12 United States Patent

Vajravel et al.

US011196799B2

US 11,196,799 B2
Dec. 7, 2021

(10) Patent No.:
45) Date of Patent:

(54) REDIRECTION OF USB DEVICES FROM
HARDWARE ISOLATED VIRTUAL DESKTOP
INFRASTRUCTURE CLIENTS

(71) Applicant: Dell Products L.P., Round Rock, TX

(US)
Inventors:

(72) Gokul Thiruchengode Vajravel,

Bangalore (IN); Jyothi Bandakka,

Bengaluru (IN); Ramanujam
Venkatesh, Bangalore (IN)

(73) Dell Products L.P., Round Rock, TX

(US)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 0 days.
(21) 16/780,137

(22)

Appl. No.:

Filed: Feb. 3, 2020

(65) Prior Publication Data

US 2021/0243245 Al Aug. 5, 2021

Int. CI.
HO4L 29/08

(51)
(2006.0°

HO4L 29/06
GO6F 9/455
GO6l 9/451

(2006.0
(2018.0

(2018.0°

)
)
)
)

(52) U.S. CL

CPC HO4L 67708 (2013.01); GO6F 9/452
(2018.02); GO6F 9/45533 (2013.01); HO4L

67/14 (2013.01); HO4L 67/42 (2013.01)

Field of Classification Search
CPC HO4L, 67/08; HO4L 67/14; HO4L 67/42;
HO4L 67/148; HO4L 67/2814; GO6F
9/452: GO6F 9/45533

See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS
8,554,957 B1* 10/2013 Wieland GOG6F 13/102
710/8
9,036,509 B1* 5/2015 Addepalli HO4W 28/0215
370/259
10,742,649 B1* 8/2020 Hook, Jr. HO4L 63/0876
2002/0120800 Al* 8/2002 Sugahara GO6F 13/24
710/260
2009/0094387 Al* 4/2009 Bunger GO6F 3/038
710/11
2009/0150550 Al1* 6/2009 Barreto HO4L 29/08846
709/228
2012/0158822 Al* 6/2012 Dalcoooeevviennnnnn... GO6F 9/54
709/203
(Continued)

Primary Examiner — Javier O Guzman

(74) Attorney, Agent, or Firm — Kirton McConkie; Brian
Tucker

(57) ABSTRACT

USB devices can be redirected from hardware 1solated VDI
clients. When a VDI client 1s run in a hardware 1solated
environment, a notification service can also be run in the
hardware 1solated environment to enable a USB device that
1s not accessible within the hardware i1solated environment
to be redirected to a server on which the VDI client has
established a remote session. In some cases, an agent can

also be employed 1n the hardware isolated environment to
temporarily redirect the USB device to the hardware 1solated
environment for use 1n establishing the remote session
betore the USB device 1s redirected to the server. Similar
techniques can be employed to redirect a USB device to a
hardware 1solated environment so that the USB device can
be accessed by an application running in the hardware
1solated environment.

20 Claims, 15 Drawing Sheets

o
Chent Terminal
1 i ﬁ {Eﬁ : \
\%
o o o “ o ‘___..---'"-u. *’fﬁ.’d) ~ -
\’;/ \\f/ Y \‘/J-" s L"a.l _____ “i
~: : P
Client Termingl (N,
i 4 Network Server
. El | 104
i':, Ifh -
‘\\"H w‘”'f\\ o~ e / - i

Clisnt Terminal

US 11,196,799 B2
Page 2

(56)

2012/0226998
2015/0056978
2016/0099948

2017/0289313
2017/0308492
2017/0318112
2017/0339234
2018/0034938
2018/0129510
2018/0212817
2020/0287735

References Cited

U.S. PATENT DOCUMENTS
Al* 9/2012 Fredl
Al* 2/2015 Kobayashi
Al* 4/2016 Oftcooeen,
Al* 10/2017 Varavel
Al* 10/2017 Varavel
Al* 11/2017 Johnsimon
Al* 11/2017 Vajravel
Al* 2/2018 Huang
Al* 5/2018 Zhang
Al* 7/2018 Vajravel
Al* 9/2020 Liaoccooeeiinnn,

* cited by examiner

HO4L 65/1069

715/760

HO4W 4/70

455/420

HO4L 63/0281

726/1

GO6F 13/385
GO6F 13/385
HO4L 67/2814
GO6F 13/1642
HO4L 67/148

GOOF 9/452
GO6F 13/385
HO4L 12/1827

US 11,196,799 B2

Sheet 1 of 15

Dec. 7, 2021

U.S. Patent

POl

JOAIRG

—————

f,,f:f.n \\//....,

= |

901
UOMIBN

I._l_...ll_.l..l..-l_..l._.

A

\.-.:..._il...\
{
AA

et

[eulllie | JUSHD

SrA]
eUiuU2] JusiD

el
[BUILIS | [

a % o |

o & "S-

&

&

&

&N

15 m... EEEEEEEEE ,..m

- “ b i izd
N SOIAS SOIAS

= N "
— 0%¢ , e
M JOALCT SG TBTIA &%mm“wmm
= |

P

= E737, | J8Au(] 2187 | 108100

0¢8¢ 7 1enud] J187 210800

_ 0ce

o U787 U JeAl(] HETARRE Ty J9AUC] QRIS
< |

N (67 #oES 80ina(] “

o

A

0.1 e By , AX014

m WaSAS Buneledn

L
= < &G¢
- B4 LB JOA
75 wz " Y.

Y £ § A J -
- 0L —

US 11,196,799 B2

Sheet 3 of 15

Dec. 7, 2021

U.S. Patent

i

JOAIOG

e o T U B o I L U L o e B T e U B o UL T b I I T o B L U b B G B L

¢ Ol

00T JosSinadAL

U0 HOA

10¢

SOIAID S UOTROUNON

(S0 198n5)
UOIRA PIUN

i PRl b My R Pl i LRy RN PR Pl PR Rl PR Rl Ml b MR P PR Rl P R Pl RARE PO Rl PR L

ove

BOAB(]

0ee
BALIC NG

0cd

JBALC QNS

r [T T T T T T) [T T THE ¥ 8) Lt T T L T T P R R PR [T T T P 1) Lt ' T Ly T T gt T T LT

m
w
a@%& w
LORILE A JUBIRA |

vr Oid

ave

A0IAB(]

US 11,196,799 B2

w
| | |
HOISSBS B10LLB M o
3L} 0} UORLLIOII UOOBLIL0D !] e
g7 10R0 1GA SPUss 05z weby (€) o JBAL(] ST
s | | |
o : | :
= “ m |
_ | w
N U} "UuonN “]
3 55¢ L VA
= JHBHD 1AA o IOALCT NS
m w | e
T M)
— JETYETS “ A
2 " o
~ PO JOAISS UD UOSSES SJ0LW. _ _— T
~ “ LOE m m
M & Sale it GG 7 JUSID (A @ M DRSS UOLEILIION M W
M
M o
M SO isens) M w G} IS0

JUSLUUOHAUS DBIBIOS! SlEMpiey

S} Ui petaunie] 84 U 557
WS A S8l () S04 B4

U.S. Patent

US 11,196,799 B2

- 0S¢
= jahy
\f,
E
2 P01
JETNES
~
&
M G4 ¢ s (A WO UOGEUIOHU
= UORIBULOD BL) SBAIS0D)

LOE 0IAISS UORBOIION °

U.S. Patent

¥ Ol

ve

93IAR(]

0t¢

JBALI NG

55¢
U0 {UA

0ce

OjU} "UUOY) 18AUC NI

10g

0Le
SRS UOREDLION AXOid
|
01885 - S0 180H

0L ¢ AX0Jd O] UONBLIOILT UOIIORULIOD
3yl SPUSS LOE SOIAISS UOIBIHION @

US 11,196,799 B2

Sheet 6 of 15

Dec. 7, 2021

U.S. Patent

S B
milm iiiiiiiii i]
“ %7 M
“ A0IAB(] M
e e e e o e e
| 3
S
e
1Ualy GG
JUBHD 1OA
i}
19AIBG

10€

20IAISS UOLEOHION

FEWY WA T T ey T T T PR T WY T P W T T T W O TTTTTE WA TR T YWY T AT T TR W ey e

NOREE D

SUCHTRDINUO

HOI084Da M

B JOAISS O} Oz @01ASD g5 108.ID8 0} .
LOITRLUIO)LE UOROBULOD 8L SAOITILS §}.§ AXOI e

Lo o B e I B e L T I I e I T e T I AT e T I

b ol T L L T

0EC

JBALI] 3NG

VA4
IBAUCT NS

OLe
AXOIA

50 ¥sCH

Sipnd i R R R R R U il Gl Rl il Pl R AR U el ol

US 11,196,799 B2

Sheet 7 of 15

Dec. 7, 2021

U.S. Patent

+

[4+ 4] b+ 4 [3+ 4] b+ 4 [3+ 4] . [3+ 4] . [4+ 4+ + B+

4y 9l
ve

S0 1504 8if) O] Patinisd el O] 0INB(]

OfZ SIIASD SASNRI (L ¢ AXCId °

0t¢

JBALI 8Ng

SG¢
JUBHO AN
| 0¢e
Uepu IBAUC ONIS
UOISSEQ

I U
uoissag | AX0id]

10¢
20IAISS UOREOIION

S0 158N5)

S0 15UH

01§ AxOid AJJOU LD ‘8su0dsal ul
DUE DOULOU St LOE 80IAI8S UOHEDLIOU
‘DOJBLIULISY §1 UOISSES SJ0WSE 8U USUAA

US 11,196,799 B2

Sheet 8 of 15

Dec. 7, 2021

U.S. Patent

I
1BAIBG

§ Ol

0T 10SIAB0AK

084

JBALICT SN TBMBIA

0R%
MBS 8o1Q]

7

10t

AUAIDS LUOIBOUNON

Ui} 1GA

(S0 156n9))
HORLE PRID

i PR R b bl hobobie g sl bt R bk gl bbbl s babpgge M MR MR P PR Rl el R B g L sl opeabeabis kel PR

075 eoimeq

ORI

;
:
;
;
;
;
:
;
:
;
;
:
:
;
:
;
:
;
3

0ee
BALIC NG

0ce

JBALC QNS

r A - Ly T Tl Lt T T AL Lt T T L T T P LT T) F T T - Lt ' T Al Lt ' T Ly T T . LT

(SO 150H)
LORHUB A JUBIR A

V9 Ol

OLE AXOIT 0] JUSWLIOHAUS DOIBI0S Up9 8ained]
SIRMDIEY BU] IO} UORBULIGH
UOIOBULI0D SPUBS (GG Jusby Q

LORRIRUBYINY

US 11,196,799 B2

m
| ; m
w 38 w
w JSAUCT SNET 1BMLIA M ¥
w m JBALICT NG
" w
o | m
> “ m
: w m
3 | | 0ce
7 w w 18ALIC] NS
w M
: : |
i | m
~ m i m
: I —] L
N | 44¢ W SR RVITIRT oy
< w URID HAOA MBS G UCREIHON |
- u . |
| |
m _
u _

SO Iesng

ar
a

JUSLUUOHAUS DBIBIOS! BIBMDIEL
alj} Ul peijauiie] 8q O} G4 7
WD (A S8sned SO 180y sy}

U.S. Patent

US 11,196,799 B2

Sheet 10 of 15

Dec. 7, 2021

U.S. Patent

by 801e(
LOBRIRUBYINY

(69 @0IA8(]
UOREINLBLINY

UOISSas 20U
SU} 10} UONBULIONE UOROBLU0D
657 1U8y0 I Spues 067 Juaby (6)

095

IBAUCT SNE IBIMIA

0E¢

JBAL(T SNE

084
OIS 201A8(]

0ce
I8AUCT GMS

QU UL

+* ¥ +
+++++
+ + +

ol

J8AIBG

SUORBOILNULILIOD
T — JONOBHDEYM
GG¢ LOE

1850 8U A1EdRUsYINE WS 1A 0SS UCRBIIION

0} 7 Q 9IASD UORENIUBLINE
385N PUB $0)| JOAISS U0 UOISSES .
sowal e sapqul g7 ueip (A ()

NORECLN) SO UK

JUBLULGHAUS PBIBIOS! aiempIRY 8L 0} ObG
3JIASD UOHESILSUINE 1024103 O} UCIRULIOH!
UOROBUUOCD 8 SACI0WIS (1§ AXCIM @

US 11,196,799 B2

Sheet 11 of 15

Dec. 7, 2021

U.S. Patent

S 8DIASD UOREONUBIANY

TIRG.8018¢ THT s0me(]

m
i

SO 1504 G} Pelumya. . | uopRaTaRHINY LORRORUBLINY
]

09%

IBALCT SNG [BNLIA

0E¢

JBALCT SNE

0c¢
JBAUC NS

GG e
WS HAA OINIB S UCLTEAION

OJU] UL L —
GG B0 10A WOL UOTBULION OLe Axcud 03 uogRULIO
LHOROSULIOD SU) SOAIB0G UOII0BUUOD 8L SpuUss

L(E 20IAde5 UCERIHHON e

LOE oUIAdas UOHBOHHON @

US 11,196,799 B2

Sheet 12 of 15

Dec. 7, 2021

U.S. Patent

U

18IS

49 9id

(9%

IBAUCT SNG 1BNLIA

085
YOBIS 20IN8(]

SUOITRIINUWILIO

L0102 1IDaY

b0 18AIBS 0] OYQ S2IASD UOIIRORUSLANE 108lID8.
0} UOIBLLIOIUI UOROSLIUCD 81 SACIOUIS LE AXCI-

o
)
-+

Wiy it il piteligh Pplfiglte i ety i g . R ekt i pligith igite bpHltigh eltlte i it R el el Sl

Or Y 80Ae(
LOTROHUBYITY

0E¢

JBAL] NG

0cc

IBALICT QNS

Lo T T L T L T T L T

fa I T e T i T L T T i e B T R T T S T T I e e T R]

=39 Ol

RESLE
50 150U 84 O} PIUINSI 94 O (1§ LOREOIUBUINY
A0IASD UOHBONUBYINE S8SNED (JL¢ AX0Ud

US 11,196,799 B2

Jus I 1GA S0IAISS UOJROLION UOISS8S

B3pUd
LOIS38S SO S0H

- uopesioy | w o w “

LT TN m BAUCE Sy [ETIA | e _

— w “ 1BACT SN w
k= _ _ |
u u :

- L “ w
.__w _ AJELS @UlAL(] : :
= m | _
7% | _ ey ;
; _ JBALC OIS _

u u _

o _ i u
e m _ _
= _ _ ;
) u _ _
~ _ _ |
) — N u | _
S w GG s | Pepul u
- u _ _
| _ ;

; | _

| _ ;

; | _

| _ ;

0L¢ Axoud seyiou L0¢ a0ines uogeoyiou
'DOIRUILLIS] S UOISSES S0 B UBUAA @

U.S. Patent

US 11,196,799 B2

004
uonesiiddy

(5015809}
UOEL PIYD

m
m _
- m 095
= M J8ALCT SNg BIRIA
<t m
= m
b _
£ m _
7 M 08S
m MOBIS 80iA8(]
_
m
Y m
~ m
< m
“ m
o~ _
> m
4 |
- m
_
m
m
m
_
m
_
m

U.S. Patent

L O

00T JOSIABOAL

174

S0IA8(]

0Ee
BALC SNG

0ce

JOM(T MIS

(SO 150H)
HoRiled Juaied

US 11,196,799 B2

Sheet 15 of 15

Dec. 7, 2021

U.S. Patent

8 Ol

00T JOSIABOAL

(98
JBALI] IBHCARUUT) JSOH 50 ETRIA

0ud
408G 80IAa(]

004

uonesiiddy

(5015809}
UOEL PIYD

174

S0IA8(]

0cg
JBRUCT JBIIOIUCD

$SUH g511

VA

JOM(T MIS

(SO 150H)
HoRiled Juaied

US 11,196,799 B2

1

REDIRECTION OF USB DEVICES FROM
HARDWARE ISOLATED VIRTUAL DESKTOP
INFRASTRUCTURE CLIENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

N/A

BACKGROUND

The present invention 1s generally directed to techniques
for redirecting USB devices 1n a virtual desktop infrastruc-
ture (VDI) environment. USB device redirection generally
refers to making a USB device that 1s connected to a client
accessible within a virtual desktop as 11 the USB device had
been physically connected to the virtual desktop. In other
words, when USB device redirection 1s implemented, a user
can connect a USB device to his or her client terminal and
the USB device will function as it 1t had been connected to
the server.

FIGS. 1 and 2 and the following description will provide
a general overview of how USB device redirection can be
implemented in accordance with some embodiments of the
present mvention. In FIG. 1, a computing system 100 1s
depicted as including a number of client terminals 102a-
1027 (referenced generally herein as client(s) 102) 1n com-
munication with a server 104 via a network 106. Server 104
can be configured to support a remote session (€.g., a remote
desktop session) wherein a user at a client 102 can remotely
access applications and data at the server 104 from the client
102. Such a connection may be established using any of
several well-known techniques such as the Remote Desktop
Protocol (RDP) and the Citnx® Independent Computing
Architecture (ICA).

Client terminal 102 may represent a computer, a mobile
phone (e.g., smart phone), a laptop computer, a thin client
terminal, a personal digital assistant (PDA), a portable
computing terminal, or a suitable terminal or device with a
processor. Server 104 may represent a computer, a laptop
computer, a computing terminal, a virtual machine (e.g.,
VMware® Virtual Machine), a desktop session (e.g.,
Microsoit Terminal Server), a published application (e.g.,
Microsoit Terminal Server) or a suitable terminal with a
Processor.

Client 102 may initiate a remote session with server 104
by sending a request for remote access and credentials (e.g.,
login name and password) to server 104. If server 104
accepts the credentials from client 102, then server 104 may
establish a remote session, which allows a user at client 102
to access applications and data at server 104. During the
remote session, server 104 sends display data to client 102
over network 106, which may include display data of a
desktop and/or one or more applications running on server
104. The desktop may include, for example, 1cons corre-
sponding to different applications that can be launched on
server 104. The display data allows client 102 to locally
display the desktop and/or applications running on server
104.

During the remote session, client 102 may send user
commands (e.g., mputted via a mouse or keyboard at client
102) to server 104 over network 106. Server 104 may
process the user commands from client 102 similar to user
commands received from an mput device that 1s local to
server 104. For example, 1f the user commands include
mouse movements, then server 104 may move a pointer on
the desktop running on server 104 accordingly. When the

10

15

20

25

30

35

40

45

50

55

60

65

2

display data of the desktop and/or application changes in
response to the user commands, server 104 sends the
updated display data to client 102. Client 102 locally dis-
plays the updated display data so that the user at client 102
can view changes at server 104 in response to the user
commands. Together, these aspects allow the user at client
102 to locally view and mput commands to the desktop
and/or application that 1s runming remotely on server 104.
From the perspective of the client, the desktop running on
server 104 may represent a virtual desktop environment.

FIG. 2 1s a block diagram of a local device virtualization
system 200 1n accordance with embodiments of the present
invention. System 200 may include client 102 in commu-
nication with server 104 over network 106 as illustrated in
FIG. 1. Client 102 may include a proxy 210, a stub driver
220, and a bus driver 230. Client 102 can be connected to a
device 240, as shown 1n FIG. 2. Server 104 may include an
agent 250 and a virtual bus driver 260.

In accordance with USB device redirection techniques,
while device 240 1s not locally or physically connected to
server 104 and 1s remote to server 104, device 240 appears
to server 104 as 11 1t 1s locally connected to server 104, as
discussed further below. Thus, device 240 appears to server
104 as a virtual device 290.

By way of illustration and not limitation, device 240 may
be any type of USB device including a machine-readable
storage medium (e.g., flash storage device), a printer, a
scanner, a camera, a facsimile machine, a phone, an audio
device (e.g., a headset), a video device (e.g., a camera), a
peripheral device, or other suitable device that can be
connected to client 102. Device 240 may be an external
device (1.e., external to client 102) or an 1nternal device (i.e.,
internal to client 102).

Bus driver 230 can be configured to allow the operating
system and programs of client 102 to interact with device
240. In one aspect, when device 240 1s connected to client
102 (e.g., plugged 1nto a port of client 102), bus driver 230
may detect the presence of device 240 and read information
regarding device 240 (“device information™) from device
240. The device mformation may include features, charac-
teristics and other information specific to device 240 such as
a device descriptor (e.g., product ID, vendor 1D and/or other
information), a configuration descriptor, an interface
descriptor, an endpoint descriptor and/or a string descriptor.
Bus driver 230 may communicate with device 240 through
a computer bus or other wired or wireless communications
interface.

In accordance with USB device redirection techniques,
device 240 may be accessed from server 104 as 11 the device
were connected locally to server 240. Device 240 may be
accessed from server 104 when client 102 is connected to
server 104 through a remote session runmng on server 104.
For example, device 240 may be accessible from the desktop
running on server 104 (1.e., virtual desktop environment). To
enable this, bus driver 230 may be configured to load stub
driver 220 as the default driver for device 240. Stub driver
220 may be configured to report the presence of device 240
to proxy 210 and to provide the device information (e.g.,
device descriptor) to proxy 210. Proxy 210 may be config-
ured to report the presence of device 240, along with the
device information, to agent 250 of server 104 over network
106 (e.g., via a TCP or UDP socket). Thus, stub driver 220
redirects device 240 to server 104 via proxy 210.

Agent 250 may be configured to receive the report from
proxy 210 that device 240 1s connected to client 102 and the
device information. Agent 250 may further be configured to
associate with the report from proxy 210 one or more

US 11,196,799 B2

3

identifiers for client 102 and/or for a remote session through
which client 102 1s connected to server 104, such as a
session number or a session locally unique identifier
(LUID). Agent 250 can provide notification of device 240,
along with the device information, to virtual bus driver 260.
Virtual bus driver 260 (which may be a Dell Wyse TCX USB

bus driver, or any other bus driver) may be configured to
create and store 1n memory a record corresponding to device
240. This record may include at least part of the device
information and session identifiers received from agent 250.
Virtual bus dniver 260 may be configured to report to
operating system 170 of server 104 that device 240 1is
connected and to provide the device information to the
operating system. This allows the operating system of server
104 to recognize the presence of device 240 even though
device 240 1s connected to client 102.

The operating system of server 104 may use the device
information to find and load one or more appropriate device

drivers for device 240 at server 104. Each driver may have
an associated device object (object(s) 281a, 2815, . . ., 281,
referred to generally as device object(s) 281), as illustra-
tively shown 1in FIG. 2. A device object 281 1s a software
implementation of a real device 240 or a virtualized (or
conceptual) device 290. Different device objects 281 layer
over each other to provide the complete functionality. The
different device objects 281 are associated with different
device drivers (driver(s) 282a, 2825b, . . . 282n, referred to
generally as device driver(s) 282). In an example, a device
240 such as a USB flash drive may have associated device
objects including objects corresponding to a USB dniver, a
storage driver, a volume manager driver, and a file system
driver for the device. The device objects 281 corresponding
to a same device 240 form a layered device stack 280 for
device 240. For example, for a USB device, a USB bus
driver will create a device object 281a stating that a new
device has been plugged 1in. Next, a plug-and-play (PNP)
component of the operating system will search for and load
the best driver for device 240, which will create another
device object 2815b that 1s layered over the previous device
object 281a. The layering of device objects 281 will create
device stack 280.

Device objects 281 may be stored in a memory of the
server 104 associated with virtual bus driver 260. In par-
ticular, device objects 281 and resulting device stack 280
may be stored in random-access memory of server 104.
Different devices 240/290 can have device stacks having
different device objects and different numbers of device
objects. The device stack may be ordered, such that lower
level device objects (corresponding to lower level device
drivers) have lower numbers than higher level device objects
(corresponding to higher level device drivers). The device
stack may be traversed downwards by traversing the stack
from higher level objects to lower level objects. For
example, i the case of an 1illustrative device stack 280
corresponding to a USB flash drive, the ordered device stack
may be traversed downwards from a high-level file system
driver device object, to a volume manager driver device
object, to a storage driver device object, to a USB driver
device object, and finally to a low-level virtual bus driver
device object. Different device stacks 280 can be layered
over each other to provide the functionality of the devices
240/290 1nside devices, like USB Headsets, or USB pen
drives. A USB pen drive, for example, can create a USB
device stack first, over which 1t can create a storage device
stack, where each of the device stacks have two or more
device objects.

10

15

20

25

30

35

40

45

50

55

60

65

4

Once one or more device object(s) 281 are loaded by
operating system 170 of server 104, each device object 281
can create a symbolic link (also referred to as a “device
interface™) to device object 281 and associated device driver
282. The symbolic link 1s used by applications running on
server 104 to access device object 281 and device 240/290.
The symbolic link can be created by a call to a function such
as loCreateSymbolicLink() including such arguments as a
name for the symbolic link, and a name of device object 281
or associated device 240. In one example, for example, a
symbolic link to a USB flash drive device 240 1s created by
a call from a device object 281 for device 240 to the function
IoCreateSymbolicLink() including arguments
“WGLOBAL?2MC:” (1.e., the name for the symbolic link) and
“\Device\HarddiskVolumel™ (1.e., a name of the device
object).

The creation of a symbolic link results 1n an entry being
created 1n an object manager namespace (OMN) of operat-
ing system 170. The OMN stores information on symbolic
links created for and used by operating system 170, includ-
ing symbolic links for devices 240, virtualized devices 290,
and applications 270 running on server 104.

As a result of the symbolic link creation process, a
symbolic link to device 240 1s enumerated in the OMN of
server 104. Once the presence of device 240 1s reported to
operating system 170 of server 104, device 240 may be
accessible from a remote session (and associated desktop)
running on server 104 (1.e., virtual desktop environment).
For example, device 240 may appear as an icon on the
virtual desktop environment and/or may be accessed by
applications running on server 104.

An application 270 running on server 104 may access
device 240 by sending a transaction request including the
symbolic link for device 240 to operating system 170.
Operating system 170 may consult the Object Manager
Namespace to retrieve an address or other identifier for the
device 1tselt 240 or for a device object 281 associated with
device 240. Using the retrieved address or identifier, oper-
ating system 170 forwards the transaction request for device
240 either directly, through a device object 281 of device
stack 280, and/or through virtual bus driver 260. Virtual bus
driver 260 may direct the transaction request to agent 250,
which sends the transaction request to proxy 210 over
network 106. Proxy 210 receives the transaction request
from agent 250, and directs the received transaction request
to stub driver 220. Stub driver 220 then directs the transac-
tion request to device 240 through bus driver 230.

Bus driver 230 receives the result of the transaction
request from device 240 and sends the result of the trans-
action request to stub driver 220. Stub driver 220 directs the
result of the transaction request to proxy 210, which sends
the result of the transaction request to agent 250 over
network 106. Agent 250 directs the result of the transaction
request to virtual bus driver 260. Virtual bus driver 260 then
directs the result of the transaction request to application 270
either directly or through a device object 281 of device stack
280.

Thus, virtual bus dniver 260 may receive transaction
requests for device 240 from application 270 and send
results of the transaction requests back to application 270
(erther directly or through a device object 281 of device
stack 280). As such, application 270 may interact with
virtual bus driver 260 1n the same way as with a bus driver
for a device that 1s connected locally to server 104. Virtual
bus driver 260 may hide the fact that 1t sends transaction
requests to agent 250 and receives the results of the trans-
action requests from agent 250 instead of a device that 1s

US 11,196,799 B2

S

connected locally to server 104. As a result, device 240
connected to client 102 may appear to application 270 as 1f

the physical device 240 1s connected locally to server 104.

VDI client 255 can represent the client-side application
that establishes and maintains a remote session with server
104. As examples only, VDI client 2535 could represent the
VMWare Horizon client, the Citrix Workspace App, the
Microsoit Remote Desktop client, etc. FIG. 2 represents a
VDI environment where VDI client 255 1s not hardware
1solated. For example, VDI client 255 may be a desktop
application or a browser-based application that runs on the
host operating system and will therefore have access to
device 240 via the host operating system. Accordingly, when
VDI client 255 establishes a remote session, 1t can directly
employ information about the remote session to cause
device 240 to be redirected to server 104 for access within
the remote session.

To enhance security, applications may be run in a hard-
ware 1solated environment. For example, Microsoit’s Edge
browser runs 1 a Hyper-V container which 1s a virtual
machine that runs 1ts own guest operating system on which
the Edge browser runs. In non-Windows environments,
other hypervisors are commonly used to 1solate the browser
or other applications (e.g., running the Bromium browser or
another application 1 a uXen, XenServer, or KVM virtual
machine).

In comparison to FIG. 2, if VDI client 255 were run on
client 102 1n a hardware 1solated environment, whether as an
HTML5-based application that runs 1n the browser or as a
traditional desktop application, it would not have access to
client 102’s physical hardware. To the contrary, VDI client
255 would only have access to emulated hardware such as
an emulated keyboard and mouse. Because of this, when
VDI client 255 1s run 1n a hardware 1solated environment,
current solutions do not provide a way to redirect USB
devices.

BRIEF SUMMARY

The present invention extends to methods, systems, and
computer program products for redirecting USB devices
from hardware 1solated VDI clients. When a VDI client 1s
run 1n a hardware 1solated environment, a notification ser-
vice can also be run 1n the hardware 1solated environment to
enable a USB device that 1s not accessible within the
hardware 1solated environment to be redirected to a server
on which the VDI client has established a remote session. In
some cases, an agent can also be employed 1n the hardware
1solated environment to temporarily redirect the USB device
to the hardware 1solated environment for use in establishing,
the remote session betore the USB device 1s redirected to the
server. Similar techniques can be employed to redirect a
USB device to a hardware 1solated environment so that the
USB device can be accessed by an application running in the
hardware 1solated environment.

In some embodiments, the present invention 1s i1mple-
mented as a method for enabling a USB device that 1s
connected to a client terminal to be accessed within a remote
session that a VDI client establishes on a server when the
VDI client runs 1n a hardware 1solated environment on the
client terminal. A notification service that runs in the hard-
ware 1solated environment recerves connection information
for the remote session that the VDI client has established on
the server. The notification service then sends the connection
information for the remote session to a proxy that runs on the
client terminal outside the hardware 1solated environment.
The proxy employs the connection information for the

10

15

20

25

30

35

40

45

50

55

60

65

6

remote session to redirect the USB device to the server to
thereby cause the USB device to become accessible within
the remote session.

In some embodiments, the present mvention i1s 1mple-
mented as computer storage media storing computer execut-
able instructions which when executed on a client terminal
implement a method for enabling a USB device that is
connected to a client terminal to be accessed within a remote
session that a VDI client establishes on a server when the
VDI client runs 1n a hardware 1solated environment on the
client terminal. In response to the VDI client establishing the
remote session on the server, a notification service that runs
in the hardware 1solated environment receives connection
information for the remote session. The notification service
sends the connection information for the remote session to
a proxy that runs on the client terminal outside the hardware
isolated environment. The proxy employs the connection
information for the remote session to redirect the USB
device to the server to thereby cause the USB device to
become accessible within the remote session.

In some embodiments, the present invention 1s 1mple-
mented as a method for enabling a USB device that 1s
connected to a client terminal to be accessed when an
application runs in a hardware 1solated environment on the
client terminal. In conjunction with the hardware 1solated
environment being created on the client terminal, an agent 1s
run in the hardware 1solated environment. The agent sends
connection information for the hardware i1solated environ-
ment to a proxy that runs on the client terminal outside the
hardware 1solated environment. The proxy employs the
connection information to redirect the USB device to the
hardware i1solated environment to thereby cause the USB
device to become accessible to an application that runs in the
hardware 1solated environment.

This summary 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

FIG. 1 1illustrates an example computing environment 1n
which the present invention can be implemented;

FIG. 2 1llustrates a general architecture that may exist
when a USB device 1s redirected from a client terminal to a
SErver;

FIG. 3 illustrates an example of a hardware isolated
environment 1n which a VDI client may be run;

FIGS. 4A-4D illustrate an example of how a USB device
that 1s not accessible to a VDI clhient running in a hardware
1solated environment can be redirected to a server for access
from a remote session that the hardware 1solated VDI client
established;

FIG. 5 1llustrates another example of a hardware 1solated
environment 1 which a VDI client may be run;

FIGS. 6 A-6E 1llustrate an example of how a USB device
that 1s not accessible to a VDI client running 1n a hardware
1solated environment can be mitially redirected to the hard-
ware 1solated environment for use in establishing a remote

US 11,196,799 B2

7

session on a server and subsequently redirected to the server
for access from the remote session:

FI1G. 7 illustrates another example of a hardware 1solated
environment 1n which an application may be run and which
can be configured to support redirection of a USB device to
allow the application to access the USB device; and

FIG. 8 illustrates another example of a hardware 1solated
environment 1n which an application may be run and which
can be configured to support redirection of a USB host
controller to allow the application to access any USB device
that 1s connected to a corresponding USB port.

DETAILED DESCRIPTION

In this specification and the claims, the term “hardware
1solated environment” should be construed as an environ-
ment within a client that isolates an application from the
client’s hardware. A hardware 1solated environment may
oftentimes be created using a hypervisor and may be 1n the
form of a virtual machine. Common examples of hardware
isolated environments include Hyper-V containers, Bro-
mium micro virtual machines and Kernel-based Virtual
Machines (KVMs), among many others.

FIG. 3 1illustrates an example of a Windows-based hard-
ware 1solated environment that may exist on client 102. In
contrast to FIG. 2, 1n FIG. 3, client 102 includes a hypervisor
300 that creates and runs virtual machines on client 102.
Client 102 1s shown as including a parent (or root) partition
in which the host operating system (OS) 1s run. Notably,
components runmng in the parent partition have access to
hardware resources including USB devices that may be
connected to or mtegrated into client 102. Such components
include bus driver 230, stub driver 220 and proxy 310. Proxy
310 can perform similar functionality as proxy 210 but can
be configured to support the functionality described below.
Proxy 310, stub driver 220 and bus driver 230 can each be
configured to load when the host OS 1s started.

Client 102 1s also shown as including a child partition
which 1s a virtual machine 1n which a guest OS 1s run. Unlike
the parent partition, the child partition does not have direct
access to client 102’°s hardware resources. Accordingly, VDI
client 255, which 1s run on the guest OS within the child
partition, would not have access to device 240 even though
1t 1s connected to client 102. As mentioned above, VDI client
255 could be a desktop application that runs directly on the
guest OS or could be a browser-based application that runs
within a browser. As one particular example, if the Edge
browser were employed on client 102 to run VDI client 255,
the Edge browser would be launched within a child partition
in the manner shown 1n FIG. 3 so that VDI client 255 would
be run in isolation.

A notification service 301 can also be run 1n the child
partition with VDI client 255. For example, in Windows
environments, a Hyper-V container can be created with a
Windows base OS 1mage that includes VDI client 255 and
notification service 301. As a result, whenever VDI client
255 1s launched on client 102, notification service 301 will
also be launched and run concurrently with VDI client 255
within the child partition. Similar techniques could be
employed 1n non-Windows (or non-Hyper-V) environments
to ensure that notification service 301 runs concurrently with
VDI client 255 1n the hardware 1solated environment. For
simplicity, server 104 1s depicted 1n FIG. 3 without any of
the components that are shown 1n FIG. 2. Yet, server 104
could have the same architecture as shown in FIG. 2 or any
architecture that would support USB redirection.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIGS. 4A-4D provide an example of how the components
depicted in FIG. 3 can interact to enable device 240 to be
accessed from a remote session that VDI client 255 estab-
lished on server 104. With reference to FIG. 4A, 1n step 1,
the host OS causes VDI client 255 to be launched 1n a
hardware 1solated environment. As an example, 1n a Win-
dows environment, the user could select the Edge browser
which 1n turn would cause host OS to create a child partition
(or VM) and run the Edge browser therein. The user could
then employ the Edge browser to run VDI client 255 (e.g.,
by navigating to a particular website where an HIMLS VDI
client 1s available). As another example, client 102 could be
configured to automatically create a hardware 1solated envi-
ronment (e.g., a VM or similar container) at startup and
launch VDI client 253 therein, whether as a desktop or web
application. Regardless of how and when VDI client 255 1s
launched within the hardware 1solated environment, 1t will
not have access to device 240.

In accordance with embodiments of the present invention,
notification service 301 can also be run within the hardware
1solated environment and can be configured to interface with
VDI client 255 to enable device 240 to become accessible
within a remote session established by VDI client 235 even
though VDI client 255 1s prevented from having access to
USB device 240 on client 102. For example, 1n step 2, 1t 1s
assumed that VDI client 255 initiates a remote session on
server 104. VDI client 255 can establish this remote session
in any suitable manner. Once the remote session 1s estab-
lished, agent 250 will be running on server 104 and, 1n step
3, can send back connection information for the remote
session. This connection information may typically include
an IP address of server 104 (which may typically be a VM),
a port at which agent 2350 1s listening and a session ID of the
remote session.

Turning to FIG. 4B, in step 4, notification service 301
receives the connection information for the remote session
from VDI client 255. As an example, notification service 301
could be a .dll file, a .so file or another type of file that is
registered to be loaded as a virtual channel endpoint when
VDI client 255 1s mitialized. In such cases, as part of
loading, noftification service 301 can register to receive
connection information that 1s sent to VDI client 255. In any
case, once notification service 301 receives the connection
information for the remote session, 1n step 5, 1t sends the
connection mformation to proxy 310 that 1s not running 1n
the hardware 1solated environment. For example, notifica-
tion service 301 and proxy 310 can be configured to estab-
lish a private network (e.g., a Hyper-V private network) by
which notification service 301 can send the connection
information for the remote session to proxy 310.

Turning to FIG. 4C, once proxy 310 has received the
connection information for the remote session on server 104,
in step 6, 1t can employ this connection information to
communicate with agent 250 to redirect device 240 to server
104 (1.e., to cause virtualized device 290 to appear on server
104). Due to this redirection, device 240 will become
accessible on server 104 within the remote session that VDI
client 255 has established. For example, if device 240 1s a
printer and the user of client 102 causes Microsoit Word to
be run 1n the remote session, the user will be able to print
Word documents to the printer even though the hardware
1solated environment on client 102 prevents VDI client 255
from accessing the printer.

Turning to FI1G. 4D, when the session 1s terminated, VDI
client 255 can notily notification service 301. For example,
as part of loading, notification service 301 can register with
VDI client 255 to receive notifications when a remote

US 11,196,799 B2

9

session 1s terminated. In response to receiving notification
that the remote session has terminated, 1n step 7, notification
service 301 can send a corresponding notification to proxy
310 to mnform proxy 310 that the remote session has termi-
nated. In response, 1n step 8, proxy 310 can cause device 240
to be returned to client 240. For example, in a Windows
implementation, proxy 310 could return device 240 to client
102 by sending an ITOCTL_INTERNAL_USB
RESET_PORT I/O control request.

In the embodiments represented 1n FIGS. 3-4D, device
240 does not become accessible to VDI client 255, but rather
1s accessible to server-side applications running within the
remote session. However, in some environments, VDI client
255 may need access to device 240 in order to establish a
remote session on server 104 such as when device 240 1s a
smart card reader or other type of authentication device.
FIG. 5 illustrates how the hardware 1solated environment of

FIG. 3 can be modified to enable VDI client 255 to access

an authentication device 640 that 1s physically connected to
client 102 but maccessible to components 1n the hardware
isolated environment. In addition to including VDI client
255 and notification service 301, the hardware 1solated
environment 1n FIG. 5 also includes agent 550, virtual bus
driver 560 and device stack 580. FIGS. 6 A-6E provide an
example of how the components depicted in FIG. 5§ can
interact to initially enable VDI client 255 to access and
employ authentication device 640 to establish a remote
session and then enable authentication device 640 to be
accessed from the remote session.

Turning to FIG. 6A, 1n step 1, the host OS causes VDI
client 255 to be launched in the hardware 1solated environ-
ment and 1s therefore similar to step 1 of FIG. 4A. However,
in addition to launching VDI client 255 and notification
service 301, agent 550 and virtual bus driver 560 can also be
launched. Then, 1n step 2, agent 350 can send connection
information for the hardware 1solated environment to proxy
310. This connection information can include an IP address
of the hardware 1solated environment (e.g., the IP address of
a VM) and a port number on which agent 550 1s listening.

Turning to FI1G. 6B, 1n step 3, proxy 310 can employ the

connection information 1t received from agent 550 to redi-
rect authentication device 640 to the hardware isolated
environment thereby causing virtualized authentication
device 690 to appear to VDI client 2535 as 1f 1t were directly
connected to the hardware 1solated environment. In step 4,
VDI client 255 can 1nitiate a remote session on server 104
using authentication device 640. For example, iI authenti-
cation device 640 i1s a smart card reader, VDI client 255
could access the user’s smart card to perform smart-card-
based authentication as part of establishing the remote
session on server 104. Once the remote session 1s estab-
lished, 1n step S, agent 250 can send connection imnformation
for the remote session to VDI client 255.

Turning to FIG. 6C, 1n step 6, notification service 301 can
receive the connection information for the remote session
from VDI client 255 and, 1n step 7, send the connection
information for the remote session to proxy 310 in a similar
manner as described above. In step 8, authentication device
640 can be returned to the host OS (1.e., the redirection can
be terminated). For example, when proxy 310 receives the
connection information for the remote session, 1t could reset
the USB port to which authentication device 640 i1s con-
nected and send a notification to agent 550 indicating that
authentication device 640 has been disconnected. In
response, agent 550 could notify wvirtual bus driver 560

10

15

20

25

30

35

40

45

50

55

60

65

10

which 1n turn could notity the guest OS that authentication
device 690 1s no longer connected thereby causing device
stack 580 to be unloaded.

Turning to FIG. 6D, once authentication device 640 has
been returned to the host OS (e.g., once the USB port has
been reset and the PnP process has been 1nitiated to recon-
nect authentication device 640), i step 9, proxy 310 can
employ the connection information for the remote session to
redirect authentication device 640 to server 104 so that 1t
becomes accessible within the remote session that VDI
client 255 has established. As a result, an application run-
ning in the remote session will be able to access authenti-
cation device 640.

Turmning to FIG. 6E, 1n step 10, notification service 301
can notily proxy 310 when the remote session 1s terminated.
In response, proxy 310 can cause authentication device 640
to be returned to client 102 1n a similar manner as described
above. Although FIGS. 6 A-6F use the example of an authen-
tication device 640, the same technique could be employed
with any type of USB device.

A similar technique could be employed to allow any type
of application running in a hardware isolated environment
on client 102 to obtain access to device 240. FIG. 7
illustrates an example of a hardware 1solated environment 1n
which an application 700 1s run. As an example, application
700 could be a browser (e.g., the Edge browser) or another
application that host OS causes to be launched 1n a hardware
isolated environment. The hardware 1solated environment
depicted 1 FIG. 7 1s similar to the hardware 1solated
environment depicted 1n FIG. 5 but does not include (or does
not need to include) notification service 301. With this
configuration, steps similar to steps 1-3 of FIGS. 6 A and 6B
can be performed to redirect device 240 to the hardware
isolated environment to enable application 700 to access
device 240. As an example, 1f device 240 1s a printer and
application 700 1s the Edge browser running 1n a Hyper-V
container, this technique will allow the Edge browser to print
to the printer even though the hardware 1solated environ-
ment prevents the Edge browser from directly accessing
USB devices that are connected to client 102.

FIG. 7 represents a scenario where the USB device itself
1s redirected. However, in some implementations, a similar
technique could be employed to redirect the USB host
controller so that any USB device that 1s connected to a
particular USB port will be made accessible to application
700 within the hardware 1solated environment. FIG. 8 rep-
resents how this can be accomplished. In contrast to FIG. 7,
FIG. 8 includes a USB host controller driver 830 above
which a stub drniver 820 i1s loaded in the parent partition.
Also, a virtual USB host controller driver 860 1s loaded 1n
the hardware 1solated environment and functions as the
virtual counterpart of USB host controller 830. A device
stack 880, which can be viewed as including a bus driver and
the actual driver(s) for device 240, will also be loaded 1n the
hardware 1solated environment. Because redirection occurs
at the host controller level, a virtualized USB port will
appear 1n the hardware 1solated environment representing
the USB port to which device 240 1s connected. As a result,
any USB device that the user may connect to this “reserved”
USB port will be redirected to the hardware 1solated envi-
ronment and become accessible to application 700.

Although not shown, in some embodiments, the hardware
1solated environments depicted above can be configured to
implement application-level restrictions {for accessing
device 240/640. For example, the hardware 1solated envi-
ronments shown 1 FIGS. 5, 7 and 8 could be configured to
load a filter driver on device stack 580/880 that inspects /O

US 11,196,799 B2

11

requests targeting device 240 (or any other device that may
be redirected) and blocks any I/O request that originates
from an unauthorized application.

Embodiments of the present invention may comprise or
utilize special purpose or general-purpose computers includ-
ing computer hardware, such as, for example, one or more
processors and system memory. Embodiments within the
scope of the present invention also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such
computer-readable media can be any available media that
can be accessed by a general purpose or special purpose
computer system.

Computer-readable media 1s categorized into two disjoint
categories: computer storage media and transmission media.
Computer storage media (devices) include RAM, ROM,
EEPROM, CD-ROM, solid state drives (“SSDs™) (e.g.,
based on RAM), Flash memory, phase-change memory
(“PCM”), other types of memory, other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other similarly storage medium which can be used to
store desired program code means 1n the form of computer-
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
Transmission media include signals and carrier waves.

Computer-executable mstructions comprise, for example,
instructions and data which, when executed by a processor,
cause a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. The computer execut-
able instructions may be, for example, binaries, intermediate
format structions such as assembly language or P-Code, or
even source code.

Those skilled 1n the art will appreciate that the invention
may be practiced 1n network computing environments with
many types ol computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame coms-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like.

The mvention may also be practiced in distributed system
environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless
data links, or by a combination of hardwired and wireless
data links) through a network, both perform tasks. In a
distributed system environment, program modules may be
located 1n both local and remote memory storage devices.
An example of a distributed system environment 1s a cloud
of networked servers or server resources. Accordingly, the
present mvention can be hosted 1n a cloud environment.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description.

What 1s claimed:

1. A method for enabling a USB device that 1s connected
to a client terminal to be accessed within a remote session
that a virtual desktop infrastructure (VDI) client establishes
on a server when the VDI client runs 1n a hardware 1solated
environment on the client terminal, the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

12

receiving, at a notification service that runs in the hard-
ware 1solated environment, connection information for
the remote session that the VDI client has established
on the server;

sending, by the notification service, the connection infor-
mation for the remote session to a proxy that runs on

the client terminal outside the hardware 1solated envi-
ronment;

employing, by the proxy, the connection information for

the remote session to redirect the USB device to the
server to thereby cause the USB device to become
accessible within the remote session.

2. The method of claim 1, wherein the connection infor-
mation for the remote session includes an IP address of the
server and a port number of an agent that runs on the server.

3. The method of claim 1, wherein the notification service
receives the connection information for the remote session
from the VDI client via a virtual channel.

4. The method of claim 1, wherein the hardware 1solated
environment 1s a virtual machine.

5. The method of claim 1, further comprising:

recerving, at the notification service, a notification that the

remote session has terminated;

sending, by the notification service, a corresponding noti-

fication to the proxy; and

in response to the corresponding notification, causing, by

the proxy, the USB device to be returned to the client
terminal.

6. The method of claim 1, wherein the VDI client runs 1n
a browser 1n the hardware 1solated environment.

7. The method of claim 1, further comprising:

sending, by an agent that runs in the hardware isolated

environment, connection information for the hardware
1solated environment to the proxy;

employing, by the proxy, the connection information for

the hardware 1solated environment to redirect the USB
device to the hardware 1solated environment to thereby
cause the USB device to become accessible within the
hardware 1solated environment.

8. The method of claim 7, wherein the proxy redirects the
USB device to the hardware 1solated environment prior to
redirecting the USB device to the server.

9. The method of claim 8, wherein the notification service
receives the connection iformation for the remote session
while the USB device 1s redirected to the hardware 1solated
environment.

10. One or more computer storage media storing com-
puter executable instructions which when executed on a
client terminal implement a method for enabling a USB
device that 1s connected to a client terminal to be accessed
within a remote session that a virtual desktop infrastructure
(VDI) client establishes on a server when the VDI client runs
in a hardware 1solated environment on the client terminal,
the method comprising:

in response to the VDI client establishing the remote

session on the server, receiving, at a notification service
that runs in the hardware 1solated environment, con-
nection information for the remote session;

sending, by the notification service, the connection nfor-

mation for the remote session to a proxy that runs on
the client terminal outside the hardware 1solated envi-
ronment;

employing, by the proxy, the connection information for

the remote session to redirect the USB device to the
server to thereby cause the USB device to become
accessible within the remote session.

US 11,196,799 B2

13

11. The computer storage media of claim 10, wherein the
method further comprises:
prior to the VDI client establishing the remote session,
sending, by an agent that runs 1n the hardware 1solated
environment, connection information for the hardware
1solated environment to the proxy;
employing, by the proxy, the connection mformation for
the hardware 1solated environment to redirect the USB
device to the hardware 1solated environment to thereby
cause the USB device to become accessible within the
hardware 1solated environment such that the VDI client
can employ the USB device to establish the remote
SesS101.
12. The computer storage media of claim 11, wherein the
USB device 1s an authentication device.
13. The computer storage media of claim 10, wherein the
method further comprises:
ceasing, by the proxy, the redirection of the USB device
to the hardware 1solation environment in response to
receiving the connection information for the remote
SeSS101.
14. A method for enabling a USB device that 1s connected
to a client terminal to be accessed when an application runs
in a hardware 1solated environment on the client terminal,

the method comprising:

in conjunction with the hardware 1solated environment
being created on the client terminal, runming an agent
in the hardware 1solated environment;

sending, by the agent, connection information for the
hardware 1solated environment to a proxy that runs on
the client terminal outside the hardware 1solated envi-
ronment; and

employing, by the proxy, the connection information to
redirect the USB device to the hardware 1solated envi-

5

10

15

20

25

30

14

ronment to thereby cause the USB device to become
accessible to an application that runs in the hardware
1solated environment.
15. The method of claim 14, wherein the application 1s a
VDI client, the method further comprising:
receiving, at a notification service that runs in the hard-
ware 1solated environment, connection information for
a remote session that the VDI client has established on
a server;

sending, by the notification service, the connection infor-
mation for the remote session to the proxy;

employing, by the proxy, the connection information for
the remote session to redirect the USB device to the
server to thereby cause the USB device to become
accessible within the remote session.

16. The method of claim 15, wherein the proxy redirects
the USB device to the hardware isolated environment to
cnable the VDI client to employ the USB device to establish
the remote session and then redirects the USB device to the
SErver.

17. The method of claim 15, wherein the USB device 1s
an authentication device.

18. The method of claim 15, further comprising:

recerving, at the notification service, a notification that the

remote session has terminated;

sending, by the notification service, a corresponding noti-

fication to the proxy; and

in response to the corresponding notification, causing, by

the proxy, the USB device to be returned to the client
terminal.

19. The method of claim 14, wherein the USB device
comprises a USB host controller.

20. The method of claim 14, wherein the hardware
1solated environment 1s a virtual machine and the application
1s a browser.

	Front Page
	Drawings
	Specification
	Claims

