12 United States Patent

US0111966435B2

(10) Patent No.: US 11,196,643 B2

Bruun et al. 45) Date of Patent: Dec. 7, 2021
(54) STATE TRANSITIONS FOR A SET OF (56) References Cited
SERVICES
U.S. PATENT DOCUMENTS
(71) Applicant: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP, g ; ; (1) ggg g% ?,%8?? ﬁaﬁ_eﬁlﬁ o
950, ohindra et al.
Houston, TX (US) 8,191,043 B2 5/2012 Mohindra et al
8,245,122 B2 8/2012 Liu et al.
(72) Inventors: Peter Michael Bruun, Alleroed (DK); o Cont mz .
Mads Stenhuus, Alleroed (DK); (Continued)
Henrik Stig Langli, Alleroed (DK) FOREIGN PATENT DOCUMENTS
(73) Assignee: Hewlett Packard Enterprise CN 1047860 A 4/9007
DEVE]Opment I_JI:',J HOUS’[OH,, X ([JS) CN 101933000 A 12/2010
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
: Oflice Action received for European Patent Application No. 14790011.
(21) Appl. No.: 15/945,132 p pp
2, dated Apr. 10, 2018, 5 pages.
(22) Filed: Apr. 4, 2018 (Continued)
(65) Prior Publication Data Primary Examiner — Shean Tokuta
US 2019/0312794 Al Oct. 10, 2019 (74) Attorney, Agent, or Firm — Hewlett Packard
Enterprise Patent Department
(51) Int. CL
HO4L 12/24 (2006.01) (57) ABSTRACT
HO4L 29/08 (2006.01) _ _ _
GOGF 9/48 (2006.01) Examples herein relate to developing an orchestration plan.
GO6F 9/50 (2006.01) Examples disclose the development of a representation ot a
GO6E 16/90] (2019.01) set of services wherein each service relates to other services
(52) U.S. Cl. via different types of relationships. The examples apply a set
CPC HO4L 41/5054 (2013.01); GO6F 9/485 of dependency rules for each type of relationship at each
(2013.01); GOG6F 9/5077 (2013.01); HO4L service within the set of services such that the application of
41/044 (2013.01); HO4L 41/12 (2013.01); the set of dependency rules creates 1nter-service dependen-
HO4L 67710 (2013.01);, HO4L 67/16 (2013.01); cies between state transitions of the set of services. Based on
GO6F 16/9024 (2019.01) the creation of the inter-service dependencies, the orches-
(58) Field of Classification Search tration plan 1s developed which includes a sequenced order

CPC HO4L 41/0843; HO4L 41/5045; HO4L
41/5054

See application file for complete search history.

. |« Transition_Order
102 1 Child_Setup
. 1« Child_Teardown
104 . Processor - | < Resource_Setup

of the state transitions for the set of services.

18 Claims, 9 Drawing Sheets

__

Flanner

1 inter-Service Dependencies
_______ - between State Transitions

""""""""" -1 | +Resource_Teardown :

« Pareni_Complets

——————————————————————————————————————

Modeter v 1« Parent Lock Step

F————. = -

. .
.................

-

rrrrrrrrrr

——

% Process

o Tenants
oo Poler »
- #¢ Processes by Pracess Identifier
7 Processes by Service tdentifier
2w Rupning Processes
Lot Finished Processes

T Manual Steps

~ir Al Steps
iy Peterdroot CHECKED->BESIGNEDw
i Peterfrootresource(0) CHECKED->RESIGNED.
ity Petersirootresource(0) DESIGNED->RESERVEDe |
377 Pelerfirootresourcs(f) RESERVED->PROVISIONED. |
~ii . Peterffroot.resource(0) PROVISIONED->ACTIVE.
i Peterfrootrasource(0) ACTIVE compieter |
=07 Peterfiroot DESIGNED->RESERVED

- - -
1 f
R L

US 11,196,643 B2

Page 2
(56) References Cited 2017/0207968 A1* 7/2017 Eicken HO04L 41/0843
2017/0257432 Al 9/2017 Fu et al.
U.S. PATENT DOCUMENTS 2017/0270214 Al 9/2017 Narasimhan et al.
2017/0289060 Al* 10/2017 Aftab HO4L 41/5054
8.301,755 B2 10/2012 De et al. 2017/0322954 Al* 11/2017 Horowitz GO6F 16/2228
8,418,002 B2 4/2013 T.azzaro 2017/0366623 Al 12/2017 Shi et al.
8,863,137 B2 10/2014 Keller et al. 2018/0083828 Al* 3/2018 Cartayac.oeee..n, HO4L 41/12
8,880,591 B2 11/2014 Feldman et al. 2018/0107186 Al 4/2018 Brown et al.
8014499 B2 12/2014 Houlihan et al. 2018/0145884 Al*™ 5/2018 Stefanov HO4L 41/5048
8.954.418 B2 2/9015 Faerber et al. 2018/0157472 Al1* 6/2018 Chen HO4L 41/0806
0,286,106 Bl 3/2016 Huang 2018/0165071 Al1* 6/2018 Raghavan GO6F 8/60
9,367,374 B2 6/2016 Kaus et al. 2018/0246755 Al 8/2018 Ailamaki et al.
9,378,120 B2 6/2016 Chakraborty et al. 2018/0359162 Al1*™ 12/2018 Savov HO4L 41/5054
9,430,262 Bl R/2016 Felstaine et al. 2019/0058638 Al* 2/2019 Ahwa HO041.45/38
9,594,601 B2 3/2017 Shau et al. 2019/0068440 Al1* 2/2019 Nelsoncoo..... GO6F 9/5077
9,998,562 Bl 6/2018 Peterson et al.
10,178,027 B2 1/2019 Johnsen et al. FOREIGN PATENT DOCUMENTS
10,275,258 B2* 4/2019 Zellermayer GO6F 9/4401
10,326,845 B1* 6/2019 Jaeger HO041. 41/0806 CN 102138315 A 7/2011
10,348,857 B2 7/2019 De et al. CN 103516781 A 1/2014
10,419,524 B2* 9/2019 Schincariol GO6F 9/5072 CN 104901998 A 9/2015
10,454,771 B2 10/2019 Ellis et al. CN 105164660 A 12/2015
10,594,621 B2 3/2020 Sharma et al. WO 2007/146368 A2 12/2007
10,785,128 Bl 9/2020 Bawcom WO 2008/091663 Al 7/2008
2004/0260602 Al 12/2004 Nakaminami et al. WO 2015/032435 Al 3/2015
2005/0086562 Al 4/2005 Demsky et al. WO WO0-2017129248 Al * 82017 ... GO6F 9/5077
2005/0155042 Al 7/2005 Kolb et al.
2005/0240354 A1 10/2005 Mamou et al.
2006/0029054 Al 2/2006 Breh et al. OTHER PUBLICATTONS
2006/0256733 Al 11/2006 Bejerano
2006/0268742 Al 11/2006 Chu et al. Oflice Action recerved for European Patent Application No. 14790011.2
2007/0043803 A 2/2007 Whit_ehouse et al. . dated Aug. 3, 2018, 4 pages.
%88;?833322? i " ﬁ%gg; tha?rgl;lmaetal “““““ GOGF /60 Kelly et al., “Output-Valid Rollback-Recovery”, HP Labs, HPL-
709/276 2010-155, 2010, pp. 1-14.
2009/0157773 Al 6/2000 De et al. International Searching Authority, “Notification of Transmittal of
2009/0193439 Al 7/2009 Bernebeu-Auban et al. the International Serach Report and the Wrtten Opinion”, PCT/
2009/0327216 A1 12/2009 Brown et al. EP2014/070838, dated Jun. 15, 2015, 12 pages.
2010/0057780 Al 3/2010 Isobe et al. International Search Report and Written Opinion received for PCT
2010/0333109 Al 12/2010 Milnor Patent Application No. PCT/EP2016/051851, dated Oct. 10, 2016,
2011/0046992 Al 2/2011 Erhard 10 pages.
%8%85?2333 i ltliggi ?éiﬁﬁj;tal‘ International Preliminary Report on Patentabilityreceived for PCT
2012/0016713 Al 1/2012 Wilcock et al. Application No. PCT/EP2014/070838, dated Apr. 13, 2017, 10
2012/0089726 Al 4/2012 Doddavula pages.
2012/0117226 Al 5/2012 Tanaka et al. International Preliminary Report on Patentability receirved for PCT
2013/0036425 Al 2/2013 Zimmermann Patent Application No. PCT/EP2016/051851, dated Aug. 9, 2018, 8
2013/0127891 Al1* 5/2013 Kimccooeeevvvinnnnn. GO6T 11/60 pages.
345/582 Intel, “End-To-End NFV vEPC Service Orchestration of a Virtual
2 b
20130151317 Al 072013 Charfl .ocoovveve G06Q73005?72§é EPC Network Function Virtualization Use Case on Intel Architec-
2013/0198760 Al 27013 Cuadra et al | ture”, Intel Network Builders Reference Architecture Retreived on
2013/0217361 Al* 8/2013 Mohammed HO4M 15/77 ~ Mar. 26, 2017, 24 pages.
455/411 Ferry et al., “A Real-time Scheduling Service for Parallel Tasks”,
2013/0290937 A1 10/2013 Joukov et al. IEEE 19th Real-Time and Embedded Technology and Applications
2014/0013315 Al* 1/2014 Genevskicovvenienn. GO6F 8/60 Symposium (RTAS), Apr. 2013, 11 pages.
717/170 Fdhila Walid et al., “On Evolving Partitioned Web Service Orches-
2014/0074905 Al* 3/2014 Schincariol GOOF 9/5072 trations,” IEEFE International Conference on Service-Oriented Com-
| | | 709/201 puting and Applications, Dec. 2012, pp. 1-7.
2074/ 0075043 A'_‘ 3/ 20'_"4 Yuksel et al. Clayman, et al., “The Dynamic Placement of Virtual Network
2Oj“4/ 0098675 Al 4/ 2014 Lee et al. Functions™, Telecom Italia Strategy Future Centre. Via Reiss Romoli
2014/0172944 AL 6/2014 Newton et al. 274, 10148 Turin, Italy. IEEE 2014, 9 pages
2014/0229945 Al 8/2014 Barkai et al. ’ o, Ly, Bt 7 P2 o
2014/0278662 Al 9/7014 Reed et al Cerrato, et al., “User-Specific Network Service Functions in an
7015/0006733 Al 1/2015 Khan et al SDN-Enabled Network Node”, Deptment of Computer and Control
7015/0120380 Al 4/2015 Deshpande et al. Engineering. Politecnico di Torino. Torino, Italy, 2014, 2 pages.
2015/0124645 Al 5/2015 Yadav et al. Xi1ao et al., “Process Dependencies and Process Interference Rules
27015/0278395 A1l 10/2015 Ben et al. for Analyzing the Impact of Failure in a Service Composition
2015/0309780 Al1* 10/2015 Ruehl ..ooooviiiiiii, HO041., 67/1095 Environment”, Proceedings of the 10th international conference on
717/176 Business information systems, 2007, pp. 67-81.
2015/0365322 Al 12/2015 Shatzkamer et al. Laurent et al., “Planning for Declarative Processes™, The 29th
2015/0378774 A1 12/2015 Vermeulen Annual ACM Symposium on Applied Computing, 2014, pp. 1126-
2016/0080422 Al 3/2016 Belgodere et al. 1133.
2016/0094477 Al* 3/2016 Balc.ooevvvenneee HO4L 47/786 Bohm et al., “Processes Are Data: a Programming Model for
709/226 Distributed Applications”, Web Information Systems Engineering—
2016/0378450 A1 12/2016 Fu et al. WISE 2009, 12 Pages.
2017/0161104 Al* 6/2017 Johnson G06Q 10/063 Oracle, “4 Understanding Orchestration,” Oracle® Communica-
2017/0161129 Al1* 6/2017 Johnson GOO6F 11/0751 tions Order and Service Management Concepts, 2009, pp. 1-55,

US 11,196,643 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Release 7.2.2, Retrieved from the Internet on Nov. 24, 2017 at URL.:
<docs.oracle.com/cd/E35413_01/doc.722/e€35415/cpt_orchestration.

htm#autold0>.
Casati et al., “eFlow: A Platform for Developing and Managing

Composite E-Services”, Proceedings Academuia/lndustry Working
Conference on Research Challenges, 2000, pp. 341-348.

Yang et al., “Research on Software Architecture-based Composition
of Internetware”, May 15, 2007, 3 pages.

* cited by examiner

OO e
-~ I A _
e A(0JAHGISFH<-UINDISIT 1004/18)od L.ii | mu_.n.._
<t 20191dWwio0 JAILDY (0)82In0sar100k/i818d i _
& | “3NLOV<-Q3INOISIAQ¥d (0)s0inosariooljisied L 1i
N - “1dNOISIAOHd<-G3AYaS3Y (0 vmo,s%m;oosb_ﬁmm BN
= “03AY3SRU<QINOISIQ (p)eomosariooyueizg i
— ATIANOISIA<-GIYDTHD (0)22In0S8.11004//1818d wuls
m ~J3NDISIA<-AINOFHO ooy8led L.10
sdalg fiy [
SALIQ jenuey 1
o SOEguOpOY i
... _Adooyeled JUVAYD s
S9559901d Pausiul4 u..m -
> $98$9001d Buuuny = =}
© J8luap] 80IAI8S Ag $98S9004d 3 %
— 1BIIUBP| $S8001d AQ $8858001d & I
S ~ 1918d i ﬂ
7 - ueus) ihim
$$900id Nr ¥
X wmwwmogn_\aw = SAOIMRG/dS | e Sivjawieied/dS | YLl " o T
~ SMBIA mocﬂmc_ SMBIA SSE|) aoz@é_ - e <
— N e e s “ L) HM, _.x — - . xrn._“u ,,,,,,,
HI..-._,, e 4 e f..f..: ,k .5. S i Lo - _....,+ r..lx\. pe—
> e “ e W
= o — _. m - H1
= dais A0 jusied - - JETETIN
M me_QEOOIMCQ-mm& . L | -
_ UMOpIBS | 804N0sSdY » + |+ . w?
_ 19QO0IN0SAN + | | 10SS00l4
SUORISUBI . BJBIS UDaMaq - ~ Omeg eanosay .« | 055990 d]
SalnUspUada(] S0IAIBG-18)u) umopies] PiyQ -
. - . m dnes pIyD ¢ | | 201
0LL ~~ J8piQTuOBISUBIL ¢ |

iii

U.S. Patent

US 11,196,643 B2

Sheet 2 of 9

Dec. 7, 2021

U.S. Patent

d¢ 9Ol4

dr dr dr dr dr dr de de de de Jr Jr dr dr dr de de de de Jr Jr dr dr dr de de de de Jr Jr dr dr dr de de de de Jr Jr dr dr do de b de de Jr Jr dr 0o
e
o
vl Y
o
- *
r .
o T T o o o o T o e U U U P U U U P P U PO P
* FFE R E R R R R R R R R R EREE R R ERE R R R E R R R EE R FF R R E R E R E R E R R K
.
> »
e » »
Y > »
- o ~
vl o >
- . o F - >
o » 4 »
2 s N H . . . »
Carpr L] ¥
' e »
» »
> »
» >
» »

L4

R N N I N R N N N e N N N A NN

X K kK kK K X A K K XX F XX b ko rFhrrrrhrrkrrkrkrhkrrrhrrkrrkririxi

r

b de b dr b de e de e e dr e dr de de de de de de de de de dr de dr de Je de de de de de de de dr de e de e de de e de dr de dr b dr U 0
T.'..T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'.T.T.'*.TL

Y A
- T
.1.-.. L
3 S e e de e de e de e B e e de e de de de dr e de e de e de dr de de e de e de dr e dr e de dr de de de de e de e de dr de de e de &
- Pl N L B R L L
e » >
. J. * » »
- o e
N R E. .) »
Y > K »
- o >
r. » >
> > . »
[. . . »
* & dr dr »
Ol >
> »
» >
> »
» »
k2 2 & & & & & & a & 2 8 & & & & & & 2 2 & & & & & & & & 2 2 & & & & & & & 2 8 & & & a2 a s s s aak
Lt e Sy S R e N S S S TF T S S S Sy Sy Sl Sy S S S S Sy Sy Sy e S S S S Sl Syl Syl Sy Sl Sy S S S Sl Syl Sy Sy PP
T T e e e Sl i i e e e e e e e e e e e e S e e e T
bl
LTI - .
-
AT r
R I |
e . "
I_Il...i-.l.l.l.-_.l.-..__l...-_...-..l.-_.....-......II.__..__..._..__..__..._..__..__..._..__.I e
e e T T T T T T T T T T T T T
e A Ta N e ST r
C o
R A il bl "
- .
e N S S S T S O . owaaTat ¥ e x »
e et it. " .
4 .. .
> " s) “ "
r 4 i N .~ =
ar T4 - & .‘l - r
s e S - . »
* Sy Sy S S S S S S Sy Sy Sy S S S S S o S 1 Y ‘F "
. o ¥ . o - PRI r
> N
b .T.r b..r .ii._ \J l..rl..ll.¥1*.i.-. EFEEEFEFEEFEFEEFEFEEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFFEFFERFEREEEN
s . » . T . ammia
i i & " A .\. o
4 u ' P L .
x . At . A g Tt
. . ‘.
T EAI.H.-.l.i._...-.._...-.l.-. - . .1_“.-.
* » PR & I O T N I o o I e o O S Syt Syt St Sy Sy Sy Sy Sy Wy Syt Syt St Sy Sy Sy Sy Sy W Sy Syt St S S S Sy S W S S
LR o " e o " d ’ o A ke a k a k d ke Wk ke ke ke ke ke ke ke ke k d ke kU d ke Uk ke ke d ke k k a k k d ke ik
-
it ¥ .“. o e Th
i u [- a
. e > Ta
» I L) rFa e
& I \. Tl I . . oY
E 4 a4 4 a4 4 4 4 4 4 a4 a4 4 4 4 L 4 4 A 4 4 4 4 L 44 a4 4 a4 4 4 L 44 a4 aa a i d L oaaoaa sk Ty = >
. i > . . k
-\._ e Lty Fa
) - e T - T om) [T e} >
\ L IC . o
ot > Ta
.-‘ ra >
a a
l‘. e T
. e d de de de e e de b de B de de dr e e e b de de de de dr e e e b de de de de dr d e de b de de de de Qe dr de de de de B de de dr &
s e T T T T T T T T T
e I T I L o R S S S S S O S Sy Sy Uiy Sy Sy g S SN .
o e e Tt e e et e e e P i P s " L it .‘.
a el H
T __.... Jaminy
s »

& F
r . A m m m A m a m m a2 = m E = a2 m E 2 = E m E = = 2 m a2 = mE E = = mEa = amom mka
o T I R R R TR R TR T I I N R R R R R R I T N U R R U TR R I N T N N R R L R R T R U R I N U I U ‘
- G e e e e e e e e e e ke A e e e e e e e e e e e e e e
F F & ‘
J-*L *.r .Tb
- a » x 1_
o o F]
r a4 » . x . i
I eA_ o
a . .
x * . [
r . Y s
o .Tb Y
o
Pia oy .;..._
Y .
x_
o Y
& .
Jr oA s o S S S S S N S S S S S N S S S S S N S S N S W W S W W S M W A A N W S A S S o a x x axox ax A

o

Il ol iiikiiiiiiriiriirirriiriiriirrr

L4

Pt

*
*-

LN BE NE BE N RC R RC R NE N BN RC N |

L]
*. *.

*.

% .
*

ot]]]]
& . . o
*
T . [] . - -
l.-_l.. E
N l.....
- .
b dr o oo oy W oy w y Wy Wy Ny oy o oy .
M qO QTP R R TR e TR L L R 0 L 0 TR P e PO TR P e TR P e TR R R P

pajeuius]

L]
L)

L]
»

»y

18113 %

Gl

&

3

L]

i
R EEFER

]
o i

[l)
& i

L]
]

o
[)

L]
]

L]
»

i
LC L LN N L L L

PE EFEFERFPEREERFFEE G

L]

]
*
]

G |

L]
L]
&
L]
L]
L]
L]

pauisag

MM M M M M W M oM MM

dr o dr o dr o br o Jr o dr b o dr Jr e Jr o br B br O Jr o br o 0r B b O B o 0r B e B 0 e 0 e O e 0r O e O O Or O e e 0 e e 0 b 0r 0 e 0 0
E N I R O B B BB R I I R B O B R B T R R R

»
»
>
o
N PO S ooy
.k sk FFFF
et -
L -l
» e
> s
» >

- A

SRICARIC IR S

wmﬁmmﬁmcmm o}

-~

RIS |

+ & & & & & ¥ ¥ &

&+ &
L LI L

+
-

ERr ot g o e g N N N A A ot g i g el e e N B O e a al a al a a ay

L e e e)

X ¥

ASBYZ T
HBHIXAUCH

)
aa
e
M_, | m JUSISIXBUON
N 10¢ - Peleulus] _ 319180 1@
iy Y o
) m sjeuuus] | |
w 2 sjeuwis] o
= - m - o=
& aleullis g}9le | _ m Bl
wﬂ jeUilia] 19|80 a9 -!e
................ 1BAI0Ea(] _. uosinoideqy i | eseejay e,,,m,--,,-,,-,,-w,-,,-,.xomzumm 4 30U
ONOY L™ POUOISINOI] [> PanIaSeY g Wcmcm_mmo | nmv_ow;o -
0 eleapdy | UOISIAO [onIgSeY ubiseg © JUSISIXBUON
— \ \ \ Y
= oy(¢ A PYOZ A o02 A ab0C » mvom
- YA che ek UL
o _ m .
Qe e . =017
= | selouspusda(
_ o Y Y v 0
s 7 HORITY Emﬁ_xmcoz
- - Paleuittlia | 319780 '.A__
> — “Emc_c:ﬁ
2 ® SCIMIEIR | Ne
5] Sleuiial | 181IRQ B TS =k
LT @ U
I _9jeAoes co_w_\samm_ mmmm_mm %09409Y R Ve,
m qyLlZ - g .wZHO{ x._n.H. POUOISINOIA g - Um?_mmwm _umcm_wmﬁ_ - > payoayn e ®
2 8]1BADY UOISIAOI m?_mwmm cm_mma JUB)SIXBUON
Dnm = S9OIAIOS SBOUBIBJRY PUB PIIY)
& /
/2 ,
- Evic

US 11,196,643 B2

Sheet 4 of 9

Dec. 7, 2021

U.S. Patent

¥¥

Saoue}su} S9oLR}Su} S9oUB)SU]
Ueid Aduspuadag , 3JIAI9g

..

'
'
AN OB OEN E W OB B W O E W W N E N W EEEEE &SN & &N & & &N E®&E &N NN &N ®E®E & &N ®EEEE N EEEEmg *
'
TSP e BB e R R e Ry N
I LI |
! Vo ; NN N
- b ‘ H m P --L ?- IIIIIIIIII -i O m
) vy A
; ..l1"..r-ri.f . _._ .
e T T ey [p——" 4
H & 1.11.11.11.-.| “““ “ 1.:... ._.111|1|1|._.111|111|1|.1r ' ..'r
. # . : e * |
' i\ e mo— PR b
. ' ..L_..__... / ! e .-.i._.__ “ l ut; .\\x_
¥ ¥ S0y e ! y TTTE T T ¥ Y Jq !
g i v e e o e] ' E (A N P e, ' _" \..___ ' A -y
+ -- .I,I|.||l. +I.I.I.L L [
R .q__..\\‘ 11 ' ..\\\ ! ."-. l.-“.lj.._ . . H 1:.—_.....
, : - e S S . e Y :
S . " ” " : s, i R v ¢ .
LY 3] i .l..l..l.-. e | -...l..l..l.L. _....».. .
- J..._._ " : . ' 5 = . i ¥ T Y
.;.J...f .-” 11111111111111 T l._I. rr e e E e E el lememmm e E s hemem e . eee e e e e Lt _|.11I1.11|_—.| nnnnnnn P e LY .._T
i. a . + -] - 1 4. . L -
o [
N [“ N | __ : | P o
) : o P,)
L am| $50004 , "
'
Cm | P ; @ .] N, b . ¥
1 1 1) 1 .]
_ _ e o c_ 0 : . wm_“vcm _mw m
b .
+ !
: - . ; . " \ L I
uonpy 01na3xy - {eoibojodoy BUUBld . | gindwo
+ .
i PN TR NN] \ .
[o e e o e o e o e e e e e e e i + | : o S PP
v o :
4 | “
. [
! L
/ !
-‘-
/
. /
. fa
g
!
y
!

(ud“pdlumopies | jessay do1g 00T IWBIEd
{ud‘ | didnieg 1ese0y ajejdwion jualed -
(ud'Ldjumopies] JoRIOS UMOPJES | 80IN0SaY « | T m

UH SIS | 1B} | UMODIES i@OC@L@ 5 UMODIES ~e ") eeeen e seenemcseee e,
salouspuadaq a0iAIaS-Ie)u} Ao od pIESL PIYD

dnjeg sousIseY dmes ppyn «

(LI I I
F L]

L
Q
e
B2,
=3
-
&
E.-E‘
EL

aw_uww..v_oo_l_i”_c@._ 2d _h”_wn.__Oi:o_:_w: Blf o [T w
............ S Ty | $80UBI9leY Tn | Em‘_ Eq
aseqg ajny Asuspuadeq SN A o

.......Ir.r.nn..ll._ L | * B " m e iy . m R
R L . . IR R
H.._._.. -_—._-__w.._nln .-.) .._....__.-_- . u_._-“._..l ”.-.l.__._.-.__..._.-.#____..--..

1 I..-..-.l__..l.-.l

--.....l....i.ltl__._. Il_-....-..-. .l...... L a PRy
LA -.-__ .1" .l._.-.___._.-_.“."..-._.lu”" t- _..._-_ "-..—-.l..._.l.".._-.--._." Ko

k..f!l.llll_. ' m it .

US 11,196,643 B2

. .) . - ‘h-..ult._
L [3 . b.'_] * .,..-.__,._._._ ||
.-”.._u..._.v-_ - --......._tl_-

. ___ +F
B e __..-.__....__ R S PO S

...-.._..-.t _.-l_-_.._“_.__.
PR

--
» ‘e S
. U ol A B o Wl) ..-..#I.._ _-.__h_-_i e -
"t et e N R ¥ _-l_-..l...-. " .__.“1
T ol SR " 1...-. S -

[

! L T B

‘ M
A -_-_1-_._.-...-.‘1....] " -.....l.l....... n l__.-..l.il..... .

“-..l_-__....l._..ll_-ll F A

,__ _1..___. _-._.-__.._..“_
a-___l.- b _-.n.,M

=)

Sol

&

\r

- TR oo
&

W

=

s 9,

Rl m atm L
L '-...i..'%“.
l-.l_-_-..l.-.‘_.l .

1 -
-
. . 1-__.|.l..-.t.r...-.-l.-_ -.-l [™
..r.n. q- -.1..-...-...1.‘..1 P)
L) .

. .
- __.ll_-l I__.-.l. _-.-n + --”__..II.. _-.-_-l- ..l__l..“ 4 l a ..__..u |..II...ﬁ. “' .l_”l.r a h!.ll. ._Ir.-.-._-.”- ”- “_.14...-. l“-”_-..-.. L
I T T S e TR P e S A R S0 S TS LA S S R 2 SR

|l..l-.m-l'".-”l.-_.-_lun.
1..-.-_ - a ._.l..” H.-.I-_ -

...._t-_a1- *

..-.____.____i.
i..._...-w.

[1 1 PR I
......... . KR L e s

Dec. 7, 2021

' o ' ..-...-.__..I..........................
. ...-.-l.n.-. .-_-. ...r.__...r.-_l-.-_-. ' “.' ...-_..-_; .__.l. .-l ‘u . i...__..__...M.M...
' .-.I_. p -_l.-..-_...l__..-.h_I..l.. , ..t;.i R ORI LT T e T B S B R R

; ”_.4.”_..._._.__”...._ T __.... st H % “H::.ﬁ.._ TR R RN

R
“.-.“_.t.
o
g A - ...“...._ et .-__ __...._. iy ._.-”_ .Im.l...l..r
AT ..,w...m..,,_..".&,"- A ks
ey TN RN II.IH.....-..-.._.. ._ 4 - .t.r—. *
.{E.\I“.kh“m“”“." H.-_I.-.“.w. ."”"-_T__.l._-.-_-“ " .-..._“N!.I] ' -..w LT ”...“i-...l._”
-
e TR ”uw
i SILIE LB B LA R M SR -
. ‘-'
H.-.“ .,.I.._l.._l
LaL L) -
L ._...L.”.“_. .Iﬁ_l.-l-

£ m&mﬁ@wﬁwn% 45

-_‘

&
&
a7
v
v

o u__ i vvvuvvv ...vvu_vvvvvvvvvvv g A vuvvvuvvv . v i

vuvuvvvvvvviv u_. v

U.S. Patent

Vi Ol

VA
-~

A
A A A
R e

14

U.S. Patent Dec. 7, 2021 Sheet 6 of 9 US 11,196,643 B2

FIG. 5

DEVELOP REPRESENTATION OF A SET OF £07
SERVICE WHEREIN EACH SERVICE RELATES TO "\
OTHER SERVICES VIA DIFFERENT TYPES OF
RELATIONSHIPS

Y
APPLY SET OF DEPENDENCY RULES THAT 504

CREATES INTER-SERVICE DEPENDENCIES "\
BETWEEN STATE TRANSITIONS FOR SET OF
SERVICES

Y
DEVELOP ORCHESTRATION PLAN THAT INCLUDES f\? .

SEQUENCED ORDER OF STATE TRANSITIONS

U.S. Patent Dec. 7, 2021 Sheet 7 of 9 US 11,196,643 B2

FIG 6 DEVELOP REPRESENTATION OF A SET OF 602
SERVICE WHEREIN EACH SERVICE RELATES TO | \J
OTHER SERVICES VIA DIFFERENT TYPES OF
RELATIONSHIPS

|| 604
BUILD MTOS! MODEL oV

v

CREATE INTER-SERVICE DEPENDENCIES
BETWEEN STATE TRANSITIONS OF THE SET OF ,\?06
SERVICES FROM AN APPLICATION OF A SET OF

DEPENDENCY RULES

v

OBTAIN DIRECTED GRAPH THAT INCLUDES STATE | 608
TRANSITIONS FOR THE SET OF SERVICES | \J

USE TIME-LINEAR ALOGRITHM Mm

PROVIDE REPORT V\Jﬁ12

DEVELOP ORCHESTRATION PLAN N

USE TARJAN'S ALGORITHM ON DIRECTED

616
GRAPH " \J

PROVIDE DIRECTED GRAPH WITH 518
SEQUENCED ORDER OF STATE TRANSITIONS | NJ

Jr

EXECUTE STATE TRANSITIONS IN ORDER ,\JBQO
ACCORDING TO ORCHESTRATION PLAN

B T

MODIFY STATE TRANSITION AND/OR ,\J622
RELATIONSHIP FOR SET OF SERVICES
624

UPDATE DIRECTED GRAPH AND EXECUTION PLAN M\

U.S. Patent Dec. 7, 2021 Sheet 8 of 9 US 11,196,643 B2

FIG. 7

704

700
\

MACHINE-READABLE STORAGE
MEDIUM
|

MODEL REPRESENTATION FOR SET | 4+—+— 706

702" ™~ OF SERVICES |
PROCESSOR *

APPLY SET OF DEPENDENCY :
RULES FOREACHTYPEOE V[— 708
RELATIONSHIP

OBTAIN DIRECTED GRAPH THAT 710
INCLUDES STATE TRANSITIONS |
FOR SET OF SERVICES

U.S. Patent

FIG. 8

800
\

802 -

Dec. 7, 2021 Sheet 9 of 9 US 11,196,643 B2
- 804
i
MACHINE-READABLE STORAGE MEDIUM
MODEL REPRESENTATION FOR SET OF | A~ 806
SERVICES
N processor BUILD MTOSI MODEL AT 908

APPLY SET OF DEPENDENCY RULES FOR |41~ g1g
EACH TYPE OF RELATIONSHIP

CREATE INTER-SERVICE 812
DEPENDENCIES ‘

OBTAIN DIRECTED GRAPH INCLUDING
STATE TRANSITIONS FOR SET OF
SERVICES

T 814

DEVELOP ORCHESTRATION PLAN FROM |17 816
DIRECTED GRAPH

EXECUTE STATE TRANSITIONS A 813
ACCORDING TO ORDER IN
ORCHESTRATION PLAN

MODIFY ONE OF THE RELATIONSHIPS {177 820
WITHIN THE SET OF SERVICES

UPDATE THE DIRECTED GRAPH AND IN |47 822
TURN THE ORCHESTRATION PLAN

DETECT CONNECTED COMPONENTS [T 844

PROVIDE REPORT OF DETECTED A 826
CONNECTED COMPONENTS

US 11,196,643 B2

1

STATE TRANSITIONS FOR A SET OF
SERVICES

BACKGROUND

Uses of orchestration may be discussed 1n the context of
service-oriented architecture, virtualization, provisioning,
converged infrastructure, telecommunications, and datacen-
ter topics. Orchestration defines policies and service levels
through automated workiflows, provisioning, and change
management. As such, orchestration provides centralized
management of a resource pool and may include, for
example, billing, metering, and chargeback for consump-
tion. As the requirement for new resources increases with an
introduction of new applications, automated tools by way of
orchestration can perform tasks previously handled by mul-
tiple administrators operating on their individuals pieces of
the physical stack.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, like numerals refer to like
components or blocks. Various features of the present dis-
closure will be apparent from the detailed description which
tollows, taken 1n conjunction with the accompanying draw-
ings, which together 1llustrate, by way of example, features
of the present disclosure, and wherein:

FIG. 1 1s a system to develop an orchestration plan in
accordance with the present disclosure;

FIG. 2A represents an example state model that includes
a service and different types of relationships to other services
in accordance with the present disclosure;

FIG. 2B represents an example service with possible state
transitions and inter-service dependencies to another service
in accordance with the present disclosure;

FI1G. 2C represents an example service with possible state
transitions and inter-service dependencies to other services;

FIG. 3 illustrates an example system architecture from a
state model to a creation of inter-service dependencies and
an orchestration plan listing an ordered sequence of state
transitions for execution i1n accordance with the present
disclosure:

FIG. 4 A 1llustrates an example directed graph from which
to develop an orchestration plan in accordance with the
present disclosure;

FIG. 4B illustrates an example orchestration plan that 1s
developed from a directed graph in accordance with the
present disclosure;

FIG. 5 illustrates a flow diagram executable by a com-
puting device to develop an orchestration plan that includes
a sequenced order of state transitions for a set of services 1n
accordance with the present disclosure;

FIG. 6 illustrates a flow diagram executable by a com-
puting device to obtain a directed graph and from the
directed graph, develop an orchestration plan that includes a
sequenced order of state transitions for a set of services 1n
accordance with the present disclosure;

FIG. 7 1s a block diagram of an example computing
device with a processing resource to execute instructions 1n
a machine-readable storage medium to obtain a directed
graph representing a state transition for each service within
a set of services 1n accordance with the present disclosure;
and

FIG. 8 1s a block diagram of an example computing
device with a processing resource to execute instructions 1n
a machine-readable storage medium to develop, from a
directed graph, an orchestration plan that includes a

10

15

20

25

30

35

40

45

50

55

60

65

2

sequenced order of state transitions for a set of services 1n
accordance with the present disclosure.

DETAILED DESCRIPTION

Uses of orchestration may be discussed in the context of
service-oriented architecture, virtualization, provisioning,
converged infrastructure, telecommunications, and datacen-
ter topics. Orchestration defines policies and service levels
through automated workiflows, provisioning, and change
management. As such, orchestration provides centralized
management of a resource pool including billing, metering,
and chargeback for consumption. As the requirement for
new resources increases with an introduction of new appli-
cations, automated tools by way of orchestration can per-
form tasks previously handled by multiple administrators
operating on their individuals pieces of the physical stack.

Orchestration means executing a number of actions on a
number ol entities represented as services 1n a service
model. Service models can be simple, such as a decompo-
sition model, or complex as a general graph with different
types of service relationships. Furthermore, each service in
the model can be governed by a state model that again can
be simplistic as 1n “Nonexistent” or “Active” or complex,
consisting of many states and state-transitions. An orches-
tration plan 1includes a sequence of state transition actions in
such a way that the actions respect constraints on the order
ol execution. The constraints are derived from among other
things a state transition model and the different relationship
types 1n the service model. These constraints can be repre-
sented as a graph of dependencies between state-transitions
in the services. Serializing dependency graph models have
been solved for simplistic decomposition models and for
state-less models; however for more complex graph models,
solutions are limited 1n solving all possible model transior-
mations.

“Services” as explained herein, refers to the entities or
groups of entities that represent objects of orchestration of
changes 1n a complex system consisting of interactive ser-

vices, networks, and systems for the creation of for example
communication services.

One solution uses ad-hoc decomposition methods and
queue-based execution plans. For example, machine code
executable by a processor may push actions queues in an
order intended to generate the correct sequence of actions.
This solution results in unpredictable behavior and may be
unable to handle complex uses cases. For example, using
decomposition methods and queue-based executions are
limiting when going through state-transitions that effectively
tear down and re-create parts ol a configuration topology.
Additionally, ad-hoc approaches may be unable to detect
conflicting requirements which may lead execution engines
to make unpredictable arbitration decisions. Unpredictable
arbitration decisions result 1n an unstable end-to-end orches-
tration solution as the solution becomes untestable.

A second solution uses models declared as graph tem-
plates, referred to as the Topology and Orchestration Speci-
fication for Cloud Applications (TOSCA) Organization for
the Advancement of Structured Information Standards (OA-
SIS) standard language. In the TOSCA OASIS solution,
standard language 1s used to describe a topology of for
example cloud based web services, theirr components, rela-
tionships, and the processes that manage the web services.
The resulting models 1n this solution are static and may not
be modified. Modifications to the resulting models nstitute
a tear-down and recreation of the full model and compo-

US 11,196,643 B2

3

nents. This solution becomes a challenge 1n the situations
where downtime 1s undesirable.

A third solution uses services that are defined by hierar-
chical decomposition which 1s another type of a simplified
model. In the hierarchical decomposition, a hierarchical
decision process 1s used to evaluate a sequence of actions;
however, this solution 1s inherently unable to capture graph
structured services, as modifications to the hierarchy struc-
ture would elicit a redesign of the full structure. In this
example, the hierarchical decomposition solution 1s more of
a static approach and would be unable to handle changes that
span the hierarchy without a full redesign. In another
example of the hierarchical decomposition, a tree model
may be used 1n which each node 1n the structure may include
a parent node and/or parent node. From a modeling per-
spective, tree structures are much more simplistic and fail to
account for the more diflicult and complex models that
include various interdependencies between the nodes and/or
that the nodes may have no commonality among each other.

Yet, 1n a fourth solution uses a simplistic state-model 1n
which the various states of a service are interdependent on
one another 1n the model. In this solution, a node represented
in the state as fully configured or non-existent. This
approach reduces the problem of modeling the dependencies
between states of related notes 1n the graph; however, the
approach 1s unable to handle the complex modeling sce-
narios.

As explained 1n detail, solutions directed to planning an
order of execution steps based on complex dependent mod-
cls are inadequate. As such, the present disclosure claims a
planner that formalizes different types of dependencies
handling the complex re-creation scenarios and the ability to
detect and report inconsistent requirements. Detections and
reporting the inconsistent requirements allows a designer to
modily the model so that the models becomes predictable,
consistent, and testable. The planner works on complex
dependency graphs with complex, state-based relationships
between the graph nodes. Additionally, the planner 1s able to
scale 1n and out service models that consists of many graphs
objects.

The present disclosure develops a representation of a set
ol services such that the representation includes how the set
of services relate to one another by different types of
relationships. Based on the representation, a set of depen-
dency rules 1s applied for each type of relationship 1n the
representation. In response to the application of the set of
dependency rules, inter-service dependencies are created
between state transitions for the set of services. From the
inter-service dependencies, an orchestration plan may be
developed. The orchestration plan translates the sequenced
order of actions that bring the system back to a consistent
state. This provides an automated creations of the orches-
tration plan so that in the event that there 1s a modification
to one of the relationships and/or state transitions, the system
reacts to keep the system 1n the consistent state. Keeping the
system 1n the consistent state allows critical services to
continue without interruption.

The following detailed description refers to the accom-
panying drawings. Wherever possible, the same reference
numbers are used in the drawings and the following descrip-
tion to refer to the same or similar parts. It 1s to be expressly
understood, however, that the drawings are for the purpose
of i1llustration and description only. While several examples
are described 1n this document, modifications, adaptations,
and other implementations are possible, and indeed desir-
able as the ability to handle model complexity that evolves
with time 1s another one of the advantages of the disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

Accordingly, the following detailed description does not
limit the disclosed examples. Instead, the proper scope of the
disclosed examples may be defined by the appended claims.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting. As used herein, the singular forms *“a,” “an,” and
“the” are imntended to 1include the plural forms as well, unless
the context clearly indicates otherwise. The term “multiple,”
as used herein, 1s defined as two, or more than two. The term
“another,” as used herein, 1s defined as at least a second or
more. The term “coupled,” as used herein, 1s defined as
connected, whether directly without any intervening ele-
ments or indirectly with at least one intervening elements,
unless otherwise indicated. Two elements can be coupled
mechanically, electrically, or commumnicatively linked
through a communication channel, pathway, network, or
system. The term “and/or” as used herein refers to and
encompasses any and all possible combinations of one or
more of the associated listed 1tems. It will also be understood
that, although the terms first, second, third, etc. may be used
herein to describe various elements, these elements should
not be limited by these terms, as these terms are only used
to distinguish one element from another unless stated oth-
erwise or the context indicates otherwise. As used herein, the
term “includes” means includes but not limited to, the term
“including” means including but not limited to. The term
“based on” means based at least 1n part on. Additionally, the
term “services’” as explained herein, refers to the orchestra-
tion of changes 1n a complex system consisting of interactive
services, networks, and systems for the creation of commu-
nication services.

A “list”, also referred to as a “sequence” 1s a mapping
from each of the numbers from 1 to some natural number, n.
An empty list 1s an empty mapping. The size of the list 1s the
largest number, n or 0 for the empty list. The number
mapped to a given value 1s referred to as the “index” of that
value. In computer soitware, the indexes of lists are oiten the
numbers from O to n-1 mstead of 1 to n.

A “relationship” 1s defined by means of a type of reference
between elements of a set, the domain, and elements of
another set, the range. The range may 1n some cases be the
same set as the domain. In this context, the sets are of finite
s1ze, 1nfinite sets are not relevant. Many elements in the
domain may reference the same element 1n the range, so a
single reference type defines a “many-to-one” relationship
between the elements of the domain and the elements of the
range. If there are two diflerent types of reference from the
same domain, then the domain and the two reference types
define a “many-to-many” relationship between the two
ranges. If there are n reference types, the domain and
reference types form a “n-ary relationship™ between the n
ranges. Relational Database Management Systems, known
as RDBMS, are based on the principles of such relationships
and reference types. It 1s a theorem of the theory of relational
databases, that any n-ary relationship can be decomposed
into binary and 3-ary relationships.

A “directed graph” over a set, S, can be defined by a
binary relationship where the ranges of the two reference
types are both the set S. The elements of S may be subdi-
vided into different element types. The elements of the
domain of the two references represent arrows from the first
reference type, the source, and the second reference type, the
target. The elements of a directed graph are sometimes also
referred to as “vertices” and the arrows as “arcs”. A “path”
starting from E1 and ending with En 1n a directed graph 1s
defined as a list of one or more arrows, such that E1 1s the
source of the first arrow 1n the list, En 1s the target of the last

US 11,196,643 B2

S

arrow 1n the list, and the source of any arrow except the first
1s the target of the previous arrow 1n the list. A “cycle” 1n a
directed graph 1s a path that starts and ends with the same
clement. A “cyclic directed graph™ 1s a directed graph where
there exists one or more cycles. If a directed graph has no
cycles, 1t 1s called a “directed acyclic graph™, 1n the literature
known as a “DAG”.

A “tree” 1s a DAG where there 1s precisely one element,
called the root, which 1s the target of no arrows, and where
all other elements are the target of precisely one arrow. It 1s
a mathematical theorem that in a tree, there exists one and
only one path from the root to any of the other elements of
the tree.

A partial order, 1s a mathematical relation, <, over a set,
S, such that for any three elements 1n S, E1, E2 and E3, the
following propositions are true: “~(E1<E1)”, “E1<E2=~
(E2<FE1)” and “E1<E2" E2<E3=E1<E3”. The “~” is logical
negation, the “=""1s logical implication and the “ 1

1s logical
conjunction. The order 1s “partial” when there may exist
elements, E1 and E2 such that “~(E1<E2) ~(E2<E1)”. It 1s
a theorem that from any DAG can be constructed one and
only one partial order, <, by defining that for any pair of
elements, E1 and E2 in the DAG, “E1<E2” 1s true i1f and
only 11 there exists a path in the DAG from E1 to E2.

A “topological sorting” of a DAG 1s any list of all the
clements of the DAG such that if some element, E1, appears
before some other element, E2, 1n the list, then it 1s false that
“BE2>E1” by the partial order defined by the DAG. A
topological sorting of a DAG may not be unique, because 1t
for two elements E1 and E2 it is true that “~(E1<E2) ~
(E2<E1)” then E1 may appear both before and after E2 1n a
topological sorting of the DAG.

An algorithm that 1s guaranteed to execute 1n a time that
1s not worse than proportional to some measure of the size
of the mput to the algorithm 1s called a “linear-time”
algorithm.

An algorithm that can create a topological sorting given
any DAG 1s called a “topological sorting algorithm”. A
usetul topological sorting algorithm 1s one that, 1f applied to
a directed graph containing cycles, terminates with an indi-
cation that a topological sorting cannot be created. It has
been mathematically proven that the best usetul topological
sorting algorithms are linear-time 1n the sum of the number
ol elements and arrows 1n the DAG.

In a directed graph, a set of elements that are part of a
cycle 1s called a “strongly connected component”. An algo-
rithm that can 1dentify strongly connected components given
any directed graph 1s called a *“strongly connected compo-
nents algorithm™. It has been mathematically proven that the
best strong components algorithms are linear-time in the
sum of the number of elements and arrows 1n the directed
graph. Several linear-time, strong components algorithms
are known. Some such algorithms, including “Tarjan’s
Strongly Connected Components Algorithm”, simply
referred to as ““larjan’s algorithm”, are also topological
sorting algorithms 11 the graph given to the algorithm 1s a
DAG. Below, when referring to “topological sorting” 1t 1s
implied that the algorithm 1s both a topological sorting and
a closely connected components algorithm, or some com-
bination of both, unless otherwise stated.

A “finite state machine” or 1n this context, simply a “state
machine” 1s a well-known concept in computer science. A
state machine consists of a finite set of states, a set of
transition names, an 1dentified start-state among the states, a
set of i1dentified end-states, and a partial state-transition
function that given a state and a transition name may
compute a new state. The transition function should not be

10

15

20

25

30

35

40

45

50

55

60

65

6

defined for any of the end-states. A state-machine can be
modeled as a directed graph, where each of the arrows
represent the input and output states of the state-transition
function, and the arrow 1s labeled by a transition name. FIG.
2 A shows an example of the graph of a state machine, where
the start and end states are marked “Nonexistent” and the
end-state 1s 1dentified by a circled dot. The remaining states
are 1n rectangular boxes and the transition names are shown
as labels on the arrows. The example of FIG. 2A shows a
state machine known as the MTOSI state model standard-
ized by the international orgamization named TeleManage-
ment Forum.

Certain examples described herein provide measures for
developing an orchestration plan from a directed service
graph. A service graph comprises a collection of services,
subservices and physical or virtual components used to
construct those services. In particular, the service graph
defines relationships between those services and subser-
vices, represented as an acyclic directed graph.

The foregoing disclosure describes a number of example
implementations for determining a sequence of actions to
perform based on a modification to a service 1n a graph. The
disclosed examples may include systems, devices, com-
puter-readable storage media, and methods for detecting the
member suflering the soit failure. For purposes of explana-
tion, certain examples are described with reference to the
components illustrated in FIGS. 1-8. The functionality of the
illustrated components may overlap, however, and may be
present 1n a fewer or greater number of elements and
components. Further, all or part of the functionality of
illustrated elements may co-exist or be distributed among
several geographically dispersed locations. Moreover, the
disclosed examples may be implemented in various envi-
ronments and are not limited to the illustrated examples.

FIG. 1 1llustrates an example system including processor
102 coupled to modeler 104 and planner 108. Modeler 104
builds model 106 that represents a set of services and
relationships that exist between the services. Using model
106, planner 108 Model 106 1s used as input to planner 108
to apply dependency rules 110 to the different types of
relationship. The application of dependency rules creates
inter-service dependencies 112 between service transitions
of the set of services as illustrated i1n representation 112.
Creating 1nter-service dependencies as in representations
112, planner 108 develops orchestration plan 114 that
includes a sequenced order of state transitions in which to
execute so the system remains stable. The system in FIG. 1
includes processor 102 that 1s coupled to modeler 104 and
planner 108 to develop orchestration plan 114. Implemen-
tations of processor 102 may include a virtual device, or
physical device such as electronic circuitry (i.e., hardware)
that includes an integrated circuit, programmable circuit,
application integrated circuit (ASIC), controller, processor,
semiconductor, processing resource, chipset, or other type of
component capable of managing the system in FIG. 1.

Modeler 104 builds model 106 to represent the inter-
connectedness between the set of services. Model 106
includes nodes (rectangular shape) that each represent a
different service. In this example, eleven diflerent services
are 1llustrated at each node. Each service within the set of
service are inter-related by diflerent types of relationships.
These different types of relationships are illustrated 1n a
hierarchical structure and dotted lines. Examples of the
different types of relationships may include a parent rela-
tionship, child relationship, sibling relationship, reference
relationship, resource relations, referral relationship, pre-
requisite relationships among others. These different types

US 11,196,643 B2

7

of relationships may be explained 1n detail 1n later figures.
Implementations of modeler 104 1include electronic circuitry
(1.e., hardware) such as an 1ntegrated circuit, programmable
circuit, application integrated circuit (ASIC), controller,
processor, semiconductor, processing resource, chipset, or
other type of hardware component capable of building
model 106. Alternatively, modeler may include instructions
(c.g., stored on a machine-readable medium) that, when
executed by processor 102 builds model 106. Implementa-
tions of model 106 include state model, a multi-technology
operations system interface (MTOSI) model, conception
model, mathematical model, computer model, or other type
of model that illustrates the inter-connectedness of the set of
services to each other by the different types of relationships.

Planner 108 uses model 106 as build by modeler 104 to
apply dependency rules 110 to create inter-service depen-
dencies are illustrated 1n representation 112. Based on the
creation of the iter-service dependencies, planner 108 may
proceed to develop orchestration plan 114. In this 1mple-
mentation, planner 108 may develop a directed graph (not
illustrated) prior to development of orchestration plan 114.
Planner 108 may apply an application to the directed graph
to obtain the sequenced order of state transitions as in
orchestration plan 114. Implementations of planner 108
include electronic circuitry (1.e., hardware) such as an inte-
grated circuit, programmable circuit, application integrated
circuit (ASIC), controller, processor, semiconductor, pro-
cessing resource, chipset, or other type of hardware com-
ponent capable of developing orchestration plan 114. Alter-
natively, planner 108 may include nstructions (e.g., stored
on a machine-readable medium) that, when executed by
processor 102 develops orchestration plan 114.

Dependency rules 110 apply the different types of rela-
tionships as created 1n model 106. For example, a set of
dependency rules may apply to parent type of relationships,
another set of dependency rules apply to child type of
relationships, yet another set of dependency rules apply to
sibling type of relationship. The application of dependency
rules 110 by planner 108 results in 1nter-service dependen-
cies among state transitions for the set of services as seen 1n
representation 112. To produce the inter-service dependen-
cies for the state transitions, dependency rules 110 are a set
of principles that govern the state transitions for the different
types of relationships within the system in FIG. 1. Providing
government of the state transitions, dependencies are created
among the state transitions for the set of services. Explicit
examples of dependency rules 110 may be explained 1n
detail 1n a later figure.

Representation 112 1s a visual depiction that illustrates
inter-service dependencies among state transitions for the set
of services. As explained earlier, the inter-service dependen-
cies are created based on the application of dependency rules
110. Although representation 112 1s illustrated as visual
rendering, implementations should be limited as this was
done for 1illustration purposes. For example, representation
112 may be produced by planner 108 without a wvisual
rendering. Rather, representation 112 was illustrated for
purposes ol understanding the inter-service dependencies.
These 1nter-service dependencies may be illustrated 1 a
later figure.

Orchestration plan 114 1s produced by planner 108 upon
creation of the inter-service dependencies. Orchestration
plan 114 lists the sequenced order of the state transitions for
the system to keep the system in FIG. 1 1n a consistent state
without interruption or downtime. In one implementation,
orchestration plan 114 1s developed from a directed graph. In
this example, planner 108 applies a linear-time algorithm

10

15

20

25

30

35

40

45

50

55

60

65

8

that provides a topological sorting for the state transitions
for the set of services. As such, orchestration plan 114
prioritizes the state transitions for the set of services.

In this manner, orchestration plan 114 provides an auto-
mated sequenced order of the state transitions for the set of
services. The sequenced order of state transitions provides a
listed order of actions that should be performed to keep 1n
the consistent state. In a further implementation, the
sequenced order of the state transitions may be executed 1n
the order listed by orchestration plan 114. This implemen-
tation may be explained in detail 1n later figures.

FIGS. 2A-2C illustrate various models for a given service
that are used to represent state transitions, different types of
relations to other services, and creation of inter-service
dependencies. As such, the discussion for FIGS. 2A-2C are
given from a perspective for the given service within the set
of services. For purposes of discussion, the components
illustrated 1n these figures may be used interchangeably
throughout the discussion of each of the figures. For
example, FIG. 2A represents a state model for a given
service, FIG. 2B represents how that given service relates to
other services via diflerent types of relationships, while FIG.
2C represents the inter-service dependencies for that given
service and other services.

Referring now to FIG. 2A, an example state model 202
illustrates potential state transitions 204a-204¢ for a given
service 208 as 1n FIG. 2B. State model 202 1s represented as
a multi-technology operations system interface (MTOSI)
model that includes 1nitial state transition 204a and potential
state transitions 2045-204f. The MTOSI model may be used
by service providers as a mechanism to manage many of the
complex networks and corresponding services. Although
FIG. 2A 1llustrates state model 202 as the MTOSI model,
implementations should not be limited as this was done for
illustration purposes. For example, state model 202 may
include a conceptual model or other visual depiction repre-
senting various states of given service 208. State model 202
provides a visual depiction of the inter-relatedness of the set
ol services by rendering possible state transitions 204a-204f.

FIG. 2B represents an example service 208 with different
types of relationships (e.g., parent, sibling, referrers, refer-
ences, prerequisites, etc.). The arrows indicate the relation-
ship of given service 208 to those other services. For
example, there 1s a parent service to given service 108, while
another service 1s a sibling to given service 208. The model
1s developed as 1n FIG. 2A that also includes the different
types of relationships between given service 208 and other
services. Depending on the type of relationship, a set of
dependency rules may be applied to the different types of
relationships to create inter-service dependencies as illus-
trated in FI1G. 2C.

FIG. 2C represents an example service with possible state
transitions 204a-204¢ and inter-service dependencies 212a-
212d to other services 214a-214c¢. In this example, based on
building state model 202 as 1n FIG. 2A, planner 108 as in
FIG. 1 applies a set of dependency rules to different types of
relationships. The application of the dependency rules create
inter-service dependencies 212aq-212d. Inter-service depen-
dencies 212a-212d are those dependencies created from the
application of the set of dependency rules. These inter-
service dependencies 212a-212d are those dependencies that
exist between state transitions between the services. For
example, assume the set of dependency rules relate to state
transitions the given service to child and referenced services
214a-214¢. In this example, the given service transition
from state “checked” 204a to “designed” 204bH creates
inter-service dependency 212a that depends on a state tran-

US 11,196,643 B2

9

sition (not 1illustrated) in other service 214a. In another
example, the given state transition from “designed” 2045
into “reserved” 204 has dependence 2126 to other state
transition (not illustrated) in other service 214a. Yet, in
another example, state transition from “reserved” 204¢ into
“provisioned” 2044 has inter-service dependency 212¢ to
state transition corresponding to other service 214a. In one
more example, state transition for the given service from
“provisioned” 2044 into “active” 204e¢ has inter-service
dependency 212d to state transition corresponding to other
service 214a. The set of dependency rules may be explained
in detail 1n later figures.

FIG. 3 illustrates an example system architecture to
develop an orchestration plan of state transitions for a set of
services for execution by executor 316. Using model 206
that shows how service 208 relates to other services via
different types of relationships (e.g., parent, sibling, child,
referrer, pre-requisite, references, etc.). Impact model 314
may develop model 216 that 1s used by planner 108. Planner
108 applies dependency rules 312 which are specific to the
different types of relationships. By applying dependency
rules 312, planner 108 creates inter-service dependencies
between the given service and other services as represented
by 210. Creating the inter-service dependencies, planner 108
obtains a directed graph (not 1illustrated). Examples of the
directed graph are discussed in later figures. Using the
directed graph, planner 108 may apply a topological sorting
algorithm 322 to obtain a list of state transitions for execu-
tion by 316. The list of state transitions 1s developed by the
orchestration plan (not illustrated). The orchestration plan
includes the sequenced order of state transitions for execu-
tion. Implementations of the directed graph and orchestra-
tion plan may be explained 1n detail 1n later figures. Imple-
mentations of components 314 and 316 include electronic
circuitry (1.e., hardware) such as an integrated circuit, pro-
grammable circuit, application integrated circuit (ASIC),
controller, processor, semiconductor, processing resource,
chupset, or other type of hardware component capable of
building model 206 and developing the list of state transi-
tions in which to execute. Alternatively, components 314
and 316 may include 1nstructions (e.g., stored on a machine-
readable medium) that, when executed by a hardware com-
ponent (e.g., controller and/or processor) builds a model and
develops the sequenced order of state transitions, accord-
ingly.

FIGS. 4A-4B represent directed graph 402 that may be
obtained from system 302 as in FIG. 3. Using directed graph
402, planner 108 develops orchestration plan 404 that lists
a sequenced order state transitions for a set of services.

Referring now to FIG. 4A, directed graph 402 illustrates
nodes that represents state transitions for corresponding
services S-S, .. Directed graph 402 shows the mterconnect-
edness between the state transitions corresponding services
S,-S,.. The directed graph 402 may be obtained based on the
inter-service dependencies as illustrated in FIG. 2C. Each
node represented on directed graph 410 represents a differ-
ent service among the set of services and the corresponding
state transition. In this example, there are twenty five
different services and dependencies among the state transi-
tions of the services.

FI1G. 4B illustrates an example orchestration plan 404 that
1s developed from directed graph 402 in accordance with the
present disclosure. Using directed graph 402, planner 108
applies a linear-time algorithm that provides a topological
sorting for the state transitions for set of services (S, S,, S;,
S, Ss, Se, S, ..., S,., etc.). In one implementation, the
linear-time algorithm executable by planner 108 may

10

15

20

25

30

35

40

45

50

55

60

65

10

include Tarjan’s algorithm to prioritize the state transitions
for the set of services. This orchestration plan 404 provides
an automated sequenced order of the state transitions for the
set of services. The sequenced order of state transitions
provides a listed order of actions that should be performed
to keep a system 1n a consistent state without interruption or
downtime. As illustrated 1n FIG. 4B, the state transitions
steps are listed that have been or which will be executed. For
a given service state transition, state transitions which have
been executed may depend on subsequent state transitions
and on the dependency rules applied for the type of rela-
tionships for that given service. In this example, the “action
steps” show a condensed view of those state transitions.
Accordingly, orchestration plan 404 1s a sequenced of state
transitions for the set of service based on physical devices,
virtual devices, and configurations that brings through a
sequenced order of configurations of service state 1n
response to a request to achueve a specified end goal services
achieved by collaboration by the devices and applications.
Retferring now to FIGS. 5 and 6, flow diagrams are
illustrated 1n accordance with various examples of the
present disclosure. The flow diagrams represent processes
that may be utilized 1n conjunction with various systems and
devices as discussed with reference to the preceding figures.
While 1llustrated 1n a particular order, the flow diagrams are
not intended to be so limited. Rather, 1t 15 expressly con-
templated that various processes may occur in different
orders and/or simultaneously with other processes than those
illustrated. As such, the sequence of operations described 1n
connection with FIGS. 5-6 are examples and are not
intended to be limiting. Additional or fewer operations or
combinations of operations may be used or may vary
without departing from the scope of the disclosed examples.
Thus, the present disclosure merely sets forth possible
examples of implementations, and many variations and
modifications may be made to the described examples.
FIG. 5 illustrates a flow diagram executable by a com-
puting device to develop an orchestration plan that includes
a sequenced order of state transitions for a set of services.
The computing device may imitially develop a representation
for the set of services. In the representations, each service
within the set of services relates to other services by types
of relationships (e.g., parent, sibling, etc.). As such, creating
the representation, the computing device proceeds to apply
a set of dependency rules to the types of relationships.
Examples of the set of dependency rules are explained 1n
detail with the discussion of operation 504. Applying the set
of dependency rules for the diflerent types of relationships,
creates inter-service dependencies. Inter-service dependen-
cies are those dependencies that exist between state transi-
tions for the set of services. Based on creating the inter-
service dependencies, the computing device may obtain a
directed graph at which each node represents the state
transition for each service. From the directed graph, the
computing device develops the orchestration plan. The
orchestration plan lists the sequenced order of the state
transitions for the set of services. In discussing FIG. 5,
references may be made to the components 1n FIGS. 1-4 to
provide contextual examples. In one implementation, plan-
ner 108 and 208 as in FIGS. 1-2 executes operations
502-506 to develop the orchestration plan. In another 1imple-
mentation, a processing resource (not illustrated) executes
operations 302-508. Although FIG. 35 1s described as imple-
mented by the computing device, it may be executable on
other suitable hardware components. For example, FIG. 5

US 11,196,643 B2

11

may be implemented 1n the form of executable instructions
on a machine-readable storage medium 704 and 604 as 1n

FIGS. 7-8.

At operation 502, the computing device develops the
representation of the set of services. At this operation, each
service 15 modeled as related to other services by different
types of relationships. In one implementation, the computing,
device may build a MTOSI model as mput. The MTOSI
model provides a representation of how each service relates
to other service through types of relationships. The types of
relationships include for example, a parent relationship, a
chuld relationship, a referral relationship, a pre-requisite
relationship among others. Building a model, the computing,
device represents the type of relationship for each service to
other services which 1llustrates how each service relates to
one another.

At operation 504, the computing device applies depen-
dency rules that creates inter-service dependencies between
state transitions for the set of services. The set of depen-
dency rules may depend on the type of relationship between
a given service and other services. Examples of the set of
dependency rules may be possible to view state transitions
that should be executed before and after a given dependency
rule. This provides an i1ndication of the set of dependency
rules that may have caused the dependency between state
transitions of the services. Although an example of the
dependency rules are listed below, implementations should
be so limiting as this was done for illustration purposes.
Accordingly, there may be additional dependency rules or
tewer dependency rules not listed below. For example, the
set of dependency rules as grouped according to the type of
relationship. For example, for a child type of relationship the
dependency rules may include the following:

CHILD_SETUP—A child service/component must wait

for 1ts parent to reach a given MTOSI state before the
chuld can be set-up to the same MTOSI state.

CHILD TEARDOWN-—Parent services must wait to be

torn down to any given MTOSI state until their child

components/services are at most at that state first.

RESOURCE TEARDOWN-—The resource child must
wait for parent to be TERMINATED before being torn
down.

In another example, for the parent relationship the depen-
dency rules may include the following:

PARENT_COMPLETE—The parent needs to wait for its

chuldren to be complete, before the parent itself is
marked as complete. Note that the meaning of “com-
plete” depends on the desired state of the service.

PARENT_LOCK_STEP—II the lockstep: true option 1s

defined 1n the descriptor, then the parent setup progres-
sion 1s waiting for the child state to be progressed
lockstep according to the MTOSI state model, so that
the parent state 1s never more than one state ahead of
the child state.

PARENT_LOCK_STEP_TEARDOWN—ITf the lockstep:

true option 1s defined 1n the descriptor, then the parent
teardown progression 1s waiting for the child state to be
progressed lockstep according to the MTOSI state
model, so that the parent state 1s never more than one

state higher than the child state.
RESOURCE_SETUP—A parent service must wait for

resources to be ACTIVE, belfore the parent becomes

DESIGNED

In yet another example, for the reference relationship the
dependency rules may include the following:

10

15

20

25

30

35

40

45

50

55

60

65

12

REFERENCE SETUP—The service should wait for its
reference to reach its desired state (typically ACTIVE)
betfore progressing to RESERVED state.

REFERENCE TEARDOWN-—The reterenced service
cannot be automatically torn down until 1ts last refer-
rers have been torn down. Also, if the last referrer
changes 1ts reference parameter to a diflerent service,
there may be a shadow version still holding on to the
old reference. So the teardown of the referenced service
must wait until the shadow version 1s removed.

SOFTREF_SETUP(pl, p2, . . ., pn)—When a prerequi-
site parameter (other than reference and auxreference)
references a service, then the state of the referrer must
stay behind the state of the referenced service during
setup. Note that this 1s diflerent from REFERENCE-
_SETUP because the reterenced service 1s not forced to
become ACTIVE belore the referrer; the referrer only
needs to be m a lower MTOSI state.

The dependency lists the names of the parameter(s) that
created the dependency—so these parameters are likely
candidates for a prerequisite: false annotation.

SOFTREF_TEARDOWN(pl, p2, . . . , pn)—Same as
SOFTREF_SETUP, but for preventing teardown of the
referenced service.

REFERENCE_LOCKSTEP—Like SOFTREF_SETUP,
but holding back the state of the referenced service to
stay at most one MTOSI state ahead of the referrer
service. Similar to REFERENCE_TEARDOWN, but
holding back the state of the referenced service to stay
at most one MTOSI state larger than the state of the
referrer service.

RESREF_SETUP(pl, p2, . . . , pn)—This works like
soltreferences, but this rule i1s generated instead of
SOFTREF_SETUP when a parameter 1s specified with
prerequisite: resource. With this rule, the services ref-
erenced by the listed parameters must be taken to their

desired state even betfore the current service becomes
DESIGNED. So 1t 1s like REFERENCE SETUP, but 1t

works for any parameter and 1s even more restrictive.

In release 2.2.1 the prerequisite: resource annotation

does not work for parameters reference and auxrefer-

ence.

RESREF_TEARDOWN(pl, p2, . . . , pn)—Same as
RESREF_SETUP, but for preventing early teardown of
the referenced service.

TRANSITION_ORDER—The sequence of state-transi-

tions defined by the MTOSI state model.

At operation 506, the computing device develops the
orchestration plan that includes the sequenced order of state
transitions for the set of services. In an implementation,
based on applying the set of dependency rules for the
different types of relations, inter-service dependencies are
created between the state transitions. Based on the inter-
service dependencies, the computing device computes the
directed graph that includes a node for each service and state
transition for its respective service. From the directed graph,
the computing device may proceed to develop the orches-
tration plan. The orchestration plan lists the sequenced order
ol state transitions. This means that each state transition is
illustrated to indicate which service state transitions should
be executed before other service state transitions. In a further
implementation, one of the relationships may be modified
and/or state transitions of the service. In this implementa-
tion, the directed graph and the orchestration plan are
updated to retlect the modification.

FIG. 6 illustrates a flow diagram executable by a com-
puting device to obtain a directed graph from which to

US 11,196,643 B2

13

develop an orchestration plan that includes a sequenced
order of state transitions for a set of services. In discussing
FIG. 6, references may be made to the components 1n FIGS.
1-4 to provide contextual examples. In one implementation,
planner 108 and 208 as in FIGS. 1-2 executes operations
602-624 to develop the orchestration plan. In another imple-
mentation, a processing resource (not illustrated) executes
operations 602-624. Although FIG. 6 1s described as imple-
mented by the computing device, it may be executable on
other suitable hardware components. For example, FIG. 6
may be implemented in the form of executable nstructions

on a machine-readable storage medium 704 and 804 as in
FIGS. 7-8.

At operation 602, the computing device develops a rep-
resentation of the set of services. The representation 1s a
model that depicts how each service relates to other services
via different types of relationships (e.g., parent, child, sib-
ling, etc.). Through these different types of relationships, the
model illustrates the interconnectedness of each services to
other services within the set of services. In one 1implemen-
tation, the computing device builds a multi-technology
operations system interface (MTOSI) model as at operation
604. Operation 602 may be similar in functionality to
operation 302 as 1n FIG. 5.

At operation 604, the computing device builds the MTOSI
model. Building the MTOSI model, 1s a visual representa-
tion that represents an 1nitial state and possible state transi-
tions for each service within the set of services. The MTOSI
model which implements 1nterfaces between operation sup-
port systems (OSSs). MTOSI models may be used by
service providers to manage complex networks. In this
manner, since various parts of the network interact, the
MTOSI model implements the corresponding OSSs. The
MTOSI model provides a visual depiction of the inter-
relatedness between each of the services within the set
services. Based on building the MTOSI model, the comput-
ing device proceeds to apply a set of dependency rules to the
different types of relationships as at operation 606.

At operation 606, the computing device creates inter-
service dependencies between state transitions correspond-
ing to the various services within the set of services. In this
implementation, the set of dependency rules are applied to
the different types of relationships between the services.
Upon application of the set of dependency rules, this creates
inter-service dependencies between the state transitions for
cach of the services within the set of services. Examples of
the dependency rules as grouped according to the types of
relationships are explained 1n detail 1n accordance with the
previous figures. Operation 606 may be similar in function-
ality to operation 504 as in FIG. 5.

At operation 608, the computing device obtains the
directed graph. Within the directed graph, each node repre-
sents the state transition that corresponds to each given
service within the set of services. As explained earlier in
FIGS. 1-4, the directed graph 1s a set of objects, referred to
as nodes, which are connected to one another. The edges of
the graph are directed from one node to another. As such, the
nodes of the graph represents each of the state transitions for
the set of services. In this manner, the directed graph
provides a visual depiction of those state transitions for the
set of services. In one implementation, 11 the directed graph
1s a cyclic graph, the computing device may proceed to
apply a linear-time program to detect closely connected
components within the directed graph as at operation 610. In
response, the computing device provides a report to identify
those closely connected components which should change

10

15

20

25

30

35

40

45

50

55

60

65

14

(e.g., state transition and/or relationship) so that the directed
graph becomes an acyclic graph as at operation 610.

At operations 610-612, the computing device uses a
linear-time algorithm executable by the computing device to
detect the closely connected components in the directed
graph. In this implementation, the directed graph may be
represented as a cyclic graph. The cyclic graph contains at
least one graph cycle. As such, the cyclic graph may possess
one undirected simple cycle. As such to accommodate the
more complex services and dependencies, an acyclic graph
may be more desirable to account for the more complex
system. In this implementation, the computing device uses
the linear-time algorithm to detect the closely connected
components 1n the directed graph. In response to executing
the linear-time algorithm, the computing device proves a
report or notification of the detected closely components.
This report provides a notification to an administrator which
relationships 1n the set of services should be modified so that
the directed graph becomes the acyclic graph. The acyclic
graph are considered bipartite graphs that have no graph
cycles and as such may accommodate more complex sys-
tems and services.

At operation 614, the computing device develops the
orchestration plan from the directed graph obtained at opera-
tion 608. The orchestration plan includes the sequenced
order of state transitions for the set of services. This means
the orchestration plan lists the order of state transitions that
computing device should execute to prevent contlicting state
transitions among the set of services. In one implementation,
based upon obtaining the directed graph, the computing
device proceeds to apply Tarjan’s algorithm to sort the state
transitions as at operation 616. In response to applying
Tarjan’s algorithm, means that the directed graph may
include the sequenced order of state transitions as developed
as part of the orchestration plan. In response to developing
the orchestration plan, the computing device proceeds to
execute the listed state transitions in the order listed on the
orchestration as at operation 620. Operation 614 may be
similar 1n functionality to operation 306 as 1n FIG. 5.

At operations 616-618 using the directed graph obtained
at operation 608, the computing device applies Tarjan’s
algorithm to sort the state transitions to provide the
sequenced order of state transitions. Tarjan’s strongly con-
nected components algorithm as executed by the computing
device takes the directed graph as mput and produces a
partition of the graph’s nodes 1nto the graph’s strong con-
nected components. As such, Tarjan’s algorithm operation
provides a topological sorting of the directed graph so that
the state transitions depicted within the directed graph are
prioritized. Based on the application of Tarjan’s algorithm to
the directed graph, the state transitions are provided in a
logical sequenced order for the computing device to execute
as at operation 620. In an implementation, operations 616-
618 may be executed as alternative to operations 610-612. In
other implementations, operation 616-618 are executed 1n
conjunction to operations 610-612.

At operation 620, the computing device proceeds to
execute each of the state transitions for the set of services.
The computing device executes the state transitions as
specified 1n the orchestration plan, in the sequenced order
provided by the orchestration plan. This means the comput-
ing device executes the state transitions in the order pro-
vided by the orchestration plan. Executing the sequenced
order of the state transitions prevents conflicting state tran-
sitions that may occur with the set of services.

At operation 622, the computing device may modily one
of the state transitions within the set of services and/or one

US 11,196,643 B2

15

of the relationships within the model. In response to this
modification, modifications to other services may be cas-
caded throughout the set of services. In turn, the computing
device updates the directed graph and the orchestration plan
accordingly as at operation 624.

At operation 624, 1n response to modifying one of the
state transitions and/or relationships, the computing device
provides the updated directed graph. From the updated
graph that includes the possible state transitions, the com-
puting device develops the updated orchestration plan. The
updated orchestration plan includes the updated sequence of
order of the state transitions within the set of services. Based
on the updated orchestration plan, the computing device
may proceed to execute the updated state transitions.

Referring now to FIGS. 7-8, example block diagrams of
computing devices 700 and 800 with processing resources
702 and 802 are illustrated to execute machine-readable
istructions 1n accordance with various examples of the
present disclosure. The machine-readable 1nstructions rep-
resent instructions that may be fetched, decoded, and/or
executed by respective processing resources 702 and 802.
While illustrated 1n a particular order, these instructions are
not mtended to be so limited. Rather, 1t 1s expressly con-
templated that various instructions may occur in different
orders and/or simultaneously with other instructions than
those 1illustrated in FIGS. 7-8.

FIG. 7 1s a block diagram of computing device 700 with
processing resource 702 to execute instructions 706-710
within machine-readable storage medium 704. Although
computing device 700 includes processing resource 702 and
machine-readable storage medium 704, it may also include
other components that would be suitable to one skilled 1n the
art. For example, computing device 700 may include a
controller, memory storage, or other suitable type of com-
ponent. The computing device 700 1s an electronic device
with processing resource 702 capable of executing instruc-
tions 706-710 and as such embodiments of the computing,
device 700 include a networking device such as a server,
switch, router, wireless access point (WAP), or other type of
networking device. Other embodiments of the computing
device 700 include an electronic device such as a laptop,
personal computer, mobile device, or other type of electronic
device capable of executing instructions 706-710. The
instructions 706-710 may be implemented as methods, func-
tions, operations, and other processes implemented as
machine-readable instructions stored on the storage medium
704, which may be non-transitory, such as hardware storage
devices (e.g., random access memory (RAM), read only
memory (ROM), erasable programmable ROM, electrically
erasable ROM, hard drives, and flash memory).

The processing resource 702 may fetch, decode, and
execute structions 706-710 obtain the directed graph rep-
resenting state transitions for the set of services. Specifically,
the processing resource 702 executes instructions 706-710
to: model a representation for a set of services, wherein each
service relates to other services via diflerent types of rela-
tionships (e.g., parent, child, reference, referral, etc.); apply
a set of dependency rules for each type of relationship based
on the modeled representation that creates inter-service
dependencies between the state transitions for the set of
services; and obtain a directed graph from the inter-service
dependencies, wherein each node within the directed graph
represents a state transition for each service within the set of
SErvices.

The machine-readable storage medium 704 includes
instructions 706-710 for the processing resource 702 to
fetch, decode, and execute. In another embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

16

machine-readable storage medium 704 may be an electronic,
magnetic, optical, memory, storage, flash-drive, or other
physical device that contains or stores executable mnstruc-
tions. Thus, machine-readable storage medium 704 may
include, for example, Random Access Memory (RAM), an
Electrically Erasable Programmable Read-Only Memory
(EEPROM), a storage drive, a memory cache, network
storage, a Compact Disc Read Only Memory (CDROM) and
the like. As such, machine-readable storage medium 704
may include an application and/or firmware which can be
utilized mdependently and/or in conjunction with processing
resource 702 to fetch, decode, and/or execute instructions of
machine-readable storage medium 704. The application and/
or firmware may be stored on machine-readable storage
medium 704 and/or stored on another location of networking
device 700.

FIG. 8 15 a block diagram of computing device 800 with
processing resource 802 to execute instructions 806-826
within machine-readable storage medium 804. Specifically,
the computing device 800 with processing resource 802
executes 1nstructions 806-826 to develop, from a directed
graph, an orchestration plan that includes a sequenced order
of state transitions for a set of services. Although computing
device 800 includes processing resource 802 and machine-
readable storage medium 804, it may also include other
components that would be suitable to one skilled 1n the art.
For example, computing device 800 may include a control-
ler, memory storage, or other suitable type of component.
The computing device 700 1s an electronic device with
processing resource 802 capable of executing instructions
806-826 and as such embodiments of the computing device
800 include a networking device such as a server, switch,
router, wireless access point (WAP), or other type of net-
working device. Other embodiments of the computing
device 800 include an electronic device such as a laptop,
personal computer, mobile device, or other type of electronic
device capable of executing instructions 806-826. The
instructions 806-826 may be implemented as methods, func-
tions, operations, and other processes implemented as
machine-readable 1nstructions stored on the storage medium
804, which may be non-transitory, such as hardware storage
devices (e.g., random access memory (RAM), read only
memory (ROM), erasable programmable ROM, electrically
crasable ROM, hard drives, and flash memory).

The processing resource 802 may {fetch, decode, and
execute nstructions 806-826 to develop an orchestration
plan from a directed graph representing state transitions for
the set of services. Specifically, the processing resource 802
executes mstructions 806-826 to: model a representation for
the set of services wherein each service is related to other
services 1n the set of service via different types of relation-
ships; build a MTOSI model as part of the representation
that includes 1nitial states for each service within the set of
services and the possible state transitions for each service;
apply a set of dependency rules for each type of relationship
modeled such that the application of the dependency rules
creates the inter-service dependencies the state transitions
for the set of services; obtain the directed graph include the
state transitions from the set of services; using the directed
graph to develop the orchestration plan that includes a
sequenced order of state transitions for the set of service via
use of a linear-time topological sorting algornithm (e.g.,
Tarjan’s); execute the state transitions for the set of services
according to the sequenced order of state transitions pro-
vided in the orchestration plan; modily one of the types of
relationships for one of services; 1n response to the modi-
fication, update the directed graph and in turn, the orches-

US 11,196,643 B2

17

tration plan; detect connected components within the
directed graph; and provide a report of the detected con-
nected components that may be used to identify which
relationships within the set of services should change so that
the directed graph becomes an acyclic graph.

The machine-readable storage medium 804 includes
instructions 806-826 for the processing resource 802 to
fetch, decode, and execute. In another embodiment, the
machine-readable storage medium 804 may be an electronic,
magnetic, optical, memory, storage, flash-drive, or other
physical device that contains or stores executable instruc-
tions. Thus, machine-readable storage medium 804 may
include, for example, Random Access Memory (RAM), an
Electrically Frasable Programmable Read-Only Memory
(EEPROM), a storage drive, a memory cache, network
storage, a Compact Disc Read Only Memory (CDROM) and
the like. As such, machine-readable storage medium 704
may include an application and/or firmware which can be
utilized mdependently and/or in conjunction with processing,
resource 802 to fetch, decode, and/or execute instructions of
machine-readable storage medium 804. The application and/
or firmware may be stored on machine-readable storage
medium 804 and/or stored on another location of networking,
device 800.

Although certain embodiments have been illustrated and
described herein, 1t will be greatly appreciated by those of
ordinary skill in the art that a wide variety of alternate and/or
equivalent embodiments or implementations calculated to
achieve the same purposes may be substituted for the
embodiments shown and described without departing from
the scope of this disclosure. Those with skill 1n the art waill
readily appreciate that embodiments may be implemented in
a variety of ways. This application 1s intended to cover
adaptions or variations of the embodiments discussed
herein. Therefore, 1t 1s manifestly ntended that embodi-
ments be limited only by the claims and equivalents thereof.

We claim:
1. A method, executable by a computing device, the
method comprising:

developing a representation of a set of services wherein
cach service relates to other services via diflerent types
of relationships, the representation comprising a state
model providing a visual depiction of possible state
transitions for each service of the set of services;

applying a set of dependency rules for each type of
relationship within the set of services such that the
application of the set of dependency rules creates
inter-service dependencies between state transitions of
the set of services;

obtaining a directed graph wherein each node within the
directed graph represents a state transition of a different
service;

based on the creation of the inter-service dependencies
and the directed graph, developing an orchestration
plan that includes a sequenced order of the state tran-
sitions for the set of services;

detecting closely connected components in the directed
graph; and

providing a report ol the detected closely connected
components, wherein the report 1identifies relationships
in the set of services to change 1n order to moditly the
directed graph into an acyclic graph.

2. The method of claim 1,

wherein a linear-time algorithm 1s used to detect the
closely connected components.

3. The method of claim 1 comprising;

10

15

20

25

30

35

40

45

50

55

60

65

18

modifying one of the state transitions within the set of
services; and
based on the modified state transition, providing an
updated orchestration plan that includes an updated
sequence ol order of the state transitions for the set of
Services.
4. The method of claim 1 wherein developing the repre-
sentation for the set of services wherein each service relates
to other services via different types of relationships com-
Prises:
building a multi-technology operations system interface
(MTOSI) model that represents an imitial state and
possible state transitions of each service.
5. The method of claim 1 wherein providing the orches-
tration plan that includes the sequenced order of the state
transitions for the set of services comprises:
using Tarjan’s Algorithm to provide a topological sorting
of a directed graph that provides the sequence of order
of the state transitions; and
providing the directed graph with the i1dentified sequence
of the order of the state transitions.
6. The method of claim 1 comprising;
executing the state transitions for the set of services
according to the sequenced order provided by the
orchestration plan.
7. The method of claim 1 wherein the different types of
relationships including a combination of at least one of the
following: a parent relationship, a child relationship, a
pre-requisite relationship, and a referral relationship.
8. A system to develop an orchestration execution plan,
the system comprising:
a modeler, coupled to a planner, that develops a repre-
sentation of each service as related to other services via
different types of relationships; and
the planner, coupled to the modeler and a processor, that:
applies a set of dependency rules for each type of
relationship between each service and the other
services;

based on the application of the set of dependency rules,
creates inter-service dependencies between a state
transition of each service and other state transitions
of the other services;

develops a directed graph wherein each node within the
directed graph represents the state transition for each
service;

detects connected components 1n the directed graph,
wherein the connected components 1dentify which
relationships to change i order to modily the
directed graph to an acyclic graph; and

based on the imter-service dependencies, develops an
orchestration plan that lists a sequenced order of the
state transition of each service and the other state
transitions of the other services.

9. The system of claim 8 comprising:

an executor, coupled to the planner, that executes the state
transition of the service and the other state transitions
of the other services 1n the sequenced order provided by
the orchestration plan.

10. The system of claim 9 wherein the planner further

that:
modifies the state transition of the service; and
based on the modified state transition, provides an
updated execution plan that lists an updated sequenced
order of the modified state transition of each service
and the other state transitions.

US 11,196,643 B2

19

11. The system of claim 8 wherein the modeler uses a
MTOSI state model that develops the representation of each
service as related to the other services.

12. The system of 11 wherein the planner develops the
orchestration plan that lists of sequenced order of the state
transitions for the set of services 1s to:

obtain a directed graph wherein each node within the

directed graph represents a state transition for a difler-
ent service; and

using the directed graph, develop the orchestration plan.

13. A non-transitory machine-readable storage medium
comprising instructions that when executed by a processing
resource cause a computing device to:

model a representation for a set of services wherein each

10

service relates to other services via different types of 15

relationships;
1in response to an application of a set of dependency rules
for each type of relationship, create inter-service depen-
dencies between state transitions for the set of services;
obtain a directed graph wherein each node within the
directed graph represents a state transition for each
service for the set of services; and
detect connected components in the directed graph,
wherein the connected components 1dentily which rela-
tionships to change in order to modily the directed
graph to an acyclic graph.

14. The non-transitory machine-readable storage medium
of claim 13 comprising instructions that when executed by
the processing resource cause the computing device to:

develop, from the directed graph, an orchestration plan

that includes a sequenced order of state transitions for

20

25

30

20

the set ol services wvia uftilization of a linear-time
topological sorting algorithm.
15. The non-transitory machine-readable storage medium

of claim 14 comprising instructions that when executed by
the processing resource cause the computing device to:

execute the state transitions for the set of services accord-
ing to the sequenced order provided by the orchestra-
tion plan.

16. The non-transitory machine-readable storage medium

of claim 15 comprising nstructions that when executed by
the processing resource cause the computing device to:

modily one of the relationships within the set services;
and

in response to the modification, update the directed graph
and the orchestration plan.

17. The non-transitory machine-readable storage medium
of claim 13 wherein to model the representation for the set
ol services wherein each services relates to other services
via different types of relationships comprises instructions
that when executed by the processing resource causing the
computing device to:

build a multi-technology operations system interface
(MTOSI) model that represents an imtial state and
possible state transitions ol each service.

18. The non-transitory machine-readable storage medium
of claim 13 comprising nstructions that when executed by
the processing resource causing the computing device to:

provide a report of the detected connected components.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

