B2

1

AGENT FLOW ARRANGEMENT
MANAGEMENT

BACKGROUND

This disclosure relates generally to computer systems and,
more particularly, relates to agent flow arrangement man-
agement 1 a distributed commit processing environment.
The amount of recoverable operations that need to be
executed 1 a middleware environment 1s increasing. As the
amount of recoverable operations that need to be executed
increases, the need for agent flow arrangement management
in a distributed commit processing environment may also
increase.

SUMMARY

Aspects of the disclosure relate to selection of potential
last agent candidates based on distributed umt of recovery
locking, logging, and operational characteristics. Connected
systems within a distributed unit of recovery may transmait
and receive additional data on the recovery protocols that
flow between them. A two-phase commit protocol may be
used with one system acting as the overall coordinator at a
point 1n time and the other systems as subordinates to 1t. One
or more metrics may represent a different view of the
amount of work required by a system to prepare and then
commit recoverable changes. When a commiut 1s processed,
the coordinating system may review connected systems and
use metric data to determine which system requires more
work with respect to preparing and committing changes. The
coordinating system may select the system with the greater
amount of work as the last agent in the distributed commiut.
The last agent may only commiut its changes rather than both
preparing and committing its changes.

Disclosed aspects relate to agent flow arrangement man-
agement 1n a distributed commait processing environment. A
first set of agent utilization data may be collected with
respect to a first commit processing agent. A second set of
agent utilization data may be collected with respect to a
second commit processing agent. An agent flow arrange-
ment may be determined based on a first value with respect
to the first set of agent utilization data exceeding a second
value with respect to the second set of agent utilization data.
The agent flow arrangement may have the first commut
processing agent subsequent to the second commit process-
ing agent. The distributed commit operation may be pro-
cessed using the agent flow arrangement which has the first
commit processing agent subsequent to the second commiut
processing agent. Accordingly, a prepare operation may be
avoided for the first commit processing agent.

The above summary 1s not intended to describe each
illustrated embodiment or every implementation of the pres-
ent disclosure.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of, the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

FIG. 1 depicts a cloud computing node according to
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 depicts a cloud computing environment according,
to embodiments.

FIG. 3 depicts abstraction model layers according to
embodiments.

FIG. 4 1s a flowchart illustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments.

FIG. § 1s a flowchart illustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments.

FIG. 6 1s a flowchart 1llustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments.

FIG. 7 1s a flowchart 1llustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments.

FIG. 8 shows an example system for agent flow arrange-
ment management in a distributed commit processing envi-
ronment, according to embodiments.

While the invention 1s amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example 1 the drawings and will be described 1n
detail. It should be understood, however, that the intention 1s
not to limit the invention to the particular embodiments
described. On the contrary, the intention 1s to cover all

modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

Aspects of the disclosure relate to selection of potential
last agent candidates based on distributed umt of recovery
locking, logging, and operational characteristics. Connected
systems within a distributed unit of recovery may transmit
and receive additional data on the recovery protocols that
flow between them. One or more metrics may represent a
different view of the amount of work required by a system
to prepare and then commit recoverable changes. When a
commit 1s processed, the coordinating system may review
connected systems and use metric data to determine which
system requires more work with respect to preparing and
committing changes. The coordinating system may select
the system with the greater amount of work as the last agent
in the distributed commit. The last agent may only commiut
its changes rather than both preparing and committing 1ts
changes.

Units of recovery may span multiple systems and repre-
sent work that has been distributed between a number of
interconnected recovery environments. Distributed units of
recovery may require or desire coordination when recover-
able changes must be committed. A two-phase commit
protocol (2PC) may be used with one system acting as the
overall coordinator at a point 1n time and the other systems
as subordinates to 1t. When a commit point 1s reached for a
distributed umt of recovery spanning interconnected sys-
tems, the system that initially processes the 2PC may be the
coordinator. The 2PC implementation may involve the coor-
dinating system asking the remaining systems to prepare
themselves (to be able to later commuit recoverable changes).
The coordinator may invoke the last agent optimization by
sending only a commuit instruction to the final system. In this
way, the coordinator role may be passed on to the final
system while the original coordinator may become a sub-
ordinate to it. The last agent optimization indicates that an
unnecessary work flow (e.g., for a prepare) may be avoided.
The 2PC implementation may reduce the delay 1n other units

US 11,221,870 B2

3

of recovery from being able to modily the same large
number of resources changed by the last agent.

Aspects of the disclosure include a method, system, and
computer program product for agent flow arrangement man-
agement 1n a distributed commit processing environment. A
first set of agent utilization data may be collected with
respect to a first commit processing agent. A second set of
agent utilization data may be collected with respect to a
second commit processing agent. An agent flow arrange-
ment may be determined based on a first value with respect
to the first set of agent utilization data exceeding a second
value with respect to the second set of agent utilization data.
The agent flow arrangement may have the first commiut
processing agent subsequent to the second commit process-
ing agent. The distributed commit operation may be pro-
cessed using the agent flow arrangement which has the first
commit processing agent subsequent to the second commut
processing agent.

In certain embodiments, the first commit processing agent
may be arranged as the last agent. The distributed commit
operation may be configured to include a prepare operation
for the second commit processing agent but not the {first
commit processing agent. A prepare operation may be
avoilded for the first commit processing agent. In various
embodiments, the set of agent utilization may include a
quantity of (past) work performed or a quantity of work
expected to be performed. In certain embodiments, the work
performed or expected to be performed may include a
quantity or volume of recovery log data, a quantity of
distinct recoverable changes, a quantity of locks held, a
quantity of hardware processor usage, or a combination of
these. Altogether, aspects of the disclosure can have perfor-
mance or efliciency benelits. Aspects may save resources
such as bandwidth, disk, processing, or memory. As an
example, the 2PC implementation may reduce the response
time and memory usage to complete distributed commuits.
Agent flow arrangement management may arrange the
agents 1n the distributed commit such that the agent requir-
ing a greater amount of work 1s the last agent. The last agent
may commit as opposed to the other agents which may
prepare, then commit. Avoiding the prepare operation of the
last agent may reduce the response time and memory usage.
Other examples of saving resources using agent flow
arrangement management may also be possible.

It 1s understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present 1nvention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that

5

10

15

20

25

30

35

40

45

50

55

60

65

4

promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, 1n some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even 1mdividual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure i1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that

US 11,221,870 B2

S

remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for loadbalancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a block diagram of an example
of a cloud computing node 1s shown. Cloud computing node
100 1s only one example of a suitable cloud computing node
and 1s not mtended to suggest any limitation as to the scope
of use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 100 1s
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 100 there 1s a computer system/
server 110, which 1s operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known
computing systems, environments, and/or configurations
that may be suitable for use with computer system/server
110 1include, but are not limited to, personal computer
systems, server computer systems, tablet computer systems,
thin clients, thick clients, handheld or laptop devices, mul-
tiprocessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
mimcomputer systems, mainirame computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like.

Computer system/server 110 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 110 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown 1n FIG. 1, computer system/server 110 1n cloud
computing node 100 1s shown in the form of a general-
purpose computing device. The components of computer
system/server 110 may include, but are not limited to, one or
more processors or processing units 120, a system memory
130, and a bus 122 that couples various system components
including system memory 130 to processing unit 120.

Bus 122 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a varniety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 110 typically includes a variety
of computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
110, and 1t includes both volatile and non-volatile media,

10

15

20

25

30

35

40

45

50

55

60

65

6

removable and non-removable media. An example of
removable media 1s shown 1 FIG. 1 to include a Digital
Video Disc (DVD) 192.

System memory 130 can include computer system read-
able media 1n the form of volatile or non-volatile memory,
such as firmware 132. Firmware 132 provides an interface to
the hardware of computer system/server 110. System
memory 130 can also include computer system readable
media 1n the form of volatile memory, such as random
access memory (RAM) 134 and/or cache memory 136.
Computer system/server 110 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 140 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 122 by one
or more data media interfaces. As will be further depicted
and described below, memory 130 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions
described 1n more detail below.

Program/utility 150, having a set (at least one) of program
modules 152, may be stored in memory 130 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an 1mple-
mentation of a networking environment. Program modules
152 generally carry out the functions and/or methodologies
of embodiments of the invention as described herein.

Computer system/server 110 may also communicate with
one or more external devices 190 such as a keyboard, a
pointing device, a display 180, a disk drive, etc.; one or more
devices that enable a user to interact with computer system/
server 110; and/or any devices (e.g., network card, modem,
ctc.) that enable computer system/server 110 to communi-
cate with one or more other computing devices. Such
communication can occur via Input/Output (I/O) interfaces
170. St1ll yet, computer system/server 110 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 160. As
depicted, network adapter 160 communicates with the other
components ol computer system/server 110 via bus 122. It
should be understood that although not shown, other hard-
ware and/or software components could be used 1n conjunc-
tion with computer system/server 110. Examples, include,
but are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, Redundant
Array of Independent Disk (RAID) systems, tape drives,
data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing
environment 200 1s depicted. As shown, cloud computing
environment 200 comprises one or more cloud computing
nodes 100 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 210A, desktop com-
puter 210B, laptop computer 210C, and/or automobile com-
puter system 210N may communicate. Nodes 100 may
communicate with one another. They may be grouped (not

US 11,221,870 B2

7

shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 200 to oifer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 210A-N shown 1 FIG. 2 are intended to be
illustrative only and that computing nodes 100 and cloud
computing environment 200 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 200 1n
FIG. 2 1s shown. It should be understood 1n advance that the
components, layers, and functions shown in FIG. 3 are
intended to be 1llustrative only and the disclosure and claims
are not limited thereto. As depicted, the following layers and
corresponding functions are provided.

Hardware and software layer 310 includes hardware and
soltware components. Examples of hardware components
include mainframes, 1n one example IBM System z systems;
RISC (Reduced Instruction Set Computer) architecture
based servers, 1n one example IBM System p systems; IBM
System X systems; IBM BladeCenter systems; storage
devices; networks and networking components. Examples of
soltware components include network application server
soltware, 1n one example IBM WebSphere® application
server software; and database software, 1n one example IBM
DB2® database software. IBM, System z, System p, System
x, BladeCenter, WebSphere, and DB2 are trademarks of
International Business Machines Corporation registered 1n
many jurisdictions worldwide.

Virtualization layer 320 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 330 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or mmvoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides 1den-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement 1s anticipated in
accordance with an SLA. A cloud manager 350 is represen-
tative of a cloud manager (or shared pool manager) as
described 1n more detail below. While the cloud manager
350 1s shown 1n FIG. 3 to reside in the management layer
330, cloud manager 350 can span all of the levels shown 1n
FIG. 3, as discussed below.

Workloads layer 340 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

classroom education delivery; data analytics processing;
transaction processing; and agent flow arrangement man-
agement 360, which may be utilized as discussed 1n more
detail below.

FIG. 4 1s a flowchart 1llustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments. The distributed
commit processing environment may include a Customer
Information Control System (CICS), an Information Man-
agement System (IMS), a WebSphere Application Server
(WAS), or the like. Recoverable operations may be grouped
together into logical collections of operations and referred to
as units of work or units of recovery. The units of work or
recovery may be processed by the recovery management
code within the distributed commit processing environment.
Changes within a given unit of recovery may be committed
or backed out. 2PC may allow systems to communicate with
one another and confirm the execution of queries or com-
mands. It may be desired to optimize the selection of a last
agent 1 order to reduce a delay in units of recovery and
enhance performance for distributed recovery processing.
The agent which requires the most amount of work may be
chosen as the last agents. Other agents may prepare while
the last agent commits. Once the selected last agent has
committed, the other agents 1n the system may also commiut.
The method 400 may begin at block 401.

In embodiments, the collecting of a first set of agent
utilization data, the collecting of a second set of agent
utilization data, the determining, the processing, and the
other steps described herein may each be executed in a
dynamic fashion at block 404. The steps described herein
may be executed 1n a dynamic fashion to streamline agent
flow arrangement management 1n the distributed commut
processing environment. The set of operational steps may
occur 1n real-time, ongoing, or on-the-fly. As an example,
one or more operational steps described herein may be
carried-out 1n an ongoing basis to facilitate, promote, or
enhance agent flow arrangement management in a distrib-
uted commit processing environment. Other examples may
also be possible.

In embodiments, the collecting of a first set of agent
utilization data, the collecting of a second set of agent
utilization data, the determining, the processing, and the
other steps described herein may each be executed in an
automated fashion at block 406. The steps described herein
may be executed in an automated fashion without user
intervention. The operational steps may each occur 1n an
automated fashion without user intervention or manual
action (e.g., using automated computer machinery, fully
machine-driven without manual stimuli). The automated
operational steps may be performed by an agent tlow
arrangement management engine (e.g., as part of a data
management system), a cloud management engine (e.g., as
part of a cloud environment), or the like.

At block 420, a first set of agent utilization data may be
collected. Generally, collecting can 1include acquiring,
obtaining, receiving, attaining, aggregating, accumulating,
or gathering. The first set of agent utilization data may
include facts, statistics, quantities, or characteristics of a first
agent. The first set of agent utilization data may include the
number of log records written for the local recoverable
resources changed by the system for the first unit of recov-
ery, the volume of log data written for the first unit of
recovery, the number of separate locks held for the local
recoverable resources, the number of separate recoverable
changes made, or the like. Agent utilization data may relate
to the first commit processing agent and may include opera-

US 11,221,870 B2

9

tions, functionalities, or computing resources with respect to
the first commit processing agent. Accordingly, connected
systems within a distributed unit of recovery may transmit or
retrieve additional data on the recovery protocols that flow
between them. One or more metrics may represent a difler-
ent view of the amount of work each system would have to
perform when being told to prepare and commit recoverable
changes. The collecting may occur 1n the distributed commut
processing environment.

At block 440, a second set of agent utilization may be
collected. Generally, collecting can include acquiring,
obtaining, receiving, attaiming, aggregating, accumulating,
or gathering. The second set of agent utilization data may
include facts, statistics, quantities, or characteristics of a
second agent. The second set of agent utilization data may
include the number of log records written for the local
recoverable resources changed by the system for the second
unit of recovery, the volume of log data written for the
second unit of recovery, the number of separate locks held
tor the local recoverable resources, the number of separate
recoverable changes made, or the like. The agent utilization
data may relate to the second commit processing agent and
may 1nclude operations, functionalities, or computing
resources with respect to the second commit processing
agent. The collecting may occur 1n the distributed commiut
processing environment.

Consider the following example. A travel website may
utilize an agent flow arrangement management system to
assist clients with booking vacations. The travel website
may desire an arrangement ol agents which may provide
their clients with an eflicient booking experience. Agent
utilization data may be collected for various agents or
systems. Two example systems in this environment may
include a first system to book hotel rooms and a second
system to book airline thghts. The hotel room request may
need to be sent to seven different websites and the airline
booking request may need to be sent to five diflerent
websites. Agent utilization data may be collected for both of
these systems. As an example, quantities and characteristics
of the system computing resources to book hotel rooms may
be collected, such as the amount of work required (e.g.,
volume of log data written). Quantities and characteristics of
the system computing resources to book airline flights may
be collected, including the amount of work required (e.g.,
volume of log data written). The agent utilization data for
these two systems may be utilized to determine an agent
flow arrangement. Other examples of collecting agent uti-
lization data may also be possible.

At block 460, an agent flow arrangement may be deter-
mined. Determining can include computing, calculating,
formulating, generating, or ascertaining. The agent flow
arrangement may include the order in which the units of
work or units of recovery may be processed. When a commit
1s processed, connected systems may be reviewed. The
metric data may be used to determine which system requires
the most work (e.g., in terms of having to prepare/commit its
changes). The determining may occur based on a first value
(with respect to the first set of agent utilization data)
exceeding a second value (with respect to the second set of
agent utilization data). The agent flow arrangement may
have the first commit processing agent subsequent to the
second commit processing agent. If the amount of work
needed to commut a first agent 1s greater than the amount of
work needed to commit a second agent, then the second
agent may be arranged to occur before the first agent. The
determining may occur to process a distributed commut
operation. As an example, a system A may select a system

10

15

20

25

30

35

40

45

50

55

60

65

10

B as the last agent based on the metrics of system B with
respect to the amount of work needed as part of the two-
phase commit. System A may call systems C and D to
prepare before calling system B to commit. In certain
embodiments, an agent may require that 1t 1s the last agent.
This agent may be established as the last agent regardless of
the amount of work. In certain specific embodiments, 1
system A determines that none of the connected systems
may be the last agent, then system A may instruct them all
to prepare, and then instruct them all to commuit (or back out
il necessary).

Consider the following example. Once agent utilization
data for the hotel booking system and the airline booking
system has been collected, an appropriate agent flow
arrangement may be determined 1n advance of processing
the distributed commit operation. The metric data for the
two systems may be analyzed. A first value (with respect to
amount ol work) may be determined for the hotel booking
system computing resources. The hotel booking system may
be awarded a value o1 7 (e.g., on a 1-10 scale) for the amount
of work required to commuit since the request may need to be
processed by seven diflerent websites. A second value may
be determined for the airline booking system computing
resources. The airline booking system may be awarded a
value of 5 on the same scale for the amount of work required
to commit since the request may need to be processed by five
different websites. The first value exceeds the second value.
An agent flow arrangement may be determined having the
system for booking a hotel room subsequent to the system
for booking a tlight. The hotel booking system computing
resources may be determined as the last agent since 1t
requires a greater amount of work to commit. Other
examples of determiming an agent flow operation may also
be possible.

At block 480, the distributed commit operation may be
processed. Generally, processing can include performing,
carrying-out, imtiating, launching, instantiating, implement-
ing, enacting, running, or executing. The distributed commiut
operation may include a command for an established last
agent to commit. The processing may occur using the agent
flow arrangement as described hereimn. The agent tflow
arrangement may have the first commit processing agent
subsequent to the second commit processing agent. As an
example, 1 the first commit processing agent requires a
greater amount of work than the second commit processing
agent, the first commit processing agent may be established
as the last agent and instructed to commait. The processing
may occur in the distributed commit processing environ-
ment.

Consider the following example. Once an agent flow
arrangement 1s determined, the distributed commit operation
may be processed. The established agent tlow arrangement
may designate the hotel booking system as the last agent.
The distributed commit may be executed. The system for
booking a flight may be instructed to prepare, then commut.
The system for booking a hotel room may be instructed to
commit. The system for booking a tlight may prepare. The
system for booking a hotel room may commit. The system
for booking a flight may commit. The agent flow arrange-
ment may allow for eflicient processing and provide the
client with reservations for both a thght and a hotel room
reservation for their vacation. Other examples of processing,
the distributed commit operation may also be possible.

Method 400 concludes at block 499. As described herein,
aspects of method 400 relate to agent flow arrangement
management 1 a distributed commit processing environ-
ment. Aspects ol method 400 may provide performance or

US 11,221,870 B2

11

elliciency benefits related to agent flow arrangement man-
agement. Aspects may save resources such as bandwidth,
processing, or memory. As an example, processing time may
be saved by selecting a first agent as the last agent. If the first
agent requires more work in order to be processed (e.g.,
committed), then the first agent may be selected as the last
agent. Preparing other agents (e.g., a second agent) first and
then committing the first agent may require less processing,
time than a different order (e.g., preparing the first agent
before committing the second agent). Other methods of
saving processing time may also be possible.

FIG. 5 1s a flowchart illustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments. Aspects may
be similar or the same as aspects of method 400, and aspects
may be used interchangeably. The method 500 may begin at
block 501. At block 520, a first set of agent utilization data
may be collected. The collecting may occur with respect to
a first commuit processing agent. The collecting may occur 1n
the distributed commit processing environment. At block
540, a second set of agent utilization may be collected. The
collecting may occur with respect to a second commit
processing agent. The collecting may occur 1n the distributed
commit processing environment. At block 560, an agent
flow arrangement may be determined. The determining may
occur based on a first value (with respect to the first set of
agent utilization data) exceeding a second value (with
respect to the second set of agent utilization data). The agent
flow arrangement may have the first commit processing
agent subsequent to the second commit processing agent.
The determining may occur to process a distributed commiut
operation.

In embodiments, the distributed commuit operation may be
configured at block 565. Configuring can include adapting,
setting-up, programming, modifying, or adjusting. The dis-
tributed commit operation may be configured to include a
prepare operation for the second commit processing agent
but not the first commit processing agent. The agent requir-
ing or desiring the most work (e.g., the first commit pro-
cessing agent) may be selected as the last agent i the
distributed commit as described herein. The second commiut
processing agent may include a prepare operation to
assemble, formulate, or ready the second agent for commiut-
ting. The first commit processing agent may not include a
prepare operation. For instance, in the travel website
example described herein, the airline booking system com-
puting resources may undergo a prepare operation to ready
for committing. The hotel booking system computing
resources may not undergo a prepare operation.

In embodiments, a prepare operation for the first commit
processing agent may be avoided at block 569. Avoiding can
include averting, bypassing, or forgoing. As described
herein, the second commit processing agent may include a
prepare operation (to ready the second agent for commit-
ting). A prepare operation for the first commit processing,
agent may be avoided due to the first agent requiring or
desiring a greater amount of work. The first commit pro-
cessing agent may only commit (e.g., instead of preparing
then committing) to save processing time. As an example, in
the travel website example described herein, a prepare
operation for the hotel booking system computing resources
may be avoided. The hotel booking system computing
resources may commit istead of preparing then commit-
ting. Other examples may also be possible.

Consider the following example. A large university may
utilize an agent flow arrangement management engine in
order for thousands of students to register for courses

10

15

20

25

30

35

40

45

50

55

60

65

12

simultaneously. Agent utilization data may be collected for
multiple agents within the system. As an example, a first
agent may include a system for registering for science
classes and a second agent may include a system for
registering for math classes. It may be determined that the
system for registering for science classes requires more
work (e.g., than the system for registering for math classes)
in order to commit. An agent flow arrangement may be
determined which designates the science class system as the
last agent. The distributed commit operation may be con-
figured to include both a prepare and a commit operation for
the math class system but only a commit operation for the
science class system. A prepare operation may be avoided
for the science class system. This configuration may occur 1n
response to the determination that the science class system
requires a great amount ol work. When the distributed
commit operation 1s processed, the math class system may
prepare, the science class system may commit, and the math
class system may commit. The established tlow arrangement
may provide students with an eflicient method to register for
math and science classes. Other examples of configuring the
distributed commit operation may also be possible.

In embodiments, the first commit processing agent may
be arranged at block 575. Generally, arranging can include
ordering, organizing, sorting, or structuring. The first com-
mit processing agent may be arranged to be a last agent due
to the large amount of work required 1n order to commut.
Therefore, the agent requiring the greater amount work may
be arranged as the last agent in the distributed commit. The
second commit processing agent may prepare. The first
commit processing agent may commit (e.g., rather than
prepare then commit). The arranging may occur as part of
processing the distributed commuit operation. The arranging
may occur 1n the agent flow arrangement. As an example, in
the travel website example described herein, the hotel book-
ing system computing resources may be arranged as the last
agent since this system requires a greater amount of work
than the airline booking system computing resources. Other
examples may also be possible.

Consider the following example. A ride-sharing applica-
tion may utilize agent flow arrangement management to
allow multiple users to request rides simultaneously. Mul-
tiple agents may be used. As an example, one agent may
include a system for a user to request a ride while another
agent may include a system for a driver to accept a request
from a potential rider. Agent utilization data for both systems
may be collected, and 1t may be determined that the driver
acceptance system requires a greater amount of work to
commit than the rider request system. An appropriate agent
flow arrangement may be determined. Since the driver
acceptance system requires a greater amount of work, this
system may be arranged as the last agent (in the agent tlow
arrangement). When the operation 1s processed, the rider
request system may prepare, the driver acceptance system
may commit, and the rider request system may commit. The
established arrangement may efliciently process the opera-
tion of matching of a rider with a driver. Other examples of
arranging the first commit processing agent to be the last
agent may also be possible.

At block 580, the distributed commit operation may be
processed. The processing may occur using the agent flow
arrangement. The agent tlow arrangement may have the first
commit processing agent subsequent to the second commiut
processing agent. The processing may occur 1n the distrib-
uted commit processing environment. Method 500 con-
cludes at block 599. As described herein, aspects of method
500 relate to agent flow arrangement management 1n a

US 11,221,870 B2

13

distributed commit processing environment. Aspects of
method 500 may provide performance or efliciency benefits
related to agent flow arrangement management. Aspects
may save resources such as bandwidth, processing, or
memory. As an example, memory may be saved by avoiding
a prepare operation for the first agent. The first agent (e.g.,
the agent which requires the larger amount of work) may
only commit (e.g., as opposed to prepare then commit).
Avoiding the prepare operation for the agent requiring more
work may require less memory than preparing that same
agent. Other examples of saving memory may also be
possible.

FIG. 6 1s a flowchart 1llustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments. Aspects may
be similar or the same as aspects of method 400/500, and
aspects may be used interchangeably. The method 600 may
begin at block 601. At block 620, a first set ol agent
utilization data may be collected. The collecting may occur
with respect to a first commit processing agent. The collect-
ing may occur in the distributed commit processing envi-
ronment. At block 640, a second set of agent utilization may
be collected. The collecting may occur with respect to a
second commit processing agent. The collecting may occur
in the distributed commit processing environment. At block
660, an agent flow arrangement may be determined. The
determining may occur based on a first value (with respect
to the first set of agent utilization data) exceeding a second
value (with respect to the second set of agent utilization
data). The agent flow arrangement may have the first commut
processing agent subsequent to the second commit process-
ing agent. The determining may occur to process a distrib-
uted commuit operation. At block 680, the distributed commuit
operation may be processed. The processing may occur
using the agent flow arrangement. The agent flow arrange-
ment may have the first commuit processing agent subsequent
to the second commit processing agent. The processing may
occur in the distributed commit processing environment.

In embodiments, a quantity of work performed may be
indicated at block 611. The first set of agent utilization data
may be configured to indicate a first quantity of work that
has been performed by the first commit processing agent.
Generally, configuring can include setting-up, program-
ming, structuring, constructing, adjusting, or modifying. A
quantity of work can include an amount or measurement of
tasks, jobs, processes, resources utilized, or the like needed
or desired to be performed when preparing then committing
recoverable changes of an agent. The work can include the
number of log records written for the local recoverable
resources changed by the system for the agent, the volume
of log data written for the agent, the number of separate
locks held for the local recoverable resources, the number of
separate recoverable changes made, or the like. The quantity
of work may indicate or include a historical or past mea-
surement or amount of work (e.g., a historical utilization
with respect to a unit of recovery). The second set of agent
utilization data may be configured to indicate a second
quantity of work that has been performed by the second
commit processing agent. The first quantity of work may be
compared with the second quantity of work. Comparing can
include contrasting, assessing, evaluating, correlating, ana-
lyzing, investigating, or examining. It may be calculated that
the first quantity of work exceeds the second quantity of
work. Calculating can include computing, determining, for-
mulating, or ascertaining. The first quantity of work for the
first agent may be greater than the second quantity of work
for the second agent. The agent flow arrangement may be

10

15

20

25

30

35

40

45

50

55

60

65

14

determined based on the first quantity of work exceeding the
second quantity of work. Determining can include comput-
ing, calculating, formulating, generating, or ascertaining.
The determining may occur to process the distributed com-
mit operation. Since the first agent required more work to
commit, the first agent may be established as the last agent.
The second agent may prepare then commit while the first
agent may only commut.

Consider the following example. A human resources
department for a large company may utilize agent tlow
arrangement management to retrieve signatures approving a
recent hire. As an example, one agent may include a system
for collecting approval from the company president while
another agent may include a system for collecting approval
from head of the department where the new hire will be
working. Agent utilization data may be collected for both of
these systems. The set of agent utilization data may include
a quantity of work that has been performed (e.g., histori-
cally). The agent utilization data may be based on historical
statistics from the last hired employee. The last time the
system was executed, the amount of work to commuit agent
for the president may have been a 9 (e.g., on a 1-10 scale)
while the amount of work to commit the agent for the
department head may have been a 6 (e.g., on the same scale).
Based on a comparison of the two agents and the two sets of
agent utilization data, it may be calculated that the amount
of work to commit the agent for the president exceeds the
amount ol work to commit the agent for the department
head. An appropriate agent tlow arrangement may be deter-
mined. Since the agent for the president historically requires
a greater amount of work, this agent may be arranged as the
last agent. When the distributed commit operation 1s pro-
cessed, the agent for the department head may prepare, the
agent for the president may commit, and the agent for the
department head may commit. Other examples of configur-
ing the agent utilization data to indicate a quantity of work
that has been performed may also be possible.

In embodiments, a quantity of work expected may be
indicated at block 612. The first set of agent utilization data
may be configured to indicate a first quantity of work that 1s
expected to be performed by the first commit processing
agent. Generally, configuring can include setting-up, pro-
gramming, structuring, constructing, adjusting, or modify-
ing. The first quantity of work may include an amount or
measurement of tasks, jobs, processes, resources utilized, or
the like needed or desired to be performed when preparing
then committing recoverable changes of an agent. The first
quantity of work that 1s expected to be performed may
include a predicted or forecasted amount of future work
(e.g., with respect to a unit of recovery). The second set of
agent utilization data may be configured (e.g., programmed,
adjusted, modified) to indicate a second quantity of work
that 1s expected to be performed by the second commit
processing agent. The first quantity of work may be com-
pared with the second quantity of work. Comparing can
include contrasting, assessing, evaluating, correlating, ana-
lyzing, investigating, or examining. It may be calculated that
the first quantity of work exceeds the second quantity of
work. Calculating can include computing, determining, for-
mulating, or ascertaimng. The first quantity of work for the
first agent may be greater than the second quantity of work
for the second agent. The agent flow arrangement may be
determined based on the first quantity of work exceeding the
second quantity of work. Determining can include comput-
ing, calculating, formulating, generating, or ascertaining.
The determining may occur to process the distributed com-
mit operation. Since the first agent will require more work

US 11,221,870 B2

15

to commit, the first agent may be established as the last
agent. The second agent may prepare then commait while the
first agent may only commuit.

Consider the following example. A video streaming ser-
vice may utilize agent flow arrangement management to
clliciently provide numerous users with movies and televi-
sion shows. One agent (system A) may locate the requested
video for a user while another agent (system B) may locate
an available server for streaming. Agent utilization data for
the two agents may be collected, including a quantity of
work that 1s expected to be performed by each processing,
agent. As an example, 1t may be calculated that system A 1s
expected to require an amount of work of 44 (e.g., on a
1-100 scale) while system B i1s expected to require an
amount of work of 73 (e.g., on the same scale). The two
quantities of work may be compared with one another. It
may be calculated that system B may require more work
than system A since 73 exceeds 44. An appropriate agent
flow arrangement may be determined for the streaming
service. System B may be established as the last agent since
it requires a greater amount of work than system A. The
system which locates the requested video (system A) may
prepare, the system which locates an available server (sys-
tem B) may commit, and the system which locates the
requested video (system A) may commit. Other examples of
configuring the agent utilization data to indicate a quantity
of work that 1s expected to be performed may also occur.

In embodiments, a quantity of recovery log write opera-
tions may be indicated at block 613. The first set of agent
utilization data may be configured to indicate a first quantity
of recovery log write operations by the first commit pro-
cessing agent with respect to a job unit. Generally, config-
uring can include setting-up, programming, structuring, con-
structing, adjusting, or modifying. A quantity of recovery
log write operations may include the number of times a
query or request has been written to a log (e.g., measured by
a count of a number of records). The second set of agent
utilization data may be configured to indicate a second
quantity of recovery log write operations by the second
commit processing agent with respect to the job unit. The
first quantity of recovery log write operations may be
compared with the second quantity of recovery log write
operations. Comparing can include contrasting, assessing,
evaluating, correlating, analyzing, investigating, or examin-
ing. It may be calculated that the first quantity of recovery
log write operations exceeds the second quantity of recovery
log write operations. Calculating can include computing,
determining, formulating, or ascertaining. The first quantity
of recovery log write operations for the first agent may be
greater than the second quantity of recovery log write
operations for the second agent. The agent flow arrangement
may be determined based on the first quantity of recovery
log write operations exceeding the second quantity of recov-
ery log write operations. Determining can include comput-
ing, calculating, formulating, generating, or ascertaining.
The determinming may occur to process the distributed com-
mit operation. Since the first agent requires a larger quantity
of recovery log write operations to commit, the first agent
may be established as the last agent. The second agent may
prepare then commit while the first agent may only commut.

Consider the following example. A medical environment
may utilize agent tlow arrangement management for newly
admuitted patients. Multiple agents may be used to process a
distributed commit operation. As an example, one agent
(system C) may reserve a room for the new patient while
another agent (system D) may alert a medical professional of
the arrival of the new patient. Agent utilization data may be

10

15

20

25

30

35

40

45

50

55

60

65

16

collected for both systems C and D, including a quantity of
recovery log write operations. The collected data for system
C may indicate that the request to reserve a room may
require being written to a recovery log 4 times. The collected
data for system D may indicate that the request to alert a
medical professional may require being written to a recovery
log 2 times. The two quantities may be compared to one
another. It may be calculated that the quantity of recovery
log write operations for system C (e.g., 4) exceeds the
quantity of recovery log write operations for system D (e.g.,
2). The agent flow arrangement may be determined based on
this calculation. Since system C requires a greater number of
recovery log write operations than system D, system C may
require more work and may be established as the last agent.
When the distributed commit operation 1s processed, the
system to alert a medical professional may prepare, the
system 1o reserve a room may commit, and the system to
alert a medical professional may commait. Other examples of
configuring the utilization data to indicate a quantity of
recovery log write operations may also be possible.

In embodiments, a volume of recovery log data written
may be indicated at block 614. The first set of agent
utilization data may be configured to indicate a first volume
of recovery log data written for the first commit processing
agent with respect to a job unit. Generally, configuring can
include setting-up, programming, structuring, constructing,
adjusting, or modifying. A volume of recovery log data may
include the amount or magnitude ol queries or requests
written to a log (e.g., number of records, volume/amount of
data). The second set of agent utilization data may be
configured to indicate a second volume of recovery log data
written for the second commit processing agent with respect
to the job unit. The first volume of recovery log data written
may be compared with the second volume of recovery log
data written. Comparing can include contrasting, assessing,
evaluating, correlating, analyzing, investigating, or examin-
ing. It may be calculated that the first volume of recovery log
data written exceeds the second volume of recovery log data
written. Calculating can include computing, determining,
formulating, or ascertaining. The first volume of recovery
log data written for the first agent may be greater than the
second volume of recovery log data written for the second
agent. The agent flow arrangement may be determined based
on the first volume of recovery log data written exceeding
the second volume of recovery log data written. Determin-
ing can include computing, calculating, formulating, gener-
ating, or ascertaining. The determining may occur to process
the distributed commit operation. Since the first agent has a
greater volume of recovery log data, the first agent may be
established as the last agent. The second agent may prepare
then commit while the first agent may only commiut.

Consider the following example. A ticket purchasing
service may use agent flow arrangement management to
provide users with an eflicient method of reserving and
purchasing tickets for concerts and sporting events. The
ticket purchasing service may utilize multiple systems to
process requests. As an example, one agent may include a
system which reserves a ticket for a user while another agent
may include a system which processes the payment (e.g.,
credit card information) of a user. Agent utilization data may
be collected for both systems, including a volume of recov-
ery log data. The reservation system may require 10 requests
to be written to a recovery log while the payment system
may require 6 requests to be written to a recovery log. As
another example, volume of recovery log data for the
reservation system may be calculated as 10 GB while the
payment system may only require 6 GB. In both scenarios,

US 11,221,870 B2

17

the two volumes of recovery log data may be compared with
one another and 1t may be calculated that the volume of
recovery log data for the reservation system (e.g., 10)
exceeds the volume of recovery log data for the payment
system (e.g., 6). The agent flow arrangement may be deter-
mined. The reservation system may be established as the last
agent since it requires a greater volume of recovery log data
(and consequently, a greater amount of work) than the
payment system. When the distributed commait operation 1s
executed, the payment system may prepare, the reservation
system may commit, and the payment system may commit.
Other examples of configuring the set of utilization data to
indicate a volume of recovery log data may also be possible.

In embodiments, a quantity of distinct recoverable
changes may be indicated at block 616. The first set of agent
utilization data may be configured to indicate a first quantity
of distinct recoverable changes by the first commit process-
ing agent with respect to a job unit. Generally, configuring
can include setting-up, programming, structuring, construct-
ing, adjusting, or moditying. The quantity of distinct recov-
erable changes may include the number of alterations or
adjustments to an agent (e.g., a change to a table, multiple
changes to a file). The second set of agent utilization data
may be configured to indicate a second quantity of distinct
recoverable changes by the second commit processing agent
with respect to the job unit. The first quantity of distinct
recoverable changes may be compared with the second
quantity of distinct recoverable changes. Comparing can
include contrasting, assessing, evaluating, correlating, ana-
lyzing, investigating, or examining. It may be calculated that
the first quantity of distinct recoverable changes exceeds the
second quantity of distinct recoverable changes. Calculating
can include computing, determining, formulating, or ascer-
taining. The first quantity of distinct recoverable changes for
the first agent may be greater than the second quantity of
distinct recoverable changes for the second agent. The agent
flow arrangement may be determined based on the first
quantity of distinct recoverable changes exceeding the sec-
ond quantity of distinct recoverable changes. Determining
can mclude computing, calculating, formulating, generating,
or ascertaining. The determining may occur to process the
distributed commit operation. Since the first agent requires
more distinct recoverable changes to commut, the first agent
may be established as the last agent. The second agent may
prepare then commit while the first agent may only commut.

Consider the following example. A stock market may
utilize agent flow arrangement management mm a high-
frequency trading environment. Multiple agents may be
used to process requests for a number of traders. As an
example, one agent (system A) may process a request from
a trader wishing to sell a share while another agent (system
B) may process a request from a trader wishing to buy a
share. Agent utilization data may be collected for both
agents, including a quantity of distinct recoverable changes.
The agent utilization data for system A may indicate 135
changes to a file while the agent utilization data for system
B may indicate 24 changes to a file. The quantities of distinct
recoverable changes may be compared with one another and
it may be calculated that the number of changes for system
B exceeds the number of changes for system A. The agent
flow arrangement may be determined. Since system B
requires a greater number of changes (and by extension, a
greater amount of work) than system A, system B may be
established as the last agent. A request to sell a share may be
prepared, a request to buy a share may be committed, and the
request to sell a share may be committed. Other examples of

10

15

20

25

30

35

40

45

50

55

60

65

18

configuring the set of agent utilization data to indicate a
quantity of distinct recoverable changes are also possible.

In embodiments, a quantity of locks held may be indicated
at block 617. The first set of agent utilization data may be
configured to indicate a first quantity of locks held by the
first commit processing agent with respect to a job unait.
Generally, configuring can include setting-up, program-
ming, structuring, constructing, adjusting, or modifying. A
lock may include a method of prevention of alterations or
changes to a file. The quantity of locks held may include the
number of separate preventions of alterations for recover-
able resources (e.g., a lock on a table 1n a database, a lock
on a record 1n a file). The second set of agent utilization data
may be configured to indicate a second quantity of locks
held by the second commit processing agent with respect to
the job unit. The first quantity of locks held may be com-
pared with the second quantity of locks held. Comparing can
include contrasting, assessing, evaluating, correlating, ana-
lyzing, investigating, or examining. It may be calculated that
the first quantity of locks held exceeds the second quantity
of locks held. Calculating can include computing, determin-
ing, formulating, or ascertaining. The first quantity of locks
held for the first agent may be greater than the second
quantity of locks held for the second agent. The agent tlow
arrangement may be determined based on the first quantity
of locks held exceeding the second quantity of locks held.
Determining can include computing, calculating, formulat-
ing, generating, or ascertaining. The determining may occur
to process the distributed commit operation. Since the first
agent requires more locks held 1n order to commut, the first
agent may be established as the last agent. The second agent
may prepare then commit while the first agent may only
commut.

Consider the following example. The travel website
described herein may utilize two diflerent agents to process
a client request. One agent may include a system which
reserves a rental car for a client while another agent may
include a system which purchases tickets to a play for the
client. Agent utilization data may be collected for both of
these agents, including a quantity of locks held to prevent
changes to the files. As an example, the car rental system
may require 9 locks to reserve a car for a client while the
ticket purchasing system may require only 3 locks to pur-
chase tickets to the play. The two quantities of locks may be
compared with one another and 1t may be calculated that the
car rental system requires a greater number of locks than the
ticket purchasing system. The agent flow arrangement may
be determined. The car rental system may be established as
the last agent since 1t requires a greater number of locks
(e.g., a greater amount of work) than the ticket purchasing
system. When the distributed commit operation 1s executed,
the ticket purchasing system may prepare, the car rental
system may commit, and the ticket purchasing system may
commit. Other examples of configuring the agent utilization
data to indicate a quantity of locks held may also occur.

In embodiments, a quantity of hardware processor usage
may be indicated at block 618. The first set of agent
utilization data may be configured to indicate a first quantity
of hardware processor usage by the first commit processing
agent with respect to a job unit. Generally, configuring can
include setting-up, programming, structuring, constructing,
adjusting, or modifying. The quantity of hardware processor
usage may include the number of processor units, the speed
of the processor, or the like required to commit an agent. The
second set of agent utilization data may be configured to
indicate a second quantity of hardware processor usage by
the second commit processing agent with respect to a job

US 11,221,870 B2

19

unit. The first quantity of hardware processor usage may be
compared with the second quantity of hardware processor
usage. Comparing can include contrasting, assessing, cor-
relating, analyzing, investigating, or examining. It may be
calculated that the first quantity of hardware processor usage
exceeds the second quantity of hardware processor usage.
Calculating can include computing, determining, formulat-
ing, or ascertaining. The first quantity of hardware processor
usage may be greater than the second quantity of hardware
processor usage. The agent flow arrangement may be deter-
mined based on the first quantity of hardware processor
usage exceeding the second quantity of hardware processor
usage. Determining can include computing, calculating,
formulating, generating, or ascertaining. The determining
may occur to process the distributed commit operation.
Since the first agent requires more hardware processor usage
to commit, the first agent may be established as the last
agent. The second agent may prepare then commit while the
first agent may only commuit.

Consider the following example. The university registra-
tion system described herein may utilize two diflerent agents
to process student course registration. One agent may pro-
cess a request for registration in history classes while
another agent may process a request for registration 1n
economics classes. Agent utilization data may be collected
for both agents, including a quantity of hardware processor
usage. The history agent may require 9 microseconds of
CPU time to commit while the economics agent may require
12 microseconds of CPU time to commit. The quantities of
hardware processor usage may be compared to one another
and 1t may be calculated that the processor usage for the
economics agent exceeds the processor usage for the history
agent. The agent flow arrangement may be determined.
Since the economics agent requires a greater amount of
hardware processor usage (and a greater amount of work)
than the history agent, the economics agent may be estab-
lished as the last agent. When the distributed commuit opera-
tion 1s executed, the history agent may prepare, the econom-
ics agent may commit, and the history agent may commiut.
Other examples of configuring the set of agent utilization
data to indicate a quantity of hardware processor usage may
also be possible.

In embodiments, the agent flow arrangement may be
determined at block 661. Generally, determining can include
computing, calculating, formulating, generating, or ascer-
taining. The determining may occur based on quantities of
volume of recovery log data written for processing agents
with respect to a job unit, quantities of distinct recoverable
changes by the processing agents with respect to the job unit,
quantities of locks held by the processing agents with
respect to the job unit, and quantities of hardware processor
usage by processing agents with respect to the job unit. The
agent flow arrangement may be based on more than one type
of metric data. The agent flow arrangement may utilize an
algorithm to weight, rank, or organize the agents based on
multiple kinds of metric data. As an example, the volume of
recovery log data, the quantity of distinct recoverable
changes, the quantity of locks held, and the quantity of
hardware processor usage may ecach be weighted by a
percentage (e.g., 25%) to determine which agent should be
the last one. The types of metric data may be weighted
equally (e.g., 25% each) or differently (e.g., 10% for one
type/40% Tfor another type/50% for another type). The
algorithm may determine which agent should be the last
agent. The algorithm may narrow down several agents to a
smaller number of agents (e.g., from 100 to 3) which could
be the last agent.

10

15

20

25

30

35

40

45

50

55

60

65

20

Consider the following example. The ride-sharing appli-
cation described herein may utilize two agents to match
riders and drnivers. System A may process requests from
riders while system B may process acceptance of requests
from drivers. Agent utilization data may be collected for
both systems, including a volume of recovery log data, a
quantity of distinct recoverable changes, a quantity of locks
held, and a quantity of hardware processor usage. System A
may require 12 GB of recovery log data written, 4 distinct
recoverable changes, 8 locks held, and 20 microseconds of
hardware processor usage. System B may require 7 GB of
recovery log data written, 5 distinct recoverable changes, 15
locks held, and 16 microseconds of hardware processor
usage. The different types of metric data may be weighted to
determine the agent flow arrangement. The volume of recov-
ery log data may be weighted 30%, the quantity of distinct
recoverable changes may be weight 15%, the quantity of
locks held may be weighted 25%, and the hardware proces-
sor usage may be weighted 30%. A quantity for amount of
work may be calculated using the established weights.
System A may require an amount of work equal to
(12%0.30)+(4%0.15)+(8%0.25)+(20*0.30)=12.2. System B
may require an amount of work equal to (7#0.30)+(5*0.15)+
(15%0.25)+(12*0.30)=10.2. System A requires a greater
amount of work than system B, so system A may be
established as the last agent. When the distributed commiut
operation 1s processed, the acceptance of a driver may be
prepared, the request from a rnder may be committed, and the
acceptance of a dniver may be committed. Other examples of
using multiple metrics to determine the agent flow arrange-
ment may also be possible.

Method 600 concludes at block 699. As described herein,
aspects of method 600 relate to agent flow arrangement
management 1 a distributed commit processing environ-
ment. Aspects ol method 600 may provide performance or
clliciency benefits related to agent flow arrangement man-
agement. Aspects may save resources such as bandwidth,
processing, or memory. As an example, processing may be
saved by determining which agent requires the greater
amount ol hardware processor usage. The agent that requires
the greater amount of hardware processor usage may be
established as the last agent. The last agent may only be
committed (e.g., as opposed to prepared then committed).
Preparing and committing the last agent may require more
processing than only committing. As a result, processing
may be saved. Other examples of saving processing may
also be possible.

FIG. 7 1s a flowchart 1llustrating a method for agent flow
arrangement management 1n a distributed commit process-
ing environment, according to embodiments. Aspects may
be similar or the same as aspects of method 400/500/600,
and aspects may be used interchangeably. The method 700
may begin at block 701. At block 720, a first set of agent
utilization data may be collected. The collecting may occur
with respect to a first commit processing agent. The collect-
ing may occur in the distributed commit processing envi-
ronment. At block 740, a second set of agent utilization may
be collected. The collecting may occur with respect to a
second commit processing agent. The collecting may occur
in the distributed commit processing environment.

In embodiments, a third set of agent utilization data may
be collected at block 750. Generally, collecting can include
gathering, accumulating, acquiring, or obtaining. The col-
lecting may occur with respect to a third commit processing
agent. The third set of agent utilization data may include
facts, statistics, quantities, or characteristics of a third agent.
The collecting may occur 1n the distributed commit process-

US 11,221,870 B2

21

ing environment. The agent flow arrangement may be deter-
mined. Determining can include formulating, computing,
resolving, or ascertaining. The determining may occur based
on the first value (with respect to the first set of agent
utilization data) exceeding a third value (with respect to the
third set of agent utilization data). The determiming may
occur as part of processing the distributed commit operation.
The agent flow arrangement may have the first commut
processing agent subsequent to the third commait processing,
agent. If the amount of work needed to commut a first agent
1s greater than the amount of work needed to commut a third
agent, then the third agent may be arranged to occur before
the first agent. The distributed commit operation may be
processed. Generally, processing can include performing,
carrying-out, imtiating, launching, instantiating, implement-
ing, enacting, running, or executing. The processing may
occur using the agent flow arrangement (which has the first
commit processing agent subsequent to the third commut
processing agent). As an example, 1f the first commit pro-
cessing agent requires a greater amount of work than the
third commit processing agent, then the first commit pro-
cessing agent may be established as the last agent and
istructed to commit. The processing may occur in the
distributed commit processing environment.

Consider the following example. The human resources
department described herein may utilize three agents to
approve of the hiring of a new employee. System A may
process the approval (e.g., acknowledgement of contract,
oflicial signature) of the company president, system B may
process the approval of the department head, and system C
may process the approval of the newly hired individual.
Agent utilization data may be collected for each system. As
an example, system A may require an amount of work of 7
(e.g., on a 1-10 scale), system B may require an amount of
work of 4, and system C may require an amount of work of
2. The agent tlow arrangement may be determined. Since
system A requires a greater amount of work than system C,
system A may be established as the last agent. When the
distributed commit operation 1s processed, systems B and C
may prepare, system A may commit, and systems B and C
may commit. Other examples of collecting a third set of
agent utilization data may also be possible.

At block 760, an agent flow arrangement may be deter-
mined. The determining may occur based on a first value
(with respect to the first set of agent utilization data)
exceeding a second value (with respect to the second set of
agent utilization data). The agent flow arrangement may
have the first commit processing agent subsequent to the
second commit processing agent. The determining may
occur to process a distributed commit operation.

In embodiments, determining and processing may occur
at block 765. The agent tlow arrangement may be deter-
mined based on the second value (with respect to the second
set of agent utilization data) exceeding the third value (with
respect to the third set of agent utilization data). Determining,
can 1nclude formulating, computing, resolving, or ascertain-
ing. The determining may occur to process the distributed
commit operation. The agent flow arrangement may have the
second commit processing agent subsequent to the third
commit processing agent. IT the amount of work needed to
commit a second agent 1s greater than the amount of work
needed to commat a third agent, then the third agent may be
arranged to occur before the second agent. The distributed
commit operation may be processed in the distributed com-
mit processing environment. Generally, processing can
include performing, carrying-out, inmtiating, launching,
instantiating, implementing, enacting, running, or executing.

10

15

20

25

30

35

40

45

50

55

60

65

22

The processing may occur using the agent flow arrangement
which has the second commit processing agent subsequent
to the third commit processing agent. As an example, 11 the
second commit processing agent requires a greater amount
of work than the third commit processing agent, then the
second commit processing agent may be established as the
last agent and instructed to commit. As another example, the
first commit processing agent may require the greatest
amount of work followed by the second commit processing
agent followed by the third commit processing agent. The
first commit processing agent may be established as the last
agent and structed to commit. The third commit processing
agent may prepare first, followed by second commit pro-
cessing agent preparing. The first commit processing agent
may commit.

Consider the following example. In the human resources
example described herein, system A may require an amount
of work of 7 (e.g., on a 1-10 scale), system B may require
an amount of work of 4, and system C may require an
amount of work of 2. The agent flow arrangement may be
determined accordingly. System A may be established as the
last agent as described herein. With respect to systems B and
C, the amount of work required to commit system B 1is
greater than the amount of work required to commit system
C. The agent flow arrangement may include system B
subsequent to system C. The established arrangement may
include system C, then system B, then finally system A as the
last agent. When the distributed commit operation 1s pro-
cessed, system C may prepare first, followed by system B
preparing. System A may commit, followed by systems B
and C committing. Other examples of determining the agent
flow arrangement based on the second value exceeding the
third value may also occur.

In embodiments, coordinating and selecting may occur at
block 777. The agent flow arrangement may be coordinated
by the first commit processing agent. Coordinating may
include adapting, adjusting, organizing, ascertaining, deter-
mining, communicating, resolving, or arranging. The coor-
dinating may occur as part of processing the distributed
commit operation. The first commit processing agent may be
selected by the first commit processing agent (e.g., 1t selects
itself) as the coordinating agent. Selecting may include
choosing, picking, electing, specitying, or designating. In
certain embodiments, the first processing agent may be
established as the coordinating agent. The {first processing
agent may calculate or detect that 1t 1s the agent with the
larger metrics with respect to the amount of work required
to commit. The first processing agent (e.g., the coordinating
agent) may select itself as the last agent. In the travel agency
example described herein, the hotel room system may be the
established coordinator. Since the hotel room system
requires a greater amount of work to commuit than the airline
system, the hotel room system may select itself as the last
(e.g., coordinating) agent.

In various embodiments, a second processing agent may
originate as the coordinating agent. The second processing
agent may determine that the first processing agent should
be the last agent since it requires a greater amount of work
to commit. The second processing agent (e.g., the coordi-
nating agent) may transier the role of coordinator to the first
agent. The first processing agent may accept the role of
coordinator, select itself as the last agent, and perform other
aspects as described herein.

Consider the following example. The video streaming
service described herein may utilize agent flow arrangement
management to provide users with movies and television
shows. One agent (system A) may locate the requested video

US 11,221,870 B2

23

for a user while another agent (system B) may locate an
available server for streaming. System B may be the estab-
lished coordinator for the distributed commit operation.
System B may determine that system A requires a greater
amount of work to commit (e.g., system B requires 4 on a
1-10 scale while system A requires 7 on a 1-10 scale).
System B may transier the role of coordinating agent to
system A. Since system A requires a greater amount of work
in order to commit, system A may establish itself as the last
agent. When the distributed commit operation 1s executed,
system B may prepare, system A may commit, and system
B may commit. Other examples of coordinating the agent
flow arrangement may also be possible.

At block 780, the distributed commit operation may be
processed. The processing may occur using the agent flow
arrangement. The agent flow arrangement may have the first
commit processing agent subsequent to the second commut
processing agent. The processing may occur in the distrib-
uted commit processing environment. Method 700 con-
cludes at block 799. As described herein, aspects of method
700 relate to agent flow arrangement management 1 a
distributed commit processing environment. Aspects of
method 700 may provide performance or efliciency benefits
related to agent flow arrangement management. Aspects
may save resources such as bandwidth, processing, or
memory. As an example, choosing a first agent (e.g., from a
group containing a second and third agent) as the last agent
may save memory. The first agent may require more work to
commit than the second and third agents. The second and
third agents may prepare then commit while the first agent
may only commit. Committing and not preparing the first
agent may require less memory than preparing and commiut-
ting the first agent. Other examples of saving memory may
also be possible.

FIG. 8 shows an example system for agent tlow arrange-
ment management 1n a distributed commit processing envi-
ronment, according to embodiments. The example system
may consist of four agents, A, B, C, and D. System A may
be the established coordinator for the 2PC. Systems (B, C,
D) may report metric information back to the coordinating
agent (A) on the nature of recoverable changes required 1n
order to commit. The metric information may include num-
ber of log records written, volume of log data written,
number of separate locks held, number of separate recov-
erable changes, or the like. The metric data may be recorded
(e.g., 1In memory, on external media, written to a queue)
within the calling system so when a commit operation 1s
instructed to begin, the data 1s available for the next phase
of the mventive logic to utilize. The 2PC may utilize metric
data when determining the agent to select as the last agent
for the distributed commit operation. In this case, system C
may be selected as the last agent. Metrics from each system
may be compared (including the metrics of the coordinating,
agent A) and the other system which has the most work to
do when committing may be selected as the last agent. The
system may avoid having to perform both a separate prepare
and then commit operation.

In addition to embodiments described above, other
embodiments having fewer operational steps, more opera-
tional steps, or different operational steps are contemplated.
Also, some embodiments may perform some or all of the
above operational steps 1n a diflerent order. In embodiments,
operational steps may be performed in response to other
operational steps. The modules are listed and described
illustratively according to an embodiment and are not meant

10

15

20

25

30

35

40

45

50

55

60

65

24

to 1ndicate necessity of a particular module or exclusivity of
other potential modules (or fTunctions/purposes as applied to
a specific module).

In the foregoing, reference 1s made to various embodi-
ments. It should be understood, however, that this disclosure
1s not limited to the specifically described embodiments.
Instead, any combination of the described features and
elements, whether related to different embodiments or not, 1s
contemplated to implement and practice this disclosure.
Many modifications and variations may be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the described embodiments. Furthermore,
although embodiments of this disclosure may achieve
advantages over other possible solutions or over the prior
art, whether or not a particular advantage 1s achieved by a
given embodiment 1s not limiting of this disclosure. Thus,
the described aspects, features, embodiments, and advan-
tages are merely 1llustrative and are not considered elements
or limitations of the appended claims except where explic-
itly recited 1n a claim(s).

The present mnvention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present mvention may be assembler

US 11,221,870 B2

25

instructions, instruction-set-architecture (ISA) instructions,
machine i1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article ol manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

Embodiments according to this disclosure may be pro-
vided to end-users through a cloud-computing inirastruc-
ture. Cloud computing generally refers to the provision of
scalable computing resources as a service over a network.
More formally, cloud computing may be defined as a com-
puting capability that provides an abstraction between the
computing resource and 1ts underlying technical architecture

10

15

20

25

30

35

40

45

50

55

60

65

26

(e.g., servers, storage, networks), enabling convenient, on-
demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management eflort or service pro-
vider interaction. Thus, cloud computing allows a user to
access virtual computing resources (e.g., storage, data,
applications, and even complete virtualized computing sys-
tems) 1n “the cloud,” without regard for the underlying
physical systems (or locations of those systems) used to
provide the computing resources.

Typically, cloud-computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g., an amount of
storage space used by a user or a number of virtualized
systems 1nstantiated by the user). A user can access any of
the resources that reside in the cloud at any time, and from
anywhere across the Internet. In context of the present
disclosure, a user may access applications or related data
available 1n the cloud. For example, the nodes used to create
a stream computing application may be virtual machines
hosted by a cloud service provider. Doing so allows a user
to access this information from any computing system
attached to a network comnected to the cloud (e.g., the
Internet).

Embodiments of the present disclosure may also be
delivered as part of a service engagement with a client
corporation, nonprofit organization, government entity,
internal organizational structure, or the like. These embodi-
ments may include configuring a computer system to per-
form, and deploying software, hardware, and web services
that implement, some or all of the methods described herein.
These embodiments may also include analyzing the client’s
operations, creating recommendations responsive to the
analysis, building systems that implement portions of the
recommendations, integrating the systems nto existing pro-
cesses and 1infrastructure, metering use of the systems,
allocating expenses to users of the systems, and billing for
use of the systems.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

While the foregoing 1s directed to exemplary embodi-
ments, other and further embodiments of the invention may
be devised without departing from the basic scope thereof,
and the scope thereof 1s determined by the claims that
tollow. The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the

US 11,221,870 B2

27

art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-

nologies found in the marketplace, or to enable others of >

ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1s:

1. A computer-implemented method for agent flow
arrangement management in a distributed two-phase commut
processing environment, the method comprising:

collecting, 1n the distributed two-phase commit process-

ing environment, a first set ol agent utilization data with
respect to a first commit processing agent;

collecting, 1n the distributed two-phase commit process-

ing environment, a second set of agent utilization data
with respect to a second commit processing agent,
wherein the second commit processing agent 15 asso-
clated with a different transaction than a transaction
associated with the first commit processing agent, and
wherein the different transaction and the transaction
associated with the first commit processing agent each
include a plurality of work operations to complete a
corresponding transaction;

determining, based on a first value with respect to the first

set of agent utilization data exceeding a second value
with respect to the second set of agent utilization data,
an agent flow arrangement to process a distributed
commit operation, wherein the agent flow arrangement
has the first commit processing agent subsequent to the
second commit processing agent;

processing, 1n the distributed two-phase commit process-

ing environment, the distributed commit operation
using the agent flow arrangement which has the first
commit processing agent subsequent to the second
commit processing agent; and

wherein determing the agent flow arrangement 1s based

on,

quantities of volume of recovery log data written for
processing agents with respect to a job unit,

quantities or distinct recoverable changes by the pro-
cessing agents with respect to the job unit,

quantities of locks held by the processing agents with
respect to the job unit, and

quantities of hardware processor usage by processing
agents with respect to the job unit.

2. The method of claim 1, turther comprising;:

configuring the distributed commuit operation to include a

prepare operation for the second commit processing
agent but not the first commit processing agent.

3. The method of claim 1, further comprising;:

arranging, in the agent flow arrangement, the first commait

processing agent to be a last agent to process the
distributed commit operation.

4. The method of claim 1, further comprising:

configuring the first set of agent utilization data to indicate

a {irst quantity of work that has been performed by the
first commuit processing agent;
configuring the second set of agent utilization data to
indicate a second quantity of work that has been
performed by the second commit processing agent;

comparing the first quantity of work with the second
quantity of work;

calculating that the first quantity of work exceeds the

second quantity of work; and

10

15

20

25

30

35

40

45

50

55

60

65

28

determiming, based on the first quantity of work exceeding,
the second quantity of work, the agent tlow arrange-
ment to process the distributed commit operation.

5. The method of claim 1, further comprising;:

configuring the first set ol agent utilization data to indicate
a first quantity of work that 1s expected to be performed
by the first commit processing agent;

configuring the second set of agent utilization data to
indicate a second quantity of work that 1s expected to
be performed by second the commit processing agent;

comparing the first quantity of work with the second
quantity of work;

calculating that the first quantity of work exceeds the
second quantity of work; and

determining, based on the first quantity of work exceeding,
the second quantity of work, the agent tlow arrange-
ment to process the distributed commit operation.

6. The method of claim 1, further comprising;:

configuring the first set ol agent utilization data to indicate
a {irst volume of recovery log data written for the first
commit processing agent with respect to a job umnit;

configuring the second set of agent utilization data to
indicate a second volume of recovery log data written
for the second commit processing agent with respect to
the job unait;

comparing the first volume of recovery log data written
with the second volume of recovery log data written;

calculating that the first volume of recovery log data
written exceeds the second volume of recovery log data
written; and

determining, based on the first volume of recovery log
data written exceeding the second volume of recovery
log data written, the agent tlow arrangement to process
the distributed commait operation.

7. The method of claim 1, further comprising:

configuring the first set ol agent utilization data to indicate
a first quantity of distinct recoverable changes by the
first commuit processing agent with respect to a job unit;

configuring the second set of agent utilization data to
indicate a second quantity of distinct recoverable
changes by the second commit processing agent with
respect to the job unait;

comparing the {first quantity of distinct recoverable
changes with the second quantity of distinct recover-
able changes;

calculating that the first quantity of distinct recoverable
changes exceeds the second quantity of distinct recov-
erable changes; and

determining, based on the first quantity of distinct recov-
crable changes exceeding the second quantity of dis-
tinct recoverable changes, the agent tlow arrangement
to process the distributed commit operation.

8. The method of claim 1, further comprising:

configuring the first set of agent utilization data to indicate
a first quantity of locks held by the first commit
processing agent with respect to a job unit;

configuring the second set of agent utilization data to
indicate a second quantity of locks held by the second
commit processing agent with respect to the job unait;

comparing the first quantity of locks held with the second
quantity of locks held;

calculating that the first quantity of locks held exceeds the
second quantity of locks held; and

determining, based on the first quantity of locks held
exceeding the second quantity of locks held, the agent
flow arrangement to process the distributed commut
operation.

US 11,221,870 B2

29

9. The method of claim 1, further comprising:

configuring the first set of agent utilization data to indicate
a first quantity ol hardware processor usage by the first
commit processing agent with respect to a job unit;

configuring the second set of agent utilization data to
indicate a second quantity of hardware processor usage
by the second commit processing agent with respect to
the job unit;

comparing the first quantity of hardware processor usage
with the second quantity of hardware processor usage;

calculating that the first quantity of hardware processor
usage exceeds the second quantity of hardware proces-
sor usage; and

determining, based on the first quantity of hardware
processor usage exceeding the second quantity of hard-
ware processor usage, the agent flow arrangement to
process the distributed commit operation.

10. The method of claim 1, further comprising;:

coordinating, by the first commit processing agent, the
agent flow arrangement to process the distributed com-
mit operation; and

selecting, by the first commit processing agent, the first
commit processing agent to be a last agent to process
the distributed commait operation.

11. The method of claim 1, further comprising:

avoiding a prepare operation for the first commit process-
ing agent.

12. The method of claim 1, further comprising:

collecting, 1n the distributed two-phase commit process-
ing environment, a third set of agent utilization data
with respect to a third commit processing agent;

determining, based on the first value with respect to the
first set of agent utilization data exceeding a third value
with respect to the third set of agent utilization data, the
agent flow arrangement to process the distributed com-
mit operation, wherein the agent flow arrangement has
the first commit processing agent subsequent to the
third commait processing agent; and

processing, 1 the distributed two-phase commit process-
ing environment, the distributed commit operation
using the agent flow arrangement which has the first
commit processing agent subsequent to the third com-
mit processing agent.

13. The method of claim 12, further comprising;

determining, based on the second value with respect to the
second set of agent utilization data exceeding the third
value with respect to the third set of agent utilization
data, the agent flow arrangement to process the distrib-
uted commit operation, wherein the agent tlow arrange-
ment has the second commit processing agent subse-
quent to the third commit processing agent; and

processing, 1 the distributed two-phase commit process-
ing environment, the distributed commit operation
using the agent flow arrangement which has the second
commit processing agent subsequent to the third com-
mit processing agent.

14. The method of claim 1, further comprising:

executing, 1n a dynamic fashion to streamline agent flow
arrangement management 1n the distributed two-phase
commit processing environment, each of:
the collecting, the collecting, the determining, and the

processing.

15. The method of claim 1, further comprising;:

executing, 1n an automated fashion without user 1interven-
tion, each of:
the collecting, the collecting, the determining, and the

processing.

10

15

20

25

30

35

40

45

50

55

60

65

30

16. The method of claim 1, further comprising;:

configuring the first set of agent utilization data to indicate
a first quantity of work associated with the first commut
processing agent;

configuring the second set of agent utilization data to

indicate a second quantity of work associated with
second the commit processing agent;

comparing the first quantity of work with the second

quantity of work;

calculating that the first quantity of work exceeds the

second quantity ol work;
determiming, based on the first quantity of work exceeding
the second quantity of work, the agent flow arrange-
ment to process the distributed commit operation; and

arranging, 1n the agent flow arrangement, the first commit
processing agent to be a last agent to process the
distributed commit operation.

17. A system for agent flow arrangement management in
a distributed two-phase commit processing environment, the
system comprising;:

a memory having a set ol computer readable computer

instructions, and

a processor for executing the set of computer readable

istructions, the set of computer readable instructions
including instructions to:

collect, 1n the distributed two-phase commit processing

environment, a first set of agent utilization data with
respect to a first commit processing agent;

collect, 1n the distributed two-phase commit processing

environment, a second set of agent utilization data with
respect to a second commit processing agent, wherein
the second commit processing agent 1s associated with
a different transaction than a ftransaction associated
with the first commit processing agent, and wherein the
different transaction and the transaction associated with
the first commit processing agent each include a plu-
rality of work operations to complete a corresponding
transaction;

determine, based on a first value with respect to the first

set of agent utilization data exceeding a second value
with respect to the second set of agent utilization data,
an agent flow arrangement to process a distributed
commit operation, wherein the agent flow arrangement
has the first commit processing agent subsequent to the
second commit processing agent;

process, 1n the distributed two-phase commit processing

environment, the distributed commit operation using
the agent tlow arrangement which has the first commat
processing agent subsequent to the second commit
processing agent; and

wherein instructions to determine the agent tlow arrange-

ment 1s based on:

quantities of volume of recovery log data written for
processing agents with respect to a job unit,

quantities ol distinct recoverable changes by the pro-
cessing agents with respect to the job unit,

quantities of locks held by the processing agents with
respect to the job unit, and

quantities of hardware processor usage by processing
agents with respect to the job unait.

18. A computer program product for agent flow arrange-
ment management in a distributed two-phase commit pro-
cessing environment, the computer program product com-
prising a computer readable storage medium having
program 1nstructions embodied therewith, wherein the com-
puter readable storage medium 1s not a transitory signal per

US 11,221,870 B2
31 32

se, the program 1instructions executable by a processor to commit processing agent subsequent to the second
cause the processor to perform a method comprising; commit processing agent; and
collecting, 1n the distributed two-phase commit process- wherein determining the agent flow arrangement is based
ing environment, a first set of agent utilization data with on:
respect to a first commit processing agent; 5 quantities of volume of recovery log data written for
collecting, 1n the distributed two-phase commit process- processing agents with respect to a job unit,

ing environment, a second set of agent utilization data
with respect to a second commit processing agent,
wherein the second commit processing agent 15 asso-
ciated with a different transaction than a transaction 10
associated with the first commuit processing agent, and
wherein the different transaction and the transaction
associated with the first commit processing agent each
include a plurality of work operations to complete a
corresponding transaction; 15

determining, based on a first value with respect to the first
set of agent utilization data exceeding a second value
with respect to the second set of agent utilization data,
an agent flow arrangement to process a distributed
commit operation, wherein the agent flow arrangement 20
has the first commit processing agent subsequent to the
second commit processing agent;

processing, 1 the distributed two-phase commit process-
ing environment, the distributed commit operation
using the agent tlow arrangement which has the first I I

quantities of distinct recoverable changes by the pro-
cessing agents with respect to the job unit,
quantities of locks held by the processing agents with
respect to the job unit, and
quantities of hardware processor usage by processing
agents with respect to the job unait.
19. The system of claim 17 wherein the set of computer
instructions further comprises instructions to:
execute, 1n an automated fashion without user interven-
tion, each of:
the collecting, the collecting, the determining, and the
processing.
20. The system of claim 17 wherein the set of computer
instructions further comprises instructions to:
configure the distributed commit operation to include a
prepare operation for the second commit processing
agent but not the first commit processing agent.

	Front Page
	Drawings
	Specification
	Claims

