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DEVICE AND A METHOD FOR
EXTRACTING DYNAMIC INFORMATION

ON A SCENE USING A CONVOLUTIONAL
NEURAL NETWORK

TECHNICAL FIELD OF INVENTION

This disclosure generally relates to to the field of data
processing by means of a convolutional neural network.

BACKGROUND OF INVENTION

Convolutional neural networks (CNNs) are employed for
many applications, especially for applications in which large
amounts of data need to be processed for extracting a desired
information from the data. For example, the data can rep-
resent 1mage or video data which capture one or more
objects present 1n a (real) scene. CNNs have shown to be
useiul to automatically extract information which charac-
terizes the scene captured by the data more closely, for
example mnformation about the position and the motion of
objects 1n the scene. In other words, CNNs can be configured
to perform a semantic analysis of the data (1.e., by pattern
recognition). As one possible application, a machine can be
controlled on the basis of this analysis. The scene can for
example be a trailic scene in the surrounding of a vehicle
which should be controlled on the basis of an automatic
semantic analysis of the traflic scene. This 1s known as an
autonomous driving application.

A CNN 1s a structural representation of a computer-
implemented method for processing data. It comprises pro-
cessing the data with convolutional kernels which are filter
masks comprising a plurality of values (1.e., filter weights)
arranged 1n a predefined pattern. The convolutional kernel 1s
convolved with the mput data 1n order to process the data.
A constant may be added to the result of the convolution
tollowed by filtering with a so-called activation function, as
1s known to those skilled 1n the field of neural networks.
These processing steps may form a structural unit of the
CNN often referred to as a convolutional layer. The use of
convolutional kernels 1s helpful for avoiding a modification
of the spatial pattern in the input data. Therefore, any 1nput
data that has a spatial pattern, e.g., images and videos, can
be processed by CNNs. Furthermore, convolutional kernels
provide superior efliciency of processing when large
amounts ol data need to be processed.

A problem of ordinary CNNs 1s that they are, as such, not
coniigured to process time-dependent data, 1.e. sequences of
data captured sequentially over time. This 1s to say that an
ordinary CNN assumes a data item, e.g. a “block™ of 1mput
data, to have one common time stamp, which may be the
case for a video frame. Therefore, an 1nput sequence of data
items 1s usually processed sequentially, 1.e. by processing
one data item after the other. A disadvantage of this approach
1s that time-dependencies in the data are not explicitly
recognized by the CNN.

Time-dependencies are present 1n most types of real data,
for example 1n data, which represents real scenes, e.g., of a
traflic environment. This 1s because objects, 1 particular
moving objects such as vehicles, pedestrians and the like can
only move smoothly because of their speed limitation. Such
time dependencies are very important for achueving a robust
extraction of the desired information, such as a detection of
objects or a classification thereof (image classification). One
reason 1s that (real) data 1s usually captured under non-
optimum conditions. Furthermore, objects can suddenly
appear and disappear due to occlusions with other objects.
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Such phenomena are also known as object birth and object
death. Therefore, extracting information from data of com-

plex scenes usually requires the use of temporal information
in order to carry out a robust semantic analysis of the data.

There have been eflorts towards enabling CNNs to rec-
ognize time-dependencies in sequential data, for example 1n
the form of recurrent neural networks (RNN) and long-
short-term memories (LSTM). However, 1t turned out that
these types of neural networks are not always powertul
enough to cope with complex data such as data representing
a scene with many different moving objects. It 1s understood
that this data can be captured by means of a camera.
However, 1n other applications, in particular modern vehicus-
lar applications, the data can be captured by other sensors as
well, including one or more radar sensors or a light detection
and ranging (lidar) system. In connection with these appli-
cations, the data usually represents a trailic scene 1n the
surrounding of the vehicle, wherein different types of sensor
data may be available for combination. The traflic scene
needs to be analysed constantly and reliably from the data in
order to enable sate autonomous driving applications. Yet, a

robust extraction of the required information has proven
difficult with the known types of CNNs.

SUMMARY OF THE INVENTION

In order to solve the above problems a plurality of
different CNNs can be employed, wherein each CNN pro-
vides a portion of the desired information. These CNNs have
to be trained separately although they all provide informa-
tion which 1s mostly related to each other. For example,
based on raw sensor data multiple CNNs can be used to
separately extract information on object detection and free-
space of a scene 1n the field of view of the sensor which have
been used for acquiring the raw sensor data. On the basis of
the extracted mformation further information may be gen-
crated.

A disadvantage of using multiple CNNs 1s that they are
difficult to combine. Often the various types of information
have diflerent data formats, so using and analysing the data
together has shown to be challenging. Pre-processing of data
and testing different training schemes of the CNNs appears
to be not suitable to fully overcome this challenge. Further-
more, using multiple CNNs 1s often not suitable for extract-
ing reliable dynamic information from the various types of
data. In connection to the importance of temporal informa-
tion mentioned above, eflective use of temporal information
in the data appears to be limited with standard CNNs.

The problem underlying the invention 1s to provide a
device and a method for extracting reliable dynamic infor-
mation from a sequence using a CNN.

In one example, the device 1s configured to receive a
sequence of data blocks acquired over time, each of said data
blocks comprising a multi-dimensional representation of a
scene, wherein the convolutional neural network 1s config-
ured to receive the sequence as mput and to output dynamic
information on the scene in response, wherein the convolu-
tional neural network comprises a plurality of modules, and
wherein each of said modules 1s configured to carry out a
specific processing task for extracting the dynamic informa-
tion.

One aspect of the invention 1s to use one single, 1.e. global
CNN for extracting the dynamic information. This CNN has
a modular structure, wherein each of the modules can be
formed by a neural network 1n which case the modules can
be denoted as sub-networks. The approach of the invention
1s an holistic one, wherein the advantage of dividing a
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complex processing up mto multiple units 1s maintained,
while the disadvantage of having to deal with multiple
separated networks 1s removed. The CNN explicitly takes a
sequence of data blocks as input, so an eflective extraction
of dynamic information, 1.e. information that takes into
account temporal changes in the sequence, 1s now possible.
The device according to the invention has shown to be
powerlul 1n robustly extracting reliable dynamic informa-
tion and 1t can easily be integrated into many applications
such as an autonomous driving application. The dynamic
information 1s more accurate compared to the case that this
data 1s extracted per block of the sequence because inter-
dependences between the blocks are considered by the
CNN. Due to the complex structure of the CNN, 1t can be
denoted as a deep CNN.

The modules can be employed 1n a row, 1.e. 1n a “pipe-
line” structure. Although each of the modules 1s designed to
carry out a specific processing task, the overall CNN can be
trained 1n an end-to-end manner, which simplifies prepara-
tion of the network and any necessary adaptions.

Preferably, the sequence 1s formed by raw sensor data,
1.€., data acquired by a sensor, wherein the term “raw” means
that the data 1s not pre-processed. This makes the device
particularly user-friendly.

Also, preferably, each data block of the sequence com-
prises a plurality of data points, each of said data points
representing a spatial location 1n the scene. In other words,
cach data block 1s composed of an arrangement of data
points that provides a spatial characterization of the scene.
The data points can be denoted as a point cloud, which
means that the data points are directly outputted from a
sensor, 1.. raw sensor data. So, the sequence can comprise
instances ol such point clouds, which have been sequentially
acquired at different time instances.

According to one embodiment a first module of the CNN
1s configured to extract image data of the scene from a data
block of the sequence, and wherein the image data 1s formed
by a multi-dimensional, in particular two-dimensional, grid
of elements, each of said elements comprising one or more
channels. Each element can be a picture element (pixel). The
channels can be colour channels as used i known image
sensors, €.2. RGB. However, the image data can also com-
prise channels which represent velocity information. Veloc-
ity information can for example be acquired using a radar
sensor based on Doppler-radar technology, as 1s known from
the art (1.e., “range rate™). It 1s noted that the data blocks of
the sequence are usually highly dimensional. Therefore, the
first module 1s eflectively configured to perform a data
reduction to a predefined number of dimensions. The grid 1s
a spatial arrangement of elements with spatial correspon-
dence to the scene. Therefore, the grid can be regarded as an
image-like “top view” on the scene.

Preferably, the first module 1s a neural network which
takes data points of a data block as input. The first module
1s preferably a fully-connected layer neural network.

According to another embodiment a second module 1s
configured to extract first semantic segmentation data of the
scene from image data of the scene, wherein the semantic
segmentation data comprises a classification of the image
data for distinguishing between objects and background
captured in the image data. The image data 1s preferably
extracted by the first module. The extraction of the semantic
segmentation 1s preferably carried out per image, e.g. per
frame.

The second module 1s preferably a U-net neural network,
which 1s described 1n detail in: Olal Ronneberger, Philipp
Fischer, Thomas Brox, “U-Net: Convolutional Networks for
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Biomedical Image Segmentation™, Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI),
Springer, LNCS, Vol. 9351: 234-241, 2013.

A third module of the CNN can be provided and config-
ured to extract second semantic segmentation data of the
scene and/or motion data of the scene from first semantic
segmentation data of the scene, wherein the first semantic
segmentation data comprises a classification of 1image data
of the scene for distinguishing between objects and back-
ground captured 1n the image data, and wherein the motion
data represents the motion of objects captured 1n the 1image
data, and wherein the third module 1s configured to extract
the second semantic segmentation data and/or motion data
on the basis of the first semantic segmentation data captured
at a plurality of different time 1nstances. The motion data can
represent the direction and/or the velocity of at least some of
the spatial locations which are represented by respective
clements forming the image data. In other words, the motion
data can be given per data point, e.g., per pixel or per group
of pixels corresponding to a channel. The first semantic
segmentation data can comprise a plurality of pixels, 1.e. the
first semantic segmentation data can have the form of an
image.

The third module 1s pretferably configured to perform a
fusion of temporal information in the sequence. This 1s
because the mput of the third module 1s semantic segmen-
tation data from different time 1instances, 1.e. the third
module considers different “views” on the input data over
time, which may be regarded as an abstract video.

The third module 1s preferably formed by a recurrent
neural network (RNN). This RNN can have a specific
structure, as will be addressed further below.

According to another embodiment a fourth module of the
CNN 1s configured to extract object data from the second
semantic segmentation data and the motion data, wherein
the object data represents a spatial occupancy of objects in
the scene.

For a given object in the scene, the object data can
comprise a bounding box around the object, which 1s a form
of object detection. A bounding box 1s preferably a rectangle
around an object and adapted to the size of the object. This
a simple way to represent the object and 1t makes subsequent
processing of the object data more reliable. The object data
can comprise further information to classify or characterise
objects, for example object type, speed over ground, direc-
tion, size, height. With this information, an object can be
casily tracked by a standard tracking algorithm, e.g., Kalman
filtering.

The fourth module 1s preferably formed by a region-
proposal network, which 1s described i1n detail 1n: Ren,
Shaoqing and He, Kaiming and Girshick, Ross and Sun,
Jian, Faster R-CNN: “Towards Real-Time Object Detection
with Region Proposal Networks™, Advances 1n Neural Infor-
mation Processing Systems 28, 91-99, 2015.

A fifth module of the CNN can be configured to extract
free-space data from the second semantic segmentation data
and the motion data, wherein the free-space data represents
the spatial occupancy of iree space in the scene. The
free-space data comprises a classification with regard to at
least two class labels, e.g., free space and unknown space.

The fifth module 1s preferably implemented as a fully
convolutional network, preferably a network as described 1n
detail in: Jonathan Long, Evan Shelhamer, Trevor Darrell,
“Fully Convolutional Models for Semantic Segmentation”,
CVPR, 2015.

The dynamic information extracted by the CNN prefer-
ably comprises the object data, the free-space data into
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and/or the motion data. The dynamic information can be
outputted 1n a combined representation. In general, the
dynamic information represents the dynamic, 1.e. temporal
changes 1n the scene. These changes can be encoded 1n the
object data or the Iree-space marking but can also be
explicitly given by motion data. For example, for each
detected object, a velocity vector with a direction value (1.e.,
coordinates) and magnitude value can be determined. This
corresponds to a specific form of motion data per object that
can therefore be part of the object data. In contrast, the
motion data extracted in the third module can represent any
motion changes in the scene, e.g., per pixel.

The invention turther relates to a system for processing
data sequences. The system comprises at least one sensor for
capturing a data sequence and a device according to one of
the embodiments described herein. The sensor can comprise
at least one of a radar sensor, a light detection and ranging
sensor, an ultrasonic sensor or a camera. The sequence
which 1s received by the device preferably represents data
acquired by means of the sensor.

Another example described herein 1s a method of extract-
ing dynamic information on a scene. The method includes
acquiring a sequence of data blocks using at least one sensor,
cach of said data blocks comprising a multi-dimensional
representation of a scene, extracting dynamic information on
the scene by using a convolutional neural network, wherein
the convolutional neural network 1s configured to receive the
data blocks as input and to output the dynamic information
in response, wherein the convolutional neural network com-
prises a plurality of modules, and whereimn each of said
modules 1s configured to carry out a specific processing task
for extracting the dynamic information.

Having regard to a preferred application the mvention
also relates to a vehicle with a system as described herein,
wherein a control unit of the vehicle 1s configured to receive
dynamic information on the surrounding of the vehicle
extracted by means of the device of the system. The control
unit of the vehicle 1s further configured to control the vehicle
with respect to the extracted information and/or to output a
warning signal if the information meets a predetermined
condition. The dynamic information may represent the posi-
tion as well as the movement of objects in the surrounding
of the vehicle.

In a more specific variant, the device can be configured to
extract dynamic information on the surrounding of a vehicle
comprising a convolutional neural network,

wherein the device 1s configured to directly receive raw
sensor data. This raw sensor data comprises a sequence of
data blocks acquired over time using at least one sensor
mounted on a vehicle, each of said data blocks comprising,
a plurality of data points, and each of said data points
representing a spatial location in the surrounding of the
vehicle. The convolutional neural network 1s configured to
receive the data blocks as mput and to output the dynamic
information in response, wherein the convolutional neural
network comprises a plurality of modules, and wherein each
of said modules 1s configured to carry out a specific pro-
cessing task for extracting the dynamic information.

Having regard to the third module, this module can have
a specific structure, which 1s described further 1n the fol-
lowing.

The third module can be configured to receive an input
sequence comprising a plurality of data items captured over
time, each of said data items comprising a multi-dimen-
sional representation of a scene, 1.¢. 1n form a semantic
segmentation data. In other words, each data item corre-
sponds to one time instant 1 which the scene has been

10

15

20

25

30

35

40

45

50

55

60

65

6

captured 1n two, three or more dimensions. The sequence of
data items can be interpreted as a complex video, wherein
the frames of the video correspond to data items represent-
ing a scene at a particular time 1nstant. Preferably, each data
item of the mput sequence 1s formed by first segmentation
data from one time instant.

The third module can be further configured to generate an
output sequence representing the mput sequence processed
item-wise by the convolutional neural network, 1.e., the
iput sequence 1s processed sequentially, preferably in the
order of the input sequence. Also preferably, the output
sequence comprises a plurality of data 1items, each data item
corresponding to a processed version of the respective data
item of the mnput sequence.

The third module can comprise a sampling umt config-
ured to generate an intermediate output sequence by sam-
pling from a past portion of the output sequence according
to a sampling grid. The past portion of the output sequence
may consist of the very last data item of the output sequence
but may also include data items further down from the
history of the output sequence. By reusing a past portion in
the third module for processing a current data item of the
iput sequence a form of recursive processing 1s 1mple-
mented by the third module. The mtermediate output
sequence 1s a modified version of the past portion of the
output sequence, wherein the modification 1s carried out
item-wise by a sampling of the data item. This sampling 1s
usetul for taking account of dynamic changes in the data,
which may be regarded as an adaption of the data for
improving the processing of the input sequence. This will be
explained further below.

The third module can be further configured to generate the
sampling grid item-wise on the basis of a grid-generation
sequence, wherein the grid-generation sequence 1s based on
a combination of the mput sequence and an intermediate
orid-generation sequence. The imtermediate grid-generation
sequence represents a past portion of the output sequence or
a past portion of the grid-generation sequence. The grid-
generation sequence therefore comprises information of the
current mput sequence and the “processing history”. This
history may be provided either 1n the form of the past portion
of the output sequence (e.g., the last data item of the output
sequence) or the past portion of the grid-generation
sequence (e.g., the last data item of the grid-generation
sequence) which again represents a form of recursive pro-
cessing.

The third module can be further configured to generate the
output sequence based on a weighted combination of the
intermediate output sequence and the input sequence. The
combination can be interpreted as a controlled prediction of
the output sequence, wherein for example either more or less
of the 1nput sequence 1s allowed to pass the third module.
Due to the recursive processing, the intermediate output
sequence also represents information about the previous
behaviour of the mput sequence and the output sequence.
Therefore, time-dependencies are explicitly analysed by the
third module and directly influence the processing of the
input sequence viz. generation of the output sequence. This
enables the third module to achieve a better robustness 1n
accurately considering, 1.e. recognizing temporal mforma-
tion present in the input data sequence. This means that
information, which 1s also encoded through time dependen-
cies, can be extracted with increased accuracy, for example
motion data ol objects and object-detection data. Further-
more, the analysis of the data 1s improved with respect to
objects which suddenly appear and disappear due to occlu-
s1ons (e.g., object birth and object death).
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It 1s noted that, the weighted combination 1s not limited to
a direct weighting of the mentioned sequences. As the case
may be, any of the sequences can be processed prior to
weighting. For example, the put sequence can be pro-
cessed by an mner CNN which results 1n an intermediate
input sequence which represents the (raw) mput sequence.

The third module can be implemented as so-called deep
neural network. In particular, the third module can comprise
a plurality of mner CNNs. These inner CNNs are regarded
as sub-networks, 1.¢. layers, of the third module. These inner
CNNs can have the same, similar, or different structures but
they all comprise a convolution of the input data with a
convolutional kernel. In addition, it can be that the convo-
lution result 1s added to a constant and that an activation
function 1s applied, which can be a function configured to
perform a transformation to a predefined scale, for example
a scale o1 [0, 1], 1.e. the output data 1s between zero and one.
Examples for activation functions are the sigmoid function
and the tanh function. Another example 1s a two-sided
threshold function.

In general, each of the sequences addressed 1n connection
with the third module comprise a plurality of data items,
cach data item comprising a plurality of data points. In this
way, any processing of a data item can involve a processing,
of the data points. The data 1items can be processed one by
one. Alternatively, data items may be processed 1n parallel or
in combinations of data i1tems.

According to a preferred varnant of the third module, the
orid-generation sequence 1s based on an 1tem-wise combi-
nation of the input sequence and the intermediate grid-
generation sequence. For example, the third module can be
configured to form the grid-generation sequence by an
item-wise combination of the mput sequence and the inter-
mediate grid-generation sequence. The combination can be
a concatenation of the two involved sequences per item,
wherein the concatenation can be adapted such that a
subsequent processing of the concatenated data item allows
for a separate processing of the two items forming the
concatenation. As an alternative to a concatenation, the two
sequences can be combined by a dedicated neural network,
preferably also a CNN. In a specific case, this CNN can be
a convolutional gated recurrent unit (GRU), which 1s a type
of RNN described in: Tokmakov, P., Alahari, K. and Schmid,
C., 2017, Learning Video Object Segmentation with Visual
Memory. arXiv preprint arXiv:1704.05737. In another spe-
cific case, the CNN for combining the two sequencecs can
be a convolutional LSTM. Preferably, this convolutional
LSTM 1s implemented as described in: Xingjian, S. H. 1.,

Chen, 7., Wang, H., Yeung, D. Y., Wong, W. K. and Woo, W.
C., 2015: “Convolutional LSTM network: A machine learn-
ing approach for precipitation nowcasting”. Advances in
neural information processing systems (pp. 802-810).

The intermediate grid-generation sequence can be formed
by the past portion of the output sequence, in particular
wherein the past portion of the output sequence 1s processed
with an 1nner CNN. Alternatively, the intermediate grid-
generation sequence can be formed by the past portion of the
grid-generation sequence processed with an mner CNN.

The sampling grid i1s preferably generated by processing
the grid-generation sequence with at least one 1nner CNN.
This 1s preferably carried out 1item-wise, 1.€., one sampling
orid 1s generated from one data item of the grid-generation
sequence. Therefore, a sequence of sampling grids can be
tormed. However, there 1s preferably only one sampling grid
per time step. In other words, 1n the third module there 1s no
orid sequence but only one grid per time.
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The third module can be configured to generate the output
sequence by carrying out the following steps. As a first step
a first weighting sequence and a second weighting sequence
are generated based on one of the mput sequence, the
intermediate output sequence, the intermediate grid-genera-
tion sequence, the grid-generation sequence processed by an
inner convolutional network, or a combination thereof. Both
welghting sequences can be generated on the same basis or
differently. For example, each weighting sequence can be
generated on diflerent combinations of the above sequences.

As a next step an intermediate mnput sequence 1s generated
by processing the mput sequence with an inner CNN. Then,
the intermediate output sequence 1s weighted with the first
weighting sequence and the intermediate mput sequence 1s
weighted with the second weighting sequence. These two
weighted sequences are then superimposed, e.g. by simply
adding the sequences, preferably item-wise. The weighting
can be a multiplication, in particular a point-wise multipli-
cation, which 1s also known as the Hadamard product. In the
latter case, each mnvolved sequence 1s composed ol data
items which comprise a plurality of data points, in particular
pixels.

Generating the first weighting sequence and/or the second
welghting sequence can include forming a combination, e.g.
a concatenation, of at least two of the mput sequence, the
intermediate output sequence, the mntermediate grid-genera-
tion sequence, the grid-generation sequence processed by an
inner convolutional network, and forming a processed com-
bination by processing the combination with an 1nner con-
volutional neural network. This imnner CNN 1s preferably
configured to process with a convolutional kernel and an
activation function, in particular sigmoid function.

In a further variant one of the first weighting sequence or
the second weighting sequence 1s formed by the processed
combination and wherein the other of the first weighting
sequence or the second weighting sequence 1s formed by the
processed combination subtracted from a constant.

In general, the third module can be configured to generate
the first and second weighting sequences correspondingly.
However, 1t 1s understood that the processing parameters for
cach weighting sequence can be different, 1n particular any
convolutional kernels used for processing the sequences.

Having regard to the sampling unit, the sampling gnd
preferably comprises a plurality of sampling locations, each
of the sampling locations being defined by a respective pair
of an offset and one of a plurality of data points of an 1tem
of the intermediate output sequence. So an oflset represents
a location shiit of a data point which 1s underlying the oft:

set.
Therefore, the sampling grid defines where the past portion
of the output sequence 1s to be sampled relative to the
regular data points of the intermediate output sequence. This
can be regarded as a specific form of processing which 1s
controlled through the generated sampling grid. Preferably,
the grid 1s adapted to predict motion 1n the data. Therefore,
the data represented by a given data i1tem can be optimized
in view of the temporal changes in the previous data items.
The motion data can be represented by the ofisets, which can
be regarded as vectors pointing to the desired sampling
location. The sampling unit can be configured to perform an
interpolation of data points. Therefore, 1 a sampling loca-
tion 1s between given data points of the data item to be
sampled, the sampled data point can simply be interpolated
from one or more neighbouring data points, €.g., by bi-linear
interpolation.

The motion data of the scene can be formed by a plurality
of oflsets of one or more sampling grids generated 1n the
third module.
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Each data item of the input sequence can comprise a
plurality of data points, each data point representing a
location 1n the scene and comprising a plurality of param-
eters, 1n particular coordinates, of the location. In particular,
the data points of each data item of the input sequence can
be formed by an 1image comprising a plurality of pixels. This
1s to say that the data points can be formed by pixels 1n
which each data item represents the scene preferably 1in two
or three dimensions. In general, each of the sequences
described in connection with the third module can be formed
of data items corresponding to the data items of the mput
sequence with regard to their structure.

As 1s known to those skilled in the art, a CNN 1s
configured for processing by a training of the CNN. During
training of a CNN, there are usually two steps, feed-forward
and back-propagation. In feed-forward, the network recerves
input data and calculates the output data using initial pro-
cessing parameters (1.e. filter weights and constants). Then,
given the correct output data, the parameters are updated
during back-propagation, wherein the gradient from a loss
function 1s calculated (gradient descent).

Having regard to the modular structure of the global
CNN, the modules can be tramned individually first (pre-
training). Afterwards, the global CNN can be trained. This
training procedure has shown to further improve the accu-
racy of the extracted information.

Further features and advantages will appear more clearly
on a reading of the following detailed description of the
preferred embodiment, which 1s given by way of non-
limiting example only and with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The 1mvention 1s described further by way of example
with reference to the drawing 1n which:

FIG. 1 shows a block diagram of a CNN 1 a device
according to the mvention;

FIG. 2 illustrates data generated during extraction of
dynamic information;

FIG. 3 shows a system with a device comprising a CNN
as 1illustrated i FIG. 1.

FIGS. 4 to 13 show varnants of a third module for the
CNN as 1llustrated 1n FIG. 1.

DETAILED DESCRIPTION

Reference will now be made 1n detail to embodiments,
examples of which are illustrated in the accompanying
drawings. In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough
understanding of the various described embodiments. How-
ever, it will be apparent to one of ordinary skill 1n the art that
the various described embodiments may be practiced with-
out these specific details. In other instances, well-known
methods, procedures, components, circuits, and networks
have not been described 1n detail so as not to unnecessarily
obscure aspects of the embodiments.

‘One or more’ includes a function being performed by one
clement, a function being performed by more than one
clement, e¢.g., 1n a distributed fashion, several functions
being performed by one element, several functions being
performed by several elements, or any combination of the
above.

It will also be understood that, although the terms first,
second, etc. are, 1n some 1nstances, used herein to describe
various elements, these elements should not be limited by
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these terms. These terms are only used to distinguish one
clement from another. For example, a first contact could be
termed a second contact, and, similarly, a second contact
could be termed a first contact, without departing from the
scope ol the various described embodiments. The first
contact and the second contact are both contacts, but they are
not the same contact.

The terminology used 1n the description of the various
described embodiments herein 1s for describing embodi-
ments only and 1s not intended to be limiting. As used 1n the
description of the various described embodiments and the
appended claims, the singular forms “a”, “an” and *“the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will also be under-
stood that the term “and/or” as used herein refers to and
encompasses all possible combinations of one or more of the
associated listed items. It will be further understood that the
terms “includes,” “including,” “comprises,” and/or “com-
prising,” when used in this specification, specily the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

As used herein, the term “1f” 1s, optionally, construed to
mean “when” or “upon” or “in response to determining’” or
“1n response to detecting,” depending on the context. Simi-
larly, the phrase “1f 1t 1s determined” or *“if [a stated
condition or event] 1s detected” 1s, optionally, construed to
mean “upon determining’” or “in response to determining’’ or
“upon detecting [the stated condition or event]” or “in
response to detecting [the stated condition or event],”
depending on the context.

A convolution neural network 90, hear atter often referred
to as the CNN 90, receives a data block 92 as mput (ci. FIG.
1). The data block 92 comprises a plurality of data points 94,
cach data point 94 representing a location by three param-
cters. For example, the data block 92 can be raw sensor data
of a radar sensor. In this case, each data point 94 can be
described 1n polar coordinates (range, angle) and by the
range rate, which sums up to three dimensions. The data
block 92 can have a three-dimensional arrangement of data
points 94, as shown 1n FIG. 1. However, other arrangements
and more than three dimensions are possible. It 1s under-
stood that the CNN 90 receives data blocks 92 1n a sequen-
t1al manner.

The data block 92 1s a physical representation of a scene
which 1s shown as an example 1image 106 1n FIG. 2 com-
prising three objects indicated as white rectangles. This

ellectively 1s the “ground truth”.

The CNN 90 has a total of five modules, each of the
modules formed by a sub-network of the CNN 90. The first
module 96 1s a neural network configured to generate image
data from the data block 92. In FIG. 2, an example 108 1s
given for the image data comprising 2 channels. As can be
seen, the example 108 1s a noisy representation of the ground
truth 1image 106.

The image data 108 1s then received by a second module
98 configured to provide a first semantic segmentation and
motion mformation of the image data 108. The first semantic
segmentation 1s 1llustrated by an 1mage 110 1n FIG. 2.

The first segmentation 1s then processed by a third module
100 configured to provide a second semantic segmentation
and motion mnformation of the image data, illustrated by an
image 112 1 FIG. 2. As can be seen from FIG. 2, the second
segmentation better matches with the ground-truth image
106 with respect to the objects and therefore gives a more
accurate result than the first semantic segmentation. A main
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reason for this 1s the explicit use of temporal information of
the sequence 1n the third module 100. The motion informa-
tion 1s shown in the image 112 1n form of white arrows for
some of the elements forming the image 112. These arrows
represent oflsets which are generated 1f the third module
comprises a sampling umt as described further above.

On the basis of the second segmentation data and the
motion information a fourth module 102 and a fifth module
102 provide object data (1image 114) and a {free-space
marking of the scene (1mage 116), as illustrated in FIG. 2.
The object data comprises a (white) bounding box for each
object and a vector which indicates the direction and the
velocity of the objects.

With reference to FIG. 2, a system 26 can comprise a
sensor 28 for capturing (1.e. acquiring) an mnput sequence 36
for a device 32, wherein the input sequence 36 can represent
a scene, for example a traflic scene. The sensor 28 can be a
radar sensor mounted on a vehicle (not shown) which 1s
configured for an autonomous driving application by the
system 26.

The mput sequence 36 1s received by device 32 and
processed by a CNN, for example the CNN shown in FIG.
1. This 1s to say that the device 32 has processing means
which are configured to make use of a CNN as described
herein. Output data 38 1s outputted by the device 32 and can
be mputted to a control unit 34 of a vehicle (not shown). The
control umt 34 1s configured to control the vehicle on the
basis of the output data 38.

In the following different variants of the third module 100
are described.

A first example of a third module 10 1n shown 1n FIG. 4.
The processing of an input sequence I={ ..., 1 _,, 1., 1,
I.,,...} witht being a sequence index and each element
of the sequence being a data item can be described by the
following set of equations:

G,=CNN{ , 4,_,)
‘%r:Sample(kr—lz Gr)
z=0(W_ *I+W,_ %) A4b)

h=(1-2)Oh +z OCNN()

The variables h, and h, stand for an output sequence and
an 1ntermediate output sequence, respectively. The variable
7z, represents a weighting sequence. Each data item of the
sequences comprises a plurality of data points, for example
pixels of an 1mage.

In the formulas, * denotes the convolutional operator and
© denotes a point-wise multiplication (Hadamard product).
W 1ndicates a convolutional kernel, with the indices indi-
cating the variables to which the kernel refers. “Sample”
denotes sampling by means of a sampling unit 12, with the
first argument being the 1input to the sampling unit 12 and the
second argument being the sampling grid.

In FIG. 4, the solid black squares 14 generally denote a
“duplication” of information, which means that the arrows
leaving the squares 14 carry the same information as the
input arrow. The solid black circles 16 generally denote a
combination of information. For example the past portion of
the output sequence, h,_,, 1s concatenated with the input
sequence I to form an intermediate grid generation sequence
at 17. This sequence 1s then processed by CNN 18, which 1s
generally an imnner CNN. The result 1s the sampling grid G,
in the case of FIG. 1. CNN( ) 1s an operator 1n the equations,
wherein the arguments of CNN( ) refer to a combination of
the arguments, e.g., a concatenation.
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Similarly, the intermediate output sequence h, is concat-
enated with the input sequence I, followed by processing
with block 22 as defined in the equations above, wherein o

denotes the sigmoid function. Block 22 1s a specific form of
an mner CNN.

As can be seen from the above formulas for h,, the mput
sequence 1s processed with another mner CNN 18. The

result, 1.e. CNN (1,) 1s an intermediate mput sequence.
The general convention as described 1n connection with

FIG. 4 1s the same 1n FIGS. 5 to 13.

A second example, third module 20, 1s shown 1n FIG. 5
and 1s defined by the following set of equations:

C=CNN (I,C,_,)
G=CNN (C))

h =Sample(k, |, G.)

i =o(W, ¥+ W, *h+b))
fi=0(W* I+ W, #h+b )

h =fOh +i OCNN(I)

In contrast to the first example, the grid-generation
sequence 1s formed on the basis of a combination of the
mput sequence I, and an intermediate grid-generation
sequence C,_,. As can be seen from FIG. 5, the combination
1s processed by mner CNN 18 which gives C, a processed
version ol the grid-generation sequence, which recursively
forms the intermediate grid-generation sequence of the next
time step (C._,). The processed version of the grid-genera-
tion sequence 1s further processed by an mner CNN 18' to
give the sampling grid G..

A further aspect of the third module 20 1s that the first
weighting sequence 1, and the second weighting sequence 1,
are formed correspondingly by blocks 22, which have the
same mput, namely a combination of the intermediate output

sequence and the input sequence.
The third module 30 shown in FIG. 6 forms a third

example described by:
Crzcw (Ipcr—l)

G,=CNN (C))
h~=Sample(,_,,G,)

[ =O(W . [+W,.*h,_+b,)
JEOW AW, *h,_+D))

h =f.Oh +i OCNN()

The third module 30 deviates from the third module 20 in

that the first and second weighting sequences 1, and 1, are
based on a combination of the past portion of the output
sequence h,_, and the input sequence.

A fourth example 1s given by third module 40 1n FIG. 7.
It 1s described by the following set of equations:

C~=CNN {{,C, ;)

G =CNN(C)
h~=Sample(h, |, G,)

[ =O(W, M +W_*C+b))
J=o(W A+ W FCHb)

h=f.Oh 41 OCNN()
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The third module 40 deviates from the third modules 20
and 30 1n that the first and second weighting sequences 1, and
1, are based on a combination of the grid-generation
sequence processed by immner CNN 18 and the input
sequence.

A fifth example 1s given by third module 50 shown 1n FIG.
8. The following set of equations applies:

C~=CNN (/,C,,)
G=CNN(C)
h =Sample(k,_,,G.)

Ilr:U( W}i $I + Wcz‘ $Cr— l+bi)

4
‘](;:U'( ﬁ}f$jf+ ch$ C.i.‘— 1+bﬂ

h =£Oh +i OCNN()

As can be seen 1n FIG. 8 and 1n the equations, the first and
second weighting sequences t, and 1, are based on a combi-
nation of the intermediate grid-generation sequence C,_; and
the input sequence I. In addition, the grid-generation
sequence formed at 17 1s formed by the same combination.

A sixth example 1s given by third module 60 shown 1n
FIG. 9. The following set of equations applies:

C=CNN (I,C, |

G =CNN(C)

h =Sample(h,_,,G,)

i =O(W, ¥ +W _*C _+b.)
SO (WA AW FC, 1+b)
h=fOh+i OCNN()

C,=CNN(#,)

As a major difference to the previous cases, the interme-
diate grid-generation sequence C,_, 1s formed by a past
portion of the output sequence h, processed by an inner CNN
18 as shown at the right-end side of third module 60.

Third module 70 shown in FIG. 10 1s described by the

following equations:

C=CNN (I,C, |)

G, =CNN(C)

h =Sample(h,_,,G)

[ =O(Wi AW *Co14b;)
JEOW A AW FC,_+Dy
h=fOh+i OCNN()

C =CNN(4,)

The third module 70 corresponds to third module 60 but
the first and second weighting sequences 1, and 1, are formed
as 1n third module 50.
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An eighth example 1s given by third module 80 shown 1n
FIG. 11. The following set of equations applies:

G,=CNN(/l,h, )
fszSample(kr_ 1- Gr)
ZIZG( Wiz $Ir+ th =Ie‘h.af—l +bz)

h=(1-z2,)Oh 4z OCNN(I)

The eighth example corresponds to third module 10 from
FIG. 4 with the diflerence that the weighting sequence z, 1s
based on a combination of the mput sequence and the past
portion of the output sequence.

A ninth example, a variant of third module 20 1s given by
third module 20' shown in FIG. 12. The following set of

equations applies:

C~=CNN (I,C,_,)

G, =CNN(C,)

h =Sample(k, |, G.)

i =c(W_*C AW, *h+b,)
[i=0(W AW, #h A W, C b )

h=f.Oh 41 OCNN()

In third module 20', the first and second weighting
sequences are not formed correspondingly with respect to
the mput of blocks 22. As can be seen from FIG. 9 and the
equations, for the first weighting sequence the intermediate
output sequence h, 1s combined with the grid-generation
sequence formed at 17 processed with an 1nner CNN 18,
which 1s C, forming the intermediate grid-generation
sequence, 1.e. data item C, ,, for the next time step. In
contrast the second weighting sequence 1s based on a
combination of three sequences, as defined in the formula
above for I, and FIG. 9. From this example 1t becomes
apparent that the input to the blocks 22 do not need to be the
same.

A tenth example 1s given by third module 20" shown 1n
FIG. 13. The following set of equations applies:

C =CNN(I,C,_,)

G =CNN(C)

h =Sample(h,_,,G,)

i =o(W X+ W, *h+W_*C+b,)
[i=O(W S LA W, #h A W, C b )

h =f.Oh +i, OCNN(I,)

Third module 20" corresponds to third module 20' with
the diflerence that the mput to blocks 22 can involve the
same combination of sequences. Other combinations are
possible, also combinations with more than three sequences.

While this imnvention has been described in terms of the
preferred embodiments thereot, 1t 1s not intended to be so

limited, but rather only to the extent set forth 1n the claims
that follow.

We claim:
1. A device for extracting dynamic information compris-
ng:
at least one processor configured to train a global convo-
lutional neural network including multiple convolu-
tional neural sub-networks,
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the processor further configured to execute the global
convolutional neural network to:
receive, as input, a sequence of data blocks acquired
over time from at least one sensor that comprises a
radar sensor, each of said data blocks comprising a
multi-dimensional representation of a scene; and
responsive to the mput, output dynamic information on
the scene,
wherein the global convolutional neural network com-
prises a plurality of modules representative of the
multiple neural sub-networks including at least a first
module, a second module, and a third module, each of
the plurality of modules being individually trained to
carry out a specific processing task for extracting the
dynamic information from the sequence of data blocks
received as the mnput,
wherein the first module 1s a data reduction module
configured to extract, from a data block of the
sequence, the sensor data of the scene being formed by
a multi-dimensional grid of elements, each of the
multi-dimensional grid of elements comprising one or
more channels including at least one radar channel
comprising motion data representing a motion of
objects captured 1n the sensor data,
wherein the second module 1s a classification module
configured to extract, from the sensor data of the scene,
first semantic segmentation data of the scene, the first
semantic segmentation data comprising a classification
of the sensor data for distinguishing between back-
ground and the objects captured in the sensor data, and

wherein the third module 1s a temporal fusion module
configured to extract, from the first semantic segmen-
tation data extracted from the sensor data at a plurality
of different time instances, second semantic segmenta-
tion data of the scene and the motion data of the scene
as the dynamic information on the scene that 1s output
in response to the put.

2. The device according to claim 1, wherein:

the first module 1s formed by a tfully-connected layer

neural network;

the second module 1s formed by a U-net neural network;

and

the third module 1s formed by a recurrent neural network.

3. The device according to claim 1, wherein the plurality
of modules includes a fourth module configured to extract
object data from the second semantic segmentation data and
the motion data, wherein the object data represents a spatial
occupancy of objects 1n the scene, wherein the object data
additionally represents a velocity of objects 1n the scene.

4. The device according to claim 3, wherein for a given
object 1n the scene, the object data comprises a bounding
box around the object, and wherein the object data addi-
tionally comprises the velocity of the object.

5. The device according to claim 3, wherein the plurality
of modules includes a fifth module configured to extract
free-space data from the second semantic segmentation data
and the motion data, wherein the free-space data represents
a spatial occupancy of free space in the scene.

6. The device according to claim 5, wherein the dynamic
information comprises the object data, the free-space data or
the motion data.

7. The device according to claim 3, wherein the fifth
module 1s formed by a fully convolutional network for
semantic segmentation.

8. The device according to claim 3, wherein the fourth
module 1s formed by a region-proposal network.
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9. The device according to claim 1, wherein the third
module includes at least one convolutional gated recurrent
unit.

10. The device according to claim 1, wherein the third
module includes at least one convolutional Long Short-Term
Memory neural network.

11. A method, comprising:

training, by at least one processor of a system, a global

convolutional neural network including a plurality of
modules representative of multiple neural sub-net-
works including at least a first module trained as a data
reduction module, a second module trained as a clas-
sification module, and a third module trained as a
temporal fusion module, the training comprising indi-
vidually training each of the plurality of modules to

carry out a specific processing task for outputting
dynamic information extracted from a sequence of data
blocks received as an input each of the data blocks
comprising a multi-dimensional representation of a
scene; and

executing, by the at least one processor of the system, the

global convolution neural network by at least:

receiving, as the mput and over time from at least one
sensor that comprises a radar sensor, the sequence of
data blocks; and

responsive to receiving the input, outputting dynamic
information on the scene that 1s extracted from the
input, the dynamic information being extracted by at
least:

extracting, by the first module, from a data block of the

sequence, sensor data of the scene being formed by a
multi-dimensional grid of elements, each of the multi-
dimensional grid of elements comprising one or more
channels including at least one radar channel compris-
ing motion data representing a motion of objects cap-
tured 1n the sensor data:

extracting, by the second module, from the sensor data of

the scene, first semantic segmentation data of the scene,
the first semantic segmentation data comprising a clas-
sification of the sensor data for distinguishing between
background and the objects captured in the sensor data;
and

extracting, from the first semantic segmentation data

extracted from the sensor data at a plurality of different
time 1nstances, second semantic segmentation data of
the scene and the motion data of the scene as the
dynamic information on the scene that 1s output 1n
response to the mput.

12. The method according to claim 11, wherein:

the first module 1s formed by a fully-connected layer

neural network;

the second module 1s formed by a U-net neural network;

and

the third module 1s formed by a recurrent neural network.

13. The method according to claim 11, including extract-
ing, with a fourth module, object data from the second
semantic segmentation data and the motion data, wherein
the object data represents a spatial occupancy of objects in
the scene, and wherein the object data additionally repre-
sents a velocity of objects 1n the scene.

14. The method according to claim 13, wheremn for a
given object in the scene, the object data comprises a
bounding box around the object, and wherein the object data
additionally comprises the velocity of the object.

15. The method according to claim 13, including extract-
ing, with a fifth module, free-space data from the second
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semantic segmentation data and the motion data, wherein
the free-space data represents a spatial occupancy of free
space 1n the scene.

16. The method according to claim 15, wherein the
dynamic information comprises the object data, the free-
space data or the motion data.

17. A system comprising:

at least one sensor including a radar sensor; and

a device, the device comprising:

at least one processor configured to train a global
convolutional neural network including multiple
convolutional neural sub-networks,
the processor further configured to execute the global
convolution neural network to:
receive, as mput, a sequence of data blocks acquired
over time from at least one sensor that comprises
a radar sensor, each of said data blocks comprising
a multi-dimensional representation of a scene; and
responsive to the mput, output dynamic information
on the scene;
wherein the global convolutional neural network com-
prises a plurality of modules representative of the
multiple neural sub-networks including at least a first
module, a second module, and a third module, each
of the plurality of modules being individually trained
to carry out a specific processing task for extracting
the dynamic information from the sequence of data
blocks received as the input,
wherein the first module 1s a data reduction module
configured to extract, from a data block of the
sequence, sensor data of the scene being formed by
a multi-dimensional grid of elements, each of the
multi-dimensional grid of elements comprising one
or more channels including at least one radar channel
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comprising motion data representing a motion of
objects captured 1n the sensor data,

wherein the second module 1s a classification module
configured to extract, from the sensor data of the
scene, first semantic segmentation data of the scene,
the first semantic segmentation data comprising a
classification of the sensor data for distinguishing
between background and the objects captured 1n the
sensor data, and

wherein the third module 1s a temporal fusion module
configured to extract, from the first semantic seg-
mentation data extracted from the sensor data at a
plurality of different time instances, second semantic
segmentation data of the scene and the motion data
of the scene as the dynamic information on the scene
that 1s output in response to the mput.

18. The system according to claim 17, wherein the at least
one sensor further comprises at least one of a light detection
and ranging sensor, an ultrasonic sensor or a camera and
wherein the data sequence represents data acquired by
means of the sensor.

19. The system of claim 17, the system being part of a
vehicle, wherein the vehicle comprises a control unit con-
figured to:

recerve dynamic information on a surrounding of the

vehicle extracted by the device, and

control the vehicle with respect to the extracted informa-

tion or to output a warning signal if the information
meets a predetermined condition.

20. The vehicle according to claim 19, wherein the
dynamic information represents a position and a movement
ol objects 1n a surrounding of the vehicle.
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