12 United States Patent
Dubey et al.

US011210143B1

US 11,210,143 B1
Dec. 28, 2021

(10) Patent No.:
45) Date of Patent:

(54) PARALLEL EXECUTION OF
SYNCHRONOUS WORKFLOW STEPS

(71) Applicant: Amazon Technologies, Inc., Secattle,
WA (US)

(72) Inventors: Avinash Dubey, Redmond, WA (US);
Prasanta Shukla, Bothell, WA (US);
Piyvush Kalani, Newcastle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 5 days.

(21) Appl. No.: 16/911,887

(22) Filed: Jun. 25, 2020
(51) Imt. CL
GO6F 9/46 (2006.01)
GO6F 9/52 (2006.01)
GO6F 9/48 (2006.01)
(52) U.S. CL
CPC ... GO6F 9/526 (2013.01); GO6F 9/4881

(2013.01)

(58) Field of Classification Search
CPC e, GO6F 9/4881; GO6F 9/526

See application file for complete search history.

- 600

DETERMINING TO ALLOW PARALLEL EXECUTION OF UPDATES OF A WORKFLOW
602

'

RECEIVING FIRST CHECKPOINT DATA ASSOCIATED WITH A FIRST UPDATE OF THE
WORKFLOW, THE FIRST CHECKPOINT DATA INCLUDING: (1) AFIRST INPUT, (2) A
FIRST IDEMPOTENCY KEY, AND {3} A FIRST RECORD VERSION IDENTIFIER
ASSOCIATED WITH A PARTICULAR RECORD 604

'

RECEIVING SECOND CHECKPOINT DATA ASSOCIATED WiTH A SECOND UPDATE OF
THE WORKFLOW, THE SECOND CHECKPOINT DATA INCLUDING: (1) A SECOND
INPUT, (2} A SECOND IDEMPOTENCY KEY, AND (3} A SECOND RECORD VERSION
IDENTIFIER ASSOCIATED WITH A PARTICULAR RECORD 006

'

INITIATING A CHECKPOINT PHASE FOR DETERMINING A RESULT OF THE
WORKFLOW, COMPRISING; 608

!

{A) COMPARING ONE OR MORE DATA ELEMENTS OF THE FIRST CHECKPOINT
DATA WiTH ONE OR MORE RESPECTIVE DATA ELEMENTS OF THE SECOND
CHECKPOINT DATA, AND 610

!

[(E] DETERMINING A RESULT BASED AT LEAST IN PART ON THE COMPARING 012]

COMPLETING THE CHECKPGCINT PHASE, THE RESULT BEING TRANSMITTED TO AT

LEAST ONE USER DEVICE UPON THE COMPLETION OF THE CHECKPOINT PHASE
014

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0244558 Al* 82015 Tully HO41L. 29/08882

709/201

* cited by examiner

Primary Examiner — Camquy lruong

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

Techniques are disclosed for a workilow engine performing
a checkpoint phase to determine a result of a merge of
workilow updates. The techniques may include the work-
flow engine determining to allow parallel execution of
updates of a workilow. The workflow engine may receive
first checkpoint data associated with a first update. The
workilow engine may also receive second checkpoint data
associated with a second update. The workflow engine may
initiate the checkpoint phase that includes comparing one or
more data elements of the first checkpoint data with respec-
tive data elements of the second checkpoint data; and
determining the result of the merge of the workilow updates
based on the comparing. The workilow engine may then
complete the checkpoint phase and transmait the result to at
least one user device for presentation.

20 Claims, 7 Drawing Sheets

702 Web

Appiication
Server

ser

Production L.og Information

I~ l "Ol4

ol

M.., OcC| 7ol) \ON_‘ 8Ll

~

= - L

.5 U L+ U w sdoa1s
N ﬂ, | <4— udolg D
- | B | dels @ h m:o_>;m;.uw_§§
— e - e
\
\ -
N e — -

- N\ - -

- \ e -

z \ -7

Lw T T ——

h I

7 P 901

[f/ NILSAS
801 INIWIOVYNYI ¢ o e

y—

2 go._“_v_mo>\> / [[] wodyosud
o8 / cZ10gy we)l dn Xoid
3 F1T eulbu3

-

MOLAIOM 3308y way dn yoid
AN

~N < WHIUN

= Idy STHUNA ShEZL UIq UIBlq0
= AL\ L E Juodyoeyd
- _ c e

N 001
7 JUBWI|INg J13PIO
-

¢ Ol

$8900NQ, UINJ8Y

US 11,210,143 B1

0cc 81c S5i7
¢ sdals ’ Z, NAd UM |
MOJJHIOM Xo1u09 9 ydeib A ndu
L X, Ao
LuIopad . MO|MJOM PEOT
7 ———
o 174 X4
o 1+Z, NAY e
& A, 1ndu —_—
@ X, Koy Oc
= < o
= - —
oseyd
Juodyoayo a1noex3
y—
~ ~ ,
—_ — | —
! 01¢ 30¢ 0/ —
] . sdais . Z, NAY Uim >@mm=
5 MOMJOM Xa1u09 ¥ ydeib “mﬁm |
m wiouad MOIMIOM PBO™ X N

$S800NG, UIN)SY

00C

U.S. Patent
\
\
\
\
\
\
\
\
\
\

¢ Ol

U0Nda0XT 1013U0), UINJeY

US 11,210,143 B1

0c¢ 31¢c sre
<« sdeys Z, NAY Unm
m mopom €] xajo00 % ydesd " N Hw_‘ME
| W08 d MO[JIOM PEO X, Aoyl
7 S
“ 7Te
e J+Z, NAY
= A, Induj oer
& X, A
aseyd
Ju1odyoayo a1noax3y
y—
=
0 =1 r—arr—y [T
Q 4% _ 01¢ 30¢ 0 -
R Z, NAH sde)s Z, NAY ylm
) «— . _
: A, indu| m _ MO oM X8)u09 g ydesb A, induj
S X, AoY
= X Aoy | M LIOJDd MOIMJOM PBOT

$S820NS, LIN}aY

00¢

U.S. Patent

¥ "Old

Jondeox3 11uo), uiney

US 11,210,143 B1

I o\
ey 0cY [TK; -
Z, NAY sdajs | 7. NAM Ulm m
(A, 10) A, indu] € mopyiom | . X809 g ydesb “ (A ,_mv wmm_ ndu

X, Ao Wloliod MOIMIOM PROT L X, NN
" 7257
S A +Z, NAY e A
@ X, Koy -
= e
7 aseyd

JUIodoayo ansex

Y—
e -y
0 i W
- 017 w g07 0/ “ 505
-+ _. sdajs » Z, NAY Uyim |
2 MOPAIOM - Xeuo09 %y ydesb m \M H._MM__,,._
= Lo d _ MOYNIOM PBO™] X, A9

S5S900NS, UIN}oY

0[0)7

U.S. Patent

U.S. Patent Dec. 28, 2021 Sheet 5 of 7 US 11,210,143 B1

PROCESSOR(S) 510

/O DEVICE(S) 512

504

MEMORY 515

FIRST USER APPLICATION 516
SECOND USER APPLICATION 518

500

NETWORK(S) 508

VWORKFLOW MANAGEMENT
SYSTEM

506

VWORKFLOW

DATA 532

FIG. 5

U.S. Patent Dec. 28, 2021 Sheet 6 of 7 US 11,210,143 B1

-~ 000

DETERMINING TO ALLOW PARALLEL EXECUTION OF UPDATES OF A WORKFLOW

002

RECEIVING FIRST CHECKPOINT DATA ASSOCIATED WITH A FIRST UPDATE OF THE
WORKFLOW, THE FIRST CHECKPOINT DATA INCLUDING: (1) A FIRST INPUT, (2) A
FIRST IDEMPOTENCY KEY, AND (3) A FIRST RECORD VERSION IDENTIFIER
ASSOCIATED WITH A PARTICULAR RECORD 604

RECEIVING SECOND CHECKPOINT DATA ASSOCIATED WITH A SECOND UPDATE OF
THE WORKFLOW, THE SECOND CHECKPOINT DATA INCLUDING: (1) A SECOND
INPUT, (2) A SECOND IDEMPOTENCY KEY, AND (3) A SECOND RECORD VERSION

IDENTIFIER ASSOCIATED WITH A PARTICULAR RECORD 606

INITIATING A CHECKPOINT PHASE FOR DETERMINING A RESULT OF THE
WORKFLOW, COMPRISING: 008

(A) COMPARING ONE OR MORE DATA ELEMENTS OF THE FIRST CHECKPOINT

DATA WITH ONE OR MORE RESPECTIVE DATA ELEMENTS OF THE SECOND

CHECKPOINT DATA, AND 610

(B) DETERMINING A RESULT BASED AT LEAST IN PART ON THE COMPARING 012

COMPLETING THE CHECKPOINT PHASE, THE RESULT BEING TRANSMITTED TO AT
LEAST ONE USER DEVICE UPON THE COMPLETION OF THE CHECKPOINT PHASE
014

FIG. 6

U.S. Patent Dec. 28, 2021 Sheet 7 of 7 US 11,210,143 B1

702 Web Application

Production

Information

L e e e e —_ -

-

210 /12 /14 /16

FIG. 7

US 11,210,143 Bl

1

PARALLEL EXECUTION OF
SYNCHRONOUS WORKFLOW STEPS

BACKGROUND

Techniques exist for implementing a worktlow platiorm,
which may enable synchronous and/or asynchronous work-
flows. These techniques may involve the workflow platiorm
enabling acquisition of a lock by a first client, whereby the
first client may call ito a workilow platform server to
execute some worktlow steps of a worktlow. This lock
cllectively blocks another call (e.g., from a diflerent client)
from executing workilow steps of the workflow until the
lock 1s released (and/or the lock duration expires). However,
sometimes 1t may be diflicult for a workflow platform server
to determine whether a particular call (e.g., of a client that
has acquired the lock) has timed out or 1s still waiting for the
result. For example, 1t 1s possible that a timed out call by the
first client had acquired the lock, and a retry call (e.g., from
the different client) may be blocked for an undefined dura-
tion. In these cases, it may be diflicult for the workflow
platform to provide a consistent and eflicient experience for
clients.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments 1n accordance with the present
disclosure will be described with reference to the drawings,
in which:

FI1G. 1 1s a simplified block diagram of an example system
providing a worktlow management system, according to
some embodiments;

FIG. 2 1s another simplified block diagram illustrating at
least some example techniques for a worktlow management
system performing a checkpoint phase to merge updates to
a workflow, according to some embodiments;

FIG. 3 1s another simplified block diagram illustrating at
least some example techniques for a workflow management
system performing a checkpoint phase to merge updates to
a worktlow, according to some embodiments;

FIG. 4 1s another simplified block diagram illustrating at
least some example techniques for a worktlow management
system performing a checkpoint phase to merge updates to
a worktlow, according to some embodiments;

FIG. 5 1s another simplified block diagram 1illustrating an
example architecture of a system used to perform a check-
point phase to merge updates to a worktlow, according to
some embodiments;

FI1G. 6 1s a simplified flow diagram 1llustrating an example
process for a workflow management system performing a
checkpoint phase to merge updates to a worktlow, according
to some embodiments; and

FIG. 7 illustrates an environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will also be
apparent to one skilled 1n the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified 1n order not to
obscure the embodiment being described.

Embodiments of the present disclosure may provide tech-
niques for a worktlow platform enabling parallel execution

10

15

20

25

30

35

40

45

50

55

60

65

2

of worktlow steps of a worktlow. In some embodiments, the
worktlow platform may coordinate an execution of one or
more workflows, whereby each worktflow may contain one
or more workiflow steps. For example, 1n some embodi-
ments, the workilow platform may support synchronous
workilows, whereby at least some worktlow steps of a
synchronous worktlow may be synchronized. In these cases,
the workflow platform may coordinate with one or more
other devices (and/or client processes) involved in perform-
ing worktlow steps to ensure that the workflow 1s synchro-
nized upon performance of each workilow step.

For example, consider a scenario mvolving a fulfillment
ol a customer order by a fulfillment center. In this scenario,
the tulfillment of the customer order may be associated with
a workflow that includes one or more synchronized work-
flow steps (e.g., picking up a bin, picking up a particular
item associated with the order and placing 1t in the bin,
picking up and placing a second item 1n the bin, etc.). As
cach workilow step (e.g., or set of steps) 1s completed (e.g.,
by a fulfillment center agent), a user device (e.g., a first
computing thread executing on the user device) may call
into an application programming interface (API) of the
workilow platform (e.g., a server computer) that manages
the workilow to update the workilow. The worktlow plat-
form may then validate the update (e.g., synchronizing
and/or committing the workflow steps performed) by per-
forming a checkpoint phase, and then transmit a result (e.g.,
“Success™) back to the user device (e.g., indicating that the
update was successiully committed), upon which the user
device may then prompt the agent (e.g., by displaying a
green light) to perform a next workilow step of the work-
flow.

In some examples, threads and/or devices may lose net-
work connectivity and/or experience other communication
issues when interacting with the worktlow platform (e.g., n
a distributed computing environment). For example, 1n the
scenario above, the first thread may have lost a network
connection with the worktlow platform (or otherwise timed
out), and the user device may, transparent to the user, spawn
another second thread to retry recording the completion of
the workflow step. The worktlow platform may allow dupli-
cate worktlow updates (e.g., workiflow steps) respectively
associated with each thread to continue executing in parallel
and unblocked, and then execute a consensus algorithm
during the checkpoint phase to merge the respective work-
flow updates using checkpoint data from each update. Upon
completion of the checkpoint phase, the workflow platform
may return a result of the checkpoint phase (e.g., success) to
both threads, whereby the user device may utilize the data
results from at least one of the threads (e.g., the second
thread) to prompt the agent to perform the next workflow
step. In at least this way, the worktlow platform may provide
a more consistent and eflicient experience to end-user
devices.

In an i1llustrative example, consider a scenario in which a
worktlow management system may implement a workflow
platform that manages one or more workiflows associated
with customer order fulfillment. In some embodiments, a
workilow may include one or more workflow steps that are
represented by the workilow platform. In this example, the
workilow may be a synchronous workflow (e.g., including
synchronized worktlow steps), whereby performance of at
least one of the workilow step may be dependent on suc-
cessiul completion of another workilow step of the work-
flow. For example, using the customer order fulfillment
context for illustration, the synchronous worktlow may
include at least four worktlow steps: A) locate and obtain an

US 11,210,143 Bl

3

empty bin (e.g., within a fulfillment center warehouse), B)
locate a first item associated with a customer order, and
place the first 1item in the bin, C) locate a second item
associated with the customer order, and place the second
item 1n the bin, D) bring the bin to a distribution area for
packaging of the items. In this example, performance of
steps B and C may be dependent on step A being success-
tully completed, while performance of step D may be
dependent on steps B and C being successiully completed.
In some embodiments, the workilow platform may manage
(e.g., maintain) a particular workflow 1n part by maintaining
a workiflow graph that includes worktlow steps and repre-
sents relationships (e.g., dependencies) between the different
worktlow steps. The worktlow platform may also maintain
a context of the workilow, for example, indicating which
worktlow steps have been completed (e.g., a state of the
workilow), input values associated with each worktlow step
(c.g., a serial number of an item placed in the bin, an
associated record), etc.

Continuing with the above 1llustration, suppose that a user
device 1s utilized within a fulfillment center by a user (e.g.,
a fulfillment agent) to update a workflow by performing one
or more ol the workilow steps of the worktlow and then
synchronizing the update with the worktlow platform. For
example, suppose that the user device presents (e.g., via a
graphical user interface (GUI) application) an instruction to
the user to perform step A. Upon locating and obtaining the
empty bin by the user, the user device may scan the bin. The
user device may then execute one or more calls to a runtime
API of the worktlow platiform to update the workflow (e.g.,
updating the workflow graph and/or context of the work-
flow) maintained by the worktlow platform. For example,
the user device may spawn a first thread for executing the
workilow update via the runtime API. The first thread may
obtain (e.g., generate) at least a first context mput (or “first
input”) and a first idempotency key (IK). The first input may
include one or more inputs (e.g., alphanumeric string values)
associated with the worktlow update. In this example, the
first input may correspond to an 1dentifier (e.g., a bin serial
number) that uniquely 1dentifies the bin that was obtained
(e.g., and scanned by the user device) in workilow step A.
The first idempotency key may be a unique key (e.g., an
alphanumeric string value) that 1s generated by the user
device and associated with the particular update to the
workilow (e.g., the completion of worktlow step A). In some
embodiments described herein, an idempotency key may be
a unique value (e.g., generated by a client (or host, thread,
etc.)) which the workflow engine may use to recognize
subsequent retries of the same update request. The first
thread may then execute an API call to load (e.g., from a data
store communicatively connected to the worktflow platform)
the workflow graph and the workilow context. In some
embodiments, the first mput and/or the first idempotency
key may be used to load the workflow graph and/or the
workflow context. In some embodiments, the workflow
context may also be loaded with (e.g., and/or include) a first
record version i1dentifier (e.g., a first record version number
(RVN)) that 1s associated with the worktlow context. In
some embodiments, an RVN may indicate a version of a
particular record (e.g., a customer order record). Accord-
ingly, the first RVN may indicate the current RVN of the
particular record at the time the record 1s retrieved from the
data store (e.g., along with the worktlow context). Upon
loading the workilow graph and the workflow context with
the first RVN, the first thread may further execute an API call
to perform one or more computing operations that corre-
spond to recording the performance of the worktlow step A

5

10

15

20

25

30

35

40

45

50

55

60

65

4

in the real world. For example, the API call may update the
worktlow context by storing (e.g., in the data store) the first
input to the particular customer order record. The API call
may update the workilow graph to indicate that one or more
workilow steps (e.g., step A, obtaining the bin) have been
performed. In some embodiments discussed herein, for
example 1n cases where workflow steps are performed 1n the
real world (e.g., gathering i1tems into a bin, processing an
online order via a separate web service) and then recorded
via API calls to the worktlow platform, the analogous
computing operations performed to update the worktlow
maintained by the workflow platform (e.g., updating the
worktlow graph and/or worktlow context to record the
worktlow steps performed) may also be referred to as a
performance of “workilow steps.”

It should be understood that, 1in this example, the first
thread did not acquire a lock from the workflow platform
(e.g., a worktlow engine of the workflow platform) to
perform any of the operations described above (e.g., loading
the workilow graph, loading the workflow context, perform-
ing the workilow steps). Accordingly, as described further
below, a second thread (e.g., executing by the user device)
may be unblocked (e.g., allowed) to perform any one or
more of the operations described with respect to the first
thread 1n parallel with the first thread. It should be under-
stood that, 1n some embodiments, by determining not to
block other threads (e.g., and/or clients, hosts, etc.) from
performing updates in parallel, the workflow platform may
enable synchronous worktlows to execute without blocking
(e.g., without requiring a process/thread executing workilow
steps to acquire a lock).

Continuing with the illustration above, upon completion
of the workflow steps of the update by the first thread of the
user device, the workilow engine of the workflow platform
may receive checkpoint data (or “first checkpoint data™)
associated with the update (which also may be referred to as
the “first update,” associated with the first thread). For
example, the first thread may invoke a call to the runtime
API (e.g., or other suitable API) to synchronize the work-
flow, whereby parameters of the call may include the check-
point data. In some embodiments, the checkpoint data may
include at least three data elements: (1) the first input, (2) the
first idempotency key, and (3) the first RVN). Upon receiv-
ing the checkpoint data, the workflow engine may 1nitiate a
checkpoint phase to synchromize the workflow. In some
embodiments, as part of the checkpoint phase, the worktlow
engine may retrieve a current RVN associated with the
current version ol the particular record associated with the
update. In this example, the workilow engine may compare
the current RVN with the first RVN that was previously
retrieved by the first thread, as described earlier. If the first
RVN matches the current RVN (1.e., the version number of
the particular record maintained by the platform) has not
changed, then the workiflow engine may update (e.g., incre-
ment) the current RVN. If the first RVN does not match the
current RVN, the workflow engine may return an error to the
first thread, which may indicate that another party has
already updated the record before the first thread. In this
example, the first RVN 1s determined to match the current
RVN, and so the current RVN 1s updated.

As described above, based in part on the workilow engine
enabling parallel execution of the update to the workilow,
the second thread may also initiate a call to perform a second
update that corresponds to the same worktlow step of the
first update that was executed by the first thread. In some
embodiments, the second thread may perform the second
update 1n parallel while the first thread also performs the

US 11,210,143 Bl

S

same first update. In some embodiments, the second thread
may perform the second update even after the first thread
completes the first update and the checkpoint phase has been
initiated by the workflow engine (e.g., to synchronize the
workilow). For example, suppose that in the illustration
above, upon the first thread mitiating a call to synchronize
the workflow and the 1imitiation of the checkpoint phase, the
first thread somehow lost a network connection (e.g., a
broken transmission control protocol (TCP) connection)
with the worktlow platform server. In this case, the user
device (e.g., the GUI application that spawned the first
thread) may determine to spawn a second thread to retry the
update. For example, the second thread may 1nitiate a similar
API call(s) to the worktlow platiorm (e.g., loading the
worktlow graph, loading the workilow context with the
associated RVN, and performing the worktlow step of the
update). In this case, as described above, the workflow
engine may determine to not block the second thread from
performing workilow steps of the second update, which may
be substantially similar (e.g., the same) as the first update.
Upon completion of the workilow steps of the second update
by the second thread, the workilow engine may also receive
second checkpoint data associated with the second update.
For example, similar to the first checkpoint data of the first
thread’s update, the second checkpoint data may include at
least three data elements: (1) a second input, (2) a second
idempotency key, and (3) a second RVN.

In some embodiments, the workflow engine may perform
the checkpoint phase by executing a consensus algorithm.
The consensus algorithm may include comparing one or
more data elements of the first checkpoint data with one or
more respective elements of the second checkpoint data. For
example, consider a first use case 1 which the first mput
matches the second mput (e.g., both mput values have the
same bin serial number) from workilow step A above. Also,
in this first use case, the first idempotency key matches the
second 1dempotency key (e.g., having the same key value).
This first use case may occur, for example, in the case where
the user GUI application determines to retry the update via
the second thread (e.g., as described above), and the second
thread reuses the same idempotency key that the first idem-
potency key used (e.g., being tied to the same workilow
update). In this first use case, with matching mput keys and
idempotency keys, the runtime engine may be able to
determine that the second update corresponds to the same
update as the first update. Note that 1n this {irst use case, even
though the second RVN may (or may not) match the current
RVN (e.g., since the current RVN was previously incre-
mented (e.g., updated) based on the first checkpoint data
including the first RVN from the first update), the worktlow
engine may still be able to determine that the updates are the
same (e.g., since both the mputs and the idempotency keys
match). Accordingly, in this first use case, the consensus
algorithm may be able to merge the updates independent of
the values of the respective RVNs. In this first use case, upon
completing the comparison of the mputs and the i1dempo-
tency keys to determine respective matches, the workflow
engine may determine a result (e.g., both updates are suc-
cessiul), and then complete the checkpoint phase. In some
embodiments, completion of the checkpoint phase may
include any sultable operations, including, but not limited to,
updating the workilow graph and/or context, communicating,
with other distributed servers that updated workilow graph
information, determining next workilow steps, etc.). Upon
completion of the checkpoint phase, the workilow engine
may also then return “Success™ (or equivalent thereof) to at
least one (e.g., or more) of the threads based on the deter-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

mined result. For example, even though 1n the illustration
above, the first thread’s update was actually used by the
workilow engine used update the RVN (e.g., and otherwise
merge the completed workflow steps with the workilow
context and/or workflow graph), the workflow engine may
still return success to the second thread. In this way, even
though the first thread had lost connection (or other network
1ssue and/or race condition occurred), the workilow engine
may alert the user device (e.g., via the second thread) that the
second update (1.e., the retry of the first update) was suc-
cessiul.

As described above, 1n some embodiments, upon the user
device receiving (e.g., via the first and/or second thread) the
results of the checkpoint phase from the workflow engine,
the user device may then determine next steps. For example,
in the case where the results indicate that the update was
successiul, the user device may present an indicator (e.g.,
via a green light or other suitable indicator of the GUI) that
the update was successtully synchronized (e.g., merged
and/or committed) by the system, and may then prompt the
user to perform the next worktlow step. It should be under-
stood that, 1n this example, even though the two threads
executed 1n parallel to perform the same update (e.g.,
corresponding to the worktlow step A), the backend syn-
chronization (e.g., the consensus algorithm used to merge
the two updates) may be performed by the workflow engine
transparently to the user device. In at least this way, the
worktlow platform may provide a more consistent and
cllicient experience to the user device.

In some embodiments, and, returning to the illustration
above, the workflow engine may execute the consensus
algorithm to compare respective data elements of the first
and second checkpoint data 1n a second use case that is
different from the first use case (e.g., not a retry scenario).
In this second use case, the first idempotency key and the
second 1dempotency key may be the same, while the first
mput 1s different from the second input. For example,
consider a scenario in which the first idempotency key and
the second i dempotency key are respectively programmed to
correspond to the type of item being ordered 1n a customer
order. Furthermore, suppose that the customer order of the
illustration above included an order for two items (e.g.,
televisions (TVs)) of the same type (e.g., steps B and C
respectively Correspond to different 1tems of the same item

type). Accordingly, in this example, the first idempotency
key and the second idempotency key may both determined
to correspond to the same TV type, while the first mnput 1s
different from the second input. For example, the first input
may correspond to a unique serial number of the first TV,
while the second mput corresponds to a different unique
serial number of the second TV. In some examples, this use
case may occur if there 1s a system programming error
and/or administrator input error whereby two diflerent
inputs have the same idempotency key. In this case, upon
performing the consensus algorithm during the checkpoint
phase, the workflow engine may determine that there 1s a
contlict, at least 1n part because the mput values are diflerent,
while the i1dempotency keys are the same. In this case,
instead of returning “Success™ to both threads (or clients,
hosts, etc., described further herein), the workflow engine
may lirst determine a “winnming” thread. For example, sup-
pose that, in the example above, the first thread first executed
the first update for step B (e.g., with the first input and first
the idempotency key), which caused the RVN to be incre-
mented by the worktlow engine during the checkpoint
phase. Then, the second thread (e.g., with the second input
that 1s different from the first input) also attempted to use the

US 11,210,143 Bl

7

same 1dempotency key to execute the update for step C. In
this case, the workilow engine may determine during the
checkpoint phase that the RVN of the customer order had
already been incremented by the update of the first thread.
Accordingly, the worktlow engine may determine that the
first thread 1s the “winning thread,” and the second thread 1s
the “losing thread.” In some embodiments, this technique
may be referred to as “optimistic locking,” (although no
exclusive lock 1s obtained) as described further herein. The
workilow engine may complete the checkpoint phase, and
then return a “Success” result to the first thread and also
return a contlict exception result to the second thread. In this
example, upon the second thread receiving the conflict
exception result, the second thread may then retry the update
(e.g., Tor step C). For example, the second thread may retry
loading the workflow context (e.g., with the updated RVN)
and worktlow graph, and then perform step C again. In some
embodiments, the second thread may use an updated (e.g.,
new 1dempotency key).

It should be understood that, 1n some embodiments of the
second use case (and/or third or fourth uses cases described
below), even belfore the workilow engine may execute the
consensus algorithm to merge the updates and determine an
error condition, one of the threads may 1tself determine an
error condition 1 advance of (e.g., and/or alternatively to)
the consensus algorithm being executed. Using the example
above, during a runtime API call of the second thread (e.g.,
to write an mmput to the data store), the runtime API may
return an error (e.g., 1if the RVN of the pertinent record had
already been previously incremented). However, as
described above, 1n some embodiments, the runtime API
may not return an error to the invoking thread in advance
(e.g., 1l the workflow steps are read-only). In these cases, the
workilow engine may ultimately determine (e.g., as a fall-
back mechanism) the losing thread and the winning thread
based on comparing the corresponding data elements of both
sets of checkpoint data. In thus way, embodiments of the
present disclosure may allow for a parallel execution of
updates, even while accounting for possible error conditions
via comparison of one or more data elements of respective
checkpoint data.

In some embodiments, the workflow engine may execute
the consensus algorithm to compare respective data ele-
ments of the first and second checkpoint data 1n a third use
case (e.g., different from the first and second cases described
above). In this third use case, the first idempotency key and
the second idempotency key are different, and the first and
second 1mputs are either the same or different. In some
examples, this third use case may also occur due to a system
programming error and/or administrator input error. For
example, an admimstrator error may cause a different idem-
potency key to be assigned to the same update (e.g., corre-
sponding to step A above). In this case, suppose that the first
thread performs the first update (e.g., with the first idempo-
tency key), which causes the RVN 1for the particular record
to be incremented by the worktlow engine during the
checkpoint phase. In this case, however, the second thread
also attempts to perform the same update i parallel using
the second 1dempotency key that 1s diferent from the first
idempotency key (e.g., due to the administrator error), and
alter the RVN {for the particular record has already been
incremented (e.g., via the first thread’s update). During the
checkpoint phase, the workilow engine may detect that the
idempotency keys are different. Accordingly, even 1f the user
device had determined for the second thread to perform the
same update as the first thread, the workilow engine may not
be able to ascertain that determination (e.g., because the

10

15

20

25

30

35

40

45

50

55

60

65

8

idempotency keys are different, unlike the first use case
described above). Accordingly, i this case, the worktlow
engine will return success to the first thread and return an
exception to the second thread. For example, similar to the
second use case described above, the workilow engine may
determine that the RVN has already been incremented based
on the update by the first thread (e.g., and thus, the first
thread 1s the “winmng” thread). The workflow engine may
then return a “Success’ result to the first thread, and return
the exception (e.g., error to the second thread). Also, as
described above with respect to the second use case, 1n some
embodiments, a thread may itsell determine an error con-
dition 1n advance of (e.g., and/or alternatively to) the con-
sensus algorithm being executed (e.g., 1f the runtime API
executing a write call when executing a worktlow step
returns an error). However, in the event that the runtime API
does not return an error (e.g., i the worktlow steps are
read-only), the workiflow engine may ultimately determine
(e.g., as a fallback mechanism) the error condition.

In some embodiments, the workflow engine may execute
the consensus algorithm in a fourth use case, whereby an
exception 1s returned to both threads. Using the earlier
customer order fulfillment scenario for illustration, suppose
that both first checkpoint data of a first thread and second
checkpoint data of a second thread contain some error. For
example, both the first RVN (of the first checkpoint data) and
the second RVN (of the second checkpoint data) may be
misaligned (e.g., a lower version number) from the current
RVN of the particular record being updated. In this case, the
workilow engine may return a synchronization error to both
threads. It should be understood that any suitable error
condition may be envisioned with respect to any one or more
of the second, third, or fourth use cases.

In some embodiments, each of the four cases described
above 1llustrate different scenarios 1 which the worktlow
engine may synchronize a workflow by merging parallel-
executing updates of the workilow. In some embodiments,
two or more updates may be executed 1n parallel when at
least one or more operations corresponding to each update
(e.g., loading a workflow graph, performing workflow steps,
etc.) are performed within a predefined threshold amount of
time between the operations (e.g., before a timeout may
occur). In each of the four cases, as described above, the
worktlow engine may perform the merge by comparing
respective checkpoint data elements between the parallel-
executing updates. In this way, embodiments of the present
disclosure may support parallel execution of worktlow
updates (e.g., workilow steps), without requiring any thread
executing the update to acquire a lock.

For clarity of illustration, 1t should be understood that,
although embodiments of the present disclosure may pri-
marily describe worktlow updates being performed by one
or more threads (e.g., of the same process), embodiments
should not be construed to be so limiting. For example, two
(or more) different processes (e.g., web browser processes/
applications)) may, respectively execute API calls to update
a workflow (e.g., to complete an online shopping experi-
ence). For example, suppose that a user clicks to “Submit”
an online order, but the connection for the particular browser
(e.g., browser tab) becomes disconnected. The user may
open a new browser (e.g., launching a new process) to
submit the same order, which may be similar to the first use
case described above (e.g., same mputs, same 1dempotency
key). In some embodiments, the term “thread” (and/or
“process,” “application,” etc.) may be used interchangeably
with the term “client,” depending on the context. In another
example, two (or more) different hosts (e.g., two different

US 11,210,143 Bl

9

user devices) may, respectively execute API calls to update
a workflow. For example, multiple handheld scanning user
devices may be utilized by fulfillment center agents to
complete a particular customer order. Accordingly, 1t should
be understood that embodiments may be performed by any
suitable types of entities, numbers of entities, and/or com-
binations thereof. It should also be understood that, as
described herein, execution of a workflow update by a client
(e.g., a thread, process, etc.) or host may involve calling the
runtime API to create a runtime worktlow instance (e.g., a
workilow update process) on the workflow platform that
executes one or more operations on behalf of the calling
client or host.

Also, as described above, 1t should be understood that
embodiments may be performed within any suitable type of
worktlow context. For example, although the illustration
depicted above (and described further herein) corresponds to
tulfillment of a customer order in a physical environment
(e.g., obtaining 1tems into a bin for later packaging), other
suitable workilows may also be performed in a digital
environment (e.g., workilow steps to complete a customer
order online). Also, although embodiments of the techniques
described herein may be typically described 1n the context of
a synchronous workilow, embodiments should not be con-
strued to be so limiting. For example, 1n some embodiments,
the workflow platform may be configured to support asyn-
chronous workflows, synchronous workiflows, and/or any
suitable combination thereof.

The embodiments of the present disclosure provide sev-
cral technical advantages over existing systems. In one
example, embodiments of the present disclosure may pro-
vide a more consistent user experience than conventional
methods. For example, some conventional methods may
require a process (e.g., a thread, host, etc.) executing a
workilow step to acquire a lock, thus preventing another
process from performing the same workilow step (and/or
otherwise updating the worktlow). However, as described
herein, this may cause 1ssues when the worktlow platform
may not be able to readily determine if a process that has
acquired the lock 1s still waiting for the result, has timed out,
has a broken network connection, or some other problem has
occurred. In some cases, these 1ssues may be more common
in a distributed computing environment, for example, 1n
which the workflow platform may be implemented across
one or more server clusters (e.g., within a large scale
customer order fulfillment operation). For example, in a
distributed computing environment, timeouts, race condi-
tions, and retries may be more common. Accordingly, con-
flicting updates may be a more common 1ssue. Also, the
additional complexity may introduce system errors (e.g.,
programming errors, etc.). For example, the same 1dempo-
tency key may mistakenly be used for two different updates,
as described herein. Embodiments described herein improve
upon conventional methods, at least because the workflow
platform may support parallel execution of updates without
blocking (e.g., without requiring a lock mechanism to be
invoked by a calling process that 1s performing the update).
The workiflow engine may utilize the checkpoint data ele-
ments to perform a merge across parallel updates (e.g.,
determining “winmng” and/or “losing” callers) to support
workilow synchronization. Thus, even though the workflow
platform may not know 11 one or more processes have timed
out or are still waiting for the merge results, the worktlow
platform may still process updates for each of the parallel
executing processes. This mitigates a scenario under some
conventional methods, especially 1n a distributed computing
environment, 1n which a timed out call of a process that had

5

10

15

20

25

30

35

40

45

50

55

60

65

10

taken a lock causes another process (e.g., performing a retry
ol the update) to be blocked from pertorming the update for
an undefined duration. Thus, processes (e.g., clients) per-
forming updates may have a more consistent experience
(e.g., lower and consistent wait times when performing
updates). This may be especially important 1n a fulfillment
center environment, where timely customer order fulfillment
1s important. For example, fulfillment agents may desire to
receive prompt feedback (e.g., via their user device) to
coniirm that the result from a last performed workflow step
(e.g., scanming an 1tem and placing it 1n the bin) was received
and acknowledged by the worktlow platform, and that they
can proceed to the next workilow step. Accordingly,
embodiments of the present disclosure also enable a more
cilicient workflow platform, providing more timely feed-
back based on workflow updates. When considered 1n a
large-scale operation mvolving complex workilows (e.g.,
with many workilow step dependencies), these efliciency
improvements may provide significant improvements 1in
computing resource utilization (e.g., memory, processor
resources) and/or human resource utilization. For example,
a worktlow may be performed quicker than under conven-
tional methods, thus freeing up resources to be used for other
tasks.

FIG. 1 1s a simplified block diagram 100 of an example
system providing a worktlow platiorm that enables parallel
execution of worktlow updates, whereby the worktlow
updates are later merged during a checkpoint phase based on
a comparison of checkpoint data. In FIG. 1, several elements
are depicted, including a user device 102, a bin 104, a
workilow management system 106, and a data store 108.
The user device 102 includes a display for presenting a GUI
110. The worktflow management system 106 implements a
workilow platform 111, whereby the workilow platform 111
includes a runtime API 112 and a worktlow engine 114. The
data store includes a worktlow graph 116 (and worktlow
context) that is stored in the data store.

Turning to the components of FIG. 1 1n further detail, 1n
some embodiments, the user device 102 (which also may be
known as a “host”) may be any computing device suitable
for communicating with the worktlow management system
106 (and/or the data store 108). For example, as discussed
herein, the user device 102 may execute one or more API
calls to the runtime API 112 of the worktlow platform 111.
In some embodiments, the user device 102 may also be able
to receive data (e.g., results from a checkpoint phase) from
the workflow platform 111 (e.g., transmitted by the work-
flow engine 114). Some non-limiting examples of user
device types may be a tablet device, laptop personal com-
puter (PC), a mobile phone, etc. In some embodiments, the
user device 102 may be physically coupled with the work-
flow management system 106. In some embodiments, the
user device 102 may be remote from the worktlow manage-
ment system 106. In some embodiments, the user device 102
may execute one or more clients (e.g., applications, threads)
that communicate with the worktlow platform. Accordingly,
as described herein (e.g., see FIG. 2), 1n some embodiments,
the single user device 102 may execute a plurality of threads
that execute worktlow updates 1n parallel via the workflow
platform 111. For example, a workilow update retry scenario
whereby a first thread may have lost the connection (e.g., the
first use case of the consensus algorithm described herein).
In this first use case, the user device 102 may spawn a
second thread (e.g., or application, process, etc.), to execute
the retry via the worktlow platform 111. In some embodi-
ments, multiple user devices (e.g., multiple hosts) may
execute workilow updates in parallel via the worktlow

US 11,210,143 Bl

11

platform 111. For example, consider a scenario that corre-
sponds to the second use case described herein (e.g., see
FIG. 3). In this scenario suppose that a first host attempts to
execute a first worktlow update (e.g., corresponding to a first
workilow step), while a second host attempts to execute a
second worktlow update (e.g., corresponding to a second
(different) workflow step). In this scenario of the second use
case, both updates may use the same 1dempotency key but
have different mputs (e.g., due to a system programming,
error). Accordingly, as described further herein, the work-
flow platform will need to resolve the contlict during the
checkpoint phase. For example, the update of the first host
may emerge as the “winner” (e.g., the update was success-
tully merged), while the update of the second host may
receive an contlict exception (e.g., indicating that the second
host may need to retry submission of the second workflow
update). It should be understood that any suitable combina-
tion of clients (e.g., threads, applications) and/or hosts (e.g.,
different user devices) may execute parallel worktlow
updates that are merged via the consensus algorithm during
the checkpoint phase (e.g., executed by the workflow engine
114). For example, the consensus algorithm may classily
parallel workflow updates by a combination of client pro-
cesses and/or hosts within any one of the four use cases
considered by the consensus algorithm, discussed further
herein.

In some embodiments, the user device 102 may include
(and/or otherwise be connected to) a display unit that may
display the GUI 110. In some embodiments, the GUI 110
may present workilow-related information to a user, and/or
enable the user to execute one or more tasks related to the
workilow. For example, as illustrated 1in diagram 100, the
GUI 110 may display one or more workflow steps associated
with a workilow. In this example, the workilow may corre-
spond to fulfillment of a customer order. The worktlow may
include synchronous and/or asynchronous worktlow steps.
After the fulfillment of one or more steps (e.g., indicated by
the upper ellipsis in GUI 110), the worktlow management
system 106 may execute a checkpoint phase, whereby the
one or more worktlow steps are confirmed to be completed
by the system. After executing the checkpoint phase and
confirming the one or more workflow steps (e.g. including
asynchronous and/or synchronous workflow steps) were
successiul, the workflow management system 106 may
return “Success” to the user device 102, upon which the GUI
102 may present an indicator 130 (e.g., a checked box, a
green light, etc.) that indicates the checkpoint was success-
tul. The GUI 110 may then display one or more new
workilow steps 132 for the user to complete. It should be
understood that any of these new worktlow steps (and/or any
other workilow steps described herein) may themselves
involve sub-steps. A first step (e.g., step A) may correspond
to obtaining a particular type of bin (e.g., “12345,” which
may correspond to bin 104), a second step (e.g., step B) may
correspond to picking up a particular type of item (e.g.,
“ABCDE”), and a third step (e.g., step C) may correspond
to picking up another particular type of 1tem (e.g.,
“ABC123”). In this example, the user device 102 may be
equipped with a scanning device. After the user device 102
scans the bin 104, the 1item ABCDE, and the item ABC123
(c.g., completing the new worktlow steps 132), the user
device 102 may automatically spawn a client process to
update the workiflow on the backend server (e.g., the work-
flow management system 106). After the worktlow 1s suc-
cessiully updated, the worktlow platform 111 may transmuit
a “Success” result to the user device 102, which may then
display another indicator 134 (e.g., a checked box) that

10

15

20

25

30

35

40

45

50

55

60

65

12

indicates the worktlow steps were successiully recorded by
the workflow platiorm 111. It should be understood that any
suitable indicator may be used to perform embodiments
described herein (e.g., a green color code that indicates
success, a text message, etc.). It should also be understood
that any suitable number of workflow steps (e.g., one, three,
ten, one-hundred, etc.) may be completed between check-
points. In this way, as workilow steps are completed and
successiully committed (e.g., synchromized) by the work-
flow platiorm, the GUI 110 may be continuously updated.
For example, new worktlow steps may be presented that
need to be completed. In this example, after the new
worktlow steps 132 are confirmed to be completed, next
worktlow steps may be subsequently presented via the GUI
110 (e.g., indicated by the lower ellipsis of GUI 11). It
should be understood that, as discussed herein, successtully
recording an update with the workiflow platform 111 may
also include a successiul merge (e.g., synchronization) of
parallel updates via the checkpoint phase.

In some embodiments, as workflow steps of a workilow
are completed and/or new steps are added (or modified, etc.),
the workilow graph 116 and/or workilow context that are
maintained by the data store 108 may also be updated. For
example, as depicted in FIG. 1, some elements of the
workilow graph 116 may correspond to elements of GUI
110. The previous steps 118 may correspond to previous
steps that were completed prior to the checkpoint 120 (*“CP
m,” corresponding to the m” checkpoint of the overall
worktlow process), which may correspond to indicator 130
of GUI 110. The workilow steps 122 (1.e., including step n,
n+1, and n+2) may correspond to the new workilow steps
132, and the checkpoint 124 (*“CP m+1”") may correspond to
the next checkpoint presented in the GUI 110 as not yet
complete (1.e., unchecked) (e.g., represented by indicator
134). In the example worktlow graph 116 depicted in FIG.
1, the workilow steps 122 1n between the checkpoint 120 and
checkpoint 124 may correspond to synchronous worktlow
steps (e.g., indicated by the rectangle enclosing the check-
points 120, 124 and worktlow steps 122). Upon the comple-
tion of the new worktlow steps 132 (corresponding to the
worktlow steps 122 of worktflow graph 116), the checkpoint
phase 124 may be executed and a result (e.g., “Success™)
may be returned to the user device 102. Assuming the result
indicated “Success,” the user device 102 may then present
next steps according to next steps 126 of the worktlow graph
116. As workilow steps are completed and/or each check-
point phase 1s completed, the workilow context (e.g., includ-
ing a present state of the workflow graph) may be updated
and stored (e.g. by the workflow management system 106
and/or the user device 102) to the data store 108.

It should be understood that, although the diagram of FIG.
1 depicts an example worktlow 1n a customer order fulfill-
ment context, other workflow scenarios are also envisioned.
For example, in another scenario, the user device 102 may
instead be used to purchase an item online, whereby the user
device 102 completes one or more worktlow steps as part of
the process of purchasing the 1item (e.g., adding one or more
items to an online cart, inputting a payment account, click-
ing a “Submit” button, etc.). In this scenario, the worktlow
platform 111 may also be involved with recording worktlow
updates (e.g., adding an item to a cart) and confirming that
a particular worktlow step has been successfully recorded
(e.g., via the checkpoint phase).

Turning to the workilow management system 106 1n
turther detail, the workflow management system 106 may be
implemented by one or more computer servers. For
example, as described above, the worktlow management

US 11,210,143 Bl

13

system 106 may include one or more server clusters that
form a distributed computing environment. For example,
different server clusters may be geographically distributed
throughout a region, and may communicate with each other
to synchronize various components of the system (e.g.,
synchronizing worktlows maintained by the system). The
workilow management system 106 may implement the
workilow platform 111, whereby the workilow platform 1
may 1nclude the runtime API 112 and the worktlow engine
114.

In some embodiments, the runtime API 112 may enable
one or more clients to execute a call into the runtime API 112
to perform one or more tasks related to a worktlow. For
example, the runtime API 112 may enable the user device
102 to load a worktlow graph 116 and/or workilow context
(c.g., from the data store 108), to modily the workflow
context (e.g., writing to a customer order record 1n the data
store 108), to perform a one or more workilow steps of the
workilow update (e.g., analyzing customer information from
the record, determining what information to write to the
record based on the analysis and/or mput received from the
user device 102, etc.). The runtime API 112 may support any
suitable workiflow functions, including, but not limited to,
creating a new worktlow, deleting a worktlow, creating
sub-workflows (e.g., asynchronous and/or synchronous
worktlows), etc. As described above, 1n some embodiments,
upon recerving an API call to create a new workilow, the
runtime API 112 may generate a worktlow graph and/or
context to be stored by the data store 108. One or more
clients (e.g., executing on user device 102) may perform one
or more workilow steps to update the worktlow by invoking
the runtime API 112 to generate a runtime worktlow instance
of the worktlow (e.g., loading the existing workiflow graph
and/or context). The runtime workilow instance may then
update the workflow context and/or worktlow graph as 1t
executes (e.g., on the workflow platform 11) one or more
workilow steps on behalf of the calling client or host.

In some embodiments, the workflow engine 114 may be
responsible for managing one or more workilows. For
example, the workilow engine 114 may maintain a “ground
truth™ state of each workflow and may ensure that API calls
(e.g., via the runtime API 112) are performed 1n accordance
with the current state of a given worktlow. For example, as
described further herein, after performing one or more
workilow steps of a worktlow update (e.g., via the runtime
API 112), a client (e.g., a thread executing on user device
102) may again call the runtime API 112 to invoke the
workilow engine 114 to synchronize the worktlow. In some
embodiments, synchromzing the workilow may include the
workilow engine 114 imitiating a checkpoint phase, and then
performing a consensus algorithm within the checkpoint
phase. In some embodiments, the consensus algorithm may
receive checkpoint data (e.g., as a parameter of the API
synchronization call). The worktlow engine 114 may verily
the checkpoint data against a current state of the worktlow,
and upon successiul verification, may update the worktlow
state and return success back to the imnvoking client thread.
In some embodiments, as described herein, multiple threads
may perform worktlow updates (e.g., the same workflow
step(s)) 1 parallel. In these embodiments, as part of syn-
chronizing the workilow during the checkpoint phase, the
consensus algorithm may merge updates performed by each
thread. For example, the consensus algorithm may receive
checkpoint data associated with the worktlow update per-
tormed by each thread. The consensus algorithm may then
determine a particular use case based at least 1n part on a
comparison of one or more respective data elements for each

10

15

20

25

30

35

40

45

50

55

60

65

14

checkpoint data. In some embodiments, as depicted below 1n
Table 1, there may include four primary use cases. Based on
the particular determined use case, the consensus algorithm
may determine a result for each calling thread, whereby the
result 1s returned to the respective thread. As discussed
turther herein, the process discussed 1n reference to FIG. 2
may correspond to the first use case (1.e., use case 1) of Table
1, the process discussed 1n reference to FIG. 3 may corre-
spond to the second use case (1.e., use case 2), and the
process discussed 1n reference to FIG. 4 may correspond to
the third use case (1.e., use case 3). In the case of use case
4, the consensus algorithm may determine respective errors
for both calls (e.g., an incorrect RVN, an invalid input and/or
idempotency key), and then return the errors to the respec-
tive threads. It should be understood that, although Table 1
illustrates use cases with respect to calling threads, the uses
cases may also be applicable to calling hosts and/or other
client types.

TABLE 1

Use Case

Workflow Engine Behavior

Both threads execute all workflow steps
in parallel and independently. One
thread is able to write the results
successfully; both threads are returned
the same success result (assuming that
both parallel workflows progressed
successiully).

First thread writes results and the
second thread gets a Conflict Exception

1 Two calls (e.g., from
different threads) with
the same idempotency
key and the same inputs

2 Two calls with the same
idempotency key and
different mputs

3 Two calls with different
idempotency keys and the
same (or different) mputs

4 Two calls both resulting in Both threads get a Conflict Exception
error during synchronization and the worktflow remains at the

previous step

First thread writes results and the
second thread gets a Conflict Exception

Continuing with diagram 100, 1n some embodiments, one
or more of the user device 102 and/or the worktlow platform
111 may communicate with the data store 108. The data store
108 may include any suitable storage media, and may be
used to store data associated with one or more workflows
(e.g., via a database). For example, as described herein, the
data store 108 may store the worktlow graph 116. As
described, further above, the workflow graph 116 may
indicate one or more worktlow steps of a workilow, and may
include any relationships (e.g., dependencies) between
workilow steps. The data store 108 may also include a
workilow context, which may include any state information
related to the worktlow (e.g., associated with a present state
of the workflow graph and/or mput/output value of one or
more workilow steps). For example, in a customer order
fulfillment example, the workflow context may include
customer order information (e.g., a customer identifier,
items ordered, payment information, etc.). The worktlow
context may also be associated with (e.g., and/or include) a
record that may be stored in the database. The record may be
associated with a version number (e.g., an RVN), which may
be used to keep track of the current version of the record
assoclated with the workflow. In some embodiments, the
data store 108 may enable read-only access to data, and/or
read-write access to data. For example, as part of executing,
a particular workflow step, the user device 102 may request
only read-only access to the record. In some embodiments,
for example, 1n a case where the user device 102 writes
results to the record, the workflow engine 114 may still
verily those written results during the checkpoint phase. In

US 11,210,143 Bl

15

the event of a detected error, the written results may be
rolled back. In the event of success, the written results may
be confirmed by the workilow engine 114 during the check-
point. For example, the worktlow engine 114 may confirm
ground truth data associated with the workilow, and then
transmit that confirmation (e.g., the result of the checkpoint)
to the user device 102 that executed the worktlow update.

FI1G. 2 1s another simplified block diagram 200 1llustrating
at least some example techniques for a workilow platform
performing a checkpoint phase to merge updates to a work-
flow, according to some embodiments. In diagram 200, a
user device 202, a workilow management system 204, and
a data store 230 are depicted. The user device 202 may be
similar to user device 102 of FIG. 1, the worktlow manage-
ment system 204 may be similar to worktflow management
system 106, and the data store may be similar to data store
108. FIG. 2 depicts an example high-level process for the
workilow management system 204 to merge updates by
executing a consensus algorithm during a checkpoint phase.
In the process depicted in diagram 200, the consensus
algorithm determines that the scenario corresponds to {first
use case of Table 1, based on checkpoint data received from
cach parallel update to the worktlow.

In diagram 200, two clients (e.g., threads) are depicted,
which may both be executed 1n parallel on user device 202.
For example, consider an earlier illustration in which the
user device 202 1s used as part of a customer order fulfill-
ment process. In this example, suppose that, upon obtaining
bin 104, scanning 1item ABCDE, and scanming 1item ABC123
(e.g., corresponding to completion of the new workilow
steps 132 displayed by GUI 110 of FIG. 1), the user device
202 then spawns a first thread at block 206. Note that,
although at this point, a second parallel thread may not yet
have been spawned, the workflow management system may
determine to allow parallel execution of a workflow step of
the workilow by a plurality of threads. For example, the first
thread (and/or an associated worktlow instance) may not
acquire a lock associated with the worktlow to block another
workilow 1nstance of the workflow from executing. It should
be understood that, as described herein, an execution of a
worktlow step (e.g., a workflow update) by a particular
thread of the plurality of threads may include the thread
calling the runtime API (e.g., runtime API 112) to create a
new runtime worktlow instance (e.g., a worktlow update
process) that executes on the workilow management system
204. In this case, the workilow 1nstance may perform one or
more operations of the workflow update on behalfl of the
thread. In some embodiments, the thread may invoke the
runtime API 112 to execute one or more operations corre-
sponding to the workilow update (e.g., via the runtime
workilow instance). Accordingly, although the some of the
blocks of diagram 200 are described as being performed by
a thread of the user device 202, 1t should be understood that
one or more of those operations (e.g., one or more operations
of block 208, block 210, block 212, and/or block 214) may
be performed by a workflow instance on behalf of the first
thread, or any suitable combination thereof (and, similarly,
for the second thread, described below).

At block 206, the first thread determines a first i dempo-
tency key with a first key value (e.g., ‘X,” which may
represent any suitable key value). The first thread also
determines a first mput (e.g., ‘y,” which may represent the
unique serial number of the particular item of type

“ABC123”).

At block 208, the first thread (and/or an associated first
runtime workilow instance) may then execute one or more
calls to the runtime API of the workilow platform of

10

15

20

25

30

35

40

45

50

55

60

65

16

worktlow management system 204. In some embodiments,
the operations of block 208 may occur at time T,. For
example, the first thread may execute a call to load the
worktlow graph of the workiflow being updated (e.g., the
customer order fulfillment workiflow). This call may, 1n turn,
cause the workflow graph to be retrieved from the data store
230 (e.g., which may be similar to data store 108 of FIG. 1)
and loaded into the workiflow instance. The first thread may
turther retrieve the workiflow context from the data store
230, which may include loading the RVN of the particular
record associated with the workilow (which also may be
known as the “first record version identifier” or “first
RVN”). In this example, the first RVN may have a value of
‘z,” which may represent any suitable record version num-
ber.

At block 210, the first thread (and/or the associated first
runtime workflow 1nstance) may perform one or more
workilow steps that correspond to a first update for the
workilow. For example, the first thread may read the current
record to determine what 1tems are already listed as being
added to bin 104 of FIG. 1. Upon confirming that an 1tem of
type “ABC123” still has not been added (e.g., the worktlow
step has not yet been performed), the first thread may then
write to the record, indicating that an item of type
“ABC123” has been added to the bin 104. It should be
understood that any suitable number of one or more work-
flow steps may be performed for a given update, and each
worktlow step may involve one or more computing opera-
tions (e.g., reads from memory, writes to memory, and/or
combinations thereot).

At block 212, the first thread (and/or the associated first
runtime worktlow instance) may determine first checkpoint
data for a later checkpoint phase performed by the worktlow
engine of the workilow management system 204. In some
embodiments, the first checkpoint data associated with the
first update may 1include: (1) the first input, (2) the first
idempotency key, and (3) the first RVN.

At block 214, the first thread (and/or the associated first
runtime worktlow instance) may call the workflow engine
(e.g., worktlow engine 114 of FIG. 1) to execute a check-
point phase. The worktflow engine may then receive the first
checkpoint data determined from block 212, and initiate the
checkpoint phase. During the checkpoint phase, the work-
flow engine may retrieve a current record version identifier
(e.g., a current RVN) that corresponds to a current version of
the particular record associated with workilow update. The
workilow engine may then compare the first RVN of the first
checkpoint data (e.g., previously retrieved at block 208)
with the current RVN. For example, suppose that the current
RVN still has a value of ‘z,” which matches the first RVN’s
value. In this case, the workilow engine may determine that
the values match. Accordingly, the worktlow engine may
update the current RVN (i.e., determining an updated current
record version identifier) by incrementing the current RVN
to be ‘z+1.

At block 216, suppose that the first thread experiences a
network error. For example, suppose that, sometime in
between one of the operations of block 208 and block 214,
the network connection between the first thread and the
workilow management system 204 1s lost. As described
herein, 1n some embodiments, even if the network connec-
tion between the first thread and the worktflow management
system 204 1s broken, the corresponding worktlow instance
executing on the platform may still continue (e.g., transpar-
ent to the first thread) to execute one or more of the
operations of blocks 208 through block 214 to enter the
checkpoint phase. In this case, with a broken network

US 11,210,143 Bl

17

connection, the user device 202 (e.g., via a user application
that controls GUI 110) may spawn the second thread to retry
the worktlow update. Note that this retry process may be
transparent to a user of the user application (e.g., not
exposed via the GUI 110). For example, the user device 202
may have already scanned the 1tem, and the user may be
waiting for a confirmation (e.g., via a check box displayed
in GUI 110) that the update was successtully registered by
the system, so that the user device 202 may prompt the user
to complete the next worktlow step of the workflow. In this
retry case, the second thread may utilize a second 1dempo-
tency key that has the same idempotency key value (e.g.,
x") as the first thread, and a second input that has the same
iput value (e.g., ‘y’) as the first thread.

At block 218, the second thread (and/or an associated
second runtime workflow instance) may execute one or
more operations similar to block 208. In some embodiments,
the operations of block 218 may occur at time T,, which may
be after time T,. For example, in some embodiments, at
block 218, the checkpoint phase of block 214 may still be in
progress and the workflow engine may have already
received and processed the first checkpoint data associated
with the first thread (e.g., the current RVN 1s already
incremented to reflect the update to the record). However,
because the first thread’s update has not yet been commutted
(e.g., written to the data store 230) by the system during the
checkpoint phase, the second RVN (e.g., the “second record
version 1dentifier” retrieved with the workiflow context) may
have a value of ‘Z’ (e.g., not reflecting the incremented
RVN). In another embodiment, at time T,, the operations of
block 218 may occur even before the checkpoint phase of
block 214 increments the RVN to be ‘z+1,” and thus, the
second RVN retrieved from the data store 203 may have a
value of ‘z.” In any case, 1n this example, the operations of
the second runtime workilow (associated with the second
thread) lag behind the operations of the first runtime work-
flow (associated with the first thread), based 1n part on the
second runtime workflow (1.e., the “retry” thread) executing
after the first runtime Workﬂow.

At block 220, the second thread (and/or the associated
second runtime workflow instance) may execute one or
more operations similar to block 210. In this case, the second
thread may execute the operations for performing a second
update that corresponds to the same one or more workflow
steps associated with the first update.

At block 222, the second thread (and/or the associated
second runtime workflow instance) may execute one or
more operations similar to block 212. For example, the
second thread may determine second checkpoint data for
merging of the first update and the second update during the
checkpoint phase. The second checkpoint data may include:
(1) the second input, (2) the second 1dempotency key, and
(3) the second RVN.

Returning to block 214, the worktlow engine may receive
the second checkpoint data determined from block 222. The
worktlow engine may then execute the consensus algorithm
to merge the updates to the workflow by comparing data
clements of the first checkpoint data with one or more
respective data elements of the second checkpoint data. For
example, 1n the case of the scenario depicted by diagram 200
of FIG. 2, the workilow engine may determine that the first
input matches the second input, and the first idempotency
key matches the second idempotency key. Based on this
determination, the workflow engine may determine that the
second update corresponds to a retry of the first update (1.e.,
they both correspond to the same update). Accordingly, the
workilow engine may determine a result of “Success™ for

10

15

20

25

30

35

40

45

50

55

60

65

18

both updates. Upon determining the result, the workflow
engine may complete the checkpoint phase, and then return
(e.g., transmit) the “Success” result to at least one of the first
thread or the second thread. As described herein, 1t should be
understood that, even though the first update (e.g., associ-
ated with the first thread) may be the update that 1s actually
written to the record (e.g., because the first thread was the
first to mitiate the checkpoint phase, with the first RVN
matching the current RVN), the worktlow engine may not
know which thread 1s actively waiting for a result. For
example, the worktlow engine may not know if the waiting
thread 1s the second thread (e.g., associated with the second
update) or another thread that may have timed out or
experienced another network error (e.g., the first thread,
associated with the first update). Accordingly, the worktlow
engine may return a “Success” result to both threads, thus
enabling the user device 202 to proceed with updating the
GUI 110 (e.g., prompting the user to complete a next step).
In some embodiments, even though both threads receive a
“Success” result, the underlying threads may execute trans-
parent to a user of the GUI 110. Accordingly, the user device
202 may utilize at least one of the first result or the second
result for presenting a single success indicator (e.g., a green
light or a checked box) to the GUI 110. It should be
understood that any suitable data may be communicated by
the workflow engine to the threads, including, but not
limited to, 1nstructions for next workilow steps to be com-
pleted, success/error codes, a request for more mput from
the user, etc. It should also be understood that, in this first
use case, the worktlow engine may not need to compare the
first RVN (e.g., of the first checkpoint data) with the second
RVN (e.g., of the second checkpoint data). For example,
note that the current record version identifier (e.g., current
RVN) was incremented to ‘z+1’ 1 an earlier operation of
block 214 associated with the first checkpoint data (e.g.,
because the first worktlow 1nstance first executed (at time T,
and was the first to reach the checkpoint phase). Accord-
ingly, although the second record version identifier (e.g., the
second RVN) of the second checkpoint data may still have
a value of ‘z’ (e.g., which does not match the updated ‘z+1°
value), the workiflow engine may nevertheless determine
that the two updates are the same, based on the matching
input values and idempotency keys of the respective check-
point data elements.

FIG. 3 1s another simplified block diagram illustrating at
least some example techniques for a workilow platform
performing a checkpoint phase to merge updates to a work-
flow, according to some embodiments. In diagram 300, a
user device 302, a user device 303, a workilow management
system 304, and a data store 330 are depicted. Each of the
user devices may be similar to user device 102 of FIG. 1, the
workilow management system 304 may be similar to work-
flow management system 106, and the data store 230 may be
similar to the data store 330. FIG. 3 depicts an example
high-level process for the workflow management system
304 to merge updates by executing a consensus algorithm
during a checkpoint phase. In the process depicted 1n dia-
gram 300, the consensus algorithm determines that the
scenario corresponds to the second use case of Table 1,
based on checkpoint data received from each parallel update
to the workilow.

As noted above, 1n the illustration of FIG. 3, two user
devices (e.g., hosts) are depicted. For example, consider a
scenar1o 1illustrating the second use case in which two
customer order fulfillment agents are obtaining items and
placing them into bin 104 for a particular customer order.
Each agent may utilize a different user device (e.g., user

US 11,210,143 Bl

19

device 302 (a “first host™), user device 303 (a “second host™)
to perform and record different worktlow steps. In this
example, suppose that user device 302 prompts a respective
first agent to perform a first workiflow step that involves
obtaining and placing an item of type “ABC123” into the bin
104. The 1tem has a unique serial number that corresponds
to a value (‘y’) of a first mnput. Furthermore, suppose that
user device 303 prompts a respective second agent to
perform a second worktlow step that involves obtaining and
placing a different item that has the same type “ABC123”
into the bin 104 (e.g., with another unique serial number that
corresponds to a second input value (‘y’,” that 1s different
from ‘y’)). In this example, similar to the example of FIG.
2, suppose that a first update of the user device 302 begins
executing at time T, (see block 308 below), and a second
update of the user dewce 303 begms executing after time T,
(see block 318 below), which 1s after T,. Although T,
follows T,, both updates are allowed to be executed 1n
parallel, as described herein. Also, suppose that, when each
user device attempts to update the workflow, the 1dempo-
tency key assigned to the update 1s programmed (e.g., by an
administrator) to match the item type of the item. In this
case, since both items (for the respective worktlow steps)
have the same type, the idempotency key values for the
updates are the same (1.e., °X’). In some embodiments, this
type of scenario may correspond to a human and/or system
error, since a particular update may be required have a
unique assigned 1demp0tency key. In some embodiments,

the workiflow engine may resolve this type of error during
the checkpoint phase by determiming a “winning” and “los-
ing”” host via the consensus algorithm, as described further
below.

Turning to the process illustrated by FIG. 3 1n further
detail, at block 306, the user device 302 (e.g., the first host)
scans the first item of type “ABC123” (e.g., corresponding
to the next worktlow step displayed by a GUI-based appli-
cation of user device 302). In this example, for clarity of
illustration, suppose that this workflow step 1s the only
workilow step being performed between checkpoints.
Accordingly, upon scanning the item, the user device 302
(e.g., via the GUI-based application, and/or associated
thread) may determine a first idempotency key with a first
key value ‘X’ (e.g., which, as described above, may corre-
spond to the item type “ABC123”). The user device 302 also
determines a first mput (e.g., ‘y,” which may represent the
unique serial number of the first 1tem).

At block 308 (e.g., time T,), the user device 302 (e.g.,
and/or a corresponding {irst runtime worktlow instance,
similar to as described in reference to FIG. 2) may then
execute a call to load (e.g., from the data store 330) the
workilow graph and the worktlow context of the workflow
being updated. This may also include retrieving the RVN of
the particular record associated with the worktlow (the “first
RVN”). In this example, the first RVN may have a value of
‘z,” which may represent the current record version number.
Note that, similar to the process of FIG. 2, the user device
302 (and/or associated runtime worktlow instance) has not
acquired a lock from the worktlow platform. The worktlow
management system may determine to allow parallel execu-
tion of a workflow step of the workilow by a plurality of
hosts.

At block 310, the user device 302 (and/or the associated
first runtime workilow instance) may perform one or more
workilow steps that correspond to a first update for the
workilow. In some embodiments, one or more operations of
block 310 may be similar to as described 1n reference to

block 210 of FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

20

At block 312, the user device 302 (and/or the associated
first runtime worktlow instance) may determine {irst check-
point data for a later checkpoint phase performed by the
worktlow engine of the workflow management system 304.
In some embodiments, the first checkpoint data associated
with the first update may include: (1) the first input, (2) the
first idempotency key, and (3) the first RVN.

At block 314, the user device 302 (and/or the associated
first runtime workiflow 1instance) may call the worktlow
engine (e.g., workilow engine 114 of FIG. 1) to execute a
checkpoint phase. In some embodiments, the worktlow
engine may receive the first checkpoint data from block 314,
and mitiate the checkpoint phase. During the checkpoint
phase, similar to block 214 of FIG. 2, the workilow engine
may retrieve a current RVN that corresponds to a current
version of the particular record associated with workflow
update. The workilow engine may then compare the first
RVN of the first checkpoint data (e.g., previously retrieved)
with the current RVN. For example, suppose that the current
RVN still has a value of ‘z,” which matches the first RVN’s
value. In this case, the workilow engine may determine that
the values match. Accordingly, the worktlow engine may
update the current RVN by incrementing the current RVN to
be ‘z+1.” Although, as depicted 1n FIG. 3, the first update of
user device 302 (e.g., the first host) reaches the checkpoint
phase first, it should be understood that embodiments are not
so limited. For example, in another embodiment, the second
update of the second host (e.g., user device 303), described
further below, may reach the checkpoint phase first (e.g., 1f
the second update started execution at an earlier time than
the first update, 1n which case the “winner” and “loser” host
update may be reversed from as described herein).

At block 316, the user device 303 (e.g., the second host)
may scan the second 1tem of type “ABC 123” (e.g., the same
type as the first item scanned by the first host at block 306).
Upon scanning the item, the user device 303 may determine
a second 1dempotency key with a second key value of “x’
(1.e., the same 1dempotency key as determined at block 306,
which may correspond to “ABC 123”). The user device 303
also determines a second put (e.g., ‘y’,” which may rep-
resent the different serial number of the second item (1.e.,
different from ‘y’)).

At block 318 (e.g., time T, that follows time T,), the user
device 303 (e.g., and/or a corresponding runtime worktlow
instance, similar to as described 1n reference to FIG. 2) may
then execute a call to load the workiflow graph and the
workilow context of the workilow being updated. This may
also include retrieving the RVN of the particular record
associated with the workilow (the “second RVN™). In this
example, the second RVN may have a value of ‘z,” which
may represent the record version number of the particular
record stored in data store 330. Note that, in this example,
similar to as described 1n block 218 of FIG. 2, the checkpoint
phase of block 314 1s still in progress and the workflow
engine may have already received and processed the first
checkpoint data associated with the first host (e.g., the
current RVN 1s already imncremented to retlect the update to
the record). However, because the first host’s update has not
yet been committed (e.g., confirmed) by the system during
the checkpoint phase, the second RVN (e.g., the “second
record version 1dentifier” retrieved with the workflow con-
text) may have a value of ‘72 (e.g., not reflecting the
incremented RVN). In another embodiment, the operations
of block 318 may occur even before the checkpoint phase of
block 314 increments the RVN to be ‘z+1.” and thus, the
second RVN retrieved from the data store 330 may have a
value of ‘z.” In any case, in this example, the second RVN

US 11,210,143 Bl

21

may be different (e.g., less) than the updated (e.g., incre-
mented) current RVN. In any case, in this example, the
operations of the second runtime worktlow (associated with
the user device 303) lag behind the operations of the first
runtime workilow (associated with the user device 302).

At block 320, the user device 303 (e.g., and/or a corre-
sponding second runtime worktlow instance) may execute
operations for performing a second update that corresponds
to one or more worktlow steps. In some embodiments, the
one or more worktlow steps may be similar to or different
from the workilow steps of block 310. In some embodi-
ments, the worktflow steps may involve a read-only opera-
tion from the data store 330, whereby a conilict 1s not
detected by the second host. Note that a conflict may have
been detected by the second host during a write operation,
in which case the write may have failed (e.g., and the host
(or workilow 1nstance) may return a conflict exception),
when trying to use the same idempotency key with a
different mput.

At block 322, the user device 303 may (e.g., and/or a
corresponding second runtime workflow instance) may
determine second checkpoint data for merging of the first
update and the second update during the checkpoint phase.
The second checkpoint data may include: (1) the second
iput, (2) the second idempotency key, and (3) the second
RVN.

Returning to block 314, the worktlow engine may receive
the second checkpoint data determined from block 322. The
worktlow engine may then execute the consensus algorithm
to merge the updates to the workflow by comparing data
clements of the first checkpoint data with one or more
respective data elements of the second checkpoint data. For
example, 1n the case of the scenario depicted by diagram 300
of FIG. 3, the workilow engine may determine that the first
idempotency key matches the second 1idempotency key, but
the first input does not match the second 1input. Based on this
determination, the workflow engine may determine that the
second use case of Table 1 has occurred, and therefore may
return a conflict exception to the second host (user device
303). Note that, 1n this case, the consensus algorithm may
determine that the first host (user device 302) 1s the “winner”
and the second host should receive the “conflict exception™
based 1n part on the second RVN (°z’) of the second host not
matching the current RVN (z+1'"), which was incremented
from the first update of the first host. For example, 1n this
case, the first runtime worktlow reached the checkpoint
phase first based at least 1in part on the first runtime workflow
of user device 302 executing first (e.g., at time T,). This
prompted the RVN to be incremented to ‘z+1,” thus “beating,
out” the user device 303 that executed later (e.g., at time T,)
and subsequently reached the checkpoint phase after the first
runtime workflow. In some embodiments, this method of
using RVN’s to determine a “winner” and “loser” when
updating a record may be known as “optimistic locking,”
whereby a party may update a record 1f the RVN maintained
server-side (e.g., by the workflow platform) has not already
been updated by another party. Note that, even with opti-
mistic locking, no exclusive lock may be acquired by either
the first host or the second host.

Upon the consensus algorithm determining a conflict
exception at block 314, in addition to the workilow engine
returning a conflict exception to the second host (e.g., user
device 303), the workflow engine may also return a “Suc-
cess’ indicator to the first host (e.g., user device 302). In
another embodiment, instead of (and/or in addition to)
returning a contlict exception to the second host, the work-
flow engine may prompt the second host to resolve the

10

15

20

25

30

35

40

45

50

55

60

65

22

merge contlict. For example, the second host may automati-
cally (or, with manual user input) determine that the first and
second update are different updates that involve different
items of the same type. Upon the second host providing
iput to resolve the merge conflict, the workilow platform
may then complete the checkpoint phase.

Although the above describe process of FIG. 3 depicts the
workilow platform resolving a merge contlict among paral-
lel-executing workiflow updates, it should be understood
that, 1n some embodiments, each host may be able to detect
if a worktlow step conflict happens during a worktlow
update, even before the workilow engine 1s called upon to
resolve this type of error during the checkpoint phase. For
example, during an execution of a particular worktlow step
(e.g., writing to the data store 330 at block 320), a workflow
instance (e.g., on behalf of host) may detect (e.g., via an
error returned by an attempted database access) that the
update 1s mnvalid. For example, the data store 330 may return
an error upon detecting that the idempotency key for the
update 1s the same as another update (e.g., performed by
another host) with the same idempotency key value, but with
a different input. In this case, the host (and/or the worktlow
instance executed on behalf of the host) may determine the
error condition, and return a contlict exception. In this case,
the checkpoint phase may not be needed to resolve a merge
contlict. However, 1n cases where a host (and/or runtime
worktlow instance) does not detect the error (e.g., an update
corresponding to a read-only workflow step), the worktlow
engine may execute the consensus algorithm to catch and
resolve the exception (e.g., as a failsafe exception handling
mechanism), thus ensuring that the platform maintains accu-
rate data (e.g., workilow graph and/or context data) for each
workilow.

FIG. 4 1s another simplified block diagram illustrating at
least some example techniques for a workilow platform
performing a checkpoint phase to merge updates to a work-
flow, according to some embodiments. The elements
depicted 1n diagram 400 may include a user device 402, a
user device 403, a workilow management system 404, and
a data store 430, which may be respectively similar to the
clements of diagram 300 of FIG. 3. In the process depicted
in diagram 400, the consensus algorithm executed by the
worktlow engine during the checkpoint phase determines
that the scenario corresponds to the third use case of Table
1, based on checkpoint data received from each parallel
update to the workilow. In this case, the idempotency keys
are different, while the inputs may match (e.g., have equal
values) or be diflerent. The consensus algorithm may deter-
mine that the updates are not the same based on the
idempotency keys being different. The consensus algorithm
may further determine a “winning” host (e.g., between
parallel updates of the two hosts) based on a comparison of
RVNs, similar to the process of FIG. 3. Also, similar to the
process ol FIG. 3, upon determining the winning host and
the host associated with a conflict exception, the workilow
plattorm may return respective results (e.g., “Success,”
“Brror”) to each host. In the third use case, as described
herein, because the 1dempotency keys between the parallel
(e.g., concurrent) executing updates are different, the
updates may be interpreted by the workilow platform as
being entirely diflerent updates (e.g., even 11 they are in fact
they are intended to be the same update, but a programmatic
error somehow caused the idempotency keys to be different).
Accordingly, and similar to the second use case, 1n the case
where the respective host (or thread, as the case may be)
does not catch the exception during the runtime execution of
the worktlow update, the worktflow platform may serve as a

US 11,210,143 Bl

23

fallback mechanism to determine the contlict exception
during the merge (e.g., the consensus algorithm) of the
checkpoint phase.

Turning to the process illustrated by FIG. 4 1n further
detail, at block 406, the user device 402 (e.g., the first host)

scans the first item of type “ABC123” (e.g., corresponding
to the next worktlow step displayed by a GUI-based appli-
cation of user device 402). In this example, similar to FIG.
3, suppose that this worktlow step 1s the only worktlow step
being performed between checkpoints. Accordingly, upon
scanning the item, the user device 402 (e.g., via the GUI-
based application, and/or associated thread) may determine
a first idempotency key with a first key value *x.” The user
device 302 also determines a first input (e.g., °y,” which may

represent the unique serial number of the first item).

At block 408 (e.g., time T,), the user device 402 (e.g.,
and/or a corresponding {first runtime worktlow 1nstance,
similar to as described in reference to FIG. 3) may then
execute a call to load (e.g., from the data store 430) the
worktlow graph and the worktlow context of the workflow
being updated. This may also include retrieving the RVN of
the particular record associated with the worktlow (the “first
RVN™). In this example, the first RVN may have a value of
‘z,” which may represent any suitable record version num-
ber. Note that, similar to the process of FIGS. 2 and 3, the
user device 402 (and/or associated runtime workilow
instance) has not acquired a lock from the worktlow plat-
form. The workflow management system may determine to
allow parallel execution of a workilow step of the worktlow
by a plurality of hosts.

At block 410, the user device 402 (and/or the associated
first runtime workilow instance) may perform one or more
workilow steps that correspond to a first update for the
workilow. In some embodiments, one or more operations of
block 410 may be similar to as described 1n reference to
block 310 of FIG. 3.

At block 412, the user device 402 (and/or the associated
first runtime workilow instance) may determine first check-
point data for a later checkpoint phase pertormed by the
worktlow engine of the workflow management system 404.
In some embodiments, the first checkpoint data associated
with the first update may include: (1) the first input, (2) the
first idempotency key, and (3) the first RVN.

At block 414, the user device 402 (and/or the associated
first runtime workiflow instance) may call the worktlow
engine (e.g., workilow engine 114 of FIG. 1) to execute a
checkpoint phase. In some embodiments, the worktlow
engine may receive the first checkpoint data from block 414,
and mitiate the checkpoint phase. During the checkpoint
phase, similar to block 314 of FIG. 3, the workflow engine
may retrieve a current RVN that corresponds to a current
version of the particular record associated with worktlow
update. The worktlow engine may then compare the previ-
ously retrieved first RVN of the first checkpoint data with the
current RVN. For example, suppose that the current RVN
st1ill has a value of ‘z,” which matches the first RVN’s value.
In this case, the workflow engine may determine that the
values match. Accordingly, the worktlow engine may update
the current RVN by incrementing the current RVN to be
‘z+1.” Although, as depicted 1n FIG. 4, the first update of
user device 402 (e.g., the first host) reaches the checkpoint
phase first, 1t should be understood that embodiments are not
so limited. For example, 1n another embodiment, the second
update of the second host (e.g., user device 403), described
turther below, may reach the checkpoint phase first (e.g., 1f
the second update started execution at an earlier time than

10

15

20

25

30

35

40

45

50

55

60

65

24

the first update, 1n which case the “winner” and “loser” host
update may be reversed from as described below).

At block 416, the user device 403 (e.g., the second host)
may scan the second i1tem of type “ABC 123 (e.g., the same
type as the first item scanned by the first host at block 306).
Upon scanning the item, the user device 403 may determine
a second 1dempotency key with a second key value of ‘x”
(1.., a different idempotency key from the first idempotency
key (‘x’) determined at block 406). The user device 303 also

determines a second 1mput (e.g., ‘y’,” which may represent a
different unique serial number of the second item). As
described above, 1n some embodiments, instead of the
second 1mput being a different value from the first mnput, the
second nput may instead correspond to the same value as
the first input (*y’). For example, similar to the first use case,
both the first mput and the second mput may be the same
value, 1n the case of a retry scenario. In this example, there
may 1instead be two different threads executing updates in
parallel on the same user device. However, 1n contrast to the
first use case, 1n this example, the first idempotency key (°x’)
and the second 1dempotency key ('x") are different (e.g., due
to a system malfunction or other programmatic error), and so
the consensus algorlthm may not be able to determine that
the two updates are in fact the same.

At block 418 (e.g., time T, that follows time T,), the user
device 403 (e.g., and/or a corresponding second runtime
workflow 1nstance, similar to as described in reference to
FIG. 2) may then execute a call to load the workilow graph
and the workflow context of the workiflow being updated.
This may also include retrieving the RVN of the particular
record associated with the workflow (the “second RVN”) In
this example the first RVN may have a value of ‘z.” Note
that, 1n this example, similar to block 318 of FIG. 3, the
checkpoint phase of block 314 1s still in progress and the
workilow engine may have already recerved and processed
the first checkpoint data associated with the first host (e.g.,
the current RVN 1s already incremented to reflect the update
to the record). However, because the first host’s update has
not yet been committed (e.g., confirmed) by the system
during the checkpoint phase, the second RVN (e.g., the
“second record version identifier” retrieved with the work-
flow context) may have a value of ‘7z’ (e.g., not retlecting the
incremented RVN). In another embodiment, the operations
of block 418 may occur even before the checkpoint phase of
block 414 increments the RVN to be ‘z+1,” and thus, the
second RVN retrieved from the data store 430 may have a
value of ‘z.” Similar to as described in FIG. 3, in this
example, the operations of the second runtime worktlow
(associated with the user device 403) lag behind the opera-

tions of the first runtime workflow (associated with the user
device 402).

At block 420, the user device 403 (e.g., and/or the
corresponding second runtime workflow instance) may
execute operations for performing the second update that
corresponds to one or more worktlow steps. In some
embodiments, the one or more workilow steps may be
similar or different from the worktlow steps of block 410
(e.g., depending on whether the updates are the same or
different). As described 1n reference to block 320 of FIG. 3,
in some embodiments, the workflow steps may involve a
read-only operation, whereby a contlict 1s not detected by
the second host. Note that a contlict may have been detected
by the second host during a write operation to the database
of data store 430, in which case the write may have failed
(e.g., and the host (or worktlow instance) may return a
contlict exception), when trying to use a different 1dempo-
tency key with a same (or different) input.

US 11,210,143 Bl

25

At block 422, the user device 403 may (e.g., and/or the
corresponding second runtime workilow instance) may
determine second checkpoint data for merging of the first
update and the second update during the checkpoint phase.
The second checkpoint data may include: (1) the second
iput, (2) the second idempotency key, and (3) the second
RVN.

Returming to block 414, the workilow engine may receive
the second checkpoint data determined from block 422. The
workilow engine may then execute the consensus algorithm
to merge the updates to the workflow by comparing data
clements of the first checkpoint data with one or more
respective data elements of the second checkpoint data. For
example, 1 the case of the scenario depicted by diagram 400
of FIG. 4, the workflow engine may determine that the first
idempotency key does not match the second idempotency
key. Based on this determination, the workiflow engine may
determine that the third use case of Table 1 has occurred, and
therefore may determine a result corresponding to a contlict
exception. The workilow engine may then complete the
checkpoint phase and return a conilict exception to the
second host. Note that, 1n this case, the consensus algorithm
may determine that the first host 1s the “winner” and that the
second host should receive the “exception” based in part on
the second RVN (*z’) of the second host not matching the
current RVN (z+1'), which was incremented from the first
update of the first host. For example, 1n this case, and,
similar to FIG. 3, based at least 1n part on the first runtime
worktlow of user device 402 executing first (e.g., at time T,,),
it reached the checkpoint phase first, which prompted the
RVN to be incremented to ‘z+1,” thus “beating out” the user
device 403 that executed later (e.g., at time T,).

In some embodiments, and, similar to as described 1n
reference to block 314 of FIG. 3, upon the consensus
algorithm determining a contlict exception at block 414, the
workilow engine may also return a “Success” indicator to
the first host (e.g., user device 402). Also, in another
embodiment, instead of (and/or 1n addition to) returning a
contlict exception to the second host, the workflow engine
may prompt the second host to resolve the merge contlict.
For example, the second host may automatically (or, with
manual user input) determine that the first and second update
are diflerent updates that involve different items of the same
type. Upon the second host providing input to resolve the
merge conflict, the workilow platform may then complete
the checkpoint phase. It should be understood that a check-
point phase may be determined to be completed at any
suitable point following the completion of the consensus
algorithm to determine one or more results (e.g., success
and/or a conflict exception).

FIG. 5 1s another simplified block diagram 1illustrating an
example architecture of a system used to perform a check-
point phase to merge updates to a worktlow, according to
some embodiments. The diagram 500 includes one or more
user devices 504 (or “hosts™), whereby each user device may
be associated with a particular one or more users 502 (e.g.,
a fulfillment agent, a customer, etc.). Each of the one or more
user devices 504 may be similar to any of the user devices
described herein. The diagram 500 also 1ncludes a network
508 and a workflow management system 506 (e.g., which
may be similar to any of the worktlow management systems
described herein).

Turning to user device 504 in further detail, the user
device 504 may be any suitable computing device that i1s
capable communicating with the workflow management
system 506 to mitiate and/or execute performance of a
workiflow update, according to embodiments described

10

15

20

25

30

35

40

45

50

55

60

65

26

herein. In some non-limiting examples, a user device may be
a tablet device, a PC, a mobile phone, etc. In some embodi-
ments, the user device 504 may contain at least one or more
processing units (or processor(s)) 310, an mput/output (I/0)
device(s) 512, a communications connection interface 514,
and a memory 515.

The memory 5135 may store program instructions that are
loadable and executable on the processor(s) 510, as well as
data generated during the execution of these programs. The
memory 3515 may be volatile (such as random access
memory (RAM)) and/or non-volatile (such as read-only
memory (ROM), flash memory, etc.). In some implementa-
tions, the memory 515 may include multiple different types
of memory, such as static random access memory (SRAM),
dynamic random access memory (DRAM) or ROM. The
user device 504 may also include additional storage, such as
either removable storage or non-removable storage includ-
ing, but not limited to, magnetic storage, optical disks,
and/or tape storage. The disk drives and their associated
computer-readable media may provide non-volatile storage
of computer-readable 1nstructions, data structures, program
modules, and other data for the computing devices. In some
embodiments, the user device 504 may also include I/O
device(s) 512, such as for enabling connection with a
keyboard, a mouse, a pen, a voice mput device, a touch input
device, a display, speakers, a printer, etc. The user device
504 may also contain the communications connection inter-
face 514 that allows the user device 504 to communicate
with a stored database (e.g., within a workiflow data store
532 of the worktlow management system 306), another

computing device or server (e.g., the workflow management
system 506), user terminals, and/or other devices on the
network(s) 508.

Turning to the contents of the memory 515 in more detail,
the memory 515 may include an operating system and one
or more application programs or services for implementing
the features disclosed herein, including a first user applica-
tion 516 and a second user application 518. In some embodi-
ments, each user application may comprise code that causes
the processor 310 to execute one or more operations asso-
ciated with a workflow update. For example, the first user
application 516 may correspond to a first web browser client
(e.g., a first browser tab) that may be used to perform one or
more operations associated with enabling a user (e.g., user
502) to complete a customer order (e.g., adding 1tems to a
digital shopping cart, inputting payment information, sub-
mitting the order for processing, etc.). Meanwhile, the
second user application 518 may correspond to a second
web browser client (e.g., a second browser tab). In this
example, the second browser tab may be used to perform a
retry of the customer order (e.g., in case the first tab lost a
network connection). In some embodiments, the scenario
may be similar to the first use case of Table 1. In another
example, the user device 504 may correspond to a tablet that
1s used by a fulfillment agent to execute one or more
worktlow steps of a customer order (e.g., similar to user
device 102 of FIG. 1). In this example, the first user
application 516 may be a GUI application that presents a
GUI similar to GUI 110 of FIG. 1. In the event of a retry
scenario whereby a first spawned thread may have a broken
connection with the network 508 (e.g., the first use case of
Table 1), the first user application 5316 may spawn another
second thread to perform the retry. As described herein, it
should be understood that any suitable combination of client
applications, threads, and/or hosts (e.g., devices) may be
utilized to perform embodiments described herein.

US 11,210,143 Bl

27

The network 508 may include any suitable communica-
tion path or channel such as, for instance, a wire or cable,
fiber optics, a telephone line, a cellular link, a radio fre-
quency (RF) link, a WAN or LAN network, the Internet, or
any other suitable medium. The network 508 may include
any one or a combination of many different types of net-
works, such as cable networks, the Internet, wireless net-
works, cellular networks, and other private and/or public
networks.

Turning to the workflow management system 506 in
turther detail, the workflow management system 506 may
include a memory 520, a processor 522, a storage 524, a
communications connection interface 534, and an 1/0 device
(s) 5336. In some embodiments, each of these elements may
be similar (or different) from respective elements described
in reference to user device 504. In some embodiments, the
clements of the worktlow management system 506 may be
included within one or more server computers (€.g., server
clusters) that form a distributed computing system. In some
embodiments, the memory 520 may also include (and/or be
associated with) the worktlow data store 532. In some
embodiments, the workflow data store 532 may be similar to
the data store 108 of FIG. 1. In some embodiments, the
workilow data store 532 may correspond to removable
storage or non-removable storage including, but not limited
to, magnetic storage, optical disks, and/or tape storage. The
disk drives and their associated computer-readable media
may provide non-volatile storage ol computer-readable
instructions, data structures, program modules, and other
data for the computing devices. In some embodiments, the
workilow data store 5332 may store any suitable data related
to managing a workflow, including, but not limited to, one
or more workflow graphs, a database of records, a worktlow
context for a given workflow, efc.

Turning to the contents of the memory 520 in more detail,
the memory 520 may include an operating system 526 and
one or more application programs or services for imple-
menting the features disclosed herein, including a runtime
API module 528 and a workflow engine module 530.

The runtime API module 528 may comprise code that
causes the processor 522 to perform one or more operations
related to a workflow. In some embodiments, the runtime
API module 528 communicate with one or more calling
clients from a user device (e.g., user device 504). For
example, the runtime API module 528 may enable a calling
client (e.g., the first user application 516, the second user
application 318, etc.) to create a new workilow 1nstance
(c.g., a worktlow update process) that executes on the
workilow management system 306 on behalf of the calling
client. In some embodiments, the runtime API module 528
may enable the calling client to execute one or more actions
related to updating a worktlow, including, but not limited to,
loading a worktlow graph and/or context, performing one or
more workilow steps, calling into the workilow engine
module 530 to perform a checkpoint phase, etc. In some
embodiments, the runtime API module 528 may be similar
to the runtime API 112 of FIG. 1, and/or may perform any
of the operations of the runtime API described herein.

The worktlow engine module 530 may comprise code that
causes the processor 522 to perform one or more operations
of a workilow engine, as described herein. In some embodi-
ments, the workflow engine module 530 may implement a
checkpoint phase that performs a consensus algorithm, as
described herein. In implementing the checkpoint phase, the
workilow engine module 530 may receive one or more
checkpoint data (e.g., first checkpoint data and second
checkpoint data) from parallel executing workilow 1nstances

10

15

20

25

30

35

40

45

50

55

60

65

28

performing respective worktlow updates. The consensus
algorithm may then compare one or more data elements of
the first checkpoint data with one or more respective ele-
ments of the second checkpoint data. The consensus algo-
rithm may then determine a particular use case based on this
comparison (e.g., see Table 1). Then, the consensus algo-
rithm may determine a result based on the use case. Upon
determining the result, the checkpoint phase may be com-
pleted. The worktlow engine module 530 may then transmit
a result to respective hosts (and/or threads) associated with
the worktlow update.

FIG. 6 1s a simplified flow diagram illustrating an example
process for a workilow platform performing a checkpoint
phase to merge updates to a worktlow, according to some
embodiments. Process 600 i1s 1llustrated as a logical tlow
diagram, each operation of which represents a sequence of
operations that can be implemented 1n hardware, computer
instructions, or a combination thereof. In the context of
computer instructions, the operations represent computer-
executable instructions stored on one or more computer-
readable storage media that, when executed by one or more
processors, perform the recited operations. Generally, com-
puter-executable structions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described operations can be combined 1 any order
and/or 1 parallel to implement the processes.

Additionally, some, any, or all of the processes may be
performed under the control of one or more computer
systems configured with executable mnstructions and may be
implemented as code (e.g., executable instructions, one or
more computer programs, or one or more applications)
executing collectively on one or more processors, by hard-
ware, or combinations thereof. As noted above, the code
may be stored on a computer-readable storage medium, for
example, 1n the form of a computer program comprising a
plurality of instructions executable by one or more proces-
sors. The computer-readable storage medium 1s non-transi-
tory.

In some embodiments, process 600 may be performed by
a workflow management system (e.g., a workflow engine of
the system), which may correspond to any one or more of the
workilow management systems described herein. In some
embodiments, the one or more of the operations of process
600 may be similar to any one or more of the operations of
block 214 of FIG. 2. At block 602, the worktlow manage-
ment system may determine to allow parallel execution of
updates of a workilow. In some embodiments, the updates
may be executed by a plurality of threads, including a first
thread and a second thread (e.g., both executing on a user
device, such as user device 102 of FIG. 1). In some
embodiments, the determination to allow parallel updates
may include not providing a lock to the first thread that 1s
requesting to perform an update (e.g., so that the second
thread may be enabled to perform a parallel update). In some
embodiments, two or more updates may be executed 1n
parallel when at least one or more operations of the respec-
tive updates (e.g., loading a workflow graph, performing
workilow steps, etc.) are performed within a predefined
threshold amount of gap time between the one or more
operations. In some embodiments, even though the two
threads may execute updates 1n parallel, the first thread (or,
in another embodiment, the second thread) may execute one
or more operations of the first update first, and reach the
checkpoint phase before the second update of the second

US 11,210,143 Bl

29

thread. In some embodiments, a workilow update may
include one or more worktlow steps of the workiflow. In
some embodiments, as described heremn, a thread may
execute a workflow update by calling a runtime API of the
workilow management system. In one example, the thread
may create a workilow instance process that executes on a
workilow platform of the workilow management system.
The workilow instance may perform one or operations
corresponding to the workilow update, including, {for
example, loading a workilow graph and/or an associated
workilow context, performing the one or more worktlow
steps of the worktlow update, calling the worktlow engine to
perform a checkpoint phase, etc. It should be understood
that, although the process 600 may be primarily described
with respect to two threads (e.g., executing on a user device),
the process 600 may be performed by client processes (e.g.,
two or more browser application processes), two or more
hosts, and/or any suitable combination thereof.

At block 604, the workilow management system may
receive first checkpoint data associated with a first update of
the workflow. In some embodiments, the first checkpoint
data 1s associated with the first thread. In some embodi-
ments, the first checkpoint data may 1nclude: (1) a first input,
(2) a first idempotency key, and (3) a first record version
identifier (e.g., a first RVN).

At block 606, the workflow management system may
receive second checkpoint data associated with a second
update of the workflow. In some embodiments, The second
checkpoint data may be associated with the second thread.
In some embodiments, the second update may be completed
based at least in part on the determination to allow parallel
execution of the worktlow updates. In some embodiments,
the second checkpoint data may include: (1) a second nput,
(2) a second idempotency key, and (3) a second record
version 1dentifier (e.g., a second RVN).

At block 608, the workilow management system may
initiate a checkpoint phase for determining a result of a
merge of the updates (e.g., the first update and second
update) of the workflow, which may include performing one
or more of the operations of block 610 and block 612,
described below.

At block 610, the workflow management system may
compare one or more data elements of the first checkpoint
data with one or more respective data elements of the second
checkpoint data. In some embodiments, the workilow man-
agement system may determine a particular use case of
possible use cases based on the comparison. In some
embodiments, the set of possible uses cases may correspond
to the uses cases depicted in Table 1, and 1llustrated 1n FIGS.
2-4. For example, 1n a case where the first input 1s the same
as (e.g., matches) the second mput, and the first idempotency
key 1s the same as (e.g., matches) the second idempotency
key, the worktlow management system may determine that
this scenario corresponds to the first use case (e.g., a retry
scenario of the same update of the workilow). In this case,
even 1f the current RVN does not match the second RVN
(e.g., because the current RVN has already been incremented
based on the first RVN first initiating the checkpoint phase),
the workflow management system may determine that both
the first update and the second update correspond to the
same update based only on comparing the mputs and the
idempotency keys. In another case (e.g., the second and/or
third use case), the system may determine a “winning” and
“losing” thread based in part on comparing the RVN {for a
particular checkpoint data element (e.g., of each update)
against the current RVN. In some embodiments, “winner”
and/or “loser” 1n these second and/or third use cases may be

10

15

20

25

30

35

40

45

50

55

60

65

30

determined based 1n part on which thread was the first to
reach the checkpoint phase (1.e., prompting the current RVN
to be incremented), which may, 1 turn, be based on which
thread was the first to begin executing the update (e.g., as
described with respect to block 602, above).

At block 612, the worktflow management system may
determine a result based at least in part on the comparing.
For example, continuing with the first use case scenario
above, the workflow management system may determine a
“Success” result for both the first update and the second
update (e.g., since they both are determined to correspond to
the same update, via retry scenario). In another use case
(c.g., the second or third use case), the worktlow manage-
ment system may return a “Success” result for one thread
and a “Conflict Exception™ for the other thread. It should be
understood that either the first thread or the second thread
may be the “winning” thread, for example, based on which
parallel-executing workilow update successtully performed
a write that caused the current RVN to be incremented.

At block 614, the worktflow management system may
complete the checkpoint phase. In some embodiments, the
result may be transmitted to at least one of the threads upon
the completion of the checkpoint phase. For example, 1n the
first use case scenario, the “Success” result may be trans-
mitted to the first thread and the second thread that are both
associated with a same user application. The user application
executing on the user device (e.g., user device 102) may
have spawned the two threads and may receive one or more
of the results, and whereby either (or both) result may be
used for presentation to the GUI 110 of the user application
(e.g., depicting a single success indicator, such as a checked
box, green light, etc., indicating that one or more workflow
steps of the workflow update has been recorded by the
system). Note that, even 1f one of the threads (e.g., the thread
that actually performed the write) may have lost network
connection, the user application may still receive the “Suc-
cess” result mn a more eflicient method than conventional
methods, at least because the other thread may also receive
the “Success” resullt.

FIG. 7 1llustrates aspects of an example environment 700
for implementing aspects in accordance with various
embodiments. As will be appreciated, although a Web-based
environment 1s used for purposes of explanation, different
environments may be used, as appropriate, to 1mplement
various embodiments. The environment includes an elec-
tronic client device 702, which can include any appropnate
device operable to send and receive requests, messages, or
information over an appropriate network 704 and convey
information back to a user of the device. Examples of such
client devices include personal computers, cell phones,
handheld messaging devices, laptop computers, set-top
boxes, personal data assistants, electronic book readers, and
the like. The network can include any appropriate network,
including an intranet, the Internet, a cellular network, a local
areca network, or any other such network or combination
thereof. Components used for such a system can depend at
least 1n part upon the type of network and/or environment
selected. Protocols and components for communicating via
such a network are well known and will not be discussed
herein in detail. Communication over the network can be
enabled by wired or wireless connections and combinations
thereol. In this example, the network includes the Internet,
as the environment includes a Web server 706 for receiving
requests and serving content in response thereto, although
for other networks an alternative device serving a similar
purpose could be used as would be apparent to one of
ordinary skill in the art.

US 11,210,143 Bl

31

The 1llustrative environment includes at least one appli-
cation server 708 and a data store 710. It should be under-
stood that there can be several application servers, layers, or
other elements, processes, or components, which may be
chained or otherwise configured, which can interact to
perform tasks such as obtaining data from an appropnate
data store. As used herein the term “data store” refers to any
device or combination of devices capable of storing, access-
ing, and retrieving data, which may include any combination
and number of data servers, databases, data storage devices,
and data storage media, in any standard, distributed, or
clustered environment. The application server can include
any appropriate hardware and software for integrating with
the data store as needed to execute aspects of one or more
applications for the client device, handling a majority of the
data access and business logic for an application. The
application server provides access control services 1 coop-
cration with the data store and 1s able to generate content
such as text, graphics, audio, and/or video to be transierred
to the user, which may be served to the user by the Web
server 1 the form of Hyperlext Markup Language
(“HITML”), Extensible Markup Language (“XML™), or
another approprate structured language 1n this example. The
handling of all requests and responses, as well as the
delivery of content between the client device 702 and the
application server 708, can be handled by the Web server. It
should be understood that the Web and application servers
are not required and are merely example components, as
structured code discussed herein can be executed on any
appropriate device or host machine as discussed elsewhere
herein.

The data store 710 can include several separate data
tables, databases or other data storage mechanisms and
media for storing data relating to a particular aspect. For
example, the data store 1llustrated includes mechanisms for
storing production data 712 and user information 716, which
can be used to serve content for the production side. The data
store also 1s shown to 1include a mechanism for storing log
data 714, which can be used for reporting, analysis, or other
such purposes. It should be understood that there can be
many other aspects that may need to be stored in the data
store, such as for page image information and to access right
information, which can be stored 1n any of the above listed
mechanisms as appropriate or 1n additional mechanisms in
the data store 710. The data store 710 1s operable, through
logic associated therewith, to receive mstructions from the
application server 708 and obtain, update or otherwise
process data 1n response thereto. In one example, a user
might submit a search request for a certain type of item. In
this case, the data store might access the user information to
verily the identity of the user and can access the catalog
detail information to obtain information about items of that
type. The information then can be returned to the user, such

as 1n a results listing on a Web page that the user 1s able to
view via a browser on the user device 702. Information for
a particular item of interest can be viewed i a dedicated
page or window of the browser.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) stor-
ing instructions that, when executed by a processor of the
server, allow the server to perform its mtended functions.
Suitable implementations for the operating system and gen-
eral functionality of the servers are known or commercially

10

15

20

25

30

35

40

45

50

55

60

65

32

available and are readily implemented by persons having
ordinary skill 1n the art, particularly 1n light of the disclosure
herein.

The environment in one embodiment 1s a distributed
computing environment utilizing several computer systems
and components that are interconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill i the art that such a system could operate
equally well 1n a system having fewer or a greater number
of components than are illustrated in FIG. 7. Thus, the
depiction of the environment 700 in FIG. 7 should be taken
as being 1llustrative 1n nature and not limiting to the scope
of the disclosure.

The various embodiments further can be implemented 1n
a wide variety ol operating environments, which in some
cases can 1nclude one or more user computers, computing
devices or processing devices which can be used to operate
any of a number of applications. User or client devices can
include any of a number of general purpose personal com-
puters, such as desktop or laptop computers running a
standard operating system, as well as cellular, wireless, and
handheld devices running mobile software and capable of
supporting a number of networking and messaging proto-
cols. Such a system also can include a number of worksta-
tions running any of a variety of commercially-available
operating systems and other known applications for pur-
poses such as development and database management.
These devices also can include other electronic devices, such
as dummy terminals, thin-clients, gaming systems, and other
devices capable of communicating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled 1n the art for supporting com-
munications using any of a variety of commercially-avail-
able protocols, such as Transmission Control Protocol/In-
ternet Protocol (““T'CP/IP”), Open System Interconnection
(“OSI™), File Transter Protocol (“FTP”), Universal Plug and
Play (“UpnP”), Network File System (“NFS”), Common
Internet File System (“CIFS”), and AppleTalk. The network
can be, for example, a local area network, a wide-area
network, a virtual private network, the Internet, an intranet,
an extranet, a public switched telephone network, an infra-
red network, a wireless network, and any combination
thereof.

In embodiments utilizing a Web server, the Web server
can run any of a variety of server or mid-tier applications,
including Hypertext Transier Protocol (“HTTP”) servers,
FTP servers, Common Gateway Interface (“CGP”) servers,
data servers, Java servers, and business application servers.
The server(s) also may be capable of executing programs or
scripts 1n response to requests from user devices, such as by
executing one or more Web applications that may be imple-
mented as one or more scripts or programs written 1n any
programming language, such as Java®, C, C#, or C++, or
any scripting language, such as Perl, Python, or TCL, as well
as combinations thereof. The server(s) may also include
database servers, including without limitation those com-
mercially available from Oracle®, Microsoft®, Sybase®,
and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside 1n a variety of locations, such as on a storage
medium local to (and/or resident 1n) one or more of the
computers or remote from any or all of the computers across
the network. In a partlcular set of embodiments, the 1nfor-
mation may reside 1 a storage-area network (“SAN™)
familiar to those skilled in the art. Similarly, any necessary

US 11,210,143 Bl

33

files for performing the functions attributed to the comput-
ers, servers, or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each such device can include hard-
ware elements that may be electrically coupled via a bus, the
clements including, for example, at least one central pro-
cessing unit (“CPU”), at least one mput device (e.g., a
mouse, keyboard, controller, touch screen, or keypad), and
at least one output device (e.g., a display device, printer, or
speaker). Such a system may also include one or more
storage devices, such as disk drives, optical storage devices,
and solid-state storage devices such as random access
memory (“RAM?”) or read-only memory (“ROM™), as well
as removable media devices, memory cards, flash cards, etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired)), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser-
vices, or other elements located within at least one working,
memory device, including an operating system and appli-
cation programs, such as a client application or Web
browser. It should be appreciated that alternate embodiments
may have numerous variations from that described above.
For example, customized hardware might also be used
and/or particular elements might be implemented 1n hard-
ware, soltware (including portable software, such as app-
lets), or both. Further, connection to other computing
devices such as network input/output devices may be
employed.

Storage media computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media 1mple-
mented 1n any method or technology for storage and/or
transmission of information such as computer readable
istructions, data structures, program modules, or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM™), flash memory or other
memory technology, Compact Disc Read-Only Memory
(“CD-ROM”), digital versatile disk (DVD), or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage, or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a system device. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

Other variations are within the spint of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain 1llustrated embodiments thereol are shown in the
drawings and have been described above 1n detail. It should

10

15

20

25

30

35

40

45

50

55

60

65

34

be understood, however, that there 1s no intention to limait the
disclosure to the specific form or forms disclosed, but on the
contrary, the mtention 1s to cover all modifications, alterna-
tive constructions, and equivalents falling within the spirt
and scope of the disclosure, as defined in the appended
claims.

The use of the terms “a” and “an” and “the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially 1 the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including,”
and “‘containing’” are to be construed as open-ended terms
(1.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “connected” 1s to be construed as
partly or wholly contained within, attached to, or joined
together, even 11 there 1s something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein and each separate value 1s incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed 1n any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better 1lluminate embodiments of the
disclosure and does not pose a limitation on the scope of the
disclosure unless otherwise claimed. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice of the disclosure.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s intended to
be understood within the context as used in general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrving out the disclosure. Variations of those preferred
embodiments may become apparent to those of ordinary
skill 1n the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate and the mventors itend for the disclosure to
be practiced otherwise than as specifically described herein.
Accordingly, this disclosure includes all modifications and
equivalents of the subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination of the above-described elements 1n all
possible varniations thereot 1s encompassed by the disclosure
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby incorporated by
reference to the same extent as 1f each reference were
individually and specifically indicated to be incorporated by
reference and were set forth 1n 1ts entirety herein.

What 1s claimed 1s:

1. A computer-implemented method, comprising;:

determining, by a worktlow management system, to allow

parallel execution of a worktlow step of a workilow by
a plurality of threads, including a first thread and a
second thread;

recerving, by the workflow management system, {first

checkpoint data associated with a first update of the

US 11,210,143 Bl

35

first thread, the first update corresponding to a first
completion of the workflow step, and the first check-
point data including: (1) a first mput, (2) a first 1dem-
potency key, and (3) a first record version identifier
associated with a particular record;

initiating, by the worktlow management system, a check-

point phase for determining a result of the worktlow,

the checkpoint phase comprising;:

retrieving, by the worktlow management system, a
current record version identifier associated with a
current version the particular record;

updating, by the workiflow management system, the
current record version identifier based at least in part
on the first record version identifier;

receiving, by the workflow management system, sec-
ond checkpoint data associated with a second update
of the second thread, the second checkpoint data
corresponding to a second completion of a same
worktlow step, and the second checkpoint data
including: (1) a second mput, (2) a second idempo-
tency key, and (3) a second record version i1dentifier
associated with the particular record, the second
completion based at least in part on the determina-
tion to allow parallel execution of the same worktlow
step;

comparing, by the workflow management system, at
least one or more of: (1) the first mnput with the
second 1nput, (2) the first idempotency key with the
second 1dempotency key, or (3) the updated current
record version identifier with the second record
version 1dentifier; and

determining, by the workilow management system, the
result based at least 1n part on the comparing, the
result indicating whether the second update 1s suc-
cesstul; and

completing, by the workilow management system, the
checkpoint phase, the result being transmitted to at
least the second thread upon the completion of the
checkpoint phase.

2. The computer-implemented method of claim 1,
wherein the first input 1s determined to match the second
input and the first idempotency key 1s determined to match
the second 1dempotency key, and wherein the result indi-
cates that the second update 1s successtul based at least 1n
part on respectively matching data elements.

3. The computer-implemented method of claim 2,
wherein determining the result further comprises determin-
ing that the first update 1s also successtul based at least 1n
part on the comparing, the method further comprising:

transmitting the result to the first thread upon completion

of the checkpoint phase.

4. The computer-implemented method of claim 1,
wherein the workflow corresponds to a synchronous work-
flow, the workilow step being one of a plurality of worktlow
steps of the workflow, an execution of a next worktlow step
being dependent on successiul completion of the workflow
step, and wherein transmitting the result to the second thread
cnables a prompting of the execution of the next worktlow
step.

5. A computing device, comprising:

a memory comprising computer-executable instructions;

and

one or more processors in communication with the

memory and configured to access the memory and
execute the computer-executable instructions to per-
form, at least:

10

15

20

25

30

35

40

45

50

55

60

65

36

determining to allow parallel execution of a plurality of
updates of a worktlow;
receiving first checkpoint data associated with a first
update of the workilow, the first checkpoint data
including: (1) a first mput, (2) a first idempotency
key, and (3) a first record version 1dentifier associ-
ated with a particular record;
receiving second checkpoint data associated with a
second update of the workilow, the second check-
point data including: (1) a second nput, (2) a second
idempotency key, and (3) a second record version
identifier associated with the particular record, the
second update being completed based at least 1in part
on the determination to allow parallel execution of
the updates;
initiating a checkpoint phase for determining a result of
the worktlow, the checkpoint phase comprising:
comparing one or more data elements of the first
checkpoint data with one or more respective data
clements of the second checkpoint data; and
determining the result based at least in part on the
comparing; and
completing the checkpoint phase, the result being
transmitted to at least one user device for presen-
tation of the result upon the completion of the
checkpoint phase.

6. The computing device of claim 5, wherein the work-
flow 1includes one or more worktlow steps, the first update
associated with a completion of at least one workflow step
ol the worktlow.

7. The computing device of claim 5, wherein comparing
the one or more data elements further comprises determining,
that the first input matches the second mput and the first
idempotency key matches the second idempotency key, and
wherein a respective result of the first update and the second
update 1s determined to be successiul based at least 1n part
on the comparing.

8. The computing device of claim 3, wherein comparing,
the one or more data elements further comprises determining,
that the first idempotency key matches the second 1dempo-
ency key and that the first input 1s different from the second
input, and wherein determining the result further comprises
comparing a current record version 1dentifier of the particu-
lar record with at least one of the first record version
identifier or the second record version identifier.

9. The computing device of claim 8, wherein the result
indicates that the second update resulted 1n a conflict excep-
tion, and wherein the transmitting of the result prompts a
client of the at least one user device to merge the first update
and the second update.

10. The computing device of claim 5, wherein a worktlow
engine ol the computing device recerves the first checkpoint
data prior to the second checkpoint data, and wherein the
memory comprises further computer-executable instructions
that, when executed by the one or more processors, further
cause the computing device to perform, at least:

retrieving, by the workilow engine, a current record

version 1dentifier associated with a current version the
particular record; and

updating, by the worktlow engine, the current record

version 1dentifier based at least 1n part on comparing
the current record version 1dentifier with the first record
version 1dentifier.

11. The computing device of claim 5, wherein comparing
the one or more data elements further comprises determining,
that the first idempotency key 1s different from the second
idempotency key, and wherein determining the result further

US 11,210,143 Bl

37

comprises comparing a current record version identifier of
the particular record with at least one of the first record
version 1dentifier or the second record version identifier.

12. The computing device of claim 11, wherein the first
input and the second mput have equal values or are difierent.

13. The computing device of claim 5, wherein the {first
update 1s associated with a first host and the second update
1s associated with a second host.

14. The computing device of claim 5, wherein the first
update 1s associated with a first thread and the second update
1s assoclated with a second thread, both the first thread and
the second thread executing on the at least one user device
transparent to a usetr.

15. The computing device of claim 5, wherein the work-
flow 1s associated with a workflow graph and a worktlow
context that are maintained by a data store associated with
the computing device, and wherein the worktlow context 1s
associated with a present state of at least one workilow step
of the workflow graph.

16. One or more non-transitory computer-readable stor-
age media comprising computer-executable instructions
that, when executed by one or more processors, cause the
one or more processors to perform, at least:

determining to allow parallel execution of updates of a

workilow by a plurality of threads including a first
thread and a second thread;
receiving first checkpoint data associated with a first
update of the workflow, the first checkpoint data asso-
ciated with the first thread and including: (1) a first
iput, (2) a first idempotency key, and (3) a first record
version 1dentifier associated with a particular record;

receiving second checkpoint data associated with a sec-
ond update of the workilow, the second checkpoint data
associated with the second thread and including: (1) a
second 1nput, (2) a second idempotency key, and (3) a
second record version identifier associated with the
particular record, the second update being completed
based at least 1n part on the determination to allow
parallel execution of the updates;

initiating a checkpoint phase for determining a result of

the workflow, the checkpoint phase comprising:

10

15

20

25

30

35

40

38

comparing one or more data elements associated with
the first checkpoint data with one or more respective
data elements of the second checkpoint data; and

determining the result based at least in part on the
comparing; and

completing the checkpoint phase, the result being trans-
mitted to at least one of the first thread or the second

thread upon the completion of the checkpoint phase.

17. The one or more non-transitory computer-readable
storage media of claim 16, wherein the first thread and the
second thread are both executed on a user device, the first
thread and second thread being associated with a same user
application, the user application presenting a graphical user
intertace (GUI).

18. The one or more non-transitory computer-readable
storage media of claim 17, wherein the workflow 1s associ-
ated with a customer order, the first update 1s associated with
a customer order fulfillment of the customer order, and
wherein the second update corresponds to a retry of the first
update upon the first thread having a broken network con-
nection.

19. The one or more non-transitory computer-readable
storage media of claim 18, wherein the result includes a first
result and a second result, the first result and the second
result respectively indicating that the first update and the
second update are successiul, the first result being transmit-
ted the first thread and the second result being transmitted to
the second thread, and wherein at least one of the first result
or the second result 1s utilizable for presenting a single
success 1ndicator on the graphical user interface of the user
device.

20. The one or more non-transitory computer-readable

storage media of claim 16, wherein the worktlow 1ncludes a
synchronous workilow, the synchronous workilow including
a plurality of synchromized workilow steps, and wherein the
first update and the second update respectively correspond to
an execution of at least one of the synchronized worktlow
steps.

	Front Page
	Drawings
	Specification
	Claims

