12 United States Patent

US011221865B2

(10) Patent No.: US 11,221,865 B2

Shankar et al. 45) Date of Patent: Jan. 11, 2022
(54) BATCH MANAGEMENT OF OPERATIONS (56) References Cited
OVER VIRTUALIZED ENTITIES S PATENT DOCUMENTS
(71) Applicant: Nutanix, Inc., San Jose, CA (US) 8.549.518 Bl 10/2013 Aron et al.
8,601,473 Bl 12/2013 Aron et al.
(72) Inventors: Anjana Shankar, Karnataka (IN); (Continued)
Saurabh Kumar Singh, Karnataka
(IN); Gourab Baksi, Kolkata (IN); FOREIGN PATENT DOCUMENTS
Niramayee Shrikant Sarpotdar,
Mabharasthtra (IN); Sai Sruthi Sagi, WO WO 2016090890 Al 6/2016
Karnataka (IN) WO WO 2018192475 A1 10/2018
(73) Assignee: Nutanix, Inc., San Jose, CA (US) OTHER PUBLICATIONS
_ _ _ ‘ ‘ Poitras, Steven “The Nutanix Bible” (Oct. 15, 2013), from http://
(*) Notice: SUbJeCt_ to any disclaimer) the term of this stevenpoitras.com/the-nutanix-bible/ (Publication date based on indi-
patent 1s extended or adjusted under 35 cated capture date by Archive.org; first publication date unknown).
U.S.C. 154(b) by 318 days. (Continued)
(21) Appl. No.: 16/051,288 Primary Examiner — Meng A1l An
Assistant Examiner — Willy W Huaracha
(22) Filed: Tul. 31. 2018 (74) Attorney, Agent, or Firm — Vista IP Law Group,
' T LLP
(65) Prior Publication Data (57) ABSTRACT
Systems and methods for batching operations in a virtual-
US 2020/0042339 Al Feb. 6, 2020 1zation environment. A method embodiment operates over a
plurality of virtual machines 1n the virtualization environ-
(51) Imt. CL | ment. A user interface 1s used to select two or more virtual
GOof 9/455 (2018-0:~) machines that are to be subjected to the same batch actions.
Gool 21/31 (2013-0:-) A method step then generates at least one batch request to be
Gool 8/61 (2018.01) performed over the two or more selected virtual machines.
52) U.S. CL In forming the batch request, the states of the individual
g q
CPC GO6F 9/45558 (2013.01); GO6F 8/61 virtual machines are analyzed to determine one or more
(2013.01); GO6F 21/31 (2013.01); entity-specific operations that apply to the virtual machines
(Continued) and/or to constituent entities of the virtual machines. Once
(58) Field of Classification Search the state-specific and entity-specific operations have been
CPC GOGF 21/31: GOGF 8/61: GOGF 9/45558 determined, an entity management protocol initiates execu-

GO6F 2009/45562; GO6F 2009/45579;
GO6F 2009/45587
See application file for complete search history.

100

tion of the one or more entity-specific operations over the
individual ones of the two or more selected virtual machines.

21 Claims, 11 Drawing Sheets

\5& Apply action rules 10 the then-current
states of g Vs 1o determine
Cetach ane or mmora achions Eﬂﬁi}’-ﬂt}%ﬁ‘ﬂiﬁﬂ ﬂpﬁ?ﬂﬁﬂﬂS bo pouave
to achisve an cuicome af a the outcome at each YM - -
naloh of Vids s =
: AN
i Entity Managemsant Toot 120 s iji?’
Selection View 126 § - o
) _ q"k;. Lisar Baioh r
Wi Action t"-‘ infeface i 5
L RNy Processoy
-l i a8) N TOUESS $24 S,
1122 !-
Adrrin viviefd A8 1 S) :
i1z Lvell O . Requests | Ther-Current R
WL b : VM Blates T
; ' i E EEHTIN .
----- - HAt Meiadata | Slale
B e g Sy cr . j‘ﬁ.ﬁ ' i fﬁlﬂﬁhﬂtﬁq
EHiy-SHpe e Vi Guest Tools ME”"‘W“EEEE’&JE{; 38
Ciperations 1484 Oodahnse 414 ™ Operations 148y A
4 : N) i
Deliver the ertity-Specific ¢ Node 104, g Node 104y |
aparations (o the nodes 35 4 Ll iy :
comprising the VMs Controlier 108 4
wwwwwwwwwwwwww O DO T B DD R N D RO 0 B Rl 00 fHE A
J
' - % Eritiby N
invoke a protocal to : Management B
axacuie ihe entily-apechic f : Sratoool :
Oparafions o schiave Me Y%’ 2 158 ;
- - " o E .'ﬁ'-’. e 15; 511
gutcome al th Viis = grommiiecrmbecmes
Rxmmw nwimwmnwn}- ------------ : -
“Shd VY 3 Y I N Y Y N e LT
1084 |1 ADBuk = N nstadled VM
e Lanest Tools
i - 16&
I
| slorzge Foot 110
S
S

A Palde Uk A

US 11,221,865 B2
Page 2

(52) U.S. CL

CPC GOOF 2009/45562 (2013.01); GO6F
2009/45579 (2013.01); GOOEF 2009/45587
(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
8,850,130 Bl 9/2014 Aron et al.
9,772,860 Bl 9/2017 Aron et al.
9,946,563 B2 4/2018 Gelbel et al.
10,007,542 B2 6/2018 Hegdal et al.
2009/0013321 Al* 1/2009 Mattiocco GO6F 9/455
718/1
2009/0313620 Al* 12/2009 Sedukhin GO6F 9/45558
718/1
2011/0131572 Al1* 6/2011 Elyashev GO6F 9/45558
718/1
2011/0209145 Al 8/2011 Chen et al.
2012/0110650 Al* 5/2012 Van Biljon G06Q) 40/00
726/4
2012/0131577 Al1* 5/2012 Arcese GOG6F 9/44521
718/1
2013/0232480 Al1* 9/2013 Winterfeldt GO6F 8/60
T17/177
2015/0378765 Al1* 12/2015 Simngh ... GO6F 9/50
718/1
2016/0283263 Al 9/2016 Tsirkin et al.
2016/0380909 Al* 12/2016 Antony HO04L 49/70
370/236
2017/0109186 Al* 4/2017 Figueroa GO6F 9/45558
2018/0300167 Al 10/2018 Zheng et al.
OTHER PUBLICATIONS

Poitras, Steven. ““The Nutanix Bible” (Jan. 11, 2014), from http://

stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).

Poitras, Steven. “The Nutanix Bible” (Jun. 20, 2014), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).

Poitras, Steven. “The Nutanix Bible” (Jan. 7, 2015), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).
Poitras, Steven. ““The Nutamix Bible” (Jun. 9, 2015), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).
Poitras, Steven. “The Nutanix Bible” (Sep. 4, 2015), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jan. 12, 2016), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jun. 9, 2016), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jan. 3, 2017), from https://
nutanixbible.com/.

Poitras, Steven. ““The Nutanix Bible” (Jun. 8, 2017), from https://
nutanixbible.com/.

Poitras, Steven. ““The Nutanix Bible” (Jan. 3, 2018), from https://

nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jun. 25, 2018), from https://
nutanixbible.com/.

Poitras, Steven. ““The Nutanix Bible” (Jan. 8, 2019), from https://
nutanixbible.com/.

“Enabling and Mounting NGT Simultaneously on Multiple VMs”,
May 15, 2018, 1 page.

Cano, I. et al., “Curator: Self-Managing Storage for Enterprise
Clusters”, 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI *17, (Mar. 27, 2017).

Wallace, G. et al., “Manage updates for multiple machines”, Azure
Automation User Documentation, Microsoft Azure, (Mar. 26, 2020).
VMware, “VMware vSphere Documentation™, VMware Docs, (Sep.
6, 2019) (Publication date based on indicated capture date by
Archive.org; first publication date unknown).

VMware, “Batch Operations™, vSphere Design Standards, VMware
{code}, (Jan. 22, 2017).

* cited by examiner

LT 1004 abriois

mw W\ m - R H [
NABSIBISUE | | OB |, PYEET | DT |...| VT
eeeeesseef L L AR A WA] WA

¢ 100 00 S0 B0 O 900 00 Of 100 OO0 G0 100 OO 0F 100 Sl 10 DO GO 100 OO 101 10D SO+ 300 OO 00 WP OO 100 OO SO0 DD 00 D0 00 10t YOO 6O 30 0O 60t gy,

X T dcomegrsoongrenss : b cengrasns R NSO 7. SIAA SUI 1B SLUODING

¥ ‘- e 48 N :

- ol 0% L £ OUL OABIYOR O] SUDIBIRU0
1000304 .

JuswsdeUER

Ayusy

Al # DlIoeds-AuD oyl sInnaexs
Yoo B0 B SOb O 05 B0 OO S 8O GO _E. 0D Ot WP WO OO WO OO 05 0D 0N Wk W0 o B

O} 000100 B @50AU]
BAT seponuon - VGET sefonuod . SHIA et Bursudwon
R m 1§ © § Sspou oyl o) suoeuado
7 OUIDSds~-ANIUS Ul JaAle

US 11,221,865 B2

g O 2 B OOF O NN 90 N
o W 00 OO K 00 I 0 R

#
&
8
¢
C:
g
&
&
g
#
8
¢
C:
g
-

&RD m

d

“YOL epoN

 WEET apoN

20 Jesnin

Sheet 1 of 11

ﬂﬂﬂ-ﬂﬂﬂﬁ’ﬂﬂﬂﬂﬂ-ﬁﬁ!ﬂﬂﬂﬂﬁﬁ-tlﬂﬂ-ﬂ-ﬂﬂﬂﬂiﬂﬂ'ﬂﬂﬁﬁtﬁﬁ

2159 4 M el SUOREISAO m* M%MWMNMMM@M& 8P SUONEIRAC
e ey] Cupedsmum A T T ouoadg-Aus

SOINGHIY w88 75 1

-
+

’
+
E
™ "
E] -
4 -
) 4 4 g -
" 4 N e e TR O R N B e o e e o e e e e e e o o D e B Bt o L b
L] + A
- 4
- 4
"
-
-.

Amug | SIS AN
I WwannD-usyy

rrr

Z1
UL

il S158nDAM
Waed

AN I

JOSSBO0MY 4

eoeMall i%i | Tuouoy YA
IEET]

Jan. 11, 2022

. .
. . .
. .
h
. . Sl i e T el ek b
- pigr . N
a P Iy _m“" m
4 41 F 1 + [}
..
4 4 = 4 - L]
SR .
4 & & L] 4
L] §
. .
. .
: .y
¥
-

HOE Y

L
++
LIy

F

aainy | “ 0C1 (00 usiuebruriy AN

rr

UOLOY

SIA 3O LYOIEY
WA LDES 18 SLIGOING Ul 2 18 SLIOMIN0 UB BABIYOR O]
SASIYUDE O] SUONBISCO JDadsS-AYIUS SUGHOE 240U 0 8UQ 1088
SULLISIAN O] SINA UL JO SoIBIS
USLIND-UBYL QY] 0] 59)1U uonone Alddy ﬁ/

§14]

U.S. Patent

U.S. Patent Jan. 11, 2022 Sheet 2 of 11 US 11,221,865 B2

200

N

Setup Operations 202

210

instantiate a plurality of VMsS In &
virtualization environment

E#AY,

t-siablish a set of hatch aclions that can
: be performed over the VMs '

Batch Management |
Operations 204 |

+
o
+++

240
Generate a batch request to perionm
Gne or more baich achions over g
pluraity of selecied VS

-]
+++

ser
interface

242

Action

Ruies |
h 132

+
R K+ R It
+

+++

: : } For each individual VM of the selected | <
Admin VM, determine a set of entity-specific ‘
142 epemtianls {0 carry oul for each
: incividiual Vi

+++

Metadata |
134 |

A5
Execule the entily-speciic operalions
over each respective individual Vi of

the seiected VS

FiG. 2

US 11,221,865 B2

- E a4 aEEEE

a4 amm

o aaam

F iamm

Sheet 3 of 11

Jan. 11, 2022

Ak or b d o d S A b d A AR

U.S. Patent

hor & o d 44 A=k b d o E o d Al

m F ¥+ v s s s mn s n F¥rao s o nrryrrraons s s Frrrs s srrrrresasnsbFbrrrress s r T

B AN SO

F

L .

T FTrt+trasrrrrrtrrrfeaTT kT

rrasrrrrrri s errorrrid

F

4
-
-
F
3
r
-
F
-
-
-
-
4
+

" L i ® p [4+ 4 8 ® 8 L B p [& 4 8 8 L B b & & & &8 B L B b4 & & d
.—.l._._-.—_.1.1.—..—.._._._‘1—_.—..—..1._.—..-“—_.—..—..-.—.._._-.—_.1.1.—.._.—.._._—_.1.-..—..-.—.

FET 105S0044
oGBS JO5N

...
o 4 = s s m Frrrraann = n kT * rs s s g rrrrrdssnTT
P R e o R R N N e

-
" = LT71s 7@ rErT1TEErErErT1TEEErEFTTTETErECFTTTEFEErEFTTR

4 + 4 F F & & o+ & 4 4 4 F

L

K

-

-

-

-

A d L R R R

A g g EE

a4l aEEERE

B4 4 L B EERERLpJSELLEERELESE

ok d b d A dE A kA A d R ke kA A E s A d R+

L

L E m 4 a4 iR EEELEELdLEEERR

-

B W

a4 R4

xR O PR K

Frran

= 44 AL ok d A AR b o d Ak d A EY o ddd R dd A d RS d A dd Yk d A E RS E A A Ay A A A d kb d kA d ddd R R+

4 4 4

201 Jo1snin

[] " Fr rvrs n =& " Fr e s =& " v v rua s s mu bhrrrs s h s TrTrresas

=TT TTHE B

]

+ 4+ 4+ =8 FF &+ &+ + + 0

O o

"L oaqam

+* + + FF-F

|~ 4

Ll]

LT W~I0SIAIBOAR

Ob ¢ Je

L b F & tREoWm

r
] PRtk o 4 W kA WL mal T Fod M m ...-.n_hr.ﬂ....

AE ol1soubYy-10sIAIBCA L

3 -N . .E S E-2-F.-X.E-B-F N B.N-

L

Q0T

A JBHOILOD

Q..

JOMION

" s r

~-2.8 . -F 4 ¥. N. ¥

F L4 B B R R EE AL a

Ll
d
d
+
*
4
1
1
=
d
d
[]
d
-
4
4
1
Ll

LA g moq

i a4 a4 R oEE

"L iamoaam

R R i

+

4 4k F F & & & 4 4 48 F F & + &

LA N e e B AL P O PP - L T T T PO, N O O Pl T P AL, O I PR, PO, L O P -,

"4 R4

Ry i K *na‘.._...-] Pm ot a4+ o B A Fod +at bl SN R] " P iyd R o] Pk g g A Lo ok gk 4l g g

T
4

= d ko koA d e d EE A+ 4 8 A For b d o d b d EE kA b ko F A AR kA Ak s Ak d d A EE A b d S + 4 4 4. " F 24 b d A E A e d d A EY S d 4
4
4
-

r ¥ r vy rs s s s rrrd s mn - Y T TEeE = =& = rwrua s s b rrryd re s s hrryrd s s 5 5T T TS A" ET ST TE SR m Fr rvrs s s n [}

. 7210 J-10sinsdAN

a2 m

Hmnn*

EELE .Y LY.L RN Y- N Y. EN L Y Y.E.Y.EECE Y. Y-

-

4
=
»

pP i aimERE

- -

L 4 b b A & i A & A b f b 4 4 4 & A 4 g

+ 4+ % B R P 4 i 4 4 4 B B EE F i i 4 B EEEEL AL L4 EEERPEL L 4R EREE

VGG
A JOROAILON

by
Fo
4

T

A 4 F F 4+ FF A A S S FEE A gy

" 4 4 4 ® 4qm E pE L ELE 48 B N B po4+ 4B {8 5 SR }Ls{BSE NS p PFpi:]RE N SR P AL LA

=TT T

E = 4 4 4 8 8 Fr &+ 4 4. 4. 78 =F =+ =4 &+ 48 Fo+ v+ 4 4448+ FdFd s ES o FFdd b b d A E R A dd RS + 4 F FE 4+ doFd R A4S F 4 4 4 d k= e d 44l ko 4 4 8 d oo kA d by d el kA A d ko F o+

- m a4 amEm

" EE s iaamEE " maaamEE

r r o

F 4+ v+ 4 78 4= F + & 4 4 bk ok A Ay o d kA A d kA

QOVE

.S. Patent an. 11, 2022 Sheet 4 of 11

-

3800 User inlerface 222

Action Selection
View 354

=T T T

4 d4d4d yrrryrrryrairFrrTrTrTTIen
L]

VA Selaection View
264

L BB N N N NN B B N R B B B B B L L |

HV-&
V-

HV-A
HV-A

gk = FFFF FFFFFFFFFFFFFF A FE R FEFEFEREREE &4

i

k

AGIT
112

ol S N L TR D T T O U R T O T T T o el N B I B R N B B R

ek o =k § & 4 FFF = FPF Sk PFY PR FE S+ P

-

* F 4+ F o+ FFFFFFFFFFFFFFFFFFFEFFEFFFEFFEF S FFEF A FFEFFEF S d A AT A d A A d A dAAA P FFFFFEF R

Baich Regueast
Obiect 3680

astions{]
authil

Entity
Metadais

State
Atiributes 138

‘I'I-I'I'I'I'I'I'I-I'I'

134

L o4 2o

Ussrmams

* + + ++ e+ FFEFFFFFEFFEFFFFFEAAAAAAA AR FRE A AR FEFRFFRFEFREREASSEF S

FEEFFPFF+ 4+ +FF+FF+FFFdFFFFFdFdFddd s bd bbb b+ dF ot o+ FdFFrFFdFFFFFFFFFFFF LA ddddA A AR

S 11,221,865 B2

s rrryrrrrrrrrrrrrrrxrrrrrrk+rrF+rFEFFFFdddrrddddrrrrrrddrdrdrrrrr

Credentials Entry
View 368

" s s rTrh herr b

ismith

Pk F F F F F F F F FF F k&8 d S ok kd ko A S EE koo kb kbR kR R

= s mnr A drrrrrrrcrrr FFFFFEEFEE

P F P F R pE PR
Frrrdrrrrrrrrrrrrrrrrrrrrrrrrrrrrd dd g rrrradd s s b bnbsshseb

F 1418 F F F F o4 F F FFo o 85 FFFFF+++++++%++++ 4+

4 4 & & 2 m m 4 4 4

Liser
Protiles
352

amrrrrrrrrrrrrrrrrdrdrs rarT

[
1
]
I
LY
k
.y 1
']
.
.I.
- P
n
]
.
[
b
1
h B Iy
* L.
L7
Fy
* I I I N I N S Y R N N N A e a e s P A I T O NN
Tt T T T e L A A A A A A e e e e e e e e e e e e e e e e, T T e T -, R L
I St T L S BE R R . I ECMOEMCMENCMENEY IR NN - Ll S I
e LR SR R "] OO - wor e bbb ko MREE b A A
- - o T Sttt * r SRR L N T "." e
P e w n e e P) NN e O]
e mmm AR [e m n m e . CANARRARAES IR R R R I IO 3 S G S I T A I I I I AN
PP O NN P i)] SRR R N NN
N o N L O N M N M A T drrrrad ek koo] B NN ENEN (NN RN
P N A N N M N N N N OO N OO N N O N M M PP T OO
N R R A A R D] R M R A AW W NN A R LA RN
r H - .
* W . N
r . - . .
¥ L] 4 . 3 ”
r] - 4
.
. . . 1
.
- .] . L . 4 . .
r + r . 4
r + * 4
.
r + ¥ by * . 4 o
e .
r + o + . 1 ™
r * r 4
.
. + -. + 4
. . .
r] r 4 ;
. h
v 1 v . . o N .,
F i ¥ 4 ¥ i i . -
.
r i] 4
. .
+]] . 4 A » »
r] - 4 - -
B NN R e e R R R N S WS MM WS AR WM MR WA MMM MRS . i F .
- : g ‘ " WAL B L W
-
. - =
r k!] 3 i . 1 i
: : %ﬁg ﬁ : X ﬁn : ;
r]] 4 +
. » :
r] r 4 " r
r] r * 4 y
N e NN L i . 5 A
.
r 1 .
. @ - : 1 -
n b. - .
] 4
. .
r E 4 k
.] . : A
. . . N AN :
- A L+ % . Lt .
h 1 - PR
. -
. . r & RS PP by .
. .
" 4 .
.
. 4
i g A
| ; '
+ 4
n !' # o
v v 4 v 277 v v rd e rr - s == T7117FF = = = E E = E RN E = EEFFFEEEEFT® Cubishinhie e i N NN N i 1
4
- 2] .
. u!
2 % % :
.
] E » . .
u!
L ¥ ® -
]
L
t +
I r L R R R R R R R R & a s r s s s arrar e e e e R R R R R R R E R E R R R E R R E R EE R R R R EE R E R R R E R R R R R R R R RN
- I | e e el o r T T T T T T r * T I R N e I PR F ok k ok ok ok ok kb ok ok ok ok ok kb ok ok k ok bk k ok ok kb h
aaaa s aaray B P T L S S Y R P R R R A A e e e . NN NN O N N O O N N O N OO O
r e W h R M RTh W bWk Rk ko h kW F kk kb k]] 4 N BN NN PR R P * R,
P i O ' n PRPRFRrRLL. P P T NN N N N
r E rkn b u - - 1 3 + T e 3 - r F b F 3) + & 4 L N
aa - N S . PRrrart TSP W T e e e e e e . RO
r K h 5 1] r 4444 B " " N PR E B ¥ * * IR
Pt - o = aala ety P R . . NN
r R R W o+ 4] A FE k- o b N
2 A ot = h . . NN - T, v A e e AT e e A . . a e e e m m m e e a .
r 4k WA % W%k h ok Wk Wk ko FF * R R i I - 4 R I O N O e Bk kA E kA Ak ok kA Ak ke d
s Tl TR T T R T R T R R e NN NN N N N O P TN AR R NN Y YN S AN NN N N O O O O O OO
r AR E A R FE R R R R Rk kR E F F F F F FE R E F o bk Lk b bk bk bk ok ok h ok hd a4 T R N i FF o P o N N o R R o N N N S A)
. P S NN S N R SN ST N S A PAIRAA 2 e n m e e n e e w e, a e e e e e e e e e e e e e T e e T T e L e T e .
. . . - - :
L] ! . - .
r * 1.
. - .
r + 4
. N .
r * .
. - .
- a 1
. . . - . .
m'm m m'm'm'm'm ' ® ' ®'®= m ='®= 'S 5 5'S 5 '#5'S ' s'®s w'®S'#5'S's's'F S 8 F 8 8 S 5 8 8 8 F F F 8 8 r #8.0°°F F2 222 a s L 4 a4 4444 aa rnrnnaainiiiTalnilaaiiiiiiiiamniiim m N E S m E E N E S ® S FFFFFF 8 S S FFFF N NFFFFFFFFa N FF P FFF NS
r + . . R 1
r * -
M . - . .
r . [.
r * .
- . .] . M
. € .
r * .
. - .
v Sl _ (et o
+ . : .
* = 4 L | = b
r T -
- X ' - |
r - aq L]
- * ﬁ : ! Em " .
. M .] . .
. . N . * . R
w1%n1inT T T e rs wrss1EEE s i i i i A R T ki i e e i i e e e T
- : . . : : .
.
r " - > - -
. H * .
. a .
. * r
. . a .
.])
. - .
. . - . .
B L A A A A o o e A N N e 1777777777777777771vr':vv.....-..-..............--.--.---..--.--.-.-.--.--.--.--.--.--.--.--.--.--.--.-|--.-|--.--.-++-.--.-|--.--.--.--.--.--|-.--.--.--.--.--.--.--.--.--.--.--.--.--l-.--.--.--l-.--.--.--.--.-1-.--.--.--.--.--.--.--.--.-.-.--.-...-.............-.-----------'.r-"'r'v'v_
. r * r
. - .
. . . - r * r .
. . . H *)
b - .]) b
.
. . .
. - . *)
. - ' .
. - .) (]) .
rr A A A e ed A e e A # g ommm o behowommowow kAo ow A Ao Fowow ko bor kb Foe bR Eererer kb be b EEEEEsddrrertdttttrrtorttdddoerrerrrrrdderdendderd 84 f AR Er o m m o & m m m fowow dom d # koworeoe koeow ke oeoe ko ke b E Fow b Foe bk Fe ke bd Fowwdoeeedt ottt trtdorddtrddddd tdddd tddd wmdddmwdd e n = om e wws g mmmwoeroeoeoesoereeoesoere b boe b kR R Ees
. .
. .
: s :
. .
: # :
. .
. -
. = .
"
. " .
4 E E E E N N N E N 8 N S JFJF-F- -y ST T*TTTET*TT*TT T T T7T "% T T T TS T7T 77T EEE EE S E NN E S E N E N E S E E N B E E N N N N E S E N N E N E N N B N N N N N E E N E E E N N NN NS S F S S TS XL X A dd ok dd S A d A ke A AT ':I1111111111--IIIIIIIIIIIIIIIIIIIIIIIrIIIIIIIIIIIIIIIIIIIIIfff'ffffl-".".'|.ff‘-‘““““““““““‘IIIIIIIIII
R
.
r
r
4 3 "+
b b b kb bk b b d A d A4 44 A A A4 4 A A Ad A A A A A A A Ak kbbb bbbk kb b b b P FFFoF ok ko b b F bk E EE kb b b b kb b bk ok ok ok h ko h ok ok hhohh ok kb bbbk bbbk bk bk b bk kA ddddd Ak k kA A A A e A A A A A Ak bk bk b bk b b bk kb bk b kb bk Bk ok bk ok ok ok ok ok k ok b b b b b b bk ok ok ki h ok hohoh ko ko bk ok oh ok ok h ok bk kk hh kb bk bk b b b b dddddd A A A AR A AR A AR A A A A A Ak k kb kb kbbb kb bk bbbk bbb FFF R FFFkh b
*
r
*
a
.
-
]
a
]
+

le Conditions 3

U.S. Patent Jan. 11, 2022 Sheet 5 of 11 US 11,221,865 B2

e 400
240 ¥
404 Admin
invoke a user interface for managing a 12§ 3§ tOpUIsYY ¢ srmoeeese »
set of VMs implemented in a cluster E :
+ Lser interface 242
Selected | 1 VM Selection View 362
VNS f :
462 :
404 :
Present information that describes VMs
in the user interface to facilitale selectiony ¢ 78§
of specific VMs from the VMs : _
Haich
Actions
464
e -z 23 Install VM guestiools |
400] 1 [Uninstail VM guest tools |
Present a set of candidate balch actions | 3 # Enable VSE
at the user interface {0 faciiitate * T P .
selection of batch actions 1o perform (J Enable SSR
gver the seiected Viis User
Credentials

455 | Credentials Entry View 366 |

LUsarname

--

ismith

408 ;
Prasent data entry elements at the user |

interface to aocept user craedentials

PaSsWorg

+,
+++

410

Formulate one or more balch request
ohiects from the informalion desoribing
the selected VMS, the batch aclions,
and/or the user authentication
credentials

sar interface
Frocessor 127

Batch Request
Object 3684

SRR R ERBQERABERDENEIDAQOODELDEREREREFARD DI RREIDLRDEEEZARAEROL ER-ZRPR-GQGLEEASIOR D XEEAEAOODE LD EIEEPRFRDPODOEEEERESFEQ TR EEEPRPSIRREEEFIOQODODE RIS TR0 EERERLRDEEERATTFRDEREREZEFAOARG D EIIFOPR D EEREROODDEEERESIERDRDEERORGRD D EXE R
%ﬁﬂ#ﬂ“ﬂﬂﬂﬁﬂ##ﬁﬂﬂﬂﬂH##ﬂﬂﬂﬂﬂﬁtﬂﬂﬂﬂﬂﬁﬁ#ﬂﬂﬂﬂﬂﬂﬁ#ﬂ“ﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂm#ﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂﬂ-ﬁﬂﬁﬂ-ﬂ-ﬂ“ﬂ-ﬂﬂﬂ#ﬂ“ﬂﬂﬂﬂﬂtﬂﬁﬂﬂﬂﬁﬂﬂ#mﬂﬂﬂ#ﬁﬂﬂﬂ-ﬁﬂ-ﬂﬂﬁt#ﬂ-ﬂﬂﬂﬂﬂﬁ-ﬂ“ﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂmtﬂﬁﬂﬂﬂﬁmﬂﬂﬂﬂﬂﬂﬁﬁﬂ#ﬂﬁﬂﬂﬂﬁﬂ@t#

FlG. 4

U.S. Patent

500

&

Jan. 11, 2022

202
Frocess a baich request o identify g set
of selacted VMS ang batch aclions 1o
exacute over the seiecied Vs

1 the selected VMs:

S04
Access entity metadata 1o acguire siate
attributes that characterize the then-
current siate of the VM

++

Appiy the bailch aclions and siale
afinbutes as iNpuls 10 a set of aclion
ruies 1o entify one or more entity-
specific operations for the VM

208
iientity the node nosting the Vi

210

Construct a message object from
information descrining the VM, the
entity-specific operations, and the node

++

Ll
A

+++

~ END FOR h

ll

514

Foule the message objects to ihe
respective nodes of the selected VS

ﬂﬂ

™
ﬂ““Hﬂmﬂﬂ“H“m“““ﬂﬂﬂﬂﬂH““HMHﬂﬂ“m“"”ﬂﬂﬂ“m““Hﬂﬂiﬂluﬂ'-l!“-‘l‘”ﬂﬂiﬂhﬂlﬂ-‘lﬂﬂlﬂd-ﬂr'ﬂlﬂﬁF-‘lﬂ‘FﬂﬁFulﬂlﬂhﬂlﬂ““'ﬂl‘Ful-HrIH-I:H%H‘ll"“HFH-Iﬂlﬂhﬂlﬂ““HN&HH*““”H&“HHFMNHHIﬂ“““HﬂHﬂﬂm““mumﬁﬂﬂ““mmmﬂﬂm“““ﬂw#

Sheet 6 of 11

Batch Request
Obiect 3684

Actions 484 ™8|

"7}
2
&R

satch

llllllllllllllll

US 11,221,865 B2

~ Batch Reguest
Object 3687

T
++++++
P uom

aa

Baich

Selecieg
VA 4687

L Entity
. Metadaia |
5 134 f

: State
. _ o+

Attributes 1306

Action
RUes
132

MNode H—L‘ Enlity-Speciic

dentifiers Operations 1483
520

aaa

Message
Obiects 380 /4

102

US 11,221,865 B2

Sheet 7 of 11

Jan. 11, 2022

U.S. Patent

1208
51001 159nB ﬁ
A adedo

@ Old

Aggg dde Logg dde w

k r +*
._ﬁ_uu 'EE - N L E- R NN R R-N - A N R E-RUE R N E-ER .- NN N-RR - R N R - NN - E-E .- N N - - - R NN NR R R R .- N R - . N -] ..Hl.J_
F L +

Apey DBy DOgEUS 10818(]

oG DEl pOjgBUS 108187

O¢0 suonriadD

a0 U= Uoneiddy
0] usiesudde ol sigrus 01 Drjj 188

EEHBH!HHHHHHBHHH‘;“ DD EEIELINADNODD DD ESDNFDDDODO DTS RO ASODODPREEELADBDLODEODXE O LMEDERD LD LN E GOy I ..H-

54 SN PoiORIes L

fﬂﬂ‘ﬂ!lﬂ““ﬂﬂﬁﬂﬂﬂﬂ“ﬂﬂ#lw

ﬁﬂ‘ﬂ'ﬂ'ﬂ““‘?S?’ﬂ'&ﬂﬂﬁ“ R Ro R KR R

%

La0n soo} 1send
AN BRSO A

F L]

F
k
F
Ll
L]
+ 4
L]
-

++
- = ==

FEG WA $0 Ihobon

111
a4 2

276 UONSIdLUOD UCIIBHRISH UUHUOD

076 Sloo1 1sanb
A RIS .

3
3

3

.

.

.

*]
« W
Ll.

3

3

210 S1005 198N5 WA 10 UOIRIBISUL SXN0AL

GLG JOSN SZUOLINE/SIEDNUSUINY 0L suoneiedo
Semsoon, FOT B RIS LA}

= 153N A

P10 SIERUSPRIO JBSH JUM WA O bo

711G 98EQap00 SN0 15on8 WA 10) BIDSLU 1UNOKN

N EFOOODTDED T FRNEFEDDDLO O XK IFFPPOTDDD N T O X N
oy WY AW W P P TR Lok o R R R e KRN R ol R R R R

. . ¥
+

L]
-

Ll Ll -
aaa

GLE J8ART
ansouly

No0%

A JSHOIU0N

-108IABUAL

YO ODON

111

--

| Qoo suonriado ayinsds-Ajua ”
E UM mmkum_‘m@ aDesSall anss P0G suoneiado

1111111111111

v sioeds-ANUs
C QUILLISIR0

@ 700 1senbal
L7 LD $58004

24}
F0SS300.

e

0G%

U.S. Patent Jan. 11, 2022 Sheet 8 of 11 US 11,221,865 B2

F30

S~ Gne or more computer processors (o execute a sel of program coue
e nstructions e {10

Frogram code for nstantiating a pwrality of virtual machings in a
virtualization environment ~— 790

++

735

FProgram code for establishing one or more balch aclions to perform on the
= plurality of virtual machines e 7303

++

Program code for generating at least one batch request to perform at least |
‘ one of the one or more batch actions at two or more selected virtual
machines, the two oF more salected virtual machings being seiacted from
the pluratity of virtual machines

740

i Program code for determining one or more eniity-specific operations that |
correspond to individual ones of the two or more selected virtual machines, L., 750
L the one or more entity-spectfic operations to carry ocut the one or more |
baten actions at the indivigual ones of the two or more selected virtuas
Machines

+++

| Program code for execuling the one or more entity-specific operations over |

"""" ine ingividual ones of the hwo or more selegied virlua!l machines /60

US 11,221,865 B2

Sheet 9 of 11

Jan. 11, 2022

U.S. Patent

L
2
O
-
o
2.
]
o
st
<

-

GYR J8beuR O |dY

B~ pOg Sisonoey gins

Ve Di-

Q28 1SIOHUOD HSICH IBNIHA NAD

a

20 OO 55000y aDRICIS BIBDRIDIN 18307

-t

o0 SUOoUNn.d JaDRUBIA BIBDRISIA

D78 MO0 $8800Y a0IAS(] (SR 1B

Ajiioe 4 jebBeuriy syoen eI

O NS QA IS0S! O/ SN

P18 suoioun.d sebsuein O/ BB

ya'ssietwicsreireirsin

(9 Jabeupin uoneInbuyuoD ASIC) IBMIA

COG0 ——
SOR SUQIOUN
FRPUBH L0

nhlrliel’ el il

G1E SSaIPPY i NAD |

L]
w

HES aoURISUI BUILOBIA TENLIA JBJONUCS

B C08 SiSeniay |S0S! B 208 s15onbay S4N

-

G L8 MU SUOHBOUNUILOYD s

CCTR U0 8OBLSLIU] MIOMIDN = b

21726 18908 d 1090100 SIOMIBN w88 |

-
rrrrr

;;;;;

$8 18UIS1IU]

-

aaaaa

)

w b Ol] BNdl B

=

J

OSIAIOUALE
SOUBISU kilbabbnch 3 SO !
SULOBIN

ENLIA

b 3

L

C 19 MU SUOHBDIUNLULIOD

GO0 ULIOHRI DUnnduwion

a
+
111

OOve

L

84 lolliglul

US 11,221,865 B2

&
.)
| S 18MIE e 0001004 MIOMION ooy 881
- 20 MO0l 85800y obRI0IS BIBDEIOW 1BOOT bOR 194 B JOROI0M HIOMIBIN
1 LOZ0 U0 SORLIGOIE] MIOMIBN ey Lol
4
o rermTT T e e e
>
— & J R%Y
e o — y Asopsodey gieg ,
— 08 AQOIH 85300 sUiAa(] (J8% 1BI0T % MO | o=} CdO |
Y
- |
% L8 MO0IE $S800Y aDIAS(] AIOLUSIN 18207 QULELSLY
= - JBUIBILON |
. i SIGRINDEXT J
O ;
= S ; G LR RUET SUOHBEDIUMULICD
AR : : P
|) S _ A ISOSH ” A S ; BES
M,/.,. ,.m O HING m O 1S08! Ol SN : SEG WIONBId BUINdion
) i
- o 8 suoiloung Jabeue it | .
U o e . 3 A O/ BB ZGo UonBIniyuon aaimp
= 718 1ebruria uoisInBUELOT NSO BNLHA
o
-

SHDd L

20O SDUBISY Q08 SUOIDUN.
SR LLINN IRBPUEH LN

SSBIDINY 1 JOUIBILGT

~—
=
®
~—
S
P ,
)
-

0GR S0URISUL JRUWRIUICD SIGEIN0SXT

11

rr

0088

US 11,221,865 B2

Sheet 11 of 11

Jan. 11, 2022

U.S. Patent

m = ®E 5 B - r7E S S E S S S 1SS S E EESFLEEEE SN - -LE S E S E S-S LTE S EE S FLT1TE S E S E - FTLTTE S S E S ST 1E S S S S - L1TE S E S E EJ-LE S E S E S-S E S E S S S LS E S E S - - LE S E S EESFF1LE S E S S S L1TE S E S ErF LT E S S EESFFTLLEE S E S ES1LEEEE SN - - LE S E S EEF 1SS EEESFrLEEEEEL

B~ 708 Sisonbay gine B OO0 Si5enbay 1808 B 208 Sisenboy 4N

<8 "D

78 siusuocduion weisiAg Buneisdn

L - - g L - i Ll kL P P P P P L F P L x b - x
l—.l.—.l.-.l L —..——.-..-.—.-—.1.1 l-—.l.—.l r.— r.— —.-..1—..—.-.--—.._ l.—.l r.—r-_—.-..1—..—.-.!.—.!.-.-.-.--_-.—.l._—.-..-.in—.-.l.—.l L l.—.l.—.l._ —.-..—. .—.-.l-—.l l.—.l r.—r-_—.-..-.i.—.-..-. -_—.- l-—.l.—.l._.-a.la.-.—..—. .——.- l.—.l.—.l.—.-.a.la.-.-.—.-..-. L l.—.l.—.l.-—.-..-.-..-..-.!—..- l.—.l.—.l-_r._—.-..-—..-.‘.-.—.l L l-—.l.—.l._—.-..la.11.1—.l L l.—.l.— r.— —.-.11.111—..- l.—.l.—.l-_r._—.._.la.-.-.-—. .——.- l-—.l.—.l._r-..-.—..—.-.-. L -.—.l._l._l._ —.-1.1-.1.-.1—.._ l.—.l.—.l._ r.——.-_.la.--..-. -_—.- l.-.l-—.l._r-..-.‘.-.‘l—..-. --—.l.—.l.—.l._ —.-1.1-.1.-.1—.._ —.l l.—.l.—.l.-r-..-.a.--.l—.-_—.- l.-.l-—.l._r-..-.a.-.‘.—.-.-. --—.l.—.l._r

NUGHOUNS DOTUSUBILOD J8sn

+
+*
Fy
-
F
a
-
+
+*
+
+
-
-
F
-
LY
+
+
+
+
o

ZUOHIDUN- DOZUSUIBIUOD 185N

A d= F F F + % &k on FF kA

L UONOUNY DOZUSUIBILOD Josn

v k kA A Ak F kA

L
r

L]

BUE aouBISU] SIgBUUN

L R 1 1 4 d a d d b k8 1 dd A dd bk b kI dddd bk bk ES I DI d A B E I I Jd A d A bk kIl S ddd bk kR4 ddd ek kSl dd A d Rk k kI I dddodd kB I dddd AR R A d A dod kI LA dddd kR dddd R
* d d dd=a FFFFd A dAda bk kb Fbddrra bbbk bddorrsares b b bddd s bbb FEEPddddnF FFEFAdAddd 58 FFFEFAdAdAdd 8k FFEFEdAdd e b b Fdddddm bk bk FEAddddm Bk EFdddda kb bdd rsora kBFEFEAA

4

* *r s = & 5 b g FTFErTs s EETTFETSE B ®® T r ¥ rE = nw T ¥ rE o= =w Frr vy s nm & * v+ ¥+ r s 5 5 B ETTTTEEEEETTTTE S NN " Y TrY T s E = E ETTTTEEEEETTTTS S s 8 Frrorsosonn

*+ 4 F o Frr+d A FFrrF+dsdrddFFr+srdddafbFdFrdsrdddansrdrdsrdddarsFrrrddhisagfbrrrdds s adrrdddeodbFrdsrdddashradardsrdddrrFrrdsrdddanrdirdsrdrddrbrryrdddetedfrbrrdyd +FrddribrrrdsddddradrdrrdesrdrfFFrdsrdesrdddasbr+sdsrsdsdortF

e i -0 . N . O N - L P . - O P O L P O - P P N - L P D - O . - . i, T O T - O, - R, T L K O L O IO O O, DL T - O, O IO, OB -, - - A L, A, O - DO - O - - I O, O PO - - - P, R, O L - O, P, N O R, I AL A i - NP P N -, L, - P - I - I, O - A -0 . - O O I . - |

a

A4 dd g grrryrrrys s gTTrT

r ra g F Fdd rrasrr bFrrrera

**r F Frrusarrr bk Frassarrk

T

T TE E EWYTTTTTTHEEWTTTTTI1IEEETTTTTITEEEWTTTTTSCSETTTTOTTAEEETTTTTSCSD N ETTTTETEEWTTTTTEEEEFTYTTTTIEEEETTTTAEEETTTYTTTAT AR FPTYTYTTTYTTSE R R T
m A 4 4 a4 4 E E N E B L L LA d B E N L AL d] 8 N E LA L] & W EEE AL L Lo 48 B Ldd L {4 E E A AL L] {8 N AL EL L] - EEE N AL AL L] EEE EEL L LY {8 N EE AL L L] dd N B LA L LEJEEEAE G LE]dEm

F

+

m b FF vy s s 5 5 B 5B FiTE s E S 5§ FLTHESE S EEEJFLTEE S EEESFTTEE EEE S LTEEEEE S L THE S E S EEJSFLTE S E S EESFLTE SRSy fFTE RN R A TE N EEE SRS LT E SN sy ars s s s s hrrs s s hrry e s re s s s by s s Frs s s s hrrs s r] TR

BOE SUSHOUN -
A2ipuid 1 L000]

r
F
F
F
F
F
r
L
L

+
F
F
F
F

1098 SDUEISUI JSUIRIUCT SIGRINOSXT Jas

4 4+ + 4 F FEE & oo dd 4 Ay dd kA A d At ARk d ke d RSk dd A FEEES A d AR s dd RSk d A EEE A kA d A EE bk dd dEEES ok d Ad R RS d A A EE A d A E RSk A A EE Sy kA d AR o

T L]
Y o

qd b ok ok ok &
" mArrrd

L) []
+ +

4 % m &

G 58 U SUCHBOLNUILIOL) oot

Aok dd 4 ARk d A d A EE S dddd ARt o+ d o R b

T rrFrd

[EEEXNLN

2070 U0 B0BUSI SHOMIBN ~pbumn

178 IBM0B 100010)d RIOMIBN w8

T11171EET

-

L 170 183084 10011014 MICMIBN -y B8

T s s mETCFPT

Loz 0 1O QDBLIBIU] SHOMION swwp foomed 0L

il “piluglnaliuirah ! s+ o " vininaini
o [& +

wmw F'+ 4 4 r + + 44 .-..1.-.-.—- d F 4 4 r

ovsodey e | (T e
NOED | = | 2NdO | iNdD]

GOURISLH : UQUIBE(] _,

; S ¥ -y o ,
JBUIRIUON 1

PR B g B e b e e b N S SR A N N S N ¥ [W W R S T

L

SIGBINDOXT

-
=,

T

LS U SUQBROIUINUAUGT

mbabeunhia' el

OR ULIOHEBIA DURNAUIGD

coo UonemnByuosH

GOOY

US 11,221,365 B2

1

BATCH MANAGEMENT OF OPERATIONS
OVER VIRTUALIZED ENTITIES

FIELD

This disclosure relates to computing systems, and more
particularly to techniques for batch management of opera-
tions over virtualized entities.

BACKGROUND

Users of modern virtualized computing systems desire
some mechanism for managing a broad variety of hetero-
geneous virtualized entities in their systems. Such virtual-
ized entities (VEs) might include virtual machines (VMs),
virtual disks (vDisks), virtual network interface cards
(VNICs), executable containers (ECs), and/or other virtual-
ized entities. In some cases, a single computing system
might comprise scores of computing nodes that 1n turn host
hundreds or even thousands of such VEs. Providers of
virtualized computing systems often provide user interfaces
to facilitate management of the VEs by various users. For
example, such a user interface might be accessed by a
system administrator to execute an action so as to achieve a
certain outcome (e.g., state change) at the VM the system
administrator 1s managing. In many cases, the system
administrator might want to achueve the same outcome over
a large number of VMSs. In such cases, diflerences in the
then-current state of each particular VM might impact the
ability to achieve the intended state change or outcome.

Unfortunately, the atorementioned user interfaces do not
provide a mechanism for executing actions over a batch of
VMs that might be 1n various different states. To accommo-
date the varying states of the VMs, many approaches require
that the system administrator specily a desired action one-
by-one for each one of the large number of VMs. In some
cases, the action (e.g., mstalling an application) might
require that the system administrator login to each VM. As
such, performing the action one by one over the large
number of VMs becomes cumbersome for the system
administrator and consumes a significant amount of com-
puting resources.

This situation becomes further complicated when the
steps and/or operations executed to achieve the desired
outcome at each VM are dependent on the then-current
states of the VMs. In this situation, the system administrator
must first check the then-current state of a subject VM and
apply one or more variations to the steps or operations as
needed based on the then-current state of the subject VM. As
the number of VMs that are used 1n a virtualized computing,
system 1ncreases, the burden on the system administrator as
well as the computing resources consumed to manage the
VMs becomes greater and greater. What 1s needed 1s a
technological solution for performing batch operations over
a group of VMs that are 1n varying states.

SUMMARY

The present disclosure describes techniques used in sys-
tems, methods, and 1n computer program products for batch
management of operations over virtualized entities, which
techniques advance the relevant technologies to address
technological 1ssues with legacy approaches. More specifi-
cally, the present disclosure describes techniques used 1n
systems, methods, and 1n computer program products for
batch management of virtualized entities in virtualization
environments. Certain embodiments are directed to techno-

10

15

20

25

30

35

40

45

50

55

60

65

2

logical solutions for applying a rule base to the then-current
state attributes of a selected batch of virtualized entities to
determine the operations to be executed so as to achieve a
desired outcome at the virtualized entities.

The disclosed embodiments modily and improve over
legacy approaches. In particular, the herein-disclosed tech-
niques provide technical solutions that address the technical
problems attendant to performing batch operations over a
group of virtualized entities that are 1n varying states. Such
technical solutions relate to improvements i computer
functionality. Various applications of the herein-disclosed
improvements in computer functionality serve to reduce the
demand for computer memory, reduce the demand {for
computer processing power, reduce network bandwidth use,
and reduce the demand for inter-component communication.
For example, when performing batch operations over a
group ol virtualized entities that are 1n varying states,
memory usage and CPU cycles demanded are dramatically
reduced as compared to the memory usage and CPU cycles
that would be needed but for application of the herein-
disclosed techniques.

Some embodiments disclosed herein use techniques to
improve the functioning of multiple systems within the
disclosed environments, and some embodiments advance
peripheral technical fields as well. As specific examples, use
of the disclosed computer equipment, networking equip-
ment, and constituent devices within the shown environ-
ments as described herein and as depicted 1n the figures
provide advances 1n the technical field of hyperconverged
computing platform management as well as advances 1n
various technical fields related to user interfaces.

Further details of aspects, objectives, and advantages of
the technological embodiments are described herein and in
the drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings described below are for illustration pur-
poses only. The drawings are not intended to limit the scope
of the present disclosure.

FIG. 1 depicts a computing environment in which
embodiments of the present disclosure can be implemented.

FIG. 2 presents a virtualized entity batch management
technique as implemented in systems that facilitate batch
management of virtualized entities 1n virtualization environ-
ments, according to an embodiment.

FIG. 3A 1s a block diagram of a system that implements
batch management of virtualized entities, according to an
embodiment.

FIG. 3B depicts a set of specialized data structures that
improve the way a computer uses data 1n memory when
performing steps pertaining to batch management of virtu-
alized entities 1n virtualization environments, according to
some embodiments.

FIG. 4 depicts a batch request generation technique as
implemented 1n systems that facilitate batch management of
virtualized entities in virtualization environments, according
to some embodiments.

FIG. 5 presents a rule-based operations selection tech-
nique as implemented 1n systems that facilitate batch selec-
tion of virtualized entities, according to an embodiment.

FIG. 6 1llustrates various example virtualized entity batch
management scenarios as occur in systems that facilitate
batch management of virtualized entities, according to an
embodiment.

US 11,221,365 B2

3

FIG. 7 depicts system components as arrangements of
computing modules that are interconnected so as to 1mple-

ment certain of the herein-disclosed embodiments.

FIG. 8A, FIG. 8B, and FIG. 8C depict virtualized con-
troller architectures comprising collections of 1ntercon-
nected components suitable for implementing embodiments
of the present disclosure and/or for use in the herein-
described environments.

DETAILED DESCRIPTION

Embodiments 1n accordance with the present disclosure
address the problem of performing batch operations over a
group of virtualized entities that are 1n varying states. Some
embodiments are directed to approaches for applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
ized enftities. The accompanying figures and discussions
herein present example environments, systems, methods,
and computer program products for batch management of
virtualized entities 1n virtualization environments.
Overview

Disclosed herein are techniques for applying a rule base
to the then-current state attributes of a selected batch of
virtualized entities to determine steps or operations to per-
form so as to achieve a specified desired outcome at all of
the selected batch of virtualized entities. In certain embodi-
ments, the virtualized entities are VMs implemented 1in a
heterogeneous virtualization environment. A user interface
1s invoked to select a batch of selected VMs, and to specitly
one or more batch actions so as to achieve a desired outcome
at the selected VMs. For example, a system administrator
might select one or more applications to install on the
selected VMs. Various state attributes that characterize the
respective states of the selected VMs are accessed. A set of
action rules are applied to the state attributes to determine a
set of entity-specific operations to execute at each respective
VM to achieve the target outcome (e.g., install one or more
applications).

As an example, a first VM might require that a service 1s
installed and enabled before installing the particular appli-
cation, while a second VM might already have the service
installed and enabled. The entity-specific operations are then
executed at the VMs to achieve the target outcome at each
of the VMSs. In certain embodiments, a controller (e.g., a
controller VM) 1n the virtualization environment communi-

cates with the VMs through a hypervisor-agnostic layer. In
certain embodiments, user authentication credentials are
received at the user interface to facilitate one or more of the
entity-specific operations.
Defimitions and Use of Figures

Some of the terms used in this description are defined
below for easy reference. The presented terms and their
respective definitions are not rigidly restricted to these
definitions—a term may be further defined by the term’s use
within this disclosure. The term “exemplary” 1s used herein
to mean serving as an example, instance, or illustration. Any
aspect or design described herein as “exemplary” 1s not
necessarilly to be construed as preferred or advantageous
over other aspects or designs. Rather, use of the word
exemplary 1s intended to present concepts 1 a concrete
fashion. As used 1n thus application and the appended claims,
the term “or” 1s mtended to mean an inclusive “or” rather
than an exclusive “or”. That 1s, unless specified otherwise, or
1s clear from the context, “X employs A or B” 1s intended to
mean any of the natural inclusive permutations. That 1s, 1T X

10

15

20

25

30

35

40

45

50

55

60

65

4

employs A, X employs B, or X employs both A and B, then
“X employs A or B” 1s satisfied under any of the foregoing
imstances. As used herein, at least one of A or B means at
least one of A, or at least one of B, or at least one of both
A and B. In other words, this phrase 1s disjunctive. The
articles “a” and ““an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or 1s clear from the
context to be directed to a singular form.

Various embodiments are described herein with reference
to the figures. It should be noted that the figures are not
necessarilly drawn to scale and that elements of similar
structures or functions are sometimes represented by like
reference characters throughout the figures. It should also be
noted that the figures are only intended to facilitate the
description of the disclosed embodiments—they are not
representative of an exhaustive treatment of all possible
embodiments, and they are not intended to impute any
limitation as to the scope of the claims. In addition, an
illustrated embodiment need not portray all aspects or
advantages of usage 1n any particular environment.

An aspect or an advantage described 1n conjunction with
a particular embodiment 1s not necessarily limited to that
embodiment and can be practiced in any other embodiments
even 1f not so illustrated. References throughout this speci-
fication to “some embodiments” or “other embodiments™
refer to a particular feature, structure, material or character-
1stic described 1n connection with the embodiments as being
included 1n at least one embodiment. Thus, the appearance
of the phrases “in some embodiments™ or “in other embodi-
ments” 1 various places throughout this specification are
not necessarily referring to the same embodiment or
embodiments. The disclosed embodiments are not intended
to be limiting of the claims.

Descriptions of Example Embodiments

FIG. 1 depicts a computing environment 100 1n which
embodiments of the present disclosure can be implemented.
As an option, one or more variations ol computing environ-
ment 100 or any aspect thereol may be implemented in the
context of the architecture and functionality of the embodi-
ments described herein.

FIG. 1 illustrates an environment where a rule base 1s
applied to a set of then-current state attributes of a selected
batch of virtualized entities. Processing steps carried out
within the environment serve to determine the operations to
be executed so as to achieve a desired outcome at the
virtualized entities. Specifically, the figure presents a logical
depiction of how the herein disclosed techniques can be
implemented in a computing environment (e.g., a virtual-
1zation environment).

The environment of FIG. 1 includes representative com-
puting nodes (e.g., node 104, . . . , node 104,,) 1n a cluster
102 that facilitates 1nstantiation of various virtualized enti-
ties to perform certain computing tasks. Specifically, a
representative set of virtual machines (e.g., VM 108,,, VM
108, ., VM 108,,,... VM 108,) arec shown as instantiated
at the nodes. As can be observed, the virtual machines
(VMs) access a storage pool 110 associated with the nodes
through a respective storage I/O (input/output or 10) con-
troller (e.g., controller 106, at node 104,, and controller
106,, at node 104,,). An instance of such a controller 1s
instantiated at each node. In some cases, such a controller 1s
a hypervisor. In some cases, the controller 1s a node-specific
virtual machine that runs on top of a hypervisor. In some

US 11,221,365 B2

S

cases, the controller 1s a combination of a hypervisor plus
additional code such as a hypervisor plug-in or a hypervisor
agent.

As earlier described, a system administrator (e.g., admin
112) might desire some mechanism for managing the VMs
and/or other virtualized entities (e.g., vDisks, vINICs, ECs,
etc.) at cluster 102.

The herein disclosed techniques include mechanisms that
serve to perform batched operations over groups of virtual-

1zed entities that are 1 varying states. Specifically, a batch
processor 124 and a user interface processor 122 are imple-
mented 1n an entity management tool 120 in computing
environment 100. A selection view 126 at a user interface 1s
accessed (e.g., by admin 112) to select a batch of selected
VMs and to specily one or more batch actions so as to
achieve a desired outcome at the selected VMs (operation 1).
For example, admin 112 might select one or more applica-
tions to install on the selected VMs. The batch actions and

selected VMs are codified 1into one or more batch requests
144 that are received at batch processor 124. Various
instances of state attributes 136 that characterize a respective
set of the then-current VM states 146 of the selected VMs
are acquired from a set of entity metadata 134 by batch
processor 124.

A set of action rules 132 are applied to the state attributes
136 to determine instances ol entity-specific operations to
execute at each respective selected VM to achieve the target
outcome (operation 2). As an example, VM 108, ,, might
require that a code library or support tools (e.g., the shown
VM guest tools 111) needs to be 1nstalled before enabling a
particular application, while VM 108, .- might already have
the code library or support tools installed (e.g., the shown
installed VM guest tools 109) and merely needs to enable the
application. The entity-specific operations are 1ssued to the
controllers of the nodes hosting the selected VMs to be
executed at those selected VMs (operation 3). For example,
certain instances of enftity-specific operations 148, are
issued to controller 106, of node 104, to execute over VM
108,,, VM 108, ,, and/or other VMs at node 104,, and
entity-specific operations 148, ,are 1ssued to controller 106, ,
of node 104, ,to execute over VM 108, ,,, VM 108, ..., and/or
other VMs at node 104,, In the shown embodiment, an
entity management protocol 150 1s mnvoked to execute the
entity-specific operations over the selected VMs so as to
achieve the desired outcome of the specified batch actions
(operation 4). In many cases, 1n order to achieve a particular

desired outcome at a VM, the VM might need support from
the alorementioned VM guest tools. For example, 1n order to
achieve the desired outcome of enabling a particular appli-
cation for a particular VM, the VM guest tools would need
to be installed into that VM before enabling the particular
application. As such, a protocol for installing the VM guest
tools mnto a VM 1s supported by the entity management
protocol 150.

The wvirtualized entity batch management capabilities
facilitated by the herein disclosed techmiques result in
improvements 1n computer functionality that serve to reduce
the demand for computer processing power, reduce the
demand for computer memory and data storage, reduce
network bandwidth use, and reduce the demand for inter-
component communication in virtualization environments.
Specifically, applications of the herein disclosed techmiques
climinate the need to execute certain actions one-by-one at
individual ones of a set of selected VMs, thereby substan-
tially reducing the computing resources to administer and/or
execute batch actions at the selected VMs.

10

15

20

25

30

35

40

45

50

55

60

65

6

One embodiment of techniques for batch management of
virtualized entities 1s disclosed in further detail as follows.

FIG. 2 presents a virtualized entity batch management
technique 200 as implemented 1n systems that facilitate
batch management of virtualized entities in virtualization
environments. As an option, one or more variations of
virtualized enftity batch management technique 200 or any
aspect thereol may be implemented in the context of the
architecture and functionality of the embodiments described
herein. The virtualized entity batch management technique
200 or any aspect thereof may be implemented in any
environment.

FIG. 2 1llustrates one aspect pertaining to applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed entities. Specifically, the figure presents one embodi-
ment of certain steps and/or operations that facilitate per-
forming batch operations over a set of selected virtualized
entities based at least in part on the then-current states of the
virtualized entities. As can be observed the steps and/or
operations can be partitioned into a set of setup operations
202 and a set of batch management operations 204.

The setup operations 202 of virtualized entity batch
management technique 200 can commence by instantiating
a plurality of VMs 1n a virtualization environment (step
210). Instantiating a plurality of VMs i1s merely one
example, and other types of virtualized entities can be
managed 1n bulk according to the herein disclosed tech-
niques. A set of batch actions that can be performed over the
VMs 1s established (step 220). In some cases, a batch action
might be represented by an abstracted instruction that 1ndi-
cates the desired outcome of the action at a target virtualized
entity, where the action requires several operations to be
carried out. For example, a batch action to “Install VM guest
tools” might require multiple operations (e.g., between a
controller and a target VM) to complete the installation of
the VM guest tools. In example embodiments, the VM guest
tools comprise facilities that are used by and between a
controller and a VM. Such facilities might include commu-
nication protocols that are used between a controller and a
VM so that a VM can avail itself of functions of applications
that are supported (e.g., in whole or 1n part) by the controller.
As such, some facilities of the VM guest tools are situated
in the controller, whereas other facilities of the VM guest
tools are situated 1n a VM. In addition to the aforementioned
applications that are supported by the VM guest tools, the
VM guest tools can sometimes augment the capabilities of
the operating system that underlies a particular VM. Spe-
cifically, the VM guest tools can provide functionality that 1s
not provided by the underlying operating system of the VM.
The controller can maintain a copy of the codebase of the
VM guest tools 1in a format that can be mounted by a guest
operating system of a VM.

The batch management operations 204 of virtualized
entity batch management technique 200 can commence by
generating a batch request to perform one or more of the
batch actions at a plurality of selected VMs from the VMs
(step 240). As can be observed, the batch actions and/or the
selected VMs might be specified by admin 112 via user
interface 222. For each individual VM of the selected VMs,
a set of entity-specific operations that serve to carry out
actions at the individual VM 1s determined (step 250).
According to the herein disclosed techniques, the entity-
specific operations are determined based at least 1n part on
the then-current state of the individual VM, which then-
current state can be denived, for example, from enfity

US 11,221,365 B2

7

metadata 134. In some cases, the entity-specific operations
are determined at least in part by applying a rule base (e.g.,
action rules 132) to the state attributes representing the
then-current state and/or to other information. The enftity-
specific operations are then executed at each respective
individual VM of the selected VMs (step 260). The execu-
tion of the entity-specific operations over the selected VMs
1s oiten performed concurrently (e.g., in parallel).

One embodiment of a system for implementing the vir-
tualized entity batch management techmque 200 and/or
other herein disclosed techniques 1s disclosed as follows.

FIG. 3A 1s a block diagram of a system 3A00 that
implements batch management of virtualized entities. As an
option, one or more variations of system 3A00 or any aspect
thereof may be implemented 1n the context of the architec-
ture and functionality of the embodiments described herein.
The system 3A00 or any aspect thereol may be implemented
in any environment.

FI1G. 3A1llustrates one aspect pertaining to applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed entities. Specifically, the figure 1s being presented to
show one embodiment of certain representative components
and associated data flows that describes how the herein
disclosed techniques might be implemented 1n a virtualiza-
tion environment. The components and data flows shown 1n
FIG. 3A present one partitioning and associated data
manipulation approach. The specific example shown 1s
purcly exemplary, and other subsystems, data structures,
and/or partitioning are reasonable.

As shown 1n FIG. 3A, the system 3A00 comprises three
representative nodes (e.g., node 104, , nhode
104,, node 104,,) that have multiple tiers of storage in
a storage pool 110. Each node can be associated with one
server, multiple servers, or portions of a server. The nodes
can be associated (e.g., logically and/or physically) with one
or more computing clusters, such as cluster 102. The mul-
tiple tiers ol storage of storage pool 110 can include
instances of local storage. For example, the local storage can
be within or directly attached to a server and/or appliance
associated with the nodes. Such local storage can include
solid state drives (SSDs), hard disk drives (HDDs), and/or
other storage devices. In some embodiments, the multiple
tiers of storage can 1include storage that 1s accessible through
a network 330 such as a networked storage (e.g., a storage
area network or SAN, network attached storage or NAS,
etc.).

As shown, any of the nodes of system 3A00 can imple-
ment one or more virtualized entities, such as wvirtual
machines (e.g., VM 108,,, VM 108, ., VM 108, ,,..., VM
108, ., controller VM 306,, . . . , controller VM
306, ..., controller VM 306,,) and/or executable contain-
ers. The VMs can be characterized as software-based com-
puting “machines” implemented in a hypervisor-assisted
virtualization environment that emulates the underlying
hardware resources (e.g., CPU, memory, etc.) of the nodes.
For example, multiple VMs can operate on one physical
machine (e.g., node host computer) running a single host
operating system, while the VMs run multiple applications
on various respective guest operating systems. Such flex-
ibility can be facilitated at least in part by one of a vaniety
of heterogeneous hypervisors (e.g., hypervisor-E 312,
hypervisor-A 314, or hypervisor-X 316), which hypervisors
are logically located between the various guest operating
systems of the VMs and the host operating system of the
physical infrastructure (e.g., the nodes).

10

15

20

25

30

35

40

45

50

55

60

65

8

As an alternative, executable containers may be imple-
mented at the nodes 1n an operating system-based virtual-
1zation environment or container virtualization environment.
The executable containers are implemented at the nodes 1n
an operating system virtualization environment or container
virtualization environment. The executable containers com-
prise groups ol processes and/or resources (e.g., memory,
CPU, disk, etc.) that are 1solated from the node host com-
puter and other containers. Such executable containers
directly interface with the kernel of the host operating
system without, 1n most cases, a hypervisor layer. This
lightweight implementation can facilitate eflicient distribu-
tion of certain software components such as applications or
services (e.g., micro-services). Any node of system 3A00
can i1mplement both a hypervisor-assisted virtualization
environment and a container virtualization environment for
various purposes.

Furthermore, any node 1n system 3A00 can implement a
virtualized controller to facilitate, at least in part, access to
storage facilities (e.g., storage pool 110, networked storage,
etc.) by the VMs and/or the executable containers operating
at the node. As used in these embodiments, a virtualized
controller 1s a collection of software mstructions that serve
to abstract details of underlying hardware or software com-
ponents from one or more higher-level processing entities. A
virtualized controller can be implemented as a virtual
machine, as an executable container (e.g., a Docker con-
tainer), or within a layer (e.g., such as a layer 1n a hyper-
visor). As can be observed in system 3A00, an mstance of a
virtual machine (e.g., controller VM 306,, controller VM
306, ,, and controller VM 306,,) at each representative node
1s used as a virtualized controller. The controller VMs of the
nodes 1n system 3A00 interact using communications over
network 330.

The virtualized entities at the nodes of system 3A00 can
interface with the controller VMs of the nodes through a
hypervisor-agnostic layer 310. The hypervisor-agnostic
layer 310 facilitates communications between the controller
VMs and the virtualized entities (e.g., other VMs) at the
nodes that are independent of the underlying hypervisor. As
such, varying virtual machine architectures and/or hypervi-
sors can operate with the system 3A00. For example, a
hypervisor (e.g., hypervisor-E 312) at one node might cor-
respond to software from a first vendor, while another
hypervisor (e.g., hypervisor-A 314) at another node might
correspond to a second software vendor. As another virtu-
alized controller implementation example, executable con-
tainers (e.g., Docker containers) can be used to implement a
virtualized controller 1n an operating system virtualization
environment at a given node.

In this case, for example, the virtualized entities at a
particular node can interface with a controller container
through a hypervisor and/or the kernel of the host operating
system of the node. Such interactions between the virtual-
1zed entities and controllers at the nodes often pertain to
various 1nstances (e.g., replicated instances) of user data 342
and metadata 344 that are distributed over the storage pool
110 to facilitate certain tasks and/or operations performed at
virtualized entities.

Other components are implemented 1 system 3A00 to
facilitate the herein disclosed techmiques. Specifically, an
instance ol entity management tool 120 that comprises user
interface processor 122 and batch processor 124 might be
implemented at controller VM 306, of node 104 .. To further
facilitate the herein disclosed techniques, various storage
facilities are implemented 1n storage pool 110 for access by
entity management tool 120 and/or the controller VMs of the

US 11,221,365 B2

9

nodes associated with the storage pool. Specifically, and as
shown, such storage facilities store and/or organize data
pertaining to the authentication and/or authorization creden-
tials of the system users (e.g., stored 1n user profiles 352), the
structure and/or organization of the cluster entities (e.g.,
stored 1n node topology 3354), the configuration of the
virtualized entities of the cluster (e.g., stored 1n entity
metadata 134), the rules for determined entity-specific
operations from batch actions (e.g., store 1n action rules
132), and/or data pertaining to other aspects of the herein
disclosed techniques.

Further details of the data structures associated with the
foregoing storage facilities and/or other data objects access
by the herein disclosed techniques are disclosed as follows.

FIG. 3B depicts a set of specialized data structures 3B00
that improve the way a computer uses data in memory when
performing steps pertaining to batch management of virtu-
alized entities 1n virtualization environments. As an option,
one or more variations of specialized data structures 3B00 or
any aspect thereof may be implemented 1n the context of the
architecture and functionality of the embodiments described
herein. The specialized data structures 3B00 or any aspect
thereol may be implemented 1n any environment.

FI1G. 3B 1illustrates one aspect pertaining to applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed enfities. Specifically, the figure 1s being presented to
illustrate one embodiment of data structures that can be
implemented to organize certain data used when implement-
ing the herein disclosed techniques. The figure furthers
illustrates a logical depiction of data flows of such data in an
example scenario as performed 1n accordance with the
herein disclosed techniques.

As shown 1 FIG. 3B, various views are presented to
admin 112 via a user interface 222 to facilitate mitiation of
certain batch operations over a set of selected virtualized
entities. Specifically, a VM selection view 362 1s presented
to facilitate selection of a set of selected VMs (e.g., VM
“vm-01%£", VM “vm-0m1”, and VM “vm-0m£”) by admin
112. An action selection view 364 1s also presented to
facilitate selection of the batch actions (e.g., “Install VM
guest tools”) to perform over the selected VMs. As used
herein, “VM guest tools™ 1s a representative codebase (e.g.,
library) that can be installed on a particular VM. The VM
guest tools might include applications that can be operated
by the VMs. Strictly as examples, one such application
might correspond to a volume snapshot service (VSS) and/or
another such application might correspond to a self-service
restore (SSR) capability. The foregoing examples are merely
representative applications.

In such applications, a portion of the application 1s
included 1n the VM guest tools and a portion of the appli-
cation 1s included 1n a VM that avails itself of the capabilities
of the application. In some cases, use of an application
and/or set-up of an application uses user credentials to
authenticate and authorize the user. As such, a set of user
credentials can be entered in a credentials entry view 366,
which user credentials are used to authenticate the user
and/or to authorize installation and/or use of applications or
certain batch actions.

The information captured 1n the views presented the user
interface 1s used to form one or more batch requests that are
received at batch processor 124. As shown, the information
constituting a batch request might be codified according to
batch request object 3680. The batch request object indicates
that an object associated with a particular batch request

10

15

20

25

30

35

40

45

50

55

60

65

10

might describe a request identifier (e.g., stored 1n a “reqlD”
property), a list of selected VMs (e.g., stored 1n a “vms| |7
attributes object), a list of batch actions (e.g., stored 1n an
“actions [|” attributes object), a set of user credentials (e.g.,
stored 1n an “auth| |” attributes object), and/or other data
pertaining to the batch request. As can be observed, the batch
processor 124 might access a set of user profiles 352 to, for
example, verily any user credentials provided in the batch
requests.

To facilitate the herein disclosed techniques, the batch
processor 124 accesses the entity metadata 134 to determine
the then-current state of the selected VMs associated with a
particular batch request. The data comprising entity meta-
data 134 and/or any other data described herein can be
organized and/or stored using various techniques. For
example, the entity metadata 134 might be organized and/or
stored 1n a tabular structure (e.g., relational database table)
that has rows that relate various enfity attributes with a
particular virtualized entity. As another example, the nfor-
mation might be organized and/or stored 1n a programming
code object that has mstances corresponding to a particular
virtualized entity and properties corresponding to the vari-
ous attributes associated with the virtualized entity.

As depicted 1n a set of select entity metadata 374, a data
record (e.g., table row or object instance) for a particular VM
might describe a VM 1identifier (e.g., stored mn a “vmlID”
field), an indication of whether the VM guest tools are
installed at the VM (e.g., stored 1n a “VMitools™ field), an
indication of whether the VSS app 1s enabled at the VM
(e.g., stored 1 a “vss” field), an indication of whether the
SSR app 1s enabled at the VM (e.g., stored 1n a “SSR” field),
and/or other entity attributes. As can be observed, the data 1n
the “VMtools”, “VSS”, and “SSR” fields can represent the
state attributes 136 that characterize the state of a particular
VM. As shown, a particular state can be codified into a string
(e.g., “installed”, “enabled”, “disabled”, etc.). In other cases
(e.g., to conserve memory consumption), a state might be
assigned a numerical value or one or more memory bits
representing a numerical value (e.g., “17 represents
“enabled”, “0” represents “disabled”, etc.). In some cases, a
particular characteristic can have multiple states. For
example, a user access characteristic might have the states
“admin only”, “owner only™, “read only”, or “unlimited”. As
depicted, a “null” field serves to indicate that no state has
been yet established (e.g., when the VM guest tools have yet
to be installed).

The batch processor 124 also accesses a set of action rules
132 to facilitate processing of recerved batch requests. A set
of rules (e.g., rule base), such as action rules 132 or any other
rules described herein, comprise data records storing various
information that can be used to form one or more constraints
to apply to certain functions and/or operations. For example,
information pertaining to a rule i the rule base might
comprise the conditional logic operands (e.g., input vari-
ables, conditions, constraints, etc.) and/or operators (e.g.,
“1, “then”, “and”, “or”, “greater than”, “less than”, etc.) for
forming a conditional logic statement that returns one or
more results.

As depicted 1n a representative set of select action rules
372 from action rules 132, a data record (e.g., table row or
object mstance) for a particular action rule might describe a
rule identifier (e.g., stored 1 a “rulelD” field), a subject
action (e.g., stored 1n an “action” field), an execution priority
associated with the action (e.g., stored 1n a “prionty” field),
a VM guest tools status condition associated with the rule
(e.g., stored 1n a “VMtools” field), a VSS application status
condition associated with the rule (e.g., stored 1n a “VSS”

US 11,221,365 B2

11

field), an SSR application status condition associated with
the rule (e.g., stored 1n a “SSR” field), a set of operations to
be executed when the rule conditions are satisfied (e.g.,
stored 1n an “operations” field), and/or other rule attributes.
An “*” 1n a field indicates any value 1s acceptable for that
condition.

As 1ndicated in FIG. 3B, the state attributes 136 are
applied (e.g., by batch processor 124) as rule conditions 376
to select action rules 372 to determine the operations as
specified by the rules (e.g., in the “operations” field) to
assign as entity-specific operations for a particular VM. For
example, the state attributes of VM “vm-0m1” match the
conditions of rule “r02” indicating that an “install (VM-
tools)” operation 1s to be performed at VM “vm-0m1”. Since
the foregoing operation has a “priority=1", the results of the
operation (e.g., VM guest tools are “installed”) are applied
to rules associated with lower priority actions. As such, rule
“r12” also applies to VM “vm-0m1” indicating that an
“enable (VSS)” operation 1s to be performed at VM “vm-
0ml”.

The sets of operations derived from the action rules for
cach of the selected VMs constitute the entity-specific
operations 148, produced by the batch processor 124. As
carlier mentioned, such entity-specific operations are dis-
tributed to the nodes comprising the selected VMs for
execution over the VMs. The entity-specific operations
might be 1ssued to the nodes 1n one or more messages. As
shown in a message object 380,, such messages might
describe a node identifier (e.g., stored 1n a “nodelD” prop-
erty), a VM 1dentifier (e.g., stored 1n a “vmlID” property), a
set of entity-specific operations (e.g., stored in an “ops| |”
object), and/or other data pertaining to the message.

The foregoing discussions include techniques for gener-
ating batch requests to perform batch operations over
selected VMs (e.g., step 240 of FIG. 2), which techmiques
are disclosed in further detail as follows.

FI1G. 4 depicts a batch request generation technique 400 as
implemented 1n systems that facilitate batch management of
virtualized entities 1 virtualization environments. As an
option, one or more variations of batch request generation
technique 400 or any aspect thereof may be implemented in
the context of the architecture and functionality of the
embodiments described herein. The batch request generation
technique 400 or any aspect thereof may be implemented in
any environment.

FI1G. 4 illustrates one aspect pertaiming to applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed entities. Specifically, the figure 1s presented to 1llustrate
one embodiment of certain steps and/or operations for
generating batch requests to perform batch operations over
selected VMs. A representative scenario 1s also shown 1n the
figure to illustrate an example application of the batch
request generation technique 400.

The batch request generation technique 400 can com-
mence by invoking a user interface 222 for managing a set
of VMSs that are implemented in a computing cluster (step
402). As shown, user interface processor 122 might be
invoked for access by admin 112 to manage various VMSs 1n
a cluster. Certain information that describes the VMs 1s
presented at the user interface to facilitate selection of
specific VMs from the VMs (step 404). As an example, the
VM selection view 362 might present certain information
(e.g., a VM 1dentifier, a hypervisor type, etc.) as derived
from a set of node topology data stored 1n node topology
354. The VM selection view 362 can further comprise

10

15

20

25

30

35

40

45

50

55

60

65

12

selection elements (e.g., checkboxes) to facilitate 1dentifi-
cation of a set of selected VMs 462. All possible batch
actions for the VMs are presented in the user interface to
facilitate selection of the batch actions to perform over the
selected VMs (step 406). As can be observed, a list of batch
actions with corresponding selection elements (e.g., check-
boxes) can be presented 1n action selection view 364 to
facilitate selection of a set of batch actions 464. In some
cases, certamn data entry elements (e.g., text boxes) are
presented 1n the user interface 222 to capture user authen-
tication and/or authorization credentials (step 408). As
shown 1n credentials entry view 366, admin 112 might enter
a set of user credentials 466 that comprise a “Username’ and
a “Password”.

Once the batch actions to perform over the selected VMs
and any other information (e.g., credentials) needed to
perform the batch actions have been collected, then the user
interface processor 122 1s employed (at step 410) to form
one or more batch request objects (e.g., batch request object
368,).

The foregoing discussions include techmiques for deter-
mining entity-specific operations to carry out batch requests
at a set of selected VMs (e.g., step 250 of FIG. 2), which
techniques are disclosed 1n further detail as follows.

FIG. 5 presents a rule-based operations selection tech-
nique 500 as implemented 1n systems that facilitate batch
selection of virtualized entities. As an option, one or more
variations of rule-based operations selection technique 500
or any aspect thereol may be implemented 1n the context of
the architecture and functionality of the embodiments
described herein. The rule-based operations selection tech-
nique 300 or any aspect thereol may be implemented 1n any
environment.

FIG. 5 1llustrates one aspect pertaining to applying a rule
base to the then-current state attributes of a selected batch of
virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed entities. Specifically, the figure 1s presented to 1llustrate
one embodiment of certain steps and/or operations for
accessing action rules to determine entity-specific opera-
tions to carry out batch requests at a set of selected VMs. A
representative scenario 1s also shown in the figure to 1llus-
trate an example application of the rule-based operations
selection technique 500.

The rule-based operations selection technique 500 can
commence by processing incoming batch request objects
(e.g., batch request object 368, from FIG. 4, or another
incoming instance of batch request object 368,). The con-
tents of the batch request objects serve to 1dentily a set of
selected VMs and batch actions to execute over the selected
VMs (step 502). As illustrated, one or more batch request
objects from batch requests 144 can be processed to 1dentily
the selected VMs 462 and the batch actions 464. At least
inasmuch as a batch request object codifies the batch actions
to perform over the selected VMs, plus other information
(e.g., credentials) needed to perform the batch actions,
successive imcoming batch request objects can be processed
In any sequence.

Each incoming batch request object can then be processed
to determine the set of selected VMs such that, for each
subject VM 1n the set of selected VMs (e.g., selected VMs

462), a set of entity metadata 1s accessed to acquire certain
state attributes that characterize the then-current state of the

subject VM (step 504). For example, a set of state attributes

136 that correspond to each VM from selected VMs 462 can
be collected from entity metadata 134. The batch actions and
state attributes for the subject VM are applied as inputs (e.g.,

US 11,221,365 B2

13

conditions) to a set of action rules (e.g., action rules 132) to
identily one or more entity-specific operations (e.g., entity-
specific operations 148,) for the VM (step 506).

The node that hosts the subject VM 1s 1dentified (step 508)
to facilitate construction of a message object to codily
information that describes the subject VM as well as the
entity-specific operations and node associated with the sub-
ject VM (step 510). The node i1dentifiers 520 of the nodes
hosting the selected VMs 462 might be stored in node
topology 354. The node identifiers 3520, enftity-specific
operations 148,, certain information pertaining to the
selected VMs 462, and/or other information can be codified
into a set of message objects 380 that are routed to the
respective nodes of the selected VMs 462 (step 512). As
merely one example, the message objects might be routed to
node 104, and node 104, , of cluster 102 through a hyper-
visor, possibly through a hypervisor-agnostic layer. Any
technique for routing message objects can be used. In some
embodiments, message objects are communicated using
application programming interfaces (APIs) such as hyper-
visor-provided APIs. In other embodiments, message
objects are commumnicated securely using transport layer
security (TLS) through a hypervisor-agnostic layer. In some
cases, an updated codebase of the VM guest tools 1s pro-
vided to the hypervisor, and/or to the hypervisor-agnostic
layer. Such a codebase can be packaged as a bootable image
(e.g., an ISO 1mage) that can be mounted by a VM with
support of the VM’s underlying operating system.

A set of scenarios that depict certain batch management
actions performed over a plurality of virtualized entities
according to the herein disclosed techniques are disclosed as
follows.

FIG. 6 illustrates various example virtualized entity batch
management scenarios 600 as occur 1n systems that facilitate
batch management of virtualized entities. As an option, one
or more variations of virtualized entity batch management
scenarios 600 or any aspect thereof may be implemented 1n
the context of the architecture and functionality of the
embodiments described herein. The virtualized entity batch
management scenarios 600 or any aspect thereol may be
implemented 1n any environment.

FIG. 6 1llustrates one aspect pertaining to applying a rule

base to the then-current state attributes of a selected batch of

virtualized entities to determine the operations to be
executed so as to achieve a desired outcome at the virtual-
1zed entities. Specifically, the figure 1s being presented to
depict a set of high order interactions (e.g., operations,
messages, etc.) exhibited by various computing components
carlier described that 1n part comprise one embodiment of a
protocol for executing entity-specific operations that carry
out batch requests 1ssued in accordance with the herein
disclosed techniques. The particular computing components
shown 1 FIG. 6 include the batch processor 124 the
controller VM 306, ,, the hypervisor-agnostic layer 310, VM
108,,, and VM 108, of node 104,, The hypervisor-
agnostic layer 310 serves at least in part to translate mes-
sages between controller VM 306, . and the VMs.

As shown, a batch request recerved at batch processor 124

1s processed (operation 602). For the example scenarios of

FIG. 6, the batch request processed by batch processor 124
indicates that a set of VM guest tools are to be installed at
VM 108, ,, and VM 108, .- and that a VSS application 1s to
be enabled at both VMs. Respective sets of entity-specific
operations to execute over each of the VMs are determined
(operation 604) and one or more message objects indicating
the entity-specific operations are 1ssued to controller VM

306,, (message 606).

10

15

20

25

30

35

40

45

50

55

60

65

14

Since VM guest tools are currently operating at VM
108, . (operation 608,.), no entity-specific operations per-
taining to the VM guest tools 1nstallation batch action were
assigned to VM 108, .- by batch processor 124. In contrast,
for VM 108, ,,, a protocol 1s invoked to perform a set of VM
guest tools 1mstallation operations 610 so as to 1nstall the VM
guest tools on VM 108, ,,. The VM guest tools installation
operations 610 can commence by mounting media compris-
ing the VM guest tools codebase at VM 108,,, (message
612). A login to the VM 1s performed using the user
credentials received, for example, 1n the message object
from the batch processor 124 (message 614). Once VM
108, ,, authenticates and/or authorizes the user credentials
(message 616), mstallation of the VM guest tools can be
invoked (message 618). After installation of the VM guest
tools at VM 108, ., 1s performed (operation 620), the 1nstal-
lation completion 1s confirmed (message 622). The control-
ler VM 306, , can then logout of VM 108, ,, (imessage 624)
and the VM guest tools can commence operation (operation
608,).

As 1llustrated i FIG. 6, a set of application enable

operations 630 are then performed to enable a particular
application such as VSS at VM 108, , and VM 108, ... In
this example neither VM has the VSS application enabled,
thereby requiring the application to be enabled at both VMs.
To enable the particular application at both VM 108, ,, and
VM 108, .., the shown application enable operations 630 are
invoked. A flag to enable the application for the selected
VMs 1s set at controller VM 306, , (operation 632). In this
embodiment, the application access provisioning 1s managed
at controller VM 306, .. In other embodiments, other provi-
sioning approaches are possible. When VM 108, ,, and VM
108, . each detect the enabled flag (message 634, and
message 634 ., respectively), the particular application-spe-
cific operations can commence at each VM (operation 636,
and operation 636, respectively).

Additional Embodiments of the Disclosure

Additional Practical Application Examples

FIG. 7 depicts system 700 as an arrangement of comput-
ing modules that are interconnected so as to operate coop-
cratively to 1mplement certain of the herein-disclosed
embodiments. This and other embodiments present particu-
lar arrangements of elements that, individually and/or as
combined, serve to form 1mproved technological processes
that address how to perform batch operations over a group
of virtualized entities that are 1n varying states. The parti-
tioning of system 700 1s merely 1llustrative and other par-
titions are possible. As an option, the system 700 may be
implemented in the context of the architecture and function-
ality of the embodiments described herein. Of course, how-
ever, the system 700 or any operation therein may be carried
out 1n any desired environment.

The system 700 comprises at least one processor and at
least one memory, the memory serving to store program
instructions corresponding to the operations of the system.
As shown, an operation can be implemented 1n whole or in
part using program instructions accessible by a module. The
modules are connected to a communication path 705, and
any operation can communicate with any other operations
over communication path 705. The modules of the system
can, individually or 1n combination, perform method opera-
tions within system 700. Any operations performed within
system 700 may be performed 1n any order unless as may be
specified 1n the claims.

US 11,221,365 B2

15

The shown embodiment implements a portion of a com-
puter system, presented as system 700, comprising one or
more computer processors to execute a set of program code
instructions (module 710) and modules for accessing
memory to hold program code structions to perform:
instantiating a plurality of virtual machines 1n a virtualiza-
tion environment (module 720); establishing one or more
batch actions to perform on the plurality of virtual machines
(module 730); generating at least one batch request to
perform at least one of the one or more batch actions at two
or more selected virtual machines, the two or more selected
virtual machines being selected from the plurality of virtual
machines (module 740); determining one or more enfity-
specific operations that correspond to individual ones of the
two or more selected virtual machines, the one or more
entity-specific operations to carry out the one or more batch
actions at the individual ones of the two or more selected
virtual machines (module 750); and executing the one or
more entity-specific operations over the individual ones of
the two or more selected virtual machines (module 760).

Variations of the foregoing may include more or fewer of
the shown modules. Certain variations may perform more or
tewer (or different) steps and/or certain variations may use
data elements in more or in fewer (or different) operations.
Still further, some embodiments include variations in the
operations performed, and some embodiments include varia-
tions of aspects of the data elements used 1n the operations.
System Architecture Overview
Additional System Architecture Examples

FIG. 8A depicts a virtualized controller as implemented
by the shown virtual machine architecture 8 A00. The here-
tofore-disclosed embodiments, including variations of any
virtualized controllers, can be implemented 1n distributed
systems where a plurality of networked-connected devices
communicate and coordinate actions using inter-component
messaging. Distributed systems are systems ol intercon-
nected components that are designed for, or dedicated to,
storage operations as well as being designed for, or dedi-
cated to, computing and/or networking operations. Intercon-
nected components in a distributed system can operate
cooperatively to achieve a particular objective, such as to
provide high performance computing, high performance
networking capabilities, and/or high performance storage
and/or high capacity storage capabilities. For example, a first
set of components of a distributed computing system can
coordinate to efliciently use a set of computational or
compute resources, while a second set of components of the
same distributed storage system can coordinate to efliciently
use a set of data storage facilities.

A hyperconverged system coordinates the eflicient use of
compute and storage resources by and between the compo-
nents of the distributed system. Adding a hyperconverged
unit to a hyperconverged system expands the system in
multiple dimensions. As an example, adding a hypercon-
verged unit to a hyperconverged system can expand the
system 1n the dimension of storage capacity while concur-
rently expanding the system in the dimension of computing
capacity and also in the dimension of networking band-
width. Components of any of the foregoing distributed
systems can comprise physically and/or logically distributed
autonomous entities.

Physical and/or logical collections of such autonomous
entities can sometimes be referred to as nodes. In some
hyperconverged systems, compute and storage resources can
be integrated into a unit of a node. Multiple nodes can be
interrelated into an array of nodes, which nodes can be
grouped into physical groupings (e.g., arrays) and/or into

e

10

15

20

25

30

35

40

45

50

55

60

65

16

logical groupings or topologies of nodes (e.g., spoke-and-
wheel topologies, rings, etc.). Some hyperconverged sys-
tems 1mplement certain aspects of wvirtualization. For
example, 1n a hypervisor-assisted virtualization environ-
ment, certain of the autonomous entities of a distributed
system can be implemented as virtual machines. As another
example, 1n some virtualization environments, autonomous
entities of a distributed system can be implemented as
executable containers. In some systems and/or environ-
ments, hypervisor-assisted virtualization techniques and
operating system virtualization techniques are combined.

As shown, virtual machine architecture 8 A00 comprises a
collection of interconnected components suitable for imple-
menting embodiments of the present disclosure and/or for
use 1n the herein-described environments. Moreover, virtual
machine architecture 8A00 includes a virtual machine
instance 1n configuration 851 that 1s further described as
pertaining to controller virtual machine istance 830. Con-
figuration 851 supports virtual machine instances that are
deployed as user virtual machines, or controller virtual
machines or both. Such virtual machines interface with a
hypervisor (as shown). Some virtual machines include pro-
cessing of storage I/O (anput/output or 10) as recerved from
any or every source within the computing platform. An
example implementation of such a virtual machine that
processes storage 1/0 1s depicted as 830.

In this and other configurations, a controller virtual
machine instance receives block /O (input/output or 10)
storage requests as network file system (NFS) requests in the
form of NFS requests 802, and/or internet small computer
storage interface (1SCSI) block 10 requests in the form of
1ISCSI requests 803, and/or Samba file system (SMB)
requests 1 the form of SMB requests 804. The controller
virtual machine (CVM) instance publishes and responds to
an mternet protocol (IP) address (e.g., CVM IP address 810).
Various forms of mput and output (I/O or 10) can be handled
by one or more 10 control handler functions (e.g., IOCTL
handler functions 808) that interface to other functions such
as data IO manager functions 814 and/or metadata manager
functions 822. As shown, the data IO manager functions can
include communication with virtual disk configuration man-
ager 812 and/or can include direct or indirect communica-
tion with any of various block 10 functions (e.g., NFS 10,
1ISCSI 10, SMB 10, etc.).

In addition to block 10 functions, configuration 851

supports 10 of any form (e.g., block 10, streaming IO,
packet-based 10, HTTP traflic, etc.) through either or both of

a user imterface (UI) handler such as Ul 10 handler 840
and/or through any of a range of application programming
interfaces (APIs), possibly through API 10 manager 845.

Communications link 815 can be configured to transmit
(e.g., send, receive, signal, etc.) any type ol communications
packets comprising any organization of data items. The data
items can comprise a payload data, a destination address
(c.g., a destination IP address) and a source address (e.g., a
source IP address), and can 1nclude various packet process-
ing techniques (e.g., tunneling), encodings (e.g., encryp-
tion), and/or formatting of bit fields into fixed-length blocks
or into variable length fields used to populate the payload. In
some cases, packet characteristics include a version i1denti-
fier, a packet or payload length, a traflic class, a flow label,
etc. In some cases, the payload comprises a data structure
that 1s encoded and/or formatted to {it into byte or word
boundaries of the packet.

In some embodiments, hard-wired circuitry may be used
in place of, or 1n combination with, software instructions to
implement aspects of the disclosure. Thus, embodiments of

US 11,221,365 B2

17

the disclosure are not limited to any specific combination of
hardware circuitry and/or software. In embodiments, the
term “logic” shall mean any combination of soiftware or
hardware that 1s used to implement all or part of the
disclosure.

The term “‘computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates 1n providing instructions to a data processor for
execution. Such a medium may take many forms including,
but not limited to, non-volatile media and volatile media.
Non-volatile media includes any non-volatile storage
medium, for example, solid state storage devices (SSDs) or
optical or magnetic disks such as hard disk drives (HDDs)
or hybrid disk drives, or persistent random access memories
(RAPMs) or optical or magnetic media drives such as paper
tape or magnetic tape drives. Volatile media includes
dynamic memory such as random access memory. As
shown, controller virtual machine instance 830 includes
content cache manager facility 816 that accesses storage
locations, possibly including local dynamic random access
memory (DRAM) (e.g., through local memory device access
block 818) and/or possibly including accesses to local solid
state storage (e.g., through local SSD device access block
820).

Common forms of computer readable media include any
non-transitory computer readable medium, for example,
floppy disk, flexible disk, hard disk, magnetic tape, or any
other magnetic medium; CD-ROM or any other optical
medium; punch cards, paper tape, or any other physical
medium with patterns of holes; or any RAM, PROM,
EPROM, FLASH-EPROM, or any other memory chip or
cartridge. Any data can be stored, for example, 1n any form
of data repository 831, which in turn can be formatted into
any one or more storage areas, and which can comprise
parameterized storage accessible by a key (e.g., a filename,
a table name, a block address, an offset address, etc.). Data
repository 831 can store any forms of data and may comprise
a storage area dedicated to storage of metadata pertaining to
the stored forms of data. In some cases, metadata can be
divided 1nto portions. Such portions and/or cache copies can
be stored 1n the storage data repository and/or 1n a local
storage area (e.g., in local DRAM areas and/or 1n local SSID
areas). Such local storage can be accessed using functions
provided by local metadata storage access block 824. The
data repository 831 can be configured using CVM virtual
disk controller 826, which can 1n turn manage any number
or any configuration of virtual disks.

Execution of the sequences of instructions to practice
certain embodiments of the disclosure are performed by one
or more 1nstances of a soltware 1nstruction processor, or a
processing element such as a data processor, or such as a
central processing unit (e.g., CPU1, CPU2, . . . CPUN).
According to certain embodiments of the disclosure, two or
more 1instances of configuration 851 can be coupled by
communications link 815 (e.g., backplane, LAN, PSTN,
wired or wireless network, etc.) and each instance may
perform respective portions of sequences of instructions as
may be required to practice embodiments of the disclosure.

The shown computing platform 806 1s interconnected to
the Internet 848 through one or more network interface ports
(e.g., network interface port 823, and network interface port
823,). Configuration 851 can be addressed through one or
more network interface ports using an IP address. Any
operational element within computing platiorm 806 can
perform sending and receirving operations using any of a
range ol network protocols, possibly including network

10

15

20

25

30

35

40

45

50

55

60

65

18

protocols that send and receive packets (e.g., network pro-
tocol packet 821, and network protocol packet 821.,,).

Computing platform 806 may transmit and receive mes-
sages that can be composed of configuration data and/or any
other forms of data and/or 1nstructions organized into a data
structure (e.g., communications packets). In some cases, the
data structure includes program code instructions (e.g.,
application code) communicated through the Internet 848
and/or through any one or more instances of communica-
tions link 815. Received program code may be processed
and/or executed by a CPU as 1t 1s received and/or program
code may be stored 1n any volatile or non-volatile storage for
later execution. Program code can be transmitted via an
upload (e.g., an upload from an access device over the
Internet 848 to computing platform 806). Further, program
code and/or the results of executing program code can be
delivered to a particular user via a download (e.g., a down-
load from computing platform 806 over the Internet 848 to
an access device).

Configuration 851 1s merely one sample configuration.
Other configurations or partitions can include further data
processors, and/or multiple communications interfaces, and/
or multiple storage devices, etc. within a partition. For
example, a partition can bound a multi-core processor (e.g.,
possibly including embedded or collocated memory), or a
partition can bound a computing cluster having a plurality of
computing elements, any of which computing elements are
connected directly or indirectly to a communications link. A
first partition can be configured to communicate to a second
partition. A particular first partition and a particular second
partition can be congruent (e.g., 1n a processing element
array) or can be different (e.g., comprising disjoint sets of
components).

A cluster 1s often embodied as a collection of computing
nodes that can communicate between each other through a
local area network (e.g., LAN or virtual LAN (VLAN)) or
a backplane. Some clusters are characterized by assignment
ol a particular set of the atorementioned computing nodes to
access a shared storage facility that i1s also configured to
communicate over the local area network or backplane. In
many cases, the physical bounds of a cluster are defined by
a mechanical structure such as a cabinet or such as a chassis
or rack that hosts a finite number of mounted-in computing
unmts. A computing unit 1n a rack can take on a role as a
server, or as a storage unit, or as a networking unit, or any
combination therefrom. In some cases, a unit in a rack 1s
dedicated to provisioning of power to other units. In some
cases, a unit 1 a rack 1s dedicated to environmental condi-
tioning functions such as filtering and movement of air
through the rack and/or temperature control for the rack.
Racks can be combined to form larger clusters. For example,
the LAN of a first rack having a quantity of 32 computing
nodes can be interfaced with the LAN of a second rack
having 16 nodes to form a two-rack cluster of 48 nodes. The
former two LANSs can be configured as subnets, or can be
configured as one VLAN. Multiple clusters can communi-
cate between one module to another over a WAN (e.g., when
geographically distal) or a LAN (e.g., when geographically
proximal).

A module as used herein can be implemented using any
mix ol any portions of memory and any extent of hard-wired
circuitry including hard-wired circuitry embodied as a data
processor. Some embodiments of a module 1include one or
more special-purpose hardware components (e.g., power
control, logic, sensors, transducers, etc.). A data processor
can be organized to execute a processing entity that is
configured to execute as a single process or configured to

US 11,221,365 B2

19

execute using multiple concurrent processes to perform
work. A processing entity can be hardware-based (e.g.,
involving one or more cores) or soltware-based, and/or can
be formed using a combination of hardware and software
that implements logic, and/or can carry out computations
and/or processing steps using one or more processes and/or
one or more tasks and/or one or more threads or any
combination thereof.

Some embodiments of a module include instructions that
are stored 1n a memory for execution so as to facilitate
operational and/or performance characteristics pertaining to
batch management of virtualized entities 1n virtualization
environments. In some embodiments, a module may 1include
one or more state machines and/or combinational logic used
to 1mplement or facilitate the operational and/or perior-
mance characteristics pertaining to batch management of
virtualized entities in virtualization environments.

Various implementations of the data repository comprise
storage media organized to hold a series of records or files
such that individual records or files are accessed using a
name or key (e.g., a primary key or a combination of keys
and/or query clauses). Such files or records can be organized
into one or more data structures (e.g., data structures used to
implement or facilitate aspects of batch management of
virtualized enfities in virtualization environments). Such
files or records can be brought into and/or stored 1n volatile
or non-volatile memory. More specifically, the occurrence
and organization ol the foregoing files, records, and data
structures 1mprove the way that the computer stores and
retrieves data in memory, for example, to improve the way

data 1s accessed when the computer 1s performing operations
pertaining to batch management of virtualized entities in
virtualization environments, and/or for improving the way
data 1s manipulated when performing computerized opera-
tions pertaining to applying a rule base to the then-current
state attributes of a selected batch of virtualized entities to
determine the operations to be executed so as to achieve a
desired outcome at the virtualized entities.

Further details regarding general approaches to managing,
data repositories are described in U.S. Pat. No. 8,601,473
titled “ARCHITECTURE FOR MANAGING /O AND
STORAGE FOR A VIRTUALIZATION ENVIRON-
MENT”, 1ssued on Dec. 3, 2013, which 1s hereby 1ncorpo-
rated by reference 1n 1ts entirety.

Further details regarding general approaches to managing
and maintaining data in data repositories are described 1n
U.S. Pat. No. 8,549,518 titled “METHOD AND SYSTEM
FOR IMPLEMENTING A MAINTENANCE SERVICE
FOR MANAGING [/O AND STORAGE FOR A VIRTU-
ALIZATION ENVIRONMENT”, 1ssued on Oct. 1, 2013,
which 1s hereby incorporated by reference in 1ts entirety.

FIG. 8B depicts a virtualized controller implemented by
containerized architecture 8B00. The containerized archi-
tecture comprises a collection of interconnected components
suitable for implementing embodiments of the present dis-
closure and/or for use 1n the herein-described environments.
Moreover, the shown containerized architecture 8BO00
includes an executable container instance in configuration
852 that 1s further described as pertaining to executable
container 1mstance 850. Configuration 852 includes an oper-
ating system layer (as shown) that performs addressing
functions such as providing access to external requestors via
an IP address (e.g., “P.Q.R.S”, as shown). Providing access
to external requestors can include implementing all or
portions of a protocol specification (e.g., “http:”’) and pos-
sibly handling port-specific functions.

10

15

20

25

30

35

40

45

50

55

60

65

20

The operating system layer can perform port forwarding
to any executable contamner (e.g., executable container
instance 850). An executable container instance can be
executed by a processor. Runnable portions of an executable
container instance sometimes derive from an executable
container image, which i turn might include all, or portions
of any of, a Java archive repository (JAR) and/or 1ts con-
tents, and/or a script or scripts and/or a directory of scripts,
and/or a virtual machine configuration, and may include any
dependencies therefrom. In some cases, a configuration
within an executable container might include an i1mage
comprising a minimum set of runnable code. Contents of
larger libraries and/or code or data that would not be
accessed during runtime of the executable container instance
can be omitted from the larger library to form a smaller
library composed of only the code or data that would be
accessed during runtime of the executable container
instance. In some cases, start-up time for an executable
container istance can be much faster than start-up time for
a virtual machine instance, at least inasmuch as the execut-
able container 1mage might be much smaller than a respec-
tive virtual machine instance. Furthermore, start-up time for
an executable container instance can be much faster than
start-up time for a virtual machine instance, at least inas-
much as the executable container 1mage might have many
tewer code and/or data 1nitialization steps to perform than a
respective virtual machine instance.

An executable container instance (e.g., a Docker con-
tainer instance) can serve as an instance of an application
container or as a controller executable container. Any
executable container of any sort can be rooted 1n a directory
system and can be configured to be accessed by {file system
commands (e.g., “Is” or “Is-a”, etc.). The executable con-
tamner might optionally include operating system compo-
nents 878, however such a separate set of operating system
components need not be provided. As an alternative, an
executable container can include runnable instance 858,
which 1s built (e.g., through compilation and linking, or
just-in-time compilation, etc.) to include all of the library
and OS-like functions needed for execution of the runnable
instance. In some cases, a runnable instance can be built with
a virtual disk configuration manager, any of a variety of data
IO management functions, etc. In some cases, a runnable
instance includes code for, and access to, container virtual
disk controller 876. Such a container virtual disk controller
can perform any of the functions that the aforementioned
CVM virtual disk controller 826 can perform, yet such a
container virtual disk controller does not rely on a hypervi-
sor or any particular operating system so as to perform its
range of functions.

In some environments, multiple executable containers can
be collocated and/or can share one or more contexts. For
example, multiple executable containers that share access to
a virtual disk can be assembled 1nto a pod (e.g., a Kubemetes
pod). Pods provide sharing mechanisms (e.g., when multiple
executable containers are amalgamated into the scope of a
pod) as well as 1solation mechanisms (e.g., such that the
namespace scope of one pod does not share the namespace
scope of another pod).

FIG. 8C depicts a virtualized controller implemented by
a daemon-assisted containerized architecture 8C00. The
containerized architecture comprises a collection of inter-
connected components suitable for implementing embodi-
ments of the present disclosure and/or for use 1n the herein-
described environments. Moreover, the shown daemon-
assisted containerized architecture includes a user
executable container instance in configuration 833 that i1s

US 11,221,365 B2

21

turther described as pertaining to user executable container
instance 880. Configuration 853 includes a daemon layer (as
shown) that performs certain functions of an operating
system.

User executable container instance 880 comprises any
number of user containerized functions (e.g., user contain-
erized functionl, user containerized function2, . . ., user
containerized functionN). Such user containerized functions
can execute autonomously, or can be interfaced with or
wrapped 1n a runnable object to create a runnable instance
(c.g., runnable instance 838). In some cases, the shown
operating system components 878 comprise portions of an
operating system, which portions are interfaced with or
included 1n the runnable instance and/or any user contain-
erized functions. In this embodiment of a daemon-assisted
containerized architecture, the computing plattorm 806
might or might not host operating system components other
than operating system components 878. More specifically,
the shown daemon might or might not host operating system

components other than operating system components 878 of
user executable container mstance 880.

The virtual machine architecture 8 A00 of FIG. 8 A and/or
the containerized architecture 8B00 of FIG. 8B and/or the
daemon-assisted containerized architecture 8C00 of FIG. 8C
can be used 1 any combination to implement a distributed
platform that contains multiple servers and/or nodes that
manage multiple tiers of storage where the tiers of storage
might be formed using the shown data repository 831 and/or
any forms of network accessible storage. As such, the
multiple tiers of storage may include storage that 1s acces-
sible over communications link 815. Such network acces-
sible storage may include cloud storage or networked stor-
age (e.g., a SAN or “storage area network’). Unlike prior
approaches, the presently-discussed embodiments permuit
local storage that 1s within or directly attached to the server
or node to be managed as part of a storage pool. Such local
storage can include any combinations of the aforementioned
SSDs and/or HDDs and/or RAPMs and/or hybrid disk
drives. The address spaces of a plurality of storage devices,
including both local storage (e.g., using node-internal stor-
age devices) and any forms of network-accessible storage,
are collected to form a storage pool having a contiguous
address space.

Significant performance advantages can be gained by
allowing the virtualization system to access and utilize local
(e.g., node-internal) storage. This 1s because I/O perfor-
mance 1s typically much faster when performing access to
local storage as compared to performing access to net-
worked storage or cloud storage. This faster performance for
locally attached storage can be increased even further by
using certain types of optimized local storage devices, such
as SSDs or RAPMSs, or hybrid HDDs or other types of
high-performance storage devices.

In example embodiments, each storage controller exports
one or more block devices or NFS or 1SCSI targets that
appear as disks to user virtual machines or user executable
containers. These disks are virtual since they are imple-
mented by the software running inside the storage control-
lers. Thus, to the user virtual machines or user executable
containers, the storage controllers appear to be exporting a
clustered storage appliance that contains some disks. User
data (including operating system components) in the user
virtual machines resides on these virtual disks.

Any one or more of the atorementioned virtual disks (or
“vDisks™) can be structured from any one or more of the
storage devices 1n the storage pool. As used herein, the term
vDisk refers to a storage abstraction that 1s exposed by a

10

15

20

25

30

35

40

45

50

55

60

65

22

controller virtual machine or container to be used by another
virtual machine or container. In some embodiments, the
vDisk 1s exposed by operation of a storage protocol such as
1SCSI or NFS or SMB. In some embodiments, a vDisk 1s
mountable. In some embodiments, a vDisk 1s mounted as a
virtual storage device.

In example embodiments, some or all of the servers or
nodes run virtualization software. Such virtualization soft-
ware might include a hypervisor (e.g., as shown in configu-
ration 851 of FIG. 8A) to manage the interactions between
the underlying hardware and user virtual machines or con-
tainers that run client software.

Distinct from user virtual machines or user executable
containers, a special controller virtual machine (e.g., as
depicted by controller virtual machine 1nstance 830) or as a
special controller executable container 1s used to manage
certain storage and I/0 activities. Such a special controller
virtual machine 1s referred to as a “CVM?”, or as a controller
executable container, or as a service virtual machine
“SVM?”, or as a service executable container, or as a “storage
controller”. In some embodiments, multiple storage control-
lers are hosted by multiple nodes. Such storage controllers
coordinate within a computing system to form a computing
cluster.

The storage controllers are not formed as part of specific
implementations of hypervisors. Instead, the storage con-
trollers run above hypervisors on the various nodes and
work together to form a distributed system that manages all
of the storage resources, including the locally attached
storage, the networked storage, and the cloud storage. In
example embodiments, the storage controllers run as special
virtual machines—above the hypervisors—thus, the
approach of using such special virtual machines can be used
and implemented within any virtual machine architecture.
Furthermore, the storage controllers can be used in conjunc-
tion with any hypervisor from any virtualization vendor
and/or implemented using any combinations or variations of
the aforementioned executable containers in conjunction
with any host operating system components.

In the foregoing specification, the disclosure has been
described with reference to specific embodiments thereof. It
will however be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure. For example, the
above-described process tlows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without aflecting the scope or operation of the
disclosure. The specification and drawings are to be
regarded 1n an illustrative sense rather than in a restrictive
sense.

What 1s claimed 1s:

1. A method comprising:

cstablishing a set of batch actions, wherein respective

batch actions can be performed over at least one virtual
machine of a plurality of virtual machines to achieve a
outcome;

receiving, 1 response to a user iput, a selection of a

batch action of the set of batch actions, the batch action
to be performed on a first and second virtual machine
of the plurality of virtual machines;

generating a batch request to achieve the outcome speci-

fied by the selected batch action at the first virtual
machine and the second virtual machine;

accessing state attributes that characterize respective

states of the first virtual machine and the second virtual
machine;

US 11,221,365 B2

23

determining a first entity-specific operation for the first
virtual machine and a second entity-specific operation
for the second virtual machine, wherein the first entity-
specific operation 1s determined based on the state
attribute of the first virtual machine and a first action
rule, and the second entity-specific operation 1s deter-
mined based on the state attribute of the second virtual
machine and a second action rule, and the first and
second entity-specific operation comprises operations
to achieve the outcome of the selected batch action,
wherein the first entity-specific operation 1s diflerent
from the second entity-specific operation; and

transmitting the first entity-specific operation to the first
virtual machine for execution over the first virtual
machine and the second entity-specific operation to the
second virtual machine for execution over the second
virtual machine to achieve the outcome corresponding
to the selected batch action, wherein the first entity-
specific operation transmitted to the first virtual
machine and the second entity-specific operation trans-
mitted to the second virtual machine are different.

2. The method of claim 1, turther comprising;:

identifying a first node that hosts the first virtual machine

and a second node that hosts the second wvirtual
machine.

3. The method of claim 1, wherein the first entity-specific
operation 1s received at a first controller virtual machine on
a first node that hosts the first virtual machine and the second
entity-specific operation 1s received at a second controller
virtual machine on a second node that hosts the second
virtual machine.

4. The method of claim 3, wherein the first controller
virtual machine executes the first entity-specific operation
on the first virtual machine through a hypervisor-agnostic
layer.

5. The method of claim 1, wherein a respective entity-
specific operation comprises installing VM guest tools on
the first virtual machine or the second virtual machine.

6. The method of claim 1, wherein at least one entity-
specific operation 1s authorized with a user credential.

7. The method of claim 1, wherein a state of the first
virtual machine 1s represented by a first state attribute and a
state of the second virtual machine 1s represented by a
respective state attribute.

8. A non-transitory computer readable medium having
stored thereon a sequence of instructions which, when
executed by a processor causes a set of acts comprising:

establishing a set of batch actions, wherein respective

batch actions can be performed over at least one virtual
machine of a plurality of virtual machines to achieve a
outcome;

receiving, in response to a user input, a selection of a

batch action of the set of batch actions, the batch action
to be performed on a first and second virtual machine
of the plurality of virtual machines;

generating a batch request to achieve the outcome speci-

fied by the selected batch action at the first virtual
machine and the second virtual machine;

accessing state attributes that characterize respective

states of the first virtual machine and the second virtual
machine;

determining a first entity-specific operation for the first

virtual machine and a second entity-specific operation
for the second virtual machine, wherein the first entity-
specific operation 1s determined based on the state
attribute of the first virtual machine and a first action
rule, and the second entity-specific operation 1s deter-

10

15

20

25

30

35

40

45

50

55

60

65

24

mined based on the state attribute of the second virtual
machine and a second action rule, and the first and
second enftity-specific operation comprises operations
to achieve the outcome of the selected batch action,
wherein the {first entity-specific operation 1s diflerent
from the second entity-specific operation; and
transmitting the first entity-specific operation to the first
virtual machine for execution over the first virtual
machine and the second entity-specific operation to the
second virtual machine for execution over the second
virtual machine to achieve the outcome corresponding
to the selected batch action, wherein the first entity-
specific operation transmitted to the first wvirtual
machine and the second entity-specific operation trans-
mitted to the second virtual machine are diflerent.

9. The non-transitory computer readable medium of claim
8, wherein the set of acts further comprise:

identifying a first node that hosts the first virtual machine

and a second node that hosts the second virtual
machine.

10. The non-transitory computer readable medium of
claiam 8, wherein the first enfity-specific operation 1s
received at a first controller virtual machine on a first node
that hosts the first virtual machine and the second entity-
specific operation 1s received at a second controller virtual
machine on a second node that hosts the second virtual
machine.

11. The non-transitory computer readable medium of
claaim 10, wherein the first controller virtual machine
executes the first entity-specific operation on the first virtual
machine through a hypervisor-agnostic layer.

12. The non-transitory computer readable medium of
claiam 8, wherein at least one entity-specific operation 1s
authorized with a user credential.

13. The non-transitory computer readable medium of
claim 8, wherein a respective entity-specific operation com-
prises installing VM guest tools on the first virtual machine
or the second virtual machine.

14. The non-transitory computer readable medium of
claim 8, wherein a state of the first virtual machine 1s
represented by a first state attribute and a state of the second
virtual machine 1s represented by a respective state attribute.

15. A system comprising:

a storage medium having stored thereon a sequence of

instructions; and

a processor for executing the sequence of instructions to

cause a set ol acts comprising,

establishing a set of batch actions, wherein respective
batch actions can be performed over at least one
virtual machine of a plurality of virtual machines to
achieve a outcome;

receiving, in response to a user mput, a selection of a
batch action of the set of batch actions, the batch
action to be performed on a first and second virtual
machine of the plurality of virtual machines;

generating a batch request to achieve the outcome
specified by the selected batch action at the first
virtual machine and the second virtual machine;

accessing state attributes that characterize respective
states of the first virtual machine and the second
virtual machine;

determining a {irst entity-specific operation for the first
virtual machine and a second entity-specific opera-
tion for the second virtual machine, wherein the first
entity-specific operation 1s determined based on the
state attribute of the first virtual machine and a first
action rule, and the second entity-specific operation

US 11,221,365 B2

25

1s determined based on the state attribute of the
second virtual machine and a second action rule, and
the first and second entity-specific operation com-
prises operations to achieve the outcome of the
selected batch action, wherein the first entity-specific
operation 1s different from the second entity-specific
operation; and

transmitting the first entity-specific operation to the first
virtual machine for execution over the first virtual
machine and the second entity-specific operation to
the second virtual machine for execution over the
second virtual machine to achieve the outcome cor-

responding to the selected batch action, wherein the
first entity-specific operation transmitted to the first
virtual machine and the second entity-specific opera-
tion transmitted to the second virtual machine are
different.
16. The system of claim 15, wherein the set of acts further
comprise:
identifying a first node that hosts the first virtual machine
and a second node that hosts the second wvirtua
machine.

10

15

26

17. The system of claim 15, wherein the first enfity-
specific operation 1s received at a first controller virtual
machine on a first node that hosts the first virtual machine
and the second entity-specific operation 1s received at a
second controller virtual machine on a second node that
hosts the second virtual machine.

18. The system of claim 17, wherein the first controller
virtual machine executes the first entity-specific operation
on the first virtual machine through a hypervisor-agnostic
layer.

19. The system of claim 15, wherein at least one entity-
specific operations 1s authorized with a user credential.

20. The system of claim 15, wherein a respective entity-
specific operation comprises installing VM guest tools on
the first virtual machine or the second virtual machine.

21. The system of claim 15, wherein a state of the first
virtual machine 1s represented by a {irst state attribute and a
state of the second virtual machine i1s represented by a

| 20 respective state attribute.

G s x ex e

	Front Page
	Drawings
	Specification
	Claims

