12 United States Patent

Cook et al.

US011200144B1

US 11,200,144 B1
Dec. 14, 2021

(10) Patent No.:
45) Date of Patent:

(54) REFINEMENT OF STATIC ANALYSIS OF

2012/0233599 Al1* 9/2012 Valdiviezo Basauri et al.

PROGRAM CODE GOG6F 8/41
717/126
(71) Applicant: Amazon Technologies, Inc., Seattle, 2014/0244645 Al* 82014 Muske GOGF 9/44589
WA (US) 707/737
2014/0282421 Al* 9/2014 Jubran GO6F 11/3664
(72) Inventors: John Cook, Brooklyn, NY (US); 2015/0220419 Al* 82015 CasSeZ ..o GOGF ﬂ%’%g
Kalpana Gondi, Edison, NJ (US); 717/124
Michael Tautschnig, L.ondon (GB) 2016/0315960 Al* 10/2016 Teilhet HO4L 63/1433
_ (Continued)
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) OTHER PUBLICATIONS
(%) Notice: Sub) ect‘ 1o any dlsclalmer,i the term of thus Tukaram Muske et al., “Review eflorts reduction by partitioning of
patent 1s extended or adjusted under 35 . s ngs”, 2013 [retrieved on Feb. 17, 20191, 13th
U.S.C. 154(b) by 114 days. static .‘:11?::1 yS1S waﬂ?mgs : retrieved on Feb. 17, :
International Working Conference on Source Code Analysis and
(21) Appl. No.: 15/696,056 Manipulation (SCAM), pp. 106-115, downloaded from Internet at
<url>:https://1eeexplore.ieeec.org. (Year: 2013).*
(22) Filed: Sep. 5, 2017 (Continued)
(51) Int. CL Primary Examiner — S. Sough
GO6l’ 11/36 (2006.01) Assistant Examiner — Stephen D Berman
(52) U.S. CL (74) Attorney, Agent, or Firm — Robert C. Kowert;
CPC GO6l’ 1173608 (2013.01); GO6F 11/3616 Kowert, Hood, Munyon, Rankin & Goetzel, P.C.
(2013.01)
(58) Field of Classification Search (57) ABSTRACT
CPC GOOF 11/3608; GO6F 11/3616; GO6F Methods, systems, and computer-readable media for refine-
11/3604 ment of static analysis of program code are disclosed. A
See application file for complete search history. report is received. The report was generated using initial
_ static analysis of program code. The report indicates a
(56) References Cited plurality of warnings regarding the program code, at least
U.S PATENT DOCUMENTS some ol which represent potential flaws, and the warnings
are associated with a plurality of segments of the program
7,926,039 B2 4/2011 Wang et al. code. Additional analysis of the segments of program code
7,975,257 B2 7/2011 Fanning et al. 1s performed. The additional analysis differs at least 1in part
8,365,152 B2 1/2013 Balakrishnan et al. from the initial static analysis. Based at least in part on the
g’;gé’%g Eg gggj Eiﬁlgtg ael’t al. additional analysis, at least some of the warnings are deter-
0.530.016 Bl 12/2016 Pomerantz mined to represent false positives.
2008/0244536 Al* 10/2008 Farchi GO6F 8/433
717/130 17 Claims, 12 Drawing Sheets
(st)
:

Receive a report generated using static analysis of
program cods; the repart includes warnings about
segments of the program code

00

!

_.‘

Invoke additional analysis of the sagmant(s) asscciated
with a particular waming

210

False Positive

L 4
Refing report based

Is

warning a false
positive or a true
pasitive?

120

True Positive

h 4
Refine report to indicate

on the false positive
730

No

L 4
Procead to naxt

warning in the report
760

All warnings
processed?

750

the verified warning
740

Yes

h

Qutput refined report
including verified
warnings

70

'
(End)

US 11,200,144 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0075787 Al1* 3/2017 Muske GO6F 11/3608

OTHER PUBLICATIONS

“HP Fortify on Demand User Guide—FoD Release 3.2, Hewlett-
Packard, May 2014, Retrieved from URL: https://saas.hpe.com/
sites/default/files/resources/files/HP%20Fortity%6200n%20Demand
06-16-2014.pdf, pp. 1-38.

Ranjit Jhala, et al., “Software Model Checking”, ACM Journal
Name, vol. V, No. N, Oct. 2009, Retrieved from URL: https://
people.mpi-sws.org/~rupak/Papers/SoftwareModelChecking.pdf, pp.
1-57.

Kenneth L. McMillan, “Symbolic Model Checking: An approach to

the state explosion problem”, May 1992, Retrieved from URL:
http://www.kenmcmil.com/pubs/thesis.pdf, pp. 1-214.

* cited by examiner

U.S. Patent Dec. 14, 2021 Sheet 1 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

Report (Incl.
wWarnings) 180

Additional
Analysis

Static Analysis 150

Refinement System 100

Additional
Analysis (Type A)

|

|

|

|

|

Mapping of Warning |
150A |
|

|

|

|

|

|

|

Types to Additional
Analysis Types 110

Refined Report
Generation 120 Additional

Analysis (Type N)
150N

Refined Report (Incl.
Verified Warnings) 190

FIG. 1A

U.S. Patent Dec. 14, 2021 Sheet 2 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

5 8

;fg | L

’é = | Additional |

S 3 | Analysis |
> | 150 |

Static Analysis

|
Refinement System 100 |
|
|

Mapping of Warning
Types to Additional
Analysis Types 110

Additional

150A

|
|
|
|
Analysis (Type A) :
|
|
|
|

Refined Report
Generation 120

|

|

|
Additional |
Analysis (Type N) |
|

150N

Refined Report (Incl.
Verified Warnings) 190

FIG. 1B

U.S. Patent Dec. 14, 2021 Sheet 3 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

5 9
:-—’g r ______ I
T 2 Additional
S £ | -
@ 5 | Analysis
< | 150
Static Analysis Additional

Refinement System 100 Analysis (Type A)
150A

Mapping of Warning
Types to Additional
Analysis Types 110

_ Additional
Refined Report Analysis (Type N)
Generation 120 150N

Refined Report (Incl.
Verified Warnings) 190

FIG. 1C

U.S. Patent Dec. 14, 2021 Sheet 4 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

5 8
=w 1r
t 2
S S Additional
(0 :
= Analysis
150

Static Analysis
Refinement System 100

Computing
Device 155A

Mapping of Warning

Types to Additional
Analysis Types 110

Refined Report Computing
Generation 120 . Device 155N

Refined Report (Incl.
Verified Warnings) 190

FIG. 1D

U.S. Patent Dec. 14, 2021 Sheet 5 of 12 US 11,200,144 B1

Program
Source Code
160

Additional
Analysis 150

Mapping of Warning Types
Report 180 to Additional Analysis Types
_ 110

Warning 181

Warning Type 203

Additional
Analysis (Type A)
150A

Trace 161

Additional
Analysis (Type A)
150A

Trace 162

Additional
Analysis (Type N)
150N

Trc:e
®

Mapping of Warning
Type 203 to Additional
Analysis Type A 111

Trace 161

Warning 182

Warning Type 204
Trace 162

Mapping of Warning
Type 204 to Additional
Analysis Type A 112

Warning 183

Wérning Type 202
Trace 163

Mapping of Warning
Type 202 to Additionail
Analysis Type N 113

Additional

Analysis (Type B
Mapping of Warning nase éBype)

Type.201 10 Adions 1208
|y pese [

Warning 189

FIG. 2

U.S. Patent Dec. 14, 2021 Sheet 6 of 12 US 11,200,144 B1

Program Refined Report 190

Source Code
Warning 181

wWarning Type 203
Trace 161

Annotation (Verified
Wwarning) 191

—

Additional
Analysis 150

Refined Report

Generation 120
Warning 182

N wWarning Type 204
True1I:’2c313|t|ve Trace 162

Annotation (False
Positive) 192
Warning 183

wWarning Type 202
Trace 163

Annotation (False
Positive) 193

Additional
Analysis (Type A)
150A

Trace 161

Additional
Analysis (Type A)
150A

Trace 162

Additional
Analysis (Type N)
150N

Trace 163
o

False Positive
122

False Positive

123

Warning 189

wWarning Type 201

Additional
Analysis (Type B)

Trace 169

150B Unknown Annotation

Unknown Status
Trace 169 I Status 129 I (199)

FIG. 3A

U.S. Patent Dec. 14, 2021 Sheet 7 of 12 US 11,200,144 B1

Program

Source Code
160

—

Additional
Analysis 150

Refined Report
Generation 120

Additional
Analysis (Type A)
150A

Trace 161

Additional
Analysis (Type A)
150A

Trace 162

Additional
Analysis (Type N)
150N

Trace 163
o

True Positive
121

Refined Report 190

Warning 181

Warning Type 203
Trace 161

False Positive
122

False Positive
123

Warning 189

Warning Type 201
Trace 169

Additional
Analysis (Type B)

1508 Unknown

FIG. 3B

U.S. Patent Dec. 14, 2021 Sheet 8 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

Report (Incl.
Warnings) 180

Additional
Analysis
150

Static Analysis
Refinement System 100

|

|

|

|

Additional :
Analysis (Type A)

150A |

|

|

|

|

|

|

|

Mapping of Warning Types

to Additional Analysis Types
110

Refined Report Generation
120

Recommendation
of Corrections 130

Additional
Analysis (Type N)

150N

Q
@)
~
o~
)
O)
=
-
—
C;G

Fixes 135

T
D
=
-
O
=
O
-
=
T
O
O
@
14
T
@
-
S
O
14

Recommended Code

FIG. 4

U.S. Patent Dec. 14, 2021 Sheet 9 of 12 US 11,200,144 B1

Program

Source Code
160

Static
Analysis
170

Report (Incl.
Warnings) 180

Additional
Analysis
150

Static Analysis
Refinement System 100

|

|

|

|

Additional :
Analysis (Type A)

150A |

|

|

|

|

|

|

|

Mapping of Warning Types

to Additional Analysis Types
110

Refined Report Generation
120

Code Patching
140

Additional
Analysis (Type N)

150N

Program
Source Code
(Incl. Code
Patch(es))
260

)
@
H—
-
()
>D
_-ml
QO

=
:,.-%
g

o .S
=
2
)

()
-
=
Q
i

FIG. 5

U.S. Patent Dec. 14, 2021 Sheet 10 of 12 US 11,200,144 B1

Multi-Tenant Provider

Static_ Network 690
Analysis

170

Refinement Service 600

QL
A .
:g o E E|
N E|)
c 9 S £
S O S
39| xS m T T '
= .
I Additional
| _ | Analysis
Static Analysis | 150
|
|

|

|

|

|

Additional |

Mapping of Warning Analysis (Type A) | |
Types to Additional 150A :
|

|

|

|

|

|

Analysis Types 110

Additional

Analysis (Type N)
150N

T

Network
695

ned Report (Incl. Verified
Warnings) 190

Program Source Code 160

\ Refi

Client Computing

Device
650

FIG. 6

U.S. Patent Dec. 14, 2021 Sheet 11 of 12 US 11,200,144 B1

Recelve a report generated using static analysis of
program code; the report includes warnings about

segments of the program code
700

Invoke additional analysis of the segment(s) associated

with a particular warning
10

warning a false
positive or a true
positive”?
720

False Positive True Positive

Refine report based Refine report to Iindicate
on the false positive the verified warning
730 740

All warnings

processed?
90

No Yes

Proceed to next Output refined report

Including verified

warning in the report
760

warnings
(70

End

FIG. 7

U.S. Patent Dec. 14, 2021 Sheet 12 of 12 US 11,200,144 B1

Computing Device
3000

Processor Processor Processor

3010A 30108

/O Interface 3030
System Memory 3020
Network Interface
Code Data 3040
3025 3026

3010N

Network(s)
3050

Other Device(s)
3060

FIG. 8

US 11,200,144 B1

1

REFINEMENT OF STATIC ANALYSIS OF
PROGRAM CODE

BACKGROUND

Static code analysis represents an automated approach for
detecting flaws 1n program source code without necessarily
executing the code. By analyzing source code or bytecode,
static analysis may find and flag potential security vulner-
abilities, violations of industry standards, and flaws that
would not necessarily be manifested during execution of the
program. A tool for static code analysis may operate by
instrumenting the source code and looking for programming
constructs that are known to be the cause of common
programming or security mistakes. For example, the static
analysis tool may look for potentially troublesome 1dioms
such as dereferencing a pointer without checking for a null
pointer. The tool may analyze the entire set of source code
for a project or application and may produce a list of
warnings based on the static analysis. However, the findings
of the tool may include numerous false positives that do not
represent actual errors, flaws, security vulnerabilities, and so
on. The presence of such false positives 1n the results may
represent “noise,” and the noise may render the findings
difficult to interpret and prioritize. Manual review by a
developer to siit through the noise may be time-consuming
and subject to human error.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A, FIG. 1B, FIG. 1C, and FIG. 1D illustrate an
example system for refinement of static analysis of program
code, according to one embodiment.

FIG. 2 1llustrates further aspects of the example system
for refinement of static analysis of program code, including
a mapping between individual warnings and additional
analysis tools for refinement, according to one embodiment.

FIG. 3A and FIG. 3B 1illustrate further aspects of the
example system for refinement of static analysis of program
code, including generation of a refined report based on
additional analysis of individual warnings, according to one
embodiment.

FIG. 4 1llustrates further aspects of the example system
for refinement of static analysis of program code, including
generation of recommendations for fixes of verified wam-
ings, according to one embodiment.

FIG. 5 illustrates further aspects of the example system
for refinement of static analysis of program code, including
generation of code patches to fix verified warnings, accord-
ing to one embodiment.

FIG. 6 illustrates further aspects of the example system
for refinement of static analysis of program code, including
offering the static analysis refinement as a service of a
multi-tenant provider network, according to one embodi-
ment.

FIG. 7 1s a flowchart 1llustrating a method for refinement
of static analysis of program code, according to one embodi-
ment.

FIG. 8 1llustrates an example computing device that may
be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the

appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning “having the potential to), rather than
the mandatory sense (1.e., meaning “must”). Similarly, the

words “include,” “including,” and “includes™ mean “includ-
ing, but not limited to.”

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of methods, systems, and com-
puter-readable media for refinement of static analysis of
program code are described. Using the techniques described
herein, warnings generated by static analysis of program
source code may be automatically filtered to annotate or
remove false positives. A static analysis tool may analyze the
source code of a program and generate a report that includes
warnings about particular segments of the code. The warn-
ings may indicate potential errors, flaws, security vulner-
abilities, violations of industry standards, and so on. A static
analysis refinement system may use the report as input,
along with the source code. For at least some of the warnings
in the mitial report, the static analysis refinement system
may perform, initiate, or invoke additional analysis of
individual segments of program code 1n an attempt to detect
true positives (verified warnings) or detect false positives
(e.g., warnings that do not represent genuine errors or flaws).
The additional analysis may include static analysis (analysis
of the program code without execution of the program)
and/or dynamic analysis (analysis based on execution of the
program). The additional analysis techniques may vary
based (at least 1n part) on the type of warning. For example,
some warning types may be subjected to additional analysis
using model checking, while other warning types may be
subjected to data tlow analysis, and yet other warning types
may be subjected to syntactic checking. The additional
analysis techniques may often be more precise than the static
analysis techniques used 1n generating the initial report. The
additional analysis techniques may often be more expensive
(e.g., 1n terms of processor and memory resources) than the
static analysis techmiques used in generating the 1initial
report, and so the use of such techniques may be feasible
only for segments of the program code rather than the entire
set of program code. Based (at least 1n part) on the additional
analysis, the static analysis refinement system may auto-
matically generate a refined report that indicates the verified
warnings and excludes or annotates the false positives. The
static analysis refinement system may also recommend code
fixes or apply code patches to correct some types of verified
warnings. By filtering numerous false positives, the refined
report may be used more efliciently by a developer to correct
genuine errors, flaws, and vulnerabilities 1n a program.

FI1G. 1A, FIG. 1B, FIG. 1C, and FIG. 1D 1llustrate an
example system for refinement of static analysis of program
code, according to one embodiment. A static analysis refine-
ment system 100 may use, as input, program source code
160 along with a report 180 that indicates warnings regard-
ing that source code. The program source code 160 may be
written 1n any number of suitable programming languages,
such as C source code, C++ source code, Java® bytecode,
and so on. The program source code 160 may include one or
more build artifacts such as object files, class files, JAR files
(Java® archives), and so on. A portion of the source code 1n
a particular build artifact, or potentially an entire build

US 11,200,144 B1

3

artifact, may be referred to as a segment or snippet of the
code. In one embodiment, the static analysis refinement
system 100 may use, as input, a mapping between names of
source files (e.g., as referenced in the report 180) and
particular build artifacts. In one embodiment, the static
analysis refinement system 100 may use, as input, informa-
tion from the build process such as preprocessing and
compile options for C and C++ code.

The code 160 may include numerous errors, flaws, vul-
nerabilities, and other problematic constructs or elements.
Using static analysis of the code 160, a static analysis tool
170 may attempt to find and report such errors, flaws, and
vulnerabilities as warnings 1n the report 180. The static
analysis tool 170 may operate by mstrumenting the source
code and looking for programming constructs that are
known to be the cause of common programming or security
mistakes. For example, the static analysis tool 170 may look
for potentially troublesome 1dioms such as dereferencing a
pointer without checking for a null pointer. The static
analysis tool 170 may analyze the entire set of source code
160 associated with a project or application and may pro-
duce a report 180 with warnings based on the static analysis.
In many cases, however, the report 180 may 1include numer-
ous “false positives,” e.g., warnings that do not represent
genuine errors, flaws, or vulnerabilities. The report 180 may
also include ““true positives,” e.g., warnings that do indeed
represent genuine errors, flaws, or vulnerabilities. The pres-
ence ol many false positives may represent noise in the
report 180. Such noise may render the report 180 difhicult for
a developer to imterpret and prioritize.

For at least some of the warnings 1n the 1nitial report 180,
the static analysis refinement system 100 may perform,
iitiate, or mvoke additional analysis 150 of individual
segments of the program code 160 in an attempt to detect
true positives (verified warnings) or detect false positives
(e.g., warnings that do not represent genuine errors or tlaws).
In one embodiment, false positives may be 1dentified with
some degree of certainty while i1dentification of true posi-
tives may have a lesser degree of certainty. As shown 1n the
example of FIG. 1A, the additional analysis 150 may include
a variety of techniques or tools for code analysis, such as
additional analysis (type A) tool 150A through additional
analysis (type N) tool 150N. One or more of the additional
analysis techmiques 150 used for a particular warning may
vary based (at least in part) on the type of warning, as
indicated 1n the report 180. For example, some warning
types may be subjected to additional analysis using model
checking, while other warning types may be subjected to
data flow analysis, and yet other warning types may be
subjected to syntactic checking. The static analysis refine-
ment system 100 may include a component 110 for mapping,
of warning types to additional analysis types. Based (at least
in part) on the additional analysis 150 of the warnings 1n the
initial report 180, the static analysis refinement system 100
may generate a refined report 190 using a component 120 for
refined report generation. In one embodiment, the refined
report 190 may include warnings that have been verified as
true positives with the additional analysis 150. In one
embodiment, the refined report 190 may exclude warnings
that have been determined to represent false positives with
the additional analysis 150. In one embodiment, the refined
report 190 may include both true positives and false posi-
tives, and individual warnings may be annotated as true
positives and/or false positives accordingly.

In one embodiment, 11 the static analysis refinement
system 100 1s unable to determine whether a warning
represents a true positive or a false positive, the refined

10

15

20

25

30

35

40

45

50

55

60

65

4

report 120 may include the warning; the warning may be
annotated to indicate that 1ts status as a false positive or true
positive 1s unknown. For example, 1 a particular warning
type 1s not supported by the static analysis refinement
system 100, then the system may not perform additional
analysis for that warning and may pass the warning on to the
developer 1n the refined report 190 with an indication of the
unknown status. As another example, 1f one or more addi-
tional analysis technmiques 150 cannot decide whether a
particular warning is a false positive or a true positive, then
the static analysis refinement system 100 may pass the
warning on to the developer 1n the refined report 190 with an
indication of the unknown status. As a further example, if the
additional analysis for a warning times out (e.g., based on a
predetermined timeout), then the static analysis refinement
system 100 may pass the warning on to the developer in the
refined report 190 with an indication of the unknown status.
As yet another example, the static analysis refinement sys-
tem 100 may not perform additional analysis for a warning
that has been manually triaged by a developer to indicate its
known 1mportance.

The additional analysis techniques 150 may be more
precise than the static analysis 170 used 1n generating the
initial report 180. For a given segment, the additional
analysis techniques 150 may be more expensive (e.g., 1n
terms of processor and memory resources) than the static
analysis 170 used 1n generating the mitial report 180, and the
use of such techniques may be feasible only for segments of
the program code 160 rather than the entire set of program
code. By filtering numerous false positives, 1n some cases
representing around 50% of the warnings, the refined report
190 may be used more efliciently by a developer to correct
genuine errors, flaws, and vulnerabilities 1n a program.

In some embodiments, the static analysis refinement
system 100 may output metrics related to the additional
analysis 150, refined report 190, and/or original report 180.
The metrics may be presented to a developer (e.g., 1n a
graphical user interface) or otherwise may be made available
in one or more reports. The metrics may 1ndicate statistics
related to the frequency of various warning types, how many
true positives were determined for each warning type (e.g.,
a count and/or percentage), how many false positives were
determined for each warning type (e.g., a count and/or
percentage), how many unknown statuses were determined
for each warning type (e.g., a count and/or percentage), the
success rate of various tools for the additional analysis 150,
the duration of execution for the various tools, any timeouts
reached 1n attempting the additional analysis, and so on.

In one embodiment, a user may provide a time budget to
the static analysis refinement system 100. The time budget
may relate collectively to all of the additional analysis 150
and/or to additional analysis for imndividual warnings. The
additional analysis 150 may be performed within the time
budget. In one embodiment, following completion of the
additional analysis 150, metrics related to the time budget
may be presented or made available to the user.

The static analysis refinement system 100 may represent
an extensible framework for refining a static analysis report
180, such that numerous types of static analysis tools or
utilities 170 may be used as mput to the system. For
example, the static analysis refinement system 100 may
accept and refine a list of warnings produced by a static
analysis tool named Fortily (commercially available from
Hewlett-Packard Enterprise Security Products). As another
example, the static analysis refinement system 100 may

US 11,200,144 B1

S

accept and refine a list of warnings produced by a static
analysis tool named Coventy® (commercially available
from Synopsys).

The static analysis refinement system 100 may represent
an extensible framework for refining the static analysis
report 180, such that numerous types of tools or utilities for
additional analysis 150 may be used with the system. In one
embodiment, the additional analysis 150 may include one or
more tools or utilities that perform static analysis without
necessarlly executing the program corresponding to the
program code. In one embodiment, the additional analysis
150 may include one or more tools or utilities that perform
dynamic analysis based on executing the program corre-
sponding to the program code. As shown 1n FIG. 1A, the
additional analysis tools 150A-150N may be external to the
static analysis refinement system 100. For example, the
additional analysis tools 150A-150N may represent various
external utilities that can be invoked by the static analysis
refinement system 100, e¢.g., via command line or via an
application programming interface (API). As shown in FIG.
1B, the additional analysis tools 150A-150N may be both
internal and external with respect to the static analysis
refinement system 100. Internal tools or utilities may rep-
resent functions, subroutines, or other components that are
bundled or compiled with one or more programs that imple-
ment the static analysis refinement system 100. As shown 1n
FIG. 1C, the additional analysis tools 150A-150N may be
internal to the static analysis refinement system 100.

In one embodiment, the additional analysis tools of the
various types may be performed or invoked serially, e.g.,
using one computing device. In one embodiment, the addi-
tional analysis tools of the various types may be performed
or mvoked in parallel due to the independence of the
additional analysis 150 for individual warnings. As shown 1n
the example of FIG. 1D, the tools for additional analysis 150
may be implemented on various computing devices 155A-
155N of a distributed system. Although two computing
devices 155A and 155N are shown for purposes of 1llustra-
tion and example, any suitable number and configuration of
computing devices may be used with the static analysis
refinement system 100. The various computing devices may
operate on different warnings in parallel to generate the
refined report 190 more quickly. The static analysis refine-
ment system 100 may include an orchestration component
115 that assigns and distributes additional analysis tasks to
the computing devices 155A-155N. The orchestration com-
ponent 115 may also receive and aggregate the results of the
additional analysis 150 for use i1n generating the refined
report 190.

In one embodiment, the orchestration component 115
assigns an identifier to each analysis job and places the job
(tagged with the 1dentifier) 1n a work queue that 1s accessible
by the computing devices 155A-155N. Each job i1dentifier
may associate an analysis job with a warning in the original
report. The computing devices 155A-155N may represent
worker nodes that can check the work queue for newly
added analysis jobs. In some embodiments, a worker node
may select jobs from the queue based (at least 1n part) on the
type of analysis that the worker node 1s configured to
perform, on the capabilities of the worker node (e.g., its
computational and memory resources), on the current avail-
ability of the worker node, and so on. In one embodiment,
the analysis jobs may be distributed to the worker nodes
using load-balancing techniques, with some jobs being
performed 1n a parallel and distributed manner on diflerent
worker nodes. A worker node may perform an analysis job,
determine a result of the analysis job, and store the result 1n

10

15

20

25

30

35

40

45

50

55

60

65

6

a data store or send a message with the result (e.g., to the
orchestration component 115). For example, the result of
one analysis job may indicate that the warning 1s a false
positive, a true positive, or of unknown status. The static
analysis refinement system 100 may include a component
(e.g., the orchestration component 115 or refined report
generation 120) that checks the data store for results of the
analysis jobs or receives the result messages, extracts the
results, generates annotations based on the results, and adds
the annotations to the refined report 190. The component
may use the job 1dentifiers to link analysis results to warn-
ings in the original report. In one embodiment, the refine-
ment may be performed using another worker node that
refines the report based on the results generated by the other
worker nodes.

The computing devices 155A-155N may be implemented
by the example computing device 3000 1llustrated 1n FIG. 8.
The computing devices 155A-155N may communicate with
the orchestration component 115 using one or more network
connections or other mterconnects. The computing devices
155A-155N may be located 1n any suitable location relative
to the static analysis refinement system 100, ¢.g., in the same
rack, in the same data center, or in different data centers. In
one embodiment, the computing devices 155A-155N may
represent virtual compute nstances that can be provisioned
and deprovisioned as needed for use with the system 100.
Each of the computing devices 155A-155N may implement
one type of additional analysis 150 or more than one type of
additional analysis. The computing devices 155A-155N may
be heterogeneous or homogeneous 1n terms of processor
resources, memory resources, network resources, and so on.
In one embodiment, analyses of particular warning types
may be assigned to individual computing devices 155A-
155N based (at least 1 part) on the capabilities and
resources of the computing devices, e.g., such that more
challenging analysis tasks are assigned to more capable
computing devices. The orchestration component 115 may
contain suflicient intelligence to assign analysis of particular
warnings to particular computing devices, e.g., based on
machine learning techniques that determine and use execu-
tion statistics (e.g., execution duration) for various types of
analysis on various configurations of computing devices
155A-155N. The orchestration component 115 may use any
suitable scheduling technique to assign tasks to the comput-
ing devices 155A-155N, e¢.g., using a round-robin schedul-
ing algorithm.

The static analysis refinement system 100 may include a
plurality of computing devices, any of which may be imple-
mented by the example computing device 3000 illustrated in
FIG. 8. In various embodiments, portions of the described
functionality of the static analysis refinement system 100
may be provided by the same computing device or by any
suitable number of different computing devices. If any of the
components of the static analysis refinement system 100 are
implemented using different computing devices, then the
components and their respective computing devices may be
communicatively coupled, e.g., via a network. Each of the
illustrated components (such as the static analysis 170,
mapping 110, refined report generation 120, and/or addi-
tional analysis 150) may represent any combination of
soltware and hardware usable to perform their respective
functions. It 1s contemplated that the static analysis refine-
ment system 100 may include additional components not
shown, fewer components than shown, or different combi-
nations, configurations, or quantities of the components
shown. For example, although various additional analysis
tools 150A-150N are shown for purposes of example and

US 11,200,144 B1

7

illustration, 1t 1s contemplated that different quantities and
configurations of additional analysis tools or techniques may
be used. Aspects of the functionality described herein may
be performed, at least 1n part, by components outside of the
static analysis refinement system 100.

FIG. 2 1llustrates further aspects of the example system
for refinement of static analysis of program code, including
a mapping between individual warnings and additional
analysis tools for refinement, according to one embodiment.
In one embodiment, individual warnings in the 1nitial report
180 may be associated with warning types. In one embodi-
ment, the warning types may include human-readable
descriptions of potential errors, flaws, security vulnerabili-
ties, and so on. In one embodiment, the warning types may
include alphanumeric codes that represent categories of
potential errors, flaws, security vulnerabilities, and so on.
The warning types may vary based on the i1dentity of the
static code analysis tool that produced the initial report. As
shown 1n the example of FIG. 2, the report 180 may include
a warning 181 of warning type 203, a warning 182 of
warning type 204, a warning 183 of warning type 202,
numerous other warnings (not shown) of the same or dif-
ferent warming types, and finally a warning 189 of warning
type 201.

The static analysis refinement system 100 may perform,
invoke, or initiate a particular type ot additional analysis 150
for at least some of the warnings. The type of additional
analysis may vary based (at least 1n part) on the warning type
of the warning. As discussed above, the static analysis
refinement system 100 may use a mapping component 110
to map warning types to types of the additional analysis 150.
As shown 1n the example of FIG. 2, one mapping 111 may
associate warning type 203 with additional analysis (type
A), another mapping 112 may associate a different warning,
type 204 with the same type of additional analysis (type A),
yet another mapping 113 may associate warning type 202
with additional analysis (type N), and another mapping 119
may associate warning type 201 with additional analysis
(type B). The static analysis refinement system 100 may also
implement other mappings of particular warning types to
particular types of additional analysis 150. In one embodi-
ment, the system 100 may invoke a relatively small number
of additional analysis types for a much larger number of
warning types, and so more than one of the warning types
may map to the same type of additional analysis.

The static analysis 170 may generate a trace for an
individual warning. The trace may indicate one or more
segments of the source code 160 that are associated with the
warning, ¢.g., that may contain an error, tlaw, vulnerabaility,
or other potential problem. In one embodiment, a particular
trace may include the names of any build artifacts and the
line numbers or other indicators of segment boundaries
within those build artifacts. As shown 1n the example of FIG.
2, the warning 181 may be associated with trace 161, the
warning 182 may be associated with trace 162, the warning,
183 may be associated with trace 163, and the warning 189
may be associated with trace 169. The additional analysis
150 performed or invoked for a particular warning may be
performed on the trace associated with the warning. In one
embodiment, the additional analysis 150 may obtain the
relevant segment(s) of the source code 160, either directly or
as mput from the static analysis refinement system 100. As
shown 1n the example of FIG. 2, the static analysis refine-
ment system 100 may perform or invoke additional analysis
(type A) 150A for the segment(s) of code associated with the
trace 161, additional analysis (type A) 150A for the
segment(s) of code associated with the trace 162, additional

10

15

20

25

30

35

40

45

50

55

60

65

8

analysis (type N) 150N for the segment(s) of code associated
with the trace 163, and additional analysis (type B) 150B for
the segment(s) of code associated with the trace 169. As
discussed above, the additional analysis tools of the various
types may be performed or mvoked 1n serial or 1n parallel,
¢.g., using a distributed system to operate on different
warnings 1n parallel to generate the refined report 190 more
quickly.

In one embodiment, a particular warning type may map to
a single type of additional analysis 150; the result of the
additional analysis may dictate whether the particular warmn-
ing 1s determined to be a true positive (a verified warning,
verified error, or verified flaw), a false positive (a verified
non-error or non-flaw), or a warning of unknown status. In
one embodiment, a particular warning type may map to
multiple types of additional analysis 150; the multiple types
of additional analysis may be performed in serial or in
parallel and may vote towards a single determination as to
whether the particular warning 1s a true positive (a verified
warning, verified error, or verified tlaw), a false positive (a
verified non-error or non-tlaw), or a warning of unknown
status. In one embodiment, the additional analysis 150 may
include one or more static analysis tools or techniques that
may examine one or more segments of the program source
code 160 without necessarily executing the corresponding
program. In one embodiment, the additional analysis 150
may include one or more dynamic analysis tools or tech-
niques that may be performed based (at least in part) on
execution of one or more programs corresponding to one or
more segments of the program source code 160.

In some embodiments, additional analysis 150 using
regular-expression pattern matching (e.g., using the grep
tool) may be performed, mvoked, or iitiated for the fol-
lowing warning types: “unminitialized variable™ and/or “poor
style (value never read).” The regular-expression pattern
matching may determine whether the warning represents a
true positive (a verified warning, verified error, or verified
flaw), a false positive (a verified non-error or non-tlaw), or
a warning of unknown status. The static analysis refinement
system 100 may perform the pattern matching internally or
may instead invoke an external tool or utility such as grep.

In some embodiments, additional analysis 150 using data
flow analysis may be performed, invoked, or initiated for the
following warning types: “dead code (empty try block,”
“dead code (expression 1s always false),” “dead code (ex-
pression 1s always true),” “dead code (unused field),” “dead
code (unused method),” and/or “command 1njection.” The
data flow analysis may determine whether the warning
represents a true positive (a verified warning, verified error,
or verified tlaw), a false positive (a verified non-error or
non-tlaw), or a warning ol unknown status. The static
analysis refinement system 100 may perform the data tlow
analysis internally or may instead invoke an external tool or
utility (e.g., an open source program) such as goto-analyzer
to determine unreachable instructions or taint (e.g., a vari-
able that can be modified by an outside user). Data tlow
analysis may be too expensive (e.g., 1n terms ol processor
and memory resources) to perform for an enftire set of
program source code but may be used feasibly for individual
segments of program code corresponding to warnings.

In some embodiments, additional analysis 1350 using
model checking may be performed, invoked, or imitiated for
the following warning types: “integer overtlow,” “memory
leak,” “memory leak (reallocation),” “bufller overtlow,”
“butler overtlow (format string),” “bufler overtlow (ofl-by-
one),” “bufller overtlow (signed comparison),” “double

free,” “heap ispection,” “illegal pointer value,” “missing

2P ed

US 11,200,144 B1

9

check against null,” “null dereference,
read,” “out-of-bounds read (off-by-one),” “out-of-bounds
read (signed comparison),” “string termination error,” and/
or “use aifter free.” The model checking may determine
whether the warning represents a true positive (a verified
warning, verified error, or verified tlaw), a false positive (a
verified non-error or non-tlaw), or a warning of unknown
status. The static analysis refinement system 100 may per-
form the model checking internally or may instead invoke an
external tool or utility (e.g., an open source program) such
as cbmc to perform a signed overtlow check, a conversion
check, a memory leak check, a pointer check, a bounds
check, and so on. The cbmc tool may perform bounded
model checking, e.g., for C/C++ and Java programs. The
cbmc tool may generate traces that demonstrate how an
assertion can be violated or may prove that the assertion
cannot be violated within a given number of loop iterations.
Using cbmc to perform model checking, the verification
may be performed by unwinding the loops 1n the source code
and passing the resulting equation to a decision procedure.
Model checking may be too expensive (e.g., i terms of
processor and memory resources) to perform for an entire
set of program source code but may be used feasibly for
individual segments of program code (e.g., traces) corre-
sponding to warnings.

In some embodiments, additional analysis 150 using
syntactic checking may be performed, invoked, or mitiated
for the following warning types: “build misconfiguration:
external ant dependency repository,” “build misconfigura-
tion: external maven dependency repository,” “code correct-
ness (erroneous string compare),” “code correctness (func-
tion not 1nvoked),” “code correctness (memory iree on stack
variable),” “code correctness: call to system.gc()’ “code
correctness: call to thread.run()” “code correctness: call to
notily()” “code correctness: call to sleep() 1n lock,” “code
correctness: class does not implement cloneable,” “code
correctness: class does not implement equals,” “code cor-
rectness: double-checked locking,” “code correctness: erro-
neous class compare,” “code correctness: erroneous string,
compare,” “code correctness: erroneous finalize() method,”
“code correctness: misleading method signature,” “code
correctness: multiple stream commits,” “code correctness:
non-synchronized method overrides synchronized method,”
“code correctness: regular expressions demial of service,”
“code correctness: null argument to equals()” “code cor-
rectness: toString on array,” “dangerous function (strcpy(
})),” “format string (argument type mismatch),” “insecure
compiler optimization (pointer arithmetic),” “insecure coms-
piler optimization,” ‘“insecure randomness

22 14

out-of-bounds

b B Y 4

(hardcoded

seed),” “insecure randommness (weak entropy source),”
“insecure randomness,” “insecure temporary file,” “key
management (hardcoded encryption key),” “obsolete,”
“often misused (authentication),” “often misused (file sys-
tem),” “often misused (privilege management),” “password
management (hardcoded password),” “password manage-
ment (password 1n comment),” “poor error handling (empty
catch block),” “poor error handling (overly broad catch),”
“poor error handling (overly broad throws),” “poor error
handling (program catches nullpointerexception),” *

poor
error handling (return inside finally),” “poor error handling

(throw 1nside finally),” “poor error handling (unhandled ssl
exception),” “poor logging practice (logger not declared
static final),” “poor logging practice (multiple loggers),”
“poor logging practice (use of a system output stream),”
“poor style (redundant mnitialization),” “poor style (variable
never used),” “poor style: confusing naming,” “poor style:
identifier contains dollar symbol ($),” “poor style: non-final

10

15

20

25

30

35

40

45

50

55

60

65

10

public static field,” “portability tflaw,” “portability flaw: file
separator,” “type mismatch (integer to character),” “type
mismatch (negative to unsigned),” “type mismatch (signed
to unsigned),” and/or “unchecked return value.” The syn-
tactic checking may determine whether the warning repre-
sents a true positive (a verified warning, verified error, or
verified flaw), a Tfalse positive (a verified non-error or
non-tlaw), or a warning ol unknown status. The static
analysis refinement system 100 may perform the syntactic
checking internally or may instead invoke an external tool or
utility.

In some embodiments, additional analysis 150 may be
performed internally by the static analysis refinement system
100 for the following warning types: “code correctness
(memory Iree on stack variable (infeasible)),” “memory leak
((infeasible)),” and/or “uninitialized variable ((infeasible)).”
The mternal analysis may determine whether the warning
represents a true positive (a verified warning, verified error,
or verified flaw), a false positive (a verified non-error or
non-tlaw), or a warning of unknown status. It 1s contem-
plated that similar analysis of the listed warning types may
be mvoked using a tool external to the static analysis
refinement system 100.

FIG. 3A and FIG. 3B illustrate further aspects of the
example system for refinement of static analysis of program
code, including generation of a refined report based on
additional analysis of individual warnings, according to one
embodiment. As shown i1n the example of FIG. 3A, the
additional analysis (type A) 150A performed on trace 161
has determined that the corresponding warning 181 1s a true
positive 121 1n that 1t represents a genuine error, flaw,
vulnerability, or other problem. In one embodiment, the
component 120 for refined report generation may include the
warning 181 1n the refined report 190 with an annotation 191
that indicates its status as a verified warning. However, the
additional analysis (type A) 150A performed on trace 162
has determined that the corresponding warning 182 is a false
positive 122 1n that 1t does not represent a genuine error,
flaw, vulnerability, or other problem. In one embodiment,
the component 120 for refined report generation may include
the warning 182 1n the refined report 190 with an annotation
192 that indicates 1ts status as a false positive. Similarly, the
additional analysis (type N) 150N performed on trace 163
has determined that the corresponding warning 183 1s a false
positive 123, and the refined report 190 may include an
annotation 193 that indicates 1ts status as a false positive.
Additionally, as shown in the example of FIG. 3A, the
additional analysis (type B) 150B performed on trace 169
has failed to determine whether the corresponding warning,
189 1s a true positive or a false positive and 1s instead a
warning ol unknown status 129. In one embodiment, the
component 120 for refined report generation may include the
warning 189 1n the refined report 190 with an annotation 199
that indicates i1ts unknown status regarding verification. To
generate the refined report 190, the annotations 191-199
may be included 1n a comment field 1n the original report
180. As shown in the example of FIG. 3B, rather than
including both true positives and false positives with corre-
sponding annotations, the refined report 190 may exclude
the false positives such as warmings 182 and 183. In one
embodiment, as shown in FIG. 3B, the refined report 190
may 1nclude only true positives such as warning 181 and
warnings ol unknown verification status such as warning
189.

FIG. 4 1llustrates further aspects of the example system
for refinement of static analysis of program code, including
generation of recommendations for fixes of verified wamn-

US 11,200,144 B1

11

ings, according to one embodiment. Based (at least in part)
on verifying an individual warning using additional analysis,
the static analysis refinement system 100 may automatically
generate a correction for the problem underlying the wam-
ing. As shown in FIG. 4, the static analysis refinement
system 100 may include a component 130 for recommen-
dation of corrections. In one embodiment, one or more code
fixes 135 may be presented to a user as a recommendation,
¢.g., via a user interface. In one embodiment, the user may
enter the fix(es) 135 manually to modily the program source
code. In one embodiment, the static analysis refinement
system 100 may enter the fix(es) 135 to modily the program
source code, e.g., based on user input representing accep-
tance of the recommendation. In some embodiments, cor-
rected source code may be recommended by the static
analysis refinement system 100 for the following warning
types, 1 verified as true positives: “umnitialized variable,”
“poor style (value never read),” and/or “poor style (variable
never used).”

FIG. 5 illustrates further aspects of the example system
for refinement of static analysis of program code, including
generation of code patches to fix verified warnings, accord-
ing to one embodiment. Based (at least 1n part) on veritying
an 1ndividual warning using additional analysis, the static
analysis refinement system 100 may automatically generate
program source code 560 that corrects the problem under-
lying the warning. As shown in FIG. 3, the static analysis
refinement system 100 may include a component 140 for
automated code patching. In one embodiment, the correc-
tion(s) to the source code may be presented to a user as a
suggestion, €.g., via a user 1terface, and user imput may be
solicited to accept or reject the recommendation. In one
embodiment, the static analysis refinement system 100 may
automatically generate one or more code patches that cor-
rects one or more problems and may then replace the
problematic segment(s) of code with the code patch(es), e.g.,
without user input accepting or rejecting the code patch(es).
In one embodiment, the system 100 may thus generate
modified program source code 560 that includes one or more
code patches to the original code 160. In some embodi-
ments, corrected source code may be generated by the static
analysis refinement system 100 for the following warning
types, 1f verified as true positives: “uninitialized variable,”
“poor style (value never read),” and/or “poor style (variable
never used).”

FIG. 6 illustrates further aspects of the example system
for refinement of static analysis of program code, including
offering the static analysis refinement as a service of a
multi-tenant provider network, according to one embodi-
ment. In one embodiment, the static analysis refinement
techniques discussed herein may be implemented using a
static analysis refinement service 600. The static analysis
refinement service 600 may be offered to a plurality of
clients by a provider network 690. As shown 1n the example
of FIG. 6, a particular client computing device 650 may
submit program source code 160 (or a link thereto, e.g., 1n
a network-accessible repository) to the service 600. The
service 600 may ofler a suitable interface to enable the client
650 to submit the source code 160. The interface may
include an application programming interface (API), web-
accessible user interface, other user interface, or other
programmatic interface. The service 600 may then mvoke
the static analysis 170 and pass the source code (or the link
thereto) to the static analysis. Upon generating the refined

report 190, the service 600 may send the report back to the
client 650.

10

15

20

25

30

35

40

45

50

55

60

65

12

The static analysis refinement service 600 may include a
plurality of computing devices, any of which may be 1mple-
mented by the example computing device 3000 illustrated in
FIG. 8. For example, multiple instances of the service 600
may be executed using multiple computing devices, and
cach 1stance may provide static analysis refinement for one
or more clients simultaneously. In various embodiments,
portions of the described functionality of the static analysis
refinement service 600 may be provided by the same com-
puting device or by any suitable number of diflerent com-
puting devices. If any of the components of the static
analysis refinement service 600 are implemented using
different computing devices, then the components and their
respective computing devices may be communicatively
coupled, e.g., via a network. It 1s contemplated that the static
analysis refinement service 600 may include additional
components not shown, fewer components than shown, or
different combinations, configurations, or quantities of the
components shown. Aspects of the functionality described
herein may be performed, at least 1n part, by components
outside of the static analysis refinement service 600 and/or
outside the provider network 690.

The provider network 690 may be set up by an entity such
as a business organization or a public-sector organization to
provide one or more services (such as various types of
cloud-based computing or storage) to a set of clients via the
Internet and/or other networks. The provider network 690
may include numerous data centers hosting various resource
pools, such as collections of physical and/or virtualized
computer servers, storage devices, networking equipment
and the like (e.g., implemented using computing system
3000 described below with regard to FIG. 8), that may be
used to mmplement and distribute the infrastructure and
services offered by the provider network. In some embodi-
ments, the provider network 690 may provide computing
resources, such as a set of compute instances that can be
provisioned on behalf of clients of the provider network and
then used by those clients. The computing resources may
include virtual compute instances that are implemented by
one or more network-accessible compute virtualization ser-
vices. In some embodiments, the provider network 690 may
provide storage resources, such as a set of storage instances
that can be provisioned on behalf of clients of the provider
network and then used by those clients. The storage
resources may be implemented by one or more network-
accessible storage services, such as a block-based storage
service, key-value based data stores, or various types of
database systems.

The provider network 690 may include numerous net-
work-based services, such as the static analysis refinement
service 600, that interact to oflfer resources to clients. Client
devices may access these various services offered by the
provider network 690 via one or more networks such as
network 695. Likewise, network-based services of the pro-
vider network 690 may themselves communicate and/or
make use of one another to provide diflerent services. For
example, computing resources offered to clients in units
called “instances,” such as virtual or physical compute
instances, may make use of particular data volumes, thus
providing virtual block storage for the compute instances.
The provider network 690 may implement or provide a
multi-tenant environment such that multiple clients (e.g.,
using client devices outside the provider network) may
access or use a particular resource or service, such as the
service 600, in a substantially simultaneous manner. The
provider network 690 may thus represent a multi-tenant
provider network. The clients, users, or customers of the

US 11,200,144 B1

13

provider network 690 may represent persons, businesses,
other organizations, and/or other entities. The client devices
associated with clients may be distributed over any suitable
locations or regions.

Client devices such as device 650 may convey network-
based service requests to the provider network 690 via one
or more external network(s) 695. In various embodiments,
the external network(s) 695 may encompass any suitable
combination of networking hardware and protocols neces-
sary to establish network-based communications between
client devices and the provider network 690. For example,
the network(s) 695 may generally encompass the various
telecommunications networks and service providers that
collectively implement the Internet. The network(s) 695
may also include private networks such as local area net-
works (LANs) or wide area networks (WANs) as well as
public or private wireless networks. For example, both a
given client device and the provider network 690 may be
respectively provisioned within enterprises having their own
internal networks. In such an embodiment, the network(s)
695 may include the hardware (e.g., modems, routers,
switches, load balancers, proxy servers, etc.) and software
(e.g., protocol stacks, accounting soiftware, firewall/security
software, etc.) necessary to establish a networking link
between the given client device 650 and the Internet as well
as between the Internet and the provider network 690. It 1s
noted that 1n some embodiments, client devices may com-
municate with provider network 690 using a private network
rather than the public Internet.

The provider network 690 may include a plurality of
computing devices, any ol which may be implemented by
the example computing device 3000 illustrated 1n FIG. 8.
The client computing device 650 may also be implemented
by the example computing device 3000 1llustrated 1n FIG. 8.
In various embodiments, portions of the described function-
ality of the provider network 690 may be provided by the
same computing device or by any suitable number of
different computing devices. If any of the components of the
provider network 690 are implemented using different com-
puting devices, then the components and their respective
computing devices may be communicatively coupled, e.g.,
via a network. Each of the illustrated components (such as
the service 600) may represent any combination of software
and hardware usable to perform their respective functions.

FIG. 7 1s a flowchart 1llustrating a method for refinement
of static analysis of program code, according to one embodi-
ment. As shown 1 700, a report may be received that
includes warnings regarding particular segments of program
source code. In one embodiment, the report was generated
using static analysis of the program code. The warmings may
represent potential or supposed errors, flaws, vulnerabilities,
and other problematic constructs or elements. The static
analysis tool may operate by instrumenting the source code
and looking for programming constructs that are known to
be the cause of common programming or security mistakes.
In many cases, however, the report may include numerous
false positives, e.g., warnings that do not represent genuine
errors, flaws, or vulnerabilities. The report may also include
true positives, e¢.g., warnings that do indeed represent genu-
ine errors, flaws, or vulnerabilities.

As shown in the example of FIG. 7, the warnings may be
processed serially to attempt to determine whether they
represent true positives or false positives. As shown 1 710,
additional analysis may be invoked for the one or more
segments of the program code that correspond to a particular
warning. One or more of the additional analysis techniques
used for a particular warning may vary based (at least in

10

15

20

25

30

35

40

45

50

55

60

65

14

part) on the type of warning, as idicated 1n the report. For
example, some warning types may be subjected to additional
analysis using model checking, while other warning types
may be subjected to data flow analysis, and yet other
warning types may be subjected to syntactic checking. As
described above, 1n some cases the analysis on each segment
may be done 1n parallel on different computing devices or
virtual machines.

As shown 1 720, it may be determined whether the
warning represents a false positive or a true positive. In one
embodiment, false positives may be identified with some
degree of certainty while 1dentification of true positives may
have a lesser degree of certainty. If the warning 1s deemed
to be a false positive, then as shown in 730, the original
report may be refined based on the finding that the warning
1s a false positive. Refinement of the original report for a
false positive may include annotating the warning to indicate
its status as a false positive or excluding the warning from
the refined report entirely. If the warning 1s deemed to be a
true positive, then as shown 1n 740, the original report may
be refined based on the finding that the warning 1s a true
positive. Refinement of the original report for a true positive
may include annotating the warning to indicate its status as
a true positive. For example, the computing device perform-
ing the additional analysis can generate a message indicating
that the warning 1s a false positive or true positive and store
the information 1n a data store.

As shown 1n 750, it may be determined whether all the
warnings in the original report have been processed, e.g., by
attempting additional analysis. I not, then as shown 1n 760,
the method may proceed to the next warning 1n the report.
If so, then as shown 1n 770, the method may output a refined
report that includes verified warnings (true positives) and
excludes or annotates warnings found to be false positives.
If a warning cannot be determined to be either a true positive
or a false positive, then the warning may be included in the
refined report, potentially with an annotation indicating its
unknown verification status. For example, static analysis
refinement system 100 can include a program that checks the
data store for results from the additional analysis; extracts
the additional analysis; generates annotations; and adds
them to the report.

[lustrative Computer System

In at least some embodiments, a computer system that
implements a portion or all of one or more of the technolo-
gies described herein may include a computer system that
includes or 1s configured to access one or more computer-
readable media. FIG. 8 illustrates such a computing device
3000. In the illustrated embodiment, computing device 3000
includes one or more processors 3010A-3010N coupled to a
system memory 3020 via an mput/output (I/O) interface
3030. Computing device 3000 further includes a network
interface 3040 coupled to 1I/O intertace 3030.

In various embodiments, computing device 3000 may be
a uniprocessor system including one processor or a multi-
processor system including several processors 3010A-
3010N (e.g., two, four, eight, or another suitable number).
Processors 3010A-3010N may include any suitable proces-
sors capable of executing instructions. For example, 1n
vartous embodiments, processors 3010A-3010N may be
processors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 3010A-3010N may commonly,
but not necessarily, implement the same ISA.

System memory 3020 may be configured to store program
instructions and data accessible by processor(s) 3010A-

US 11,200,144 B1

15

3010N. In various embodiments, system memory 3020 may
be mmplemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated embodiment,
program 1nstructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within system
memory 3020 as code (1.e., program instructions) 3025 and
data 3026.

In one embodiment, I/O nterface 3030 may be configured
to coordinate 1/0O traflic between processors 3010A-3010N,
system memory 3020, and any peripheral devices in the
device, including network interface 3040 or other peripheral
interfaces. In some embodiments, I/O interface 3030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component
(e.g., system memory 3020) into a format suitable for use by
another component (e.g., processors 3010A-3010N). In
some embodiments, I/O interface 3030 may include support
for devices attached through various types of peripheral
buses, such as a variant of the Peripheral Component Inter-
connect (PCI) bus standard or the Universal Serial Bus
(USB) standard, for example. In some embodiments, the
tfunction of I/O interface 3030 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, in some embodiments some or all
of the functionality of I/O interface 3030, such as an
interface to system memory 3020, may be incorporated
directly into processors 3010A-3010N.

Network interface 3040 may be configured to allow data
to be exchanged between computing device 3000 and other
devices 3060 attached to a network or networks 3050. In
various embodiments, network interface 3040 may support
communication via any suitable wired or wireless general
data networks, such as types of Ethernet network, for
example. Additionally, network interface 3040 may support
communication via telecommunications/telephony networks
such as analog voice networks or digital fiber communica-
tions networks, via storage area networks such as Fibre
Channel SANs, or via any other suitable type of network
and/or protocol.

In some embodiments, system memory 3020 may be one
embodiment of a computer-readable (1.e., computer-acces-
sible) medium configured to store program instructions and
data as described above for implementing embodiments of
the corresponding methods and apparatus. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
readable media. Generally speaking, a computer-readable

medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 3000 via 1/0
interface 3030. A non-transitory computer-readable storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 3000 as system memory
3020 or another type of memory. Further, a computer-
readable medium may include transmission media or signals
such as electrical, electromagnetic, or digital signals, con-
veyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 3040. Portions or all of multiple comput-
ing devices such as that illustrated 1n FIG. 8 may be used to

10

15

20

25

30

35

40

45

50

55

60

65

16

implement the described functionality in various embodi-
ments; for example, software components running on a
variety ol different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
age devices, network devices, or various types of computer
systems. The term “computing device,” as used herein,
refers to at least all these types of devices, and 1s not limited
to these types of devices.

The various methods as illustrated 1n the Figures and
described herein represent examples of embodiments of
methods. The methods may be implemented in software,
hardware, or a combination thereotf. In various ones of the
methods, the order of the steps may be changed, and various
clements may be added, reordered, combined, omitted,
modified, etc. Various ones of the steps may be performed
automatically (e.g., without being directly prompted by user
iput) and/or programmatically (e.g., according to program
instructions).

The terminology used 1in the description of the invention

herein 1s for the purpose of describing particular embodi-
ments only and 1s not intended to be limiting of the inven-
tion. As used in the description of the invention and the
appended claims, the singular forms “a”, *

, “an” and ‘“‘the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will also be under-
stood that the term “and/or” as used herein refers to and
encompasses any and all possible combinations of one or
more of the associated listed items. It will be further
understood that the terms “includes,” “including,” “com-
prises,” and/or “comprising,” when used 1n this specifica-
tion, specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or
groups thereol.

As used herein, the term “1”” may be construed to mean
“when” or “upon” or “in response to determining” or “in
response to detecting,” depending on the context. Similarly,
the phrase “if 1t 1s determined” or “if [a stated condition or
event] 1s detected” may be construed to mean “upon deter-
mining” or “in response to determining” or “upon detecting
[the stated condition or event]” or “in response to detecting
[the stated condition or event],” depending on the context.

It will also be understood that, although the terms first,
second, etc., may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first contact could be termed a
second contact, and, similarly, a second contact could be
termed a first contact, without departing from the scope of
the present invention. The first contact and the second
contact are both contacts, but they are not the same contact.

Numerous specific details are set forth herein to provide
a thorough understanding of claimed subject matter. How-
ever, 1t will be understood by those skilled 1n the art that
claimed subject matter may be practiced without these
specific details. In other instances, methods, apparatus, or
systems that would be known by one of ordinary skill have
not been described 1n detail so as not to obscure claimed
subject matter. Various modifications and changes may be
made as would be obvious to a person skilled 1n the art
having the benefit of this disclosure. It 1s intended to
embrace all such modifications and changes and, accord-
ingly, the above description 1s to be regarded 1n an 1llustra-

tive rather than a restrictive sense.

US 11,200,144 B1

17

What 1s claimed 1s:
1. A system, comprising:
at least one processor and a memory storing program
instructions executable by the at least one processor to:

receive an 1mtial report generated using initial static
analysis of program code, wheremn the initial report
comprises a plurality of warnings regarding the pro-
gram code, wherein at least some of the warnings
represent potential flaws in the program code, and
wherein the plurality of warnings are associated with a
plurality of segments of the program code;

determine a plurality of analysis techniques to at least

detect false positives for at least some of the plurality
of warnings according to a mapping between diflferent
types of warnings and individual analysis techniques of
the plurality of analysis techniques to at least detect
false positives;

perform additional analysis of at least some of the plu-

rality of segments of the program code using the
determined plurality of analysis techniques to at least
detect false positives, wherein different analysis tech-
niques to at least detect false positives of the deter-
mined plurality of analysis techniques to at least detect
false positives are performed for different segments of
the at least some of the plurality of segments of the
program code based on a type of warning for each of
the different segments, and wherein the additional
analysis differs at least 1n part from the initial static
analysis;

based at least 1n part on the additional analysis, determine

that one subset of the plurality of warnings represents
false positives and another subset of the plurality of
warnings represents true positives;

generate a refined report indicating a plurality of verified

warnings regarding the program code, wherein the
plurality of verified warnings include the true positives
and do not include the false positives; and

generate modified program coda that eliminates at least

some of the verified warnings.

2. The system as recited 1n claim 1, wherein the additional
analysis that differs at least in part from the initial static
analysis 1s additional static analysis, and wherein the addi-
tional static analysis differs for one or more of the segments
of the program code based at least in part on the different
types of warnings.

3. The system as recited in claim 1, wherein the program
instructions are further executable by the at least one pro-
cessor to:

generate one or more recommendations for program code

modifications eliminating at least some of the verified
warnings.

4. A computer-implemented method, comprising:

receiving a report generated using initial static analysis of

program code, wherein the report comprises a plurality
of warnings regarding the program code, wherein at
least some of the warnings represent potential flaws 1n
the program code, and wherein the plurality of wam-
ings are associated with a plurality of segments of the
program code;

determining a plurality of analysis techniques to at least

detect false positives for at least some of the plurality
of warnings according to a mapping between different
types of warnings and individual analysis techniques of
the plurality of analysis techniques to at least detect
false positives;

performing additional analysis of at least some of the

plurality of segments of the program code using the

10

15

20

25

30

35

40

45

50

55

60

65

18

determined plurality of analysis techniques to at least
detect false positives, wherein different analysis tech-
niques to at least detect false positives of the deter-
mined plurality of analysis techniques to at least detect
false positives are performed for different segments of
the at least some of the plurality of segments of the
program code based on a type of warning for each of
the different segments of the program code, wherein the
additional analysis differs at least 1n part from the 1nitial
static analysis, and wheremn the additional analysis
comprises dynamic analysis for at least one of the at
least some of the plurality of segments of the program
code;

based at least in part on the additional analysis, determin-

ing that at least some of the plurality of warnings
represent false positives and determining that at least
some of the plurality of warnings represent true posi-
tives; and

generating a second report indicating a plurality of veri-

fied warnings regarding the program code, wherein the
plurality of verified warnings include the true positives
and do not include the false positives.

5. The method as recited 1n claim 4, wherein the addi-
tional analysis comprises static analysis for at least some of
the plurality of segments of the program code.

6. The method as recited 1n claim 4, further comprising;:

generating one or more recommendations for program

code modifications eliminating at least some of the
verified warnings.

7. The method as recited 1n claim 4, wherein the addi-
tional analysis diflers for one or more of the segments of the
program code based at least 1n part on the different types of
warnings.

8. The method as recited 1in claim 4, wherein the addi-
tional analysis comprises model checking for at least some
of the plurality of segments of the program code.

9. The method as recited 1n claim 4, wherein the addi-
tional analysis comprises data flow analysis for at least some
of the plurality of segments of the program code.

10. The method as recited 1n claim 4, further comprising:

based at least 1n part on the additional analysis, determin-

ing that at least some of the plurality of warnings
represent verified errors; and

generating one or more recommendations for program

code modifications eliminating at least some of the
verified errors.

11. The method as recited 1n claim 4, further comprising;:

based at least in part on the additional analysis, determin-

ing that at least some of the plurality of warnings
represent verified errors; and

generating modified program code that eliminates at least

some of the verified errors.

12. One or more non-transitory computer-readable stor-
age media storing computer-executable program instruc-
tions to perform:

receiving a first report generated using 1nitial static analy-

s1s of program code, wherein the first report comprises
a plurality of warnings regarding the program code,
wherein at least some of the warnings represent poten-
tial errors 1n the program code, and wherein the plu-
rality of warnings are associated with a plurality of
segments of the program code;

determining a plurality of analysis techniques to at least

detect false positives for at least some of the plurality
of warnings according to a mapping between different

US 11,200,144 B1

19

types of warnings and individual analysis techniques of
the plurality of analysis techniques to at least detect
false positives;

initiating additional analysis of at least some of the
plurality of segments of the program code using the
determined plurality of analysis techniques to at least
detect false positives, wherein different analysis tech-
niques to at least detect false positives of the deter-

mined plurality of analysis techniques to at least detect
false positives are performed for different segments of
the at least some of the plurality of segments of the
program code based on a type of warning for each of
the different segments, wherein the additional analysis
differs at least 1n part from the 1mitial static analysis, and
wherein the additional analysis comprises dynamic
analysis for at least one of the at least some of the
plurality of segments of the program code;

based at least 1n part on the additional analysis, determin-
ing that at least some of the plurality of warnings
represent false positives and determining that at least
some of the plurality of warnings represent true posi-
tives; and

generating a second report indicating a plurality of veri-
fied warnings regarding the program code, wherein the
plurality of verified warnings include the true positives
and do not include the false positives.

5

10

15

20

25

20

13. The one or more non-transitory computer-readable
storage media as recited 1n claim 12, wherein the additional
analysis comprises static analysis for at least some of the
plurality of segments of the program code.

14. The one or more non-transitory computer-readable
storage media as recited 1 claim 12, wherein the program
instructions are further computer-executable to perform:

generating one or more recommendations for program

code modifications eliminating at least some of the
verified warnings.

15. The one or more non-transitory computer-readable
storage media as recited 1n claim 12, wherein the additional
analysis comprises model checking for at least some of the
plurality of segments of the program code.

16. The one or more non-transitory computer-readable
storage media as recited 1n claim 12, wherein the additional
analysis comprises a plurality of analysis tasks, and wherein
at least a portion of the analysis tasks are assigned to a
plurality of computing devices in a distributed system and
performed 1n parallel.

17. The one or more non-transitory computer-readable
storage media as recited in claim 12, wherein the program
instructions are further computer-executable to perform:

generating modified program code that eliminates at least

some of the verified warnings.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

