12 United States Patent

Lifshitz et al.

US011218559B2

US 11,218,559 B2
Jan. 4, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)
(%)

(21)

(22)

(65)

(1)

(52)

(58)

ASYMMETRIC NETWORKING PROXY

Applicant: RED HAT, INC., Raleigh, NC (US)

(56) References Cited

U.S. PATENT DOCUMENTS

5,452,292 A * 9/1995 OQOkanoue HO041. 12/66
Inventors: Yuval Lifshitz, Kfar HaOranim (IL); 370/403
Sebastian Scheinkman, Petah Tikva 5,909,446 A * 6/1999 Horikawa HO04L 61/10
(IL) 370/469
6,023,563 A * 2/2000 Shani HO41. 12/4625
| | 370/401
Assignee: Red Hat, Inc., Raleigh, NC (US) 6,721,353 Bl1* 4/2004 Taubert HO41. 29/06
370/466
e

Notice: Subject to any disclaimer, the term of this 6,873,620 Bl 3/2005 Coveley ...oooovvvnnvee. };97?)1/‘3 é???
patent 1s extended or adjusted under 35 0419921 B1* 82016 Anderson ... HO4L, 49/70

u.sS.C. 154(]3) by 0 days. (Continued)

Appl. No.: 16/423,794
Filed: May 28, 2019

Prior Publication Data

US 2020/0382615 Al Dec. 3, 2020

Int. CIL. (57)
HO4L 29/08 (2006.01)

HO4L 29/06 (2006.01)

GO6F 9/455 (2018.01)

HO4L 12/66 (2006.01)

HO4L 29/12 (2006.01)

U.S. CL

CPC HO4L 67/28 (2013.01); GO6F 9/45558

(2013.01); HO4L 12/66 (2013.01); HO4L 61/10
(2013.01); HO4L 69/08 (2013.01); HO4L
69/321 (2013.01); GO6F 2009/45595 (2013.01)

Field of Classification Search
CPC HO4L 67/28; HO4L 61/10; HO4L 12/66;
HO4L, 69/08; HO4L 69/321:; GO6F
9/45558; GO6F 2009/45595

See application file for complete search history.

OTHER PUBLICATTIONS

Fatturrahman, F. “SDN Controller Robustness and Distribution
Framework”, Master of Science Thesis—Deft University of Tech-
nology. 69 pages.

(Continued)

Primary Examiner — Ramy M Osman
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

ABSTRACT

An asymmetric proxy receives a request from a source
network, where the source network sends the request at a
first networking layer, and determines a destination network
associated with the request, where the destination network
communicates at a second networking layer, and where the
second networking layer 1s different than the first network-
ing layer. The asymmetric proxy removes mformation asso-
ciated with the source network from one or more networking
layers of the request, stores the mnformation associated with
the source network 1n a memory space, translates the one or
more networking layers of the request to include information
associated with the destination network, and provides the
request to the destination network at the second networking

layer.

28 Claims, 8 Drawing Sheets

200

MEMORY 201

FLOW MAPPING
DATA

202

4

Y

PROCESSING DEVICE 205

ASYMMETRIC PROXY 210

NETWORK
RECEIVER MODULE DETERMINER

21l 212

UNWRAPPER TRANSLATOR
MODULE MODULE

213 214

FORWARDING COMMUNICATION
MODULE TUNNEL MODULE

215 216

US 11,218,559 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,979,677 B2 5/2018 Zhang et al.
2002/0141384 Al1* 10/2002 Looooervinnnennn, HO4L 65/1026
370/352
2007/0050843 Al1l* 3/2007 Manville HO4L 65/104
726/12
2010/0192216 Al1* 7/2010 Komatsu HO4L 63/0209
726/12
2010/0217847 Al1* 8/2010 Cook ... HO4L 61/6022
709/222
2013/0031615 Al1* 1/2013 Woodward HO4L 67/02
726/4
2013/0117442 Al1* 5/2013 Mountain HO4N 21/44231
709/224
2015/0281171 A1* 10/2015 X120 ..oooeeiiininnnnnnn, HO041. 67/14
709/225
2015/0381484 Al1* 12/2015 Hiraocoeeenn.e. HO4L 69/22
370/390
2016/0143076 Al* 5/2016 Razavi HO4L 67/101
370/329
2016/0344664 Al* 11/2016 Pahwa HO4L 12/66
2016/0371508 Al1* 12/2016 McCorkendale ... GO6F 21/6254
2017/0019369 Al1* 1/2017 Ravinoothala HO4L 47/125
2017/0019370 Al1* 1/2017 Ravinoothala HO4L 61/103
2018/0062994 Al1* 3/2018 Webb HO4L 45/745
2019/0306267 Al* 10/2019 Leeeevvenenennn HO4L 67/2823
2020/0076733 Al1* 3/2020 Venkataraman HO041. 45/74
OTHER PUBLICATIONS

Apigee Docs, (Jan. 28, 2019). 503 Service Unavailable”. 8 pages.

* cited by examiner

US 11,218,559 B2

Sheet 1 of 8

Jan. 4, 2022

U.S. Patent

1 Ol

08T N uaiD 07T Z Wsl) 00T | uaI|D
T8t elemyogueld | | | | TZT elemyos jusl) | - TOT 2/emyos juslid
[S A

orL
 eleq buidde|y mo| 4

Ch7 | AXOld OB WWASY

o0l
Alojisoday abew

OF T Jo||0ojuo’) WweisAg geed

iz
Wa1SAG JBpiAold pNnoD

i

0T Jo]josuo) pnojo

) 0T NISOH | OLT | JSOH
SZT SO l GTT SO
T _ W _ -
HE 74) IS PiT A
N JBUIBILOY | Jaulejuon | N JRUIBILUOD | 1 dsuleluo)
A 12T A 1T \{
N ©PON | OPON N ©PON | 9PON -
| L m 001
ol ano1o

U.S. Patent

Jan. 4, 2022 Sheet 2 of 8

MEMORY 201

FLOW MAPPING
DATA

202

PROCESSING DEVICE 205

ASYMMETRIC PROXY 21

NETWORK
DETERMINER
212

RECEIVER MODULE
211

UNWRAPPER
MODULE

TRANSLATOR
MODULE

213 214

FORWARDING COMMUNICATION
MODULE TUNNEL MODULE
215 216

FIG. 2

US 11,218,559 B2

200

U.S. Patent Jan. 4, 2022 Sheet 3 of 8 US 11,218,559 B2

300

MEMORY 301

FLOW MAPPING
DATA

302

PROCESSING DEVICE 305

ASYMMETRIC PROXY 310

CONVERTER
MODULE
312

RECEIVER MODULE
311

NETWORK
CONNECTION
COMMUNICATOR
314

NETWORK
DETERMINER

313

FORWARDING COMMUNICATION
MODULE TUNNEL MODULE
315 316

FIG. 3

U.S. Patent Jan. 4, 2022 Sheet 4 of 8 US 11,218,559 B2

Receive a request from a source network that is sent at a networking

transport layer
405

400

Determine a destination network associated with the request that

communicates at a data link layer
410

Remove information associated with the source network from one or more

networking layers of the request
415

Translate the one or more networking layers of the request to include
iInformation associated with the destination network

42>

Send the request over a tunnel connection to the destination network usmg
a tunneling protocol at the data link layer 430

U.S. Patent Jan. 4, 2022 Sheet 5 of 8 US 11,218,559 B2

. o 500
Receive a response from the destination network over the tunnel
connection
505

Remove information associated with the destination network from one or |

more networking layers of the response
210

215

Retrieve the information associated with the source network from a

memory space
220

Translate the one or more networking layers of the response to include
information associated with the source network

22>

Send the response to the source network at the networking transport layer
530 -

FIG. 5

U.S. Patent Jan. 4, 2022 Sheet 6 of 8 US 11,218,559 B2

600

60>

. Remove information associated with the source network from one or more |

networking layers of the request
610

620

625

Send the request to the destination network over the networking

connection at the network transport layer
630

FIG. 6

U.S. Patent Jan. 4, 2022 Sheet 7 of 8 US 11,218,559 B2

Receive a response from the destination network over the network

connection at a networking transport layer
/05

700

/10

Insert at least a portion of the information associated with the source

network into one or more networking layers of the response
720

125

FIG. 7

U.S. Patent Jan. 4, 2022
802
PROCESSING DEVICE
INSTRUCTIONS a8
ASYMMETRIC
PROXY
145
804
MAIN MEMORY
INSTRUCTIONS
826
ASYMMETRIC
PROXY
145
806
STATIC MEMORY |le@—o
822

DEVICE

NETWORK INTERFACE

Sheet 8 of 8

BUS
808

US 11,218,559 B2

800
'

VIDEO DISPLAY

810

812

ALPHA-NUMERIC INPUT
DEVICE

814

| CURSOR CONTROL DEVICE

816

~ DATASTORAGE DEVICE

COMPUTER-READABLE 824

MEDIUM '
I 826

INSTRUCTIONS

ASYMMETRIC
PROXY
145

SIGNAL GENERATION
DEVICE

FIG. 8

US 11,218,559 B2

1
ASYMMETRIC NETWORKING PROXY

TECHNICAL FIELD

The present disclosure 1s generally related to computer >
systems, and more particularly, to an asymmetric network-
ing proxy for computer systems.

BACKGROUND
10

Platform-as-a-Service (PaaS) system oflerings can
include software and/or hardware facilities for facilitating
the execution of web applications 1 a cloud computing
environment (the “cloud”). Cloud computing 1s a computing
paradigm 1n which a user engages a “cloud provider” to 15
execute a program on computer hardware owned and/or
controlled by the cloud provider. A cloud provider can make
containers and/or virtual machines (VMs) hosted on 1ts
computer hardware available to customers for this purpose.
The cloud provider can provide an interface that a user can 20
use to requisition virtual machines and associated resources
such as security policies, processors, storage, and network
services, etc., as well as an interface to install and execute
the user’s applications and files on the virtual machines.

PaaS oflerings can facilitate deployment of web applica- 25
tions without the cost and complexity of buying and man-
aging the underlying hardware and software and provision-
ing hosting capabilities, providing the facilities to support
the complete life cycle of building and delivering web
applications and services entirely available from the Inter- 30
net.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example, 35
and not by way of limitation, and can be more fully
understood with reference to the following detailed descrip-
tion when considered in connection with the figures in
which:

FIG. 1 depicts a high-level component diagram of an 40
example computer system architecture, 1n accordance with
one or more aspects of the present disclosure.

FIG. 2 depicts a block diagram 1llustrating an example of
an asymmetric networking proxy to service requests from an
L4 networking entity to be forwarded to an L2 networking 45
entity, 1n accordance with one or more aspects of the present
disclosure.

FIG. 3 depicts a block diagram 1llustrating an example of
an asymmetric networking proxy to service requests from an
[.2 networking entity to be forwarded to an L4 networking 50
entity, 1n accordance with one or more aspects of the present
disclosure.

FIG. 4 depicts a flow diagram 1llustrating an asymmetric
proxy that services requests from an L4 networking entity to
be forwarded to an L2 networking entity, 1n accordance with 55
one or more aspects of the present disclosure.

FIG. 5 depicts a flow diagram 1llustrating an asymmetric
proxy that services responses from an L2 networking entity
to be returned to an L4 networking entity, in accordance with
one or more aspects of the present disclosure. 60

FIG. 6 depicts a flow diagram of a method for an
asymmetric proxy that services requests from an L2 net-
working entity to be forwarded to an L4 networking entity,
in accordance with one or more aspects of the present
disclosure. 65

FIG. 7 depicts a flow diagram of a method for an
asymmetric proxy that services responses from an L4 net-

2

working entity to be returned to an L2 networking entity, in
accordance with one or more aspects of the present disclo-
sure.

FIG. 8 depicts a block diagram of an 1llustrative computer
system operating in accordance with one or more aspects of
the present disclosure.

DETAILED DESCRIPTION

Described herein are methods and systems for implement-
ing an asymmetric proxy to facilitate userspace networking
within a cloud computing environment. Cloud computing
environments provide many advantages over locally owned
computing systems such as optimization of shared
resources, reduction of costs, and improved client scalabil-
ity. In many cloud based implementations, cloud providers
and application owners can make use of userspace network-
ing to improve the performance of networking functions
available 1n such cloud based systems. Userspace network-
ing refers to an implementation where networking function-
ality that 1s typically performed at the operating system level
1s relocated into the application level (e.g., userspace). In
such instances, the networking functionality can be opti-
mized to suit a particular system implementation to improve
performance, prevent networking packets from being copied
multiple times between the operating system level and
application level, utilize multi-core architectures when han-
dling high volume networking traflic, simplity development
of advanced network tratlic functions, and streamline net-
working functionality 1n virtualized environments where a
second operating system 1S running as a process in user-
space.

Userspace networking, however, can expose systems to
problems with monitoring, security, and performance since
the networking tratflic processed 1n userspace can be opaque
to the operating system that may need visibility into that
traflic to perform those functions. These 1ssues can be
particularly problematic in cloud computing environments
that imnclude virtual machines executing inside containers.
Containerization 1s an operating system level virtualization
environment that provides a way to 1solate processes (appli-
cations). Thus, since a container 1s typically implemented to
contain a process, anything that executes within a container
1s viewed by other entities as a process from a networking
perspective. These entities are viewed as Layer 4 entities,
which refers to networking Layer 4 of network communi-
cation protocols (e.g., L4, transport layer). In many cloud
based implementations, containers can be implemented to
include not only processes, but virtual machines (VMs) as
well. Since a VM 1s a virtualized computer, 1t should be
viewed by other entities as a computer from a networking
perspective. These entities are viewed as Layer 2 entities,
which refers to networking Layer 2 of network communi-
cation protocols (e.g., L2, data link layer). However, a VM
executing within a container could be viewed as a process
(L4) rather than a computer (I.2) by other entities within the
network.

Some conventional systems can mitigate these problems
by relying on the operating system to handle the networking
translations between varying network protocol layers. This,
however, eliminates any expected userspace networking
benelits since unnecessary translation between process and
machine networking layers would be needed for a contain-
erized VM to communicate with any other process outside
of the container. Some other systems implement translation
gateways that can handle process to process communica-
tions, but these types of solutions are “symmetric” as they

US 11,218,559 B2

3

typically support endpoints that communicate using the
same networking layer (e.g., both endpoints communicate as
[.2 entities). Still other systems implement userspace net-
working solutions to conduct communication translation
between the contaimnerized VM and external processes by
adding translation logic to the VM 1tself or the hypervisor
that manages that VM. These solutions, however, are inflex-
ible and not scalable since they are tied directly to a
particular VM. Thus, any communication translation would
be restricted to the same machine executing the VM.

Aspects of the present disclosure address the above noted
and other deficiencies by implementing an asymmetric
proxy to facilitate userspace networking translation between
entities within a network that may each need visibility to
different layers of networking traflic. The term “asymmet-
ric” indicates that the proxy disclosed herein supports end-
points that communicate using different networking layers
(c.g., one endpoint communicates as an L2 entity and
another endpoint communicates as an L4 entity). The asym-
metric proxy can be placed connected to an L2 enftity (a
containerized VM) that 1s exposed to other entities within a
network as a process (LL4). The proxy can then perform
network commumnication translation between the L2 entity
and other L4 entities in the network. The asymmetric proxy
can receive requests from an L4 entity (the “northbound”
network/entity), and “unwrap” the networking layers of the
request (or the packets, frames, components, etc., of the
request) associated with the L4 enfity. The asymmetric
proxy may then “rewrap” the request to be compatible with
the destination L2 entity, and forward the translated request
to the L2 entity using a commumnication method other than
the operating system network stack (e.g., using a commu-
nication tunnel). Similarly, the asymmetric proxy can
receive requests from the L2 entity, convert the request to be
compatible with a destination L4 entity, and forward the
request to that L4 entity. Thus, aspects of the present
disclosure can provide the benefits of userspace networking
in a network architecture that includes varying levels of
network layer communications between endpoints.

Aspects of the present disclosure present significant
advantages over conventional solutions to the 1ssues noted
above. First, the asymmetric proxy can be implemented in a
generic fashion. In other words, 1t can connect one endpoint
to any userspace L2 networking system. Notably, the asym-
metric proxy as described herein can be implemented with-
out complete mtegration into a specific VM to service that
VM. Additionally, the asymmetric proxy can function on
different machines from those executing the connected end-
point entities/networks without loss of performance. More-
over, the asymmetric proxy provides added benefit over
conventional symmetric solutions since the asymmetric
proxy can expose itself as a regular process to L4 network
endpoints and as a lower level networking entity to L2
network endpoints. Thus, the performance benefits of user-
space networking may be improved for networks that
include asymmetric networking endpoints, since any addi-
tional networking efforts that would otherwise be replicated
by the operating system can be eliminated.

FIG. 1 1s a block diagram of a network architecture 100
in which implementations of the disclosure may operate. In
some 1mplementations, the network architecture 100 may be
used 1 a containerized computing services platform. A
containerized computing services platform may include a
Platform-as-a-Service (PaaS) system, such as OpenShift®.
The PaaS system provides resources and services (e.g.,
micro-services) for the development and execution of appli-
cations owned or managed by multiple users. A PaaS system

10

15

20

25

30

35

40

45

50

55

60

65

4

provides a platform and environment that allow users to
build applications and services i a clustered compute
environment (the “cloud”) Although implementations of the
disclosure are described 1n accordance with a certain type of
system, this should not be considered as limiting the scope
or usefulness of the features of the disclosure. For example,
the features and techniques described herein can be used
with other types of multi-tenant systems and/or container-
1zed computing services platforms.

As shown in FIG. 1, the network architecture 100 includes
a cloud-computing environment 130 (also referred to herein
as a cloud) that includes nodes 111, 112, 121 to execute
applications and/or processes associated with the applica-
tions. A “node” providing computing functionality may
provide the execution environment for an application of the
PaaS system. In some implementations, the “node” may
refer to a virtual machine (VM) that 1s hosted on a physical
machine, such as host 1 110 through host N 120, imple-
mented as part of the cloud 130. For example, nodes 111 and
112 are hosted on physical machine of host 1 110 1n cloud
130 provided by cloud provider 104. In some implementa-
tions, an environment other than a VM may be used to
execute functionality of the PaaS applications. When nodes

111, 112, 121 are implemented as VMs, they may be
executed by operating systems (OSs) 115, 125 on each host
machine 110, 120.

In some implementations, the host machines 110, 120 are
often located 1n a data center. Users can interact with
applications executing on the cloud-based nodes 111, 112,
121 using client computer systems, such as clients 160, 170
and 180, via corresponding client software 161, 171 and
181. Client software 161, 171, 181 may include an appli-
cation such as a web browser. In other implementations, the
applications may be hosted directly on hosts 1 through N
110, 120 without the use of VMs (e.g., a “bare metal”
implementation), and in such an implementation, the hosts
themselves are referred to as “nodes™.

Clients 160, 170, and 180 are connected to hosts 110, 120
in cloud 130 and the cloud provider system 104 via a
network 102, which may be a private network (e.g., a local
area network (LAN), a wide area network (WAN), intranet,
or other similar private networks) or a public network (e.g.,
the Internet). Each client 160, 170, 180 may be a mobile
device, a PDA, a laptop, a desktop computer, a tablet
computing device, a server device, or any other computing
device. Fach host 110, 120 may be a server computer
system, a desktop computer or any other computing device.
The cloud provider system 104 may include one or more
machines such as server computers, desktop computers, etc.

In one implementation, the cloud provider system 104 1s
coupled to a cloud controller 108 via the network 102. The
cloud controller 108 may reside on one or more machines
(e.g., server computers, desktop computers, etc.) and may
manage the execution of applications 1n the cloud 130. In
some 1mplementations, cloud controller 108 receives com-
mands from PaaS system controller 140. In view of these
commands, the cloud controller 108 provides data (e.g., such
as pre-generated 1mages) associated with different applica-
tions to the cloud provider system 104. In some implemen-
tations, the data may be provided to the cloud provider 104
and stored 1n an 1mage repository 106, 1n an 1image reposi-
tory (not shown) located on each host 110, 120, or in an
image repository (not shown) located on each node 111, 112,
121. This data may be used for the execution of applications
for a multi-tenant PaaS platform managed by the PaaS
system controller 140.

US 11,218,559 B2

S

In one implementation, the data used for execution of
applications can include application 1images built from pre-
existing application components and source code of users
managing the application. An image may refer to data
representing executables and files of the application used to
deploy functionality for a runtime instance of the applica-
tion. In one implementation, the image can be built using a
Docker™ tool and 1s referred to as a Docker image. In other
implementations, the application 1images can be built using
other types of containerization technologies. An image build
system (not pictured) can generate an application 1mage for
an application by combining a preexisting ready-to-run
application 1image corresponding to core functional compo-
nents of the application (e.g., a web framework, database,
etc.) with source code specific to the application provided by
the user. The resulting application 1image may be pushed to
image repository 106 for subsequent use 1n launching
instances ol the application 1mages for execution in the PaaS
system.

Upon recerving a command identifying specific data (e.g.,
application data and files, such as application 1mages, used
to 1nitialize an application on the cloud) from the PaaS
system controller 140, the cloud provider 104 retrieves the
corresponding data from the image repository 106, creates
an instance of 1t, and loads 1t to the hosts 110, 120 to run on
nodes 111, 112, 121, 122. In addition, a command may
identily specific data to be executed on one or more of the
nodes 111, 112, 121, and 122. The command may be
received from the cloud controller 108, from the PaaS
system controller 140, or a user (e.g., a system administra-
tor) via a console computer or a client machine. The image
repository 106 may be local or remote and may represent a
single data structure or multiple data structures (databases,
repositories, files, etc.) residing on one or more mass storage
devices, such as magnetic or optical storage based discs,
solid-state-drives (SSDs) or hard drives.

In some embodiments, each of nodes 111, 112, 121, 122
can host one or more containers 113, 114, 123, 124. Each of
the containers may be a secure process space on the nodes
111, 112, 121 and 122 to execute the functionality of an
application and/or service. In some implementations, a con-
tainer 1s established at the nodes 111, 112, 121 and 122 with
access to certain resources of the underlying node, including
memory, storage, etc. In one implementation, the containers
may be established using the Linux Containers (LXC)
method, cgroups, SELinux™, and kernel namespaces, etc. A
container may serve as an interface between a host machine
and a software application. The soltware application may
comprise one or more related processes and may provide a
certain service (e.g., an H1'TP server, a database server, etc.).
Containerization 1s an operating-system-level virtualization
environment of a host machine that provides a way to 1solate
service processes (e.g., micro-service processes). At the
same time, employing the containers makes 1t possible to
develop and deploy new cloud-based micro-services 1n a
cloud-based system. In some embodiments, one or more
virtual machines may execute within any of containers 113,
114, 123, 124.

Each of nodes 111, 112, 121, 122 can host one or more
applications and/or services. Fach of the services may
correspond to an application and/or one or more components
of the application and may provide one or more function-
alities of the application. Examples of the services may
include a web server, a database server, a middleware server,
etc. Each of the services may run as an independent process
in a suitable machine (e.g., a container, a virtual machine, a
physical machine, etc.). A service runming in system 100

10

15

20

25

30

35

40

45

50

55

60

65

6

may communicate with one or more other services 1n system
100. In one implementation, an application may be deployed
as one or more services on one or more nodes 111, 112, 121,
122. Each of the services may be deployed 1in one or more
containers. In some implementations, a service may be an
application. “Application” and “service” are used herein
interchangeably.

In some embodiments, an application may be deployed as
a plurality of services (e.g., micro-services) on one or more
of the nodes. Each of the services may be hosted by one or
more containers. More particularly, for example, multiple
replicas of a service may be host by a plurality of containers
running on one or more nodes. Each of the replicas may
represent an instance of the service and may provide the
same functionality of the service.

In some 1mplementations, the PaaS system controller 140
may 1clude an asymmetric proxy 145 that facilitates user-
space networking within the cloud-based PaaS system
described above. As described herein, the asymmetric proxy
145 can provide communication translation between net-
works needing visibility to different layers ol networking
traflic. For example, 1n some implementations, the asym-
metric proxy 145 can provide network communication trans-
lation between entities that operate under networking Layer
2 and entities that operate under networking Layer 4. Thus,
the translation provided by asymmetric proxy 145 1s “asym-
metric” in that the two networks communicate using and
need visibility into different levels of networking protocols.

A VM, as a virtualized computer, may operate as a Layer
2 enftity from a networking perspective. Networking Layer 2
1s also known as “L.27, “Data Link Layer,” “Medium Access
Control (MAC) Layer” or the like. Networking Layer 2
provides node-to-node data transier (e.g., a link between two
directly connected nodes), defining the protocol to establish
and terminate a connection between two physically con-
nected devices as well as the protocol for flow control
between them. A container (e.g., containers 113, 14, 123,
124) 1s viewed within the network 100 as a process, and thus
1s viewed within as a Layer 4 entity from a networking
perspective. Layer 4 1s also known as “L4,” “ITransport
Layer,” “Transmission Control Protocol (TCP)/User Data-
gram Protocol (UDP) Layver,” etc. Networking Layer 4
provides host-to-host communication services for applica-
tions such connection-oriented communication, reliability,
flow control, multiplexing, monitoring, performance, and
security. Thus, any entity attempting to communicate with a
container may operate using L4 protocols.

The asymmetric proxy 143 can translate network com-
munication between L4 entities (e.g., applications executing
on clients 160, 170, 180) and L2 entities that are viewed as
L4 entities within the network (VMs executing within
containers 113, 114, 123, 124). In some implementations,
asymmetric proxy 1435 can receive a request from an L4
entity (e.g., a “northbound” network). For example, a web
browser application executing on a client device (e.g., client
software 161, 171, 181 executing on client 160, 170, 180)
may send a request within the network to access a web
server. In various implementations, the web server may be
provided by a VM executing within a container (e.g.,
container 113, 114, 123, 124). Asymmetric proxy 145 may
be configured to receive requests from the L4 entity (e.g., the
“northbound” entity/network), translate the .4 networking
layer information in the request to be compatible with an

entity that expects L2 networking layer communications
(e.g., the “southbound” entity/network), and provide the
translated request to the L2 entity. Additionally, any

US 11,218,559 B2

7

responses to the request that are provided by the L2 entity
can be similarly translated and provided back to the request-
ing L4 enfity.

As noted previously, asymmetric proxy 143 can operate as
a process executing 1n userspace of a computing device (or
container, virtual machine, etc.) within the network 100.
Asymmetric proxy 145 can operate 1n conjunction with the
operating system (e.g., the kernel) of the associated com-
puting device on which 1t executes. For example, requests
received from an L4 entity can be received by asymmetric
proxy 145 via the associated operating system. The asym-
metric proxy 145 can notily the operating system to forward
requests from the L4 entity to the proxy rather than attempt-
ing to identily the destination for the request. For example,
asymmetric proxy 145 can notify the operating system that
the proxy will “listen” on a particular port for received
requests, so any request recerved on that port should be
forwarded to the proxy as the destination (rather than the
actual L2 destination entity).

Once the request has been received, asymmetric proxy

145 can “‘unwrap” the request to remove any attributes
associated with the source L4 entity and store that informa-
tion in flow mapping data 146 for later use. Asymmetric
proxy can then “rewrap” the request to i1dentily the proxy
process as the source and identily the appropriate L2 entity
as the destination. In some implementations, the asymmetric
proxy 145 can be configured to provide the proxy service for
a particular L2 entity or entities. For example, asymmetric
proxy 145 can be configured with networking attributes
associated with a particular L2 entity (e.g., stored 1n flow
mapping data 146) so that any requests received from an L4
entity are specifically forwarded to the particular L2 entity.
Similarly, asymmetric proxy 145 may include attributes for
multiple destination L2 entities and may choose an L2 entity
to which to forward the request based on information
associated with the request. For example, the proxy could
“listen” to multiple ports and forward receirved request to
different L2 entities based on the port.
In implementations, asymmetric proxy 143 can bypass the
networking functionality of the operating system when
forwarding the request to the destination L2 entity. For
example, rather than forward the request using the network-
ing capabilities native to the operating system (which would
result in an L4 type communication), asymmetric proxy 145
can 1nitiate a tunnel connection directly to the L2 enfity so
that the request may be passed as an L2 type communica-
tion. Responses may then be received by the proxy from the
L2 entity over the tunnel connection, unwrapped, rewrapped
to be compatible with the L4 enftity, and forwarded to the
original source of the request.

Similarly, asymmetric proxy 145 may be configured to
service requests received from an L2 entity to be provided
to an L4 entity. For example, a VM executing within a
container may provide a virtualized desktop environment for
a user. The user may execute a browser application within
the VM to access a web server that executes on one of clients
160, 170, 180 that operate as L4 entities. Asymmetric proxy
145 can receive the request through the tunnel connection,
unwrap the request to remove mnformation associated with
the L2 entity and store that information 1n flow mapping data
146 to be used to wrap the response. The asymmetric proxy
145 may then identily the destination entity based on the
contents of the request and open a connection to the desti-
nation entity via standard networking protocols provided by
the operating system. Asymmetric proxy 145 may then
torward the request to the destination L4 entity without
rewrapping the request since that functionality can be pro-

10

15

20

25

30

35

40

45

50

55

60

65

8

vided by the operating system. When a response 1s received
from the L4 entity, asymmetric proxy 1435 can rewrap the
response with the appropriate networking information asso-
ciated with the L2 source entity. This information may be
retrieved from data stored in tlow mapping data 146. The
response may then be forwarded to the L2 source entity
using the tunnel connection.

While mmplementations described above and further
below illustrate an asymmetric proxy providing translation
between an L4 northbound entity and L.2 southbound entity,
aspects of the present disclosure can be implemented with
northbound and southbound entities that rely on diflerent
networking layer communications that those described.
Implementing the asymmetric proxy 145 to service requests
from an L4 entity 1s described in turther detail below with
respect to FIG. 2. Implementing the asymmetric proxy 145
to service requests from an L2 entity 1s described 1n further
detail below with respect to FIG. 3

FIG. 2 depicts a block diagram 1llustrating an example of
an asymmetric proxy 210 for facilitating userspace network-
ing to service requests from an L4 networking entity to be
forwarded to an L2 networking entity. In some implemen-
tations, asymmetric proxy 210 may correspond asymmetric
proxy 145 of FIG. 1. As shown 1n FIG. 2, asymmetric proxy
210 may be a component of a computing apparatus 200 that
includes a processing device 203, operatively coupled to a
memory 201, to execute asymmetric proxy 210. In some
implementations, processing device 205 and memory 201
may correspond to processing device 802 and main memory
804 respectively as described below with respect to FIG. 8.

Asymmetric proxy 210 may include receiver module 211,
network determiner 212, unwrapper module 213, translator
module 214, forwarding module 215, and commumnication
tunnel module 216. Alternatively, the functionality of one or
more of receiver module 211, network determiner 212,
unwrapper module 213, translator module 214, forwarding
module 215, and communication tunnel module 216 may be
combined mto a single module or divided into multiple
sub-modules.

Receiver module 211 1s responsible for receiving a
request from a source network (e.g., a source entity). In
some 1implementations, the source network sends the request
at a networking transport layer (e.g., networking layer 4, 1.4,
etc.). As noted above, asymmetric proxy 210 may work 1n
cooperation with the operating system of the system upon
which the proxy executes. When operating to service
requests from an L4 entity (e.g., the “northbound entity™),
receiver module 211 may notily the associated operating
system that it may monitor (e.g., “listen” on) a particular
communication port to recerve those requests. The operating
system can the configure the communication port to notily
the asymmetric proxy 210 when an mcoming request 1s
received on that port. Subsequently, receiver module 211 can
detect that a source L4 network has mnitiated a communica-
tion connection using the communication port.

In various implementations, the request can be made up of
multiple segments (e.g., packets, frames, etc.) that each are
encapsulated by one or more networking layer protocol
attributes. For example, for each layer of the networking
protocol, the request data can be encapsulated by header
information that identifies attributes for that particular layer.
For example, the L2 header may include a MAC address
attribute, and the .4 header may include a TCP/UDP address
attribute. Stmilarly, other layers of the networking protocol
may also have respective header information that identifies
attributes necessary to direct the request through the network
as well as 1dentity the source of the request.

US 11,218,559 B2

9

Network determiner 212 1s responsible for determining a
destination network (e.g., a destination entity) associated
with the request received by recerver module 211. In some
implementations, the destination network communicates at a
networking data link layer (e.g., networking layer 2, L2,
etc.). The network determiner 212 can determine the desti-
nation L2 network based on information encapsulated 1n the
request. For example, when the recerved request 1s
unwrapped, any networking attributes 1n the request (or the
packets, frames, etc. that make up the request) that may be
associated with the destination network may be extracted
and used to determine the destination network.

Alternatively, the asymmetric proxy 210 may be config-
ured to service requests for a particular (or a group of
particular) destination networks. For example, one instance
ol an asymmetric proxy 210 may be instantiated to perform
translation services for a web server executed by a particular
VM 1nside a container. The asymmetric proxy 210 may be
configured with the networking attributes (e.g., any network
identifiers, IP address, MAC address, or other information
that may be used to identity the destination) needed to
forward requests appropriately. In some implementations,
these attributes may be received by the proxy at proxy
startup, and stored 1n memory 201 (e.g., in flow mapping
data 202). In some implementations, the proxy may be
configured to service requests mtended for multiple desti-
nation networks. In such instances, the proxy can forward
messages to a destination based on the port over which the
request was received. A mapping of port number to desti-
nation network may be stored in flow mapping data 202.

Unwrapper module 213 1s responsible unwrapping the
networking layers of the received request to prepare 1t to be
forwarded to the identified destination network. In some
implementations, unwrapper module 213 unwraps the
request by removing information associated with the source
network from one or more networking layers of the request.
As noted above, the proxy removes any information 1n the
request that 1s associated with the source network so that the
torwarded request appears to have originated from the proxy
itself. Unwrapper module then stores the information asso-
ciated with the source network 1n a memory space (e.g., tlow
mapping data 202).

Translator module 214 1s responsible for translating (e.g.,
re-wrapping) the networking layers of the request to include
information associated with the destination network. Trans-
lator module 214 can conduct the translation by first deter-
mimng the networking attributes associated with asymmet-
ric proxy 210. In some implementations, this information
can be retrieved from information stored in memory 201
(c.g., low mapping data 202). Translator module 214 can
then replace the information associated with the source
network with at least one of the networking attributes
associated with the asymmetric proxy in the networking
layers of the request. For example, translator module 214
can modily any relevant information in headers of the
networking layers of the request that might identity the
source of the request. Subsequently, translator module 214
may then 1nsert one or more networking attributes associated
with the actual destination network (e.g., the L2 entity) into
the applicable networking layers of the request. In some
implementations, the networking attributes of the destina-
tion network are determined by network determiner 212 as
described above.

In various implementations, translator module 214 can
re-wrap the request such that only the necessary networking,
layers expected by the destination network are included. For
example, 11 the destination network i1s an L2 network,

10

15

20

25

30

35

40

45

50

55

60

65

10

translator module 214 can re-wrap the networking layers for
L4, L3, and L2 with modified networking attributes. Since
the destination network expects L2 level communication,
translator module 214 may omit any L1 (e.g., physical layer)
information.

Forwarding module 2135 is responsible for sending the
request to the destination network. In some implementa-
tions, the request 1s sent to the destination network at the L2
networking layer (e.g., the networking data link layer). As
noted above, an 1.2 network that executes within a container
may be viewed by services outside the container as an 14
entity. Thus, forwarding module 215 may forward the
request without going through the network stack of the
operating system, since the destination network may be
expecting communication at the L2 level and not 4. In such
instances, forwarding module 215 can immvoke communica-
tion tunnel module 216 (described below) to establish a
tunnel connection to the destination network without imnvolv-
ing the network stack of the operating system. Forwarding
module 215 then sends the request to the destination net-
work over the tunnel connection. In this way, the request
may be forwarded to an L2 network directly even though the
requests originated from a L4 network.

Communication tunnel module 216 1s responsible for
initiating a tunnel connection to the destination network
using a tunneling protocol. Communication tunnel module
216 may establish the connection responsive to determining
that a request has been translated for the appropriate desti-
nation network. In some implementations, communication
tunnel module 216 may establish the tunnel connection to
the destination L2 network responsive to receiving an initial
request and maintain the tunnel connection to the destination
L.2 network active for subsequently received requests. In
such cases, multiple requests may be sent over the same
tunnel connection (e.g., multiple L4 network requests may
be multiplexed over the same tunnel connection to the L2
destination network). Alternatively, communication tunnel
module 216 may 1nitiate the connection for each request, and
close the connection when the communication flow between
the source and destination networks has completed. In
implementations where the asymmetric proxy 210 services
requests for a particular destination network, communica-
tion tunnel module 216 may establish the 1nitial connection
when the proxy starts up and maintain the tunnel until a
request 1s received to terminate the connection.

Subsequently, when a response to any forwarded request
1s received from the destination network, asymmetric proxy
210 may again be mvoked to process the response, translate
the response into a format compatible with the source
network and forward that response to the source network. A
response may be received by receiver module 211 over the
tunnel connection. As noted above, the destination network
(L2 network) may send the response at the networking data
link layer (e.g., L2). Unwrapper module 213 may then be
invoked to remove (e.g., unwrap) the information associated
with the destination network (e.g., the L2 network) from the
networking layers of the response (e.g., the networking
headers of the response or the packets, frames, etc., that
make up the response).

Network determiner 212 may then be invoked to deter-
mine the source network associated with the response. In
other words, network determiner 212 determines the source
network that sent the request that resulted in the response
from the destination network. In some implementations,
information 1dentifying the source network may be stored 1n
flow mapping data 202 when the request 1s received and
associated with the forwarded request so that when the

US 11,218,559 B2

11

response 1s received, network determiner 212 can easily
identify the origin of the request. Network determiner 212
may then retrieve the information associated with the source
network from the memory space.

Translator module 214 may then be imnvoked to translate
the networking layers of the response to include information
assoclated with the source network. In other words, trans-
lator module 214 rewraps the response with the appropriate
networking attributes associated with the source network
that are expected by the source network in the recerved
response. Similarly, translator module 214 may replace any
network information in the networking layers of the
response that are expected to be associated with the net-
working information of the proxy itself. For example, since
the source network views the proxy as the other end of the
communication flow, any information that identifies the
source of the response would 1dentify the proxy rather than
the actual L2 network that produced the response.

Subsequently, receiver module 211 may receive a request
from the source network (the .4 network) to terminate the
connection to the destination network (the L2 network).
Since the source network may not know specific information
about the destination network, the request may be a request
to terminate the connection to the proxy. In some 1mple-
mentations, receiver module 211 may interpret this request
as terminating only the active connection between the proxy
and the source network. Alternatively, recetver module 211
may 1interpret this request as terminating the end to end
connection to the 1.2 network as well. In such 1nstances, the
above process described for a general request may be
replicated to process the termination request. Unwrapper
module 213 may be mvoked to remove iformation associ-
ated with the source network from the networking layers of
the termination request. Translator module 214 may then be
invoked to translate the networking layers of the termination
request to mnclude information associated with the destina-
tion network (e.g., the L2 network connected to the proxy by
the tunnel connection). Forwarding module 215 may then be
invoked to forward the termination request to the destination
network over the tunnel connection.

Receiver module 211 may subsequently receive an
acknowledgement of the termination request from the des-
tination network over the tunnel connection. In 1implemen-
tations where the end to end connection 1s to be terminated,
receiver module 211 may invoke communication tunnel
module 216 to terminate the tunnel connection. In such
cases, once the tunnel connection has been terminated,
asymmetric proxy 210 may then clear the memory state of
the proxy by deleting any stored information associated with
the source network from the memory space (e.g., from
memory mapping data 202). In some implementations, the
tunnel connection may be maintained for subsequent
requests. As such, the tunnel connection may not be termi-
nated when a termination request 1s received from the source
L4 network. In such istances, receiver module 211 may
receive the acknowledgement of the termination request
from the destination network over the tunnel connection,
causing asymmetric proxy 210 to clear the memory state of
the proxy by deleting any stored information associated with
the source network from the memory space (e.g., from
memory mapping data 202) without terminating the tunnel
connection between the proxy and the destination network.

FI1G. 3 depicts a block diagram 1llustrating an example of
an asymmetric proxy 310 for facilitating userspace network-
ing to service requests from an L2 networking entity to be
forwarded to an L4 networking entity. In some 1mplemen-
tations, asymmetric proxy 310 may correspond asymmetric

10

15

20

25

30

35

40

45

50

55

60

65

12

proxy 145 of FIG. 1. As shown 1 FIG. 3, asymmetric proxy
310 may be a component of a computing apparatus 300 that
includes a processing device 303, operatively coupled to a
memory 301, to execute asymmetric proxy 310. In some
implementations, processing device 305 and memory 301
may correspond to processing device 802 and main memory
804 respectively as described below with respect to FIG. 8.

Asymmetric proxy 310 may include receiver module 311,
converter module 312, network determiner 313, network
connection communicator 314, forwarding module 315, and
communication tunnel module 316. Alternatively, the func-
tionality of one or more of recetver module 311, converter
module 312, network determiner 313, network connection
communicator 314, forwarding module 315, and communi-
cation tunnel module 316 may be combined into a single
module or divided into multiple sub-modules.

Receiver module 311 1s responsible for receiving a
request from a source network (e.g., a source enfity). In
some 1mplementations, the source network sends the request
at a networking data link layer (e.g., networking layer 2, L2,
etc.). As noted above, asymmetric proxy 310 may commu-
nicate with an L2 entity (e.g., the southbound network) using
a tunneling connection rather than via the networking stack
of the operating system. When operating to service requests
from an L2 enfity, receiver module 311 may invoke com-
munication tunnel module 316 to establish the tunnel con-
nection to the L2 destination network.

Communication tunnel module 316 1s responsible for
initiating a tunnel connection to the destination network
using a tunneling protocol. As noted above with respect to
FIG. 2, in implementations where the asymmetric proxy 310
services requests from a particular L2 source network,
communication tunnel module 316 may establish the 1nitial
connection when the proxy starts up and maintain the tunnel
until a request 1s received to terminate the connection. In
some 1mplementations, communication tunnel module 316
may receive network configuration settings associated with
the L2 source network and imitiate the tunnel connection
using a tunneling protocol 1n view of the network configu-
ration settings.

As noted above, the asymmetric proxy 210 may be
configured to service requests from a particular L2 source
network. For example, one instance of an asymmetric proxy
310 may be mstantiated to perform translation services for
a client desktop application executed by a particular VM
inside a container. For example, a client desktop running a
web browser. The asymmetric proxy 310 may be configured
with the networking attributes (e.g., any network 1dentifiers,
IP address, MAC address, or other information that may be
used to 1dentify the source) needed to connect to the client
desktop and receive requests appropriately. In some 1mple-
mentations, these attributes may be received by the proxy at
proxy startup, and stored in memory 301 (e.g., in flow
mapping data 302). In some implementations, the proxy may
be configured to service requests from multiple destination
networks, each with 1ts own corresponding tunnel connec-
tion.

Converter module 312 1s responsible for converting the
request (or the networking packets, frames, etc. that make up
the request) for compatibility with the destination L4 net-
work. In some implementations, converter module 312
completes this operation by unwrapping the networking
layers of the received request to prepare it to be forwarded
to the 1dentified destination network. Converter module 312
can first remove information associated with the source L2
network from the networking layers of the request and store

US 11,218,559 B2

13

that information 1n a memory space ol memory 301 (e.g.,
memory mapping data 302) for later use in packaging a
response.

Network determiner 313 1s responsible for determining a
destination network (e.g., a destination entity) associated
with the request received by recerver module 311. In some
implementations, mformation that identifies the destination
L4 network for the request 1s included on the request from
the L2 source network. For example, 11 the request from the
[.2 source network 1s generated by a browser application to
view a web page, information 1dentifying the web page may
be included in the request. Once converter module 312
unwraps the request to remove any networking information
associated with proxy and/or the L2 source network, the
remaining information should allow network determiner 313
to 1dentity the destination network.

Network connection communicator 314 1s responsible for
initiating a networking connection to the destination net-
work 1dentified by network determiner 313. In some 1mple-
mentations, network connection communicator 314 can
establish this connection via the operating system of the
system executing the proxy. Continuing the web page
example from above, network connection communicator
314 can then send a request to the operating system to
initiate the networking connection to the applicable IP
address associated with the web page. Forwarding module
315 may then be mvoked to forward the request.

Forwarding module 315 1s responsible for sending the
request to the destination network over the networking
connection initiated by network connection communicator
314. In some 1mplementations, the request 1s sent to the L4
destination network at the network transport layer (e.g., 1.4).
As described above, since the L4 network expects L4 level
communications, forwarding module 315 may utilize the
networking capabilities of the operating system to forward
the request without performing any additional re-wrapping,
operation. Thus, forwarding module 315 can send the
request to the networking stack of the operating system and
allow the operating system to complete the communication.

Subsequently, when a response to any forwarded request
1s received from the L4 destination network, asymmetric
proxy 310 may again be invoked to process the response,
translate the response 1nto a format compatible with the 1.2
source network and forward that response to the L2 source
network. A response may be received by receiver module
311 over the standard networking connection established 1n
conjunction with the operating system. As noted above, the
destination network (L4 network) may send the response at
the networking transport layer (e.g., L4). The operating
system may receive this response via its own networking
stack, perform any unwrapping necessary to strip the net-
working layers from the response (e.g., the networking
headers of the response or the packets, frames, etc., that
make up the response), and return the unwrapped response
to recerver module 311. Thus, asymmetric proxy 310 may
process the response data without performing any unwrap-
ping.

Network determiner 313 may then be invoked to deter-
mine the source network associated with the response. In
other words, network determiner 313 determines the source
network that sent the request that resulted in the response
from the destination network. In some implementations,
information identifying the source network may be stored 1n
flow mapping data 302 when the request 1s received and
associated with the forwarded request so that when the
response 1s received, network determiner 313 can easily
identify the origin of the request. Network determiner 313

10

15

20

25

30

35

40

45

50

55

60

65

14

may then retrieve the information associated with the source
network from the memory space (e.g., flow mapping data
302).

Converter module 312 may then be invoked to rewrap the
response with the appropriate networking attributes associ-
ated with the L2 source network that are expected by the
source network 1n the received response. In some 1mple-
mentations, converter module 312 inserts at least a portion
of the information associated with the source network into
the networking layers of the response (or packets, frames,
ctc. that make up the response). Forwarding module 325
may then be ivoked to forward the response to the L2
source network over the communication tunnel connection
using the tunnel protocol.

Subsequently, receiver module 311 may receive a request
from the L2 source network to terminate the connection to
the L4 destination network. Converter module 312 may be
invoked to unwrap the termination request and convert it for
compatibility with the L4 destination network. Forwarding
module 315 may then be invoked to send the termination
request to the L4 destination network over the network
connection. Receirver module 311 may receive an acknowl-
edgement of the termination request from the L4 destination
network over the network connection and send a request to
the operating system to terminate the network connection to
the L4 destination network.

Once the network connection has been terminated, asym-
metric proxy 210 may then invoke converter module 312 to
rewrap the acknowledgment with the appropriate network-
ing attributes associated with the L2 source network that are
expected by the source network 1n the received acknowl-
edgment. In some implementations, converter module 312
inserts at least a portion of the mformation associated with
the source network into the networking layers of the
acknowledgment (or packets, frames, etc. that make up the
acknowledgment). Forwarding module 325 may then be
invoked to forward the acknowledgment to the L2 source
network over the communication tunnel connection using
the tunnel protocol.

In some implementations, receiver module 311 may inter-
pret the termination request from the L2 source network to
terminate the tunnel connection as well. In such instances,
communication tunnel module 316 may be nvoked to
terminate the tunnel connection. In some 1mplementations,
once the tunnel connection has been terminated, asymmetric
proxy 310 may then clear the memory state of the proxy by
deleting any stored information associated with the L2
source network from the memory space (e.g., from memory
mapping data 302).

FIG. 4 depicts a flow diagram of an example method 400
for an asymmetric proxy that services requests from an 1.4
networking entity to be forwarded to an L2 networking
entity. The method may be performed by processing logic
that may comprise hardware (circuitry, dedicated logic, etc.),
computer readable instructions (run on a general purpose
computer system or a dedicated machine), or a combination
of both. In an illustrative example, method 400 may be
performed by asymmetric proxy 145 1n FIG. 1, or asym-
metric proxy 210 in FIG. 2. Alternatively, some or all of
method 400 might be performed by another module or
machine. It should be noted that blocks depicted in FIG. 4
could be performed simultaneously or 1n a different order
than that depicted.

At block 405, processing logic receives a request from a
source network. In some implementations, the source net-
work sends the request at a networking transport layer. At
block 410, processing logic determines a destination net-

US 11,218,559 B2

15

work associated with the request. In some implementations,
the destination network communicates at a networking data
link layer. At block 415, processing logic removes informa-
tion associated with the source network from one or more
networking layers of the request. At block 420, processing
logic stores the information associated with the source
network 1n a memory space. At block 425, processing logic
translates the one or more networking layers of the request
to 1nclude information associated with the destination net-
work. At block 430, processing logic sends the request to the
destination network over a tunnel connection to the desti-
nation network using a tunneling protocol. In some 1mple-
mentations, the request 1s sent to the destination network at
the networking data link layer. After block 430, the method
of FIG. 4 terminates.

FIG. 5 depicts a flow diagram of an example method 500
for an asymmetric proxy that services responses from an L2
networking entity to be returned to an L4 networking entity.
The method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), com-
puter readable instructions (run on a general purpose com-
puter system or a dedicated machine), or a combination of
both. In an illustrative example, method 500 may be per-
formed by asymmetric proxy 143 1n FIG. 1, or asymmetric
proxy 210 in FIG. 2. Alternatively, some or all of method
500 might be performed by another module or machine. It
should be noted that blocks depicted in FIG. 5 could be
performed simultaneously or 1n a different order than that
depicted.

At block 505, processing logic receives a response from
the destination network over the tunnel connection, wherein
the destination network sends the response at the networking
data link layer. At block 510, processing logic removes
information associated with the destination network from
one or more networking layers of the response. At block 515,
processing logic determines the source network associated
with the response. At block 520, processing logic retrieves
the information associated with the source network from the
memory space. At block 5235, processing logic translates the
one or more networking layers of the response to include
information associated with the source network. At block
530, processing logic sends the response to the source
network, wherein the response 1s sent to the source network
at the networking transport layer. After block 530, the
method of FIG. 5 terminates.

FIG. 6 depicts a tlow diagram of an example method 600
for an asymmetric proxy that services requests from an L2
networking entity to be forwarded to an L4 networking
entity. The method may be performed by processing logic
that may comprise hardware (circuitry, dedicated logic, etc.),
computer readable instructions (run on a general purpose
computer system or a dedicated machine), or a combination
of both. In an illustrative example, method 600 may be
performed by asymmetric proxy 145 1n FIG. 1, or asym-
metric proxy 210 in FIG. 2. Alternatively, some or all of
method 600 might be performed by another module or
machine. It should be noted that blocks depicted in FIG. 6
could be performed simultaneously or 1n a different order
than that depicted.

At block 603, processing logic receives a request from a
source network. In some implementations, the source net-
work sends the request at a networking data link layer. At
block 610, processing logic removes information associated
with the source network from one or more networking layers
of the request. At block 615, processing logic stores the
information associated with the source network 1n a memory
space. At block 620, processing logic determines a destina-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion network associated with the request. In some 1mple-
mentations, the destination network communicates at a
networking transport layer. At block 625, processing logic
initiates a networking connection to the destination network.
At block 630, processing logic sends the request to the
destination network over the networking connection. In
some 1mplementations, the request 1s sent to the destination
network at the networking transport layer. After block 630,
the method of FIG. 6 terminates.

FIG. 7 depicts a flow diagram of an example method 700
for an asymmetric proxy that services responses from an L4
networking entity to be returned to an L2 networking entity.
The method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), com-
puter readable 1nstructions (run on a general purpose com-
puter system or a dedicated machine), or a combination of
both. In an 1llustrative example, method 700 may be per-
formed by asymmetric proxy 1435 1n FIG. 1, or asymmetric
proxy 410 in FIG. 4. Alternatively, some or all of method
700 might be performed by another module or machine. It
should be noted that blocks depicted 1n FIG. 7 could be
performed simultaneously or 1mn a different order than that
depicted.

At block 703, processing logic receives a response from
the destination network over the network connection. In
some 1mplementations, the destination network sends the
response at a networking transport layer. At block 710,
processing logic determines the source network associated
with the response. At block 715, processing logic retrieves
the information associated with the source network from the
memory space. At block 720, processing logic mserts at least
a portion of the information associated with the source
network into one or more networking layers of the response.
At block 725, processing logic sends the response to the
source network. In some implementations, the response 1s
sent to the source network at the networking data link layer.
After block 725, the method of FIG. 7 terminates.

FIG. 8 depicts an example computer system 800 which
can perform any one or more of the methods described
herein. In one example, computer system 800 may corre-
spond to computer system 100 of FIG. 1. The computer
system may be connected (e.g., networked) to other com-
puter systems 1n a LAN, an intranet, an extranet, or the
Internet. The computer system may operate 1n the capacity
of a server 1n a client-server network environment. The
computer system may be a personal computer (PC), a set-top
box (STB), a server, a network router, switch or bridge, or
any device capable of executing a set of instructions (se-
quential or otherwise) that specity actions to be taken by that
device. Further, while a single computer system 1s 1llus-
trated, the term “computer” shall also be taken to include
any collection of computers that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methods discussed herein.

The exemplary computer system 800 includes a process-
ing device 802, a main memory 804 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM)), a static
memory 806 (e.g., tlash memory, static random access
memory (SRAM)), and a data storage device 816, which
communicate with each other via a bus 808.

Processing device 802 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device 802 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction

US 11,218,559 B2

17

word (VLIW) microprocessor, or a processor implementing,
other instruction sets or processors implementing a combi-
nation of instruction sets. The processing device 802 may
also be one or more special-purpose processing devices such
as an application specific itegrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
802 1s configured to execute processing logic (e.g., mstruc-
tions 826) that includes asymmetric proxy 145 for perform-
ing the operations and steps discussed herein (e.g., corre-
sponding to the methods of FIGS. 6-7, etc.).

The computer system 800 may further include a network
interface device 822. The computer system 800 also may
include a video display unit 810 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 812 (e.g., a keyboard), a cursor control device 814
(e.g., a mouse), and a signal generation device 820 (e.g., a
speaker). In one illustrative example, the video display unit
810, the alphanumeric mput device 812, and the cursor
control device 814 may be combined into a single compo-
nent or device (e.g., an LCD touch screen).

The data storage device 816 may include a non-transitory
computer-readable medium 824 on which may store mstruc-
tions 826 that include asymmetric proxy 143 (e.g., corre-
sponding to the methods of FIGS. 6-7, etc.) embodying any
one or more of the methodologies or functions described
herein. Asymmetric proxy 145 may also reside, completely
or at least partially, within the main memory 804 and/or
within the processing device 802 during execution thereof
by the computer system 800, the main memory 804 and the
processing device 802 also constituting computer-readable
media. Asymmetric proxy 145 may further be transmitted or
received over a network via the network interface device
822.

While the computer-readable storage medium 824 1s
shown 1n the 1llustrative examples to be a single medium, the
term “‘computer-readable storage medium” should be taken
to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of 1nstructions.
The term “computer-readable storage medium™ shall also be
taken to include any medium that 1s capable of storing,
encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform any one
or more of the methodologies of the present disclosure. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, and magnetic media.

Although the operations of the methods herein are shown
and described 1n a particular order, the order of the opera-
tions of each method may be altered so that certain opera-
tions may be performed 1n an mverse order or so that certain
operation may be performed, at least in part, concurrently
with other operations. In certain implementations, instruc-
tions or sub-operations of distinct operations may be 1n an
intermittent and/or alternating manner.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
implementations will be apparent to those of skill in the art
upon reading and understanding the above description. The
scope of the disclosure should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled in the art, that
aspects of the present disclosure may be practiced without
these specific details. In some 1nstances, well-known struc-

10

15

20

25

30

35

40

45

50

55

60

65

18

tures and devices are shown 1n block diagram form, rather
than i detail, in order to avoid obscuring the present
disclosure.

Unless specifically stated otherwise, as apparent from the
following discussion, 1t 1s appreciated that throughout the
description, discussions utilizing terms such as “receiving,”
“determining,” “removing,” “storing,” “translating,” “initi-
ating,” “sending,” or the like, refer to the action and pro-
cesses ol a computer system, or similar electronic comput-
ing device, that manipulates and transforms data represented
as physical (electronic) quantities within the computer sys-
tem’s registers and memories ito other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the specific purposes, or 1t may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

Aspects of the disclosure presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the specified method steps. The structure for a vaniety
of these systems will appear as set forth 1n the description
below. In addition, aspects of the present disclosure are not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the disclosure as described herein.

Aspects of the present disclosure may be provided as a
computer program product that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to the
present disclosure. A machine-readable medium includes
any mechanism for storing or transmitting information 1n a
form readable by a machine (e.g., a computer). For example,
a machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM™), magnetic disk storage media, optical
storage media, flash memory devices, etc.).

The words “example” or “exemplary” are used herein to
mean serving as an example, istance, or illustration. Any
aspect or design described herein as “example” or “exem-
plary” 1s not to be construed as preferred or advantageous
over other aspects or designs. Rather, use of the words
“example” or “exemplary” 1s intended to present concepts 1n
a concrete fashion. As used 1n this application, the term “or”
1s intended to mean an inclusive “or” rather than an exclu-
sive “or”. That 1s, unless specified otherwise, or clear from
context, “X includes A or B” 1s intended to mean any of the
natural inclusive permutations. That 1s, 1f X mncludes A; X
includes B; or X includes both A and B, then “X includes A
or B” 1s satisfied under any of the foregoing instances. In
addition, the articles “a” and “an” as used 1n this application

US 11,218,559 B2

19

and the appended claims should generally be construed to
mean “one or more” unless specified otherwise or clear from
context to be directed to a singular form. Moreover, use of
the term “an embodiment” or “one embodiment” or “an
implementation” or “one implementation™ throughout 1s not
intended to mean the same embodiment or implementation
unless described as such. Furthermore, the terms “first,”
“second,” “third,” “fourth,” etc. as used herein are meant as
labels to distinguish among different elements and may not
have an ordinal meaning according to their numerical des-
1gnation.

What 1s claimed 1is:

1. A method comprising:

receiving, by a processing device executing an asymmet-
ric proxy, a request from a source network, wherein the
request 1dentifies each of a plurality of networking
layers and header data associated with each of the
plurality of networking layers, and wherein the source
network sends the request at a networking transport
layer of the plurality of networking layers;

determining a destination network associated with the
request, wherein the destination network communi-
cates at a networking data link layer of the plurality of
networking layers;

removing, from the request, information from the header
data associated with each of the plurality of networking
layers that identifies the source network;

storing, 11 a memory space, the information that is
removed from the request;

translating, by the processing device executing the asym-
metric proxy, one or more networking layers of the
plurality of networking layers of the request to generate
a translated request, wherein the translated request
comprises information associated with the destination
network and information associated with the asymmet-
ric proxy, and wherein the translated request 1s con-
verted from the networking transport layer supported
by the source network to the networking data link layer
supported by the destination network; and

sending, using a tunneling protocol, the translated request
to the destination network over a tunnel connection
between the destination network and the asymmetric
proxy, wherein the request i1s sent to the destination
network at the networking data link layer.

2. The method of claim 1, wherein receiving the request

COmMprises:

monitoring a communication port for communication
requests; and

detecting that the source network initiated a connection
using the communication port.

3. The method of claim 1, wherein determining the

destination network comprises:

receiving one or more networking attributes associated
with the destination network; and

storing the one or more networking attributes associated
with the destination network in the memory space.

4. The method of claim 3, wherein translating the one or

more networking layers of the request comprises:

determining one or more networking attributes of the
information associated with the asymmetric proxy;

replacing the information associated with the source net-
work with at least one of the one or more networking
attributes associated with the asymmetric proxy in one
or more of the plurality of networking layers of the
request; and

10

15

20

25

30

35

40

45

50

55

60

65

20

inserting at least one of the one or more networking
attributes associated with the destination network into
the one or more of the plurality of networking layers of
the request.
5. The method of claim 1, further comprising:
recerving a response irom the destination network over
the tunnel connection, wherein the destination network
sends the response at the networking data link layer;
removing information associated with the destination
network from one or more networking layers of the
response;
determining the source network associated with the
response;
retrieving at least a portion of the mformation associated
with the source network that was removed from the
request from the source network from the memory
space;
translating the one or more networking layers of the
response to include the retrieved information associ-
ated with the source network; and
sending the response to the source network, wherein the
response 1s sent to the source network at the networking
transport layer.
6. The method of claim 1, further comprising;:
recerving a termination request from the source network
to terminate the connection to the destination network:
removing information associated with the source network
from one or more networking layers of the termination
request;
translating the one or more networking layers of the
termination request to include information associated
with the destination network; and
sending the termination request to the destination network
over the tunnel connection.
7. The method of claim 6, further comprising:
recerving an acknowledgement of the termination request
from the destination network over the tunnel connec-
tion;
terminating the tunnel connection to the destination net-
work; and
deleting the information associated with the source net-
work from the memory space.
8. A system comprising:
a memory; and
a processing device, operatively coupled with the
memory, to execute an asymmetric proxy to:
receive a request from a source network, wherein the
request 1dentifies each of a plurality of networking
layers and header data associated with each of the
plurality of networking layers, and wherein the
source network sends the request at a networking
transport layer of the plurality of networking layers;
determine a destination network associated with the
request, wherein the destination network communi-
cates at a networking data link layer of the plurality
ol networking layers;
remove, from the request, information from the header
data associated with each of the plurality of network-
ing layers that identifies the source network;
store 11 a memory space, the information that 1s
removed from the request;
translate one or more networking layers of the plurality
of networking layers of the request to generate a
translated request, wheremn the translated request
comprises nformation associated with the destina-
tion network and information associated with the
asymmetric proxy, and wherein the {translated

US 11,218,559 B2

21

request 1s converted from the networking transport
layer supported by the source network to the net-
working data link layer supported by the destination
network:; and

provide the translated request to the destination net-
work over a tunnel connection between the asym-
metric proxy and the destination network, wherein
the translated request i1s provided to the destination
network at the networking data link layer.

9. The system of claim 8, wherein to wherein receiving
the request, the processing device 1s further to:

monitor a communication port for communication

requests; and

detect that the source network 1nitiated a connection using,

the communication port.

10. The system of claim 8, wherein to determine the
destination network, the processing device 1s further to:

receive one or more networking attributes associated with

the destination network; and

store the one or more networking attributes associated

with the destination network in the memory space.

11. The system of claim 10, wherein to translate the one
or more networking layers of the request, the processing
device 1s further to:

determine one or more networking attributes of the infor-

mation associated with the asymmetric proxy;

replace the information associated with the source net-

work with at least one of the one or more networking
attributes associated with the asymmetric proxy in one
or more of the plurality of networking layers of the
request; and

insert at least one of the one or more networking attributes

associated with the destmation network into the one or
more of the plurality of networking layers of the
request.

12. The system of claim 8, wherein to provide the request
to the destination network, the processing device 1s further
to:

initiate the tunnel connection to the destination network

using a tunneling protocol; and

send the request to the destination network over the tunnel

connection, wherein the request 1s sent to the destina-
tion network at the networking data link layer.
13. The system of claim 8, wherein the processing device
1s further to:
receive a response from the destination network over the
tunnel connection, wherein the destination network
sends the response at the networking data link layer;

remove nformation associated with the destination net-
work from one or more networking layers of the
response;

determine the source network associated with the

response;

retrieve at least a portion of the mmformation associated

with the source network that was removed from the
request from the source network from the memory
space;

translate the one or more networking layers of the

response to include the retrieved information associ-
ated with the source network; and

send the response to the source network, wherein the

response 1s sent to the source network at the networking
transport layer.

14. The system of claim 9, wherein the processing device
1s further to:

receive a termination request from the source network to

terminate the connection to the destination network;

5

10

15

20

25

30

35

40

45

50

55

60

65

22

remove information associated with the source network
from one or more networking layers of the termination
request;

translate the one or more networking layers of the termi-

nation request to include mformation associated with
the destination network; and

send the termination request to the destination network

over the tunnel connection.

15. The system of claim 14, wherein the processing device
1s further to:

recerve an acknowledgement of the termination request

from the destination network over the tunnel connec-
tion;

terminate the tunnel connection to the destination net-

work; and

delete the information associated with the source network

from the memory space.

16. A non-transitory computer readable medium compris-
ing instructions, which when accessed by a processing
device, cause the processing device to execute an asymmet-
ric proxy to:

recerve a request from a source network over a tunnel

connection between the source network and the asym-
metric proxy, wherein the request identifies each of a
plurality of networking layers and header data associ-
ated with each of the plurality of networking layers, and
wherein the source network sends the request at a
networking data link layer of the plurality of network-
ing layers;

remove, from the request, mnformation from the header

data associated with each of the plurality of networking
layers that 1dentifies the source network;

store, 1n a memory space, the information that 1s removed

from the request;

determine a destination network associated with the

request, wherein the destination network communi-
cates at a networking transport layer of the plurality of
networking layers;

translate one or more networking layers of the plurality of

networking layers of the request to generate a translated
request, wherein the translated request comprises infor-
mation associated with the destination network and
information associated with the asymmetric proxy, and
wherein the translated request 1s converted from the
networking data link layer supported by the source
network to the networking transport layer supported by
the destination network;

initiate a networking connection to the destination net-

work; and

send the translated request to the destination network over

the networking connection, wherein the request 1s sent
to the destination network at the networking transport
layer.

17. The non-transitory computer readable medium of
claim 16, wherein the processing device 1s further to:

receive one or more network configuration settings asso-

ciated with the source network; and

imitiate the tunnel connection to the source network using,

a tunneling protocol 1n view of the network configu-
ration settings.
18. The non-transitory computer readable medium of
claim 16, wherein the processing device 1s further to:
recerve a response from the destination network over the
network connection, wherein the destination network
sends the response at the networking transport layer;

determine the source network associated with the
response;

US 11,218,559 B2

23

retrieve the information associated with the source net-
work that was removed from the request from the
source network from the memory space;

insert at least a portion of the information associated with
the source network into one or more networking layers >
of the response; and

send the response to the source network, wherein the
response 1s sent to the source network at the networking
data link layer.

19. The non-transitory computer readable medium of

claim 16, wherein the processing device 1s further to:

receive a termination request from the source network to
terminate the connection to the destination network;

send the termination request to the destination network

over the network connection;

receive an acknowledgement of the termination request
from the destination network over the network connec-
tion;

terminate the networking connection to the destination ,,
network;

retrieve the information associated with the source net-
work from the memory space;

insert at least a portion of the information associated with
the source network into the one or more networking -
layers of the acknowledgement; and

send the acknowledgment to the source network, wherein
the acknowledgment 1s sent to the source network at the
networking data link layer.

20. The non-transitory computer readable medium of ,,

claim 19, wherein the processing device 1s further to:

delete the information associated with the source network
from the memory space.

21. A method comprising:

recelving, by an asymmetric proxy, a request from a ;.
source network over a tunnel connection between the
source network and the asymmetric proxy, wherein the
request 1dentifies each of a plurality of networking
layers and header data associated with each of the
plurality of networking layers, and wherein the source ,,
network sends the request at a first networking layer, of
the plurality of networking layers;

determining a destination network associated with the
request, wherein the destination network communi-
cates at a second networking layer of the plurality of .
networking layers, and wherein the second networking
layer 1s different than the first networking layer;

removing, Irom the request, information from the header
data associated with each of the plurality of networking
layers that 1dentifies the source network; 50

storing, 1 a memory space, the information that 1is
removed from the request;

converting at least a portion of the request to generate a
converted request, wherein the converted request 1s
converted from compatibility with the first networking .
layer for the source network to compatibility with the
second networking layer for the destination network
and wherein the converted request comprises informa-
tion associated with the destination network and infor-
mation associated with the asymmetric proxy;

10

15

24

imitiating a networking connection to the destination net-

work; and

sending the converted request to the destination network

over the networking connection, wherein the request 1s
sent to the destination network at the second network-
ing layer.

22. The method of claim 21, wherein the first networking
layer comprises a networking data link layer and the second
networking layer comprises a networking transport layer.

23. The method of claim 21, wherein the at least a portion
of the request comprises one or more networking compo-
nents of the request, wherein each of the one or more
networking components corresponds to a respective net-
working layer of the plurality of networking layers.

24. The method of claim 21, further comprising:

receiving one or more network configuration settings

associated with the source network:; and

imtiating the tunnel connection to the source network

using a tunneling protocol in view of the network
conflguration settings.

25. The method of claim 21, further comprising;

recerving a response irom the destination network over

the network connection, wherein the destination net-
work sends the response at the second networking
layer;

determining the source network associated with the

response;

retrieving the information associated with the source

network from the memory space;

inserting at least a portion of the information associated

with the source network 1nto the one or more network-
ing components of the response; and

sending the response to the source network, wherein the

response 1s sent to the source network at the first
networking layer.

26. The method of claim 21, further comprising;

recerving a termination request from the source network

to terminate the connection to the destination network:
sending the termination request to the destination network
over the tunnel connection;

recerving an acknowledgement of the termination request

from the destination network over the network connec-
tion;

terminating the networking connection to the destination

network;

retrieving the information associated with the source

network that was removed from the request from the
source network from the memory space;

inserting at least a portion of the information associated

with the source network 1nto the one or more network-
ing components of the acknowledgement; and

send the acknowledgment to the source network, wherein

the acknowledgment 1s sent to the source network at the
first networking layer.

277. The method of claim 26, further comprising;

deleting the information associated with the source net-

work from the memory space.

28. The method of claim 27, further comprising:

terminating the tunnel connection to the source network.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

