US011188367B2

12 United States Patent (10) Patent No.: US 11,188.367 B2

Patil 45) Date of Patent: Nov. 30, 2021
(54) GUEST OPERATING SYSTEM PHYSICAL (56) References Cited
MEMORY PAGE PROTECTION USING |
HYPERVISOR U.S. PATENT DOCUMENTS
5,581,722 A * 12/1996 Welland GOG6F 12/023
(71) Applicant: NICIRA, INC., Palo Alto, CA (US) e 1108
6,345,351 B1* 2/2002 Holmberg GO6F 12/1036
(72) Inventor: Sukrut Patil, Pune (IN) 711/203
2002/0019887 Al* 2/2002 Mooreoooevvvvnnenn. GO6F 9/46
: : 719/328
(73) ASSlgnee' NICIRA INC-j Palo Alto? CA (US) 2011/0082962 Al 8 4/2011 HOIOVltZ *********** G06F 11/301
_ _ _ _ _ 711/6
(*) Notice: Subject to any disclaimer, the term of this 2012/0324236 Al* 12/2012 Srivastava GOGF 21/57
patent 1s extended or adjusted under 35 713/189
U.S.C. 154(b) by 118 days. 2013/0031291 Al* 1/2013 Edwards GOGF 21/554
711/6
(21) Appl. No.: 15/867,757 2013/0091318 Al* 4/2013 Bhattacharjee GOOF 12’/71_41'7/(53
_ 2013/0125119 Al1* 5/2013 Vipatcoooeene, GO6F 21/53
(22) Filed: Jan. 11, 2018 718/1
2014/0304720 Al1* 10/2014 Yu ...coovvvvieinnnnn.l. GO6F 9/44521
(65) Prior Publication Data o 719/331
2017/0250817 Al* 8/2017 Bonzini HO4L. 9/3247
US 2019/0056968 Al Feb. 21, 2019 2018/0247069 Al1* 8/2018 Tangcccoeovvenne.. GOG6F 21/52
* cited by examiner
(30) Foreign Application Priority Data ‘
Primary Lxaminer — Meng A1 1 An
Aug. 21, 2017 (IN) vt 201741029593 Assistant Examiner — Zujia Xu
(74) Attorney, Agent, or Firm — Su IP Consulting
(51) Int. CL (57) ABSTRACT
GOoE 9/455 (2018-O:~) A method 1s provided for a protection module or a process
GoOol 21/52 (2013-O:~) to use a hypervisor to protect memory pages of a guest
GoOol 21/79 (2013.01) operating system on the hypervisor. The method 1ncludes
(52) U.S. CL modifying a shared memory page in a context of the process,
CPC ... GO6F 9/45558 (2013.01); GO6F 21/52 which causes the guest operating system to allocate a private

(2013.01); GO6F 21/79 (2013.01); GOGF memory page to the process, copy data from the shared
2009/45575 (2013.01); GO6F 2009/45583 memory page to the private memory page, and modity the
(2013.01); GO6F 2009/45591 (2013.01); GO6F private memory page. The method further includes causing
222172105 (2013.01) the hypervisor to protect the private memory page by

(58) Field of Classification Search monitoring the private memory page and generating an alert
when the private memory page 1s accessed.

None
See application file for complete search history. 12 Claims, 2 Drawing Sheets
200 “a
Monitor for any process lalinch L~ 202
NO) |
A process is launched? 204
NG crri., i
Yes
The process is to be protected? - 200
Yas
Suspend prograssion of process execution

Modify shared memorny pages in the tontexi of the

pracess, which causes the 0810 allocate new a

drivate memory pages, copy data from the shared 210

memory pages to the private meriory pages, and
maodily the privaie memoty pages

Cause the hypervisor o irace the private mematy | 212
pages
Resume execulion of the process L~ 214

U.S. Patent Nov. 30, 2021 Sheet 1 of 2 US 11,188,367 B2

Guest application 114

| Protaction module 118

A
B3

Hypervisor 104

g iy iy iy i iy iy i iy iy iy iy iy i i i i iy iy iy ey g i iy g i g i iy i iy i g i g iy i g i iy g g i g iy g g iy iy i i g g i iy iy iy iy i i g i i i i iy iy i iy i i i iy i iy iy i iy i i i i g iy iy iy iy iy g i i i i g i i iy i iy i i i iy iy iy iy i iy iy i i i i iy iy i iy

Host 102

“I'. AT AT s T s T r s s r s s wwwwwwl -

U.S. Patent Nov. 30, 2021 Sheet 2 of 2 US 11,188,367 B2

200 >

— -«{- Monitor for any process launch
' e 204
L—-—----\M“‘ . Aprocessislaunched? e <4

M“&m

L 202

A
W ,:..-.--*‘*‘M"’"""

e
HW.W

Yes

PP e L P P L P P P L e S g S e L e e g i L g 3 PP P g
H
5
5
H
£
%
§
£

’u’.r"“"v'l'\“

%
i Wﬁ fy *‘i*}mf@d m*s:«:fmc;zw paq&g in the wrziex* m“ ﬁw@

'i?r -sfai'ﬁ m&m&ﬁf b3 @E*E ?3?% d*a ta fr@m i“"}@ fﬁhﬁf&*d L -~ 210

MBmONY pages ifﬁ fhe ﬁﬂ%ﬂ&iﬁ% memoTy pages, and
modify the private memory pages

"o T Tl il Tl i ™ i T T el Tl T " e tﬂ“’ﬂ“"ﬂ'ﬂ“ I e e e e Y B i e el e " e i il e i el i "l i e

Sau%a the hypervisor 1o frace the pri wﬁa IS L,__..w 549
pRGES

. R@S‘u{ﬂﬁ &Kﬁﬁﬂﬂ{}ﬁ §§th@ g}r&g&sg o of

FIG. 2

UG g

..-«*‘" 3{}2

‘*“HM

R ﬁ'ﬁ}fi‘ﬁﬁ private memory page is mod ﬁ@d’?‘ e

US 11,188,367 B2

1

GUEST OPERATING SYSTEM PHYSICAL
MEMORY PAGE PROTECTION USING
HYPERVISOR

RELATED APPLICATIONS

Benefit 1s claimed under 35 U.S.C. 119(a)-(d) to Foreign
Application Serial No. 2017410293593 filed 1n India entitled
“SECURING USER MODE PROCESS USING HYPER-
VISOR”, on Aug. 21, 2017, by NICIRA, INC., which 1s
herein incorporated 1n 1ts entirety by reference for all pur-
pOSses

BACKGROUND

In a computer running an operating system (OS) such as
Windows or Linux, a processor has a user mode and a kernel
mode. The processor switches between the two modes (a
mode switch) depending on what type of code 1s running on
the processor. Applications run 1n user mode, and core OS
components run 1n kernel mode.

When a user-mode application starts, the OS provides the
process (an executing instance of the application) with a
private virtual address space and a private handle table so
every process has i1ts own address space. The processor
switches between the processes (a context switch) to read
and write the memory assigned to the processes. In other
words, the processor has to be in the context of a process to
correctly read and write the address space of that process.

User-mode processes are vulnerable to malware attacks
where malware uses different code hooking techniques to
alter the execution flow of a process. Although an OS
provides some protection against modification by making,
some user-mode pages read only, there are application
programming interfaces (APIs) that can be used to turn ofl
this protection.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a virtualized computing
environment 1n examples of the present disclosure.

FIG. 2 1s a block diagram of a method for a protection
module of FIG. 1 to use a hypervisor of FIG. 1 to protect
physical memory pages of a guest operating system of FIG.
1 on the hypervisor in examples of the present disclosure.

FIG. 3 1s a block diagram of a method for the protection
module of FIG. 1 to handle a protected page that has been
modified in examples of the present disclosure.

DETAILED DESCRIPTION

In the following detailed description, reference 1s made to
the accompanying drawings, which form a part hereof. In
the drawings, similar symbols typically identily similar
components, unless context dictates otherwise. The 1llustra-
tive embodiments described i1n the detailed description,
drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the
subject matter presented here. It will be readily understood
that the aspects of the present disclosure, as generally
described herein, and illustrated i1n the Figures, can be
arranged, substituted, combined, and designed in a wide
variety of different configurations, all of which are explicitly
contemplated herein.

Copy-on-write protection 1s an optimization that allows
an operating system (OS) to map virtual address spaces of

10

15

20

25

30

35

40

45

50

55

60

65

2

multiple user-mode processes so they share a physical
memory page until one of the processes modifies the page.
This 1s part of a technique called lazy evaluation, which
allows the OS to conserve physical memory and time by not
performing an operation until absolutely necessary.

For example, suppose two processes load pages from the
same DLL into their virtual memory spaces. The OS maps
these virtual memory pages to the same physical memory
pages for both processes. As long as neither process writes
to their virtual memory pages, they can map to and share the
same physical memory pages.

I1 a first process writes to one of 1ts virtual memory pages,
the OS copies the contents of the shared physical memory
page to a private physical memory page and updates the
virtual memory map for the first process. Both processes
now have their own stance of the page in physical
memory. Therefore, 1t 1s not possible for one process to write
to a shared physical memory page and for the other process
to see the changes.

VMware’s hypervisor includes a security feature that
monitors physical memory pages of a guest OS and sends an
alert to a driver 1n the guest OS when the protected page 1s
accessed (e.g., read, written, executed, or a combination
thereot).

The guest OS can mark some physical memory pages of
user-mode processes, such as code pages, shared code pages,
and some data pages, as copy-on-write. If the hypervisor
places an alert on such a page, the hypervisor does not detect
any access to the page as the guest OS makes a copy of the
page and modifies the copied page instead of the original
page. Thus, what are needed are method and apparatus to
protect physical memory pages of a guest OS using a
hypervisor’s alert feature even when the guest OS marks
these pages as copy-on-write.

In examples of the present disclosures, a protection mod-
ule or a process modifies shared memory pages in the
context of the process before the process executes. The
protection module may modity the shared pages by reading
their contents and writing the same contents back to their
original locations 1n these pages. On modification, a guest
OS makes a copy of the shared pages and redirects all
references of the original pages to newly copied private
pages. The protection module causes a hypervisor to monitor
these newly modified private pages so the hypervisor would
alert the protection module sets when one of these pages 1s
accessed for read, write, execute, or some combination
thereof. The protection module then allows the process to
execute.

FIG. 1 1s a block diagram of a virtualized computing
environment 100 1n examples of the present disclosure.
Environment 100 includes a host computer 102, also
referred to as a host. Host 102 runs a hypervisor 104 to
create and run virtual machines (VMs). Host 102 includes
suitable hardware 106 (physical memory, processor, local
storage, and network interface cards) to support the VMs.
Host 102 stores the VM data in a datastore 108.

A VM 110 represents a soltware implementation of a
physical machine. Virtual resources are allocated to VM 110
to support a guest OS 112 running on the VM and a guest
application 114 running on the guest OS. Corresponding to
hardware 106, the virtual resources may include virtual
memory, virtual processor, virtual local storage, and virtual
network interface cards.

Guest OS 112 may be implemented using any suitable
operating system, such as Microsoit Windows, Linux, etc.
Guest OS 112 may include a protection module 116 1mple-
mented as kernel-mode driver.

US 11,188,367 B2

3

FIG. 2 1s a block diagram of a method 200 for protection
module 116 (FIG. 1) to use hypervisor 104 (FIG. 1) to
protect memory pages ol guest OS 112 (FIG. 1) on the
hypervisor in examples of the present disclosure. Method
200, and any method described herein, may be implemented
as instructions encoded on a computer-readable medium that
1s to be executed by a processors in a computer system.
Method 200, and any method described herein, may include
one or more operations, functions, or actions illustrated by
one or more blocks. Although the blocks are illustrated 1n
sequential orders, these blocks may also be performed 1n
parallel, and/or 1n a different order than those described
herein. In addition, the various blocks may be combined into
fewer blocks, divided into additional blocks, and/or elimi-
nated based upon the desired implementation. Method 200
may begin 1n block 202.

In block 202, protection module 116 monitors for process
creation/launch event. For example, protection module 116
registers with guest OS 112 for a load-image notification or
a process creation notification so that the guest OS notifies
the protection module whenever an 1mage 1s loaded into the
physical memory of the guest OS. Block 202 may be
tollowed by block 204.

In block 204, protection module 116 determines if a
process has been launched. It so, block 204 may be followed
by block 206. Otherwise block 204 may loop back to block
202. A process has been launched when guest OS 112 calls
back protection module 116 with a load-1image or process
creation notification.

In block 206, protection module 116 determines 1f the
process 1s one ol the processes the protection module 1s to
protect. IT so, block 206 may be followed by block 208.
Otherwise block 206 may loop back to block 202. Protection
module 116 first determines 11 the load-image notification
maps to a user-mode 1mage. This may be determined from
a parameter 1n the load-image or process creation notifica-
tion. If so, protection module 116 determines if the user-
mode i1mage corresponds to one of the to-be-protected
user-mode processes. This again may be determined from a
parameter 1n the load-image or process creation notification.

In block 208, protection module 116 suspends progression
ol process execution. Block 208 may be followed by block
210.

In block 210, protection module 116 modifies one or more
shared physical memory pages of guest OS 112 1n the
context of the process by writing virtual memory pages of
the process that map to the shared physical memory pages of

the guest OS. The shared physical memory pages contain
code of the process or a dependent shared library of the
process. Protection module 116 may select to modily less
than all of the shared physical memory pages.

Protection module 116 modifies the shared memory pages
in the context of the process 1n several ways.

In some examples, protection module 116 first walks the
process’s page table and modily the page permissions to
allow the protection module to write to 1ts virtual memory
pages. Protection module 116 then reads data from the
virtual memory pages of the process and writes the same
data back to their original locations 1n the pages. This causes
guest OS 112 to allocate new private physical memory
pages, copy data from the shared physical memory pages to
the new private physical memory pages, and modily the new
private physical memory pages with existing (same) data.
The new private physical memory pages are therefore 1den-
tical to the original physical memory pages.

In some examples, protection module 116 uses an asyn-
chronous procedure call (APC) to 1nject a security module

10

15

20

25

30

35

40

45

50

55

60

65

4

implemented as a dynamic link library (dll) in the process.
The security module dil executes to read data from the
virtual memory pages of the process and write the same data
back to their original locations in the pages. Again, this
causes guest OS 112 to perform COW on the shared physical
memory pages.

In some examples, protection module 116 modifies the
entry point of the image of the process. Protection module
116 first determines an entry point of the image where
execution of the process starts and modifies the entry point
with code to redirect calls to the production module. When
a call 1s made to the entry point (e.g., from the kernel-mode
input/output (I/O) manager 1n the guest OS), the modified
entry point redirects the call to protection module 116, which
then reads data from the virtual memory pages of the process
and writes the same data back to their original locations 1n
the pages. Again, this causes guest OS 112 to perform COW
on the shared physical memory pages.

In some examples, the process itsell 1s aware of and
communicates with protection module 116 through a kernel
mode communication channel. The process changes the
page permissions to allow 1t to write to 1ts virtual memory
pages. The process then reads data from 1ts virtual memory
pages and writes the same data back to their original
locations 1n the pages. Again, this causes guest OS 112 to
perform COW on the shared physical memory pages. The
process then informs protection module 116 to place an alert
on the new private physical memory pages mapped to 1ts
virtual memory pages.

Block 210 may be followed by block 212.

In block 212, after modification 1s complete, protection
module 116 causes hypervisor 104 to place an alert on the
new private physical memory pages. Block 212 may be
followed by block 214.

In block 214, protection module 116 resumes the execu-
tion of the process. Block 214 may loop back to block 202.

FIG. 3 1s a block diagram of a method 300 for protection
module 116 (FIG. 1) to handle a protected page that has been
modified 1n examples of the present disclosure. Protection
module 116 may perform methods 200 (FIG. 2) and 300
sequentially or 1n parallel. Method 300 may begin 1n block
302.

In block 302, protection module determines 1f any pro-
tected private physical memory page of guest OS 112 has
been accessed (e.g., modified). For example, protection
module determines 1f 1t has received any alert from hyper-
visor 104 indicating a protected private physical memory
page ol guest OS 112 has been accessed. If so, block 302
may be followed by block 304. Otherwise block 302 loops
back to itsell.

In block 304, protection module 116 takes action 1n
response to the modification of a protected physical memory
page. For example, protection module 116 may stop the
process and alert an administrator regarding the possible
security breach.

From the foregoing, 1t will be appreciated that various
embodiments of the present disclosure have been described
herein for purposes of illustration, and that various modifi-
cations may be made without departing from the scope and
spirit of the present disclosure. Accordingly, the various
embodiments disclosed herein are not mtended to be limit-
ing, with the true scope and spirit being indicated by the
tollowing claims.

What 1s claimed 1s:
1. A method for a protection module associated with a
kernel-mode driver 1n a guest operating system to use a

US 11,188,367 B2

S

hypervisor to protect memory pages of the guest operating,
system, the method performed by the protection module
comprising;

monitoring for a launch of a user-mode process;

determining if the user-mode process 1s to be protected

once the user-mode process launches, based on a
parameter 1n a load-image or a process creation noti-
fication;

pausing execution ol the user-mode process when the

user-mode process 1s to be protected while the protec-
tion module 1s runmng;
modilying a shared physical memory page 1n a context of
the user-mode process by writing to a virtual memory
page of the user-mode process that maps to the shared
physical memory page, which causes the guest operat-
ing system to allocate a private physical memory page
to the user-mode process, copy data from the shared
physical memory page to the private physical memory
page, and modily the private physical memory page
with existing data on the shared physical memory page,
wherein another virtual memory page of another pro-
cess, which differs from the user-mode process, 1s also
mapped to the shared physical memory page, and the
private physical memory page modified with the exist-
ing data 1s identical to the shared physical memory
page;
causing the hypervisor to protect the private physical
memory page by monitoring the private physical
memory page and generating an alert when the private
physical memory page 1s accessed by any process; and

resuming execution of the user-mode process after said
causing the hypervisor to protect the private physical
memory page.

2. The method of claim 1, further comprising;:

receiving the alert that the private physical memory page

1s being modified; and

taking an action in response to recerving the alert.

3. The method of claim 1, wherein modifying the shared
physical memory page in the context of the user-mode
pProcess CoOmprises:

moditying page permission to allow the protection mod-

ule to write to the virtual memory page of the user-
mode process mapped to the shared physical memory
page; and

modilying the virtual memory page of the user-mode

process.

4. The method of claim 1, wherein modifying the shared
physical memory page in the context of the user-mode
process comprises using an asynchronous procedure call to
inject a dynamic link library 1n the user-mode process, the
dynamic link library causing a write to the shared physical
memory page.

5. The method of claim 1, wherein modifying the shared
physical memory page in the context of the user-mode
process comprises modifying an entry point of the user-
mode process of redirect a call to the protection module, the
protection module causing a write to the shared physical
memory pages in response to the call.

6. The method of claim 1, wherein moditying the shared
physical memory page comprises reading data from a loca-
tion of the virtual memory page of the user-mode process
and writing the same data back to the location of the virtual
memory page ol the user-mode process.

7. A non-transitory, computer-readable storage medium
encoded with instructions executable by a processor to
implement a protection module associated with a kernel-
mode driver 1 a guest operating system that uses a hyper-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

visor to protect memory pages of the guest operating system,
which 1n response to the protection module executing the
instructions, cause the processor to:
monitor for a launch of a user-mode process;
determine 11 the user-mode process 1s to be protected once
the user-mode process launches, based on a parameter
in a load-image or a process creation notification;

pause execution of the user-mode process when the user-
mode process 15 to be protected while the protection
module 1s running;
modily a shared physical memory page 1n a context of the
user-mode process by writing to a virtual memory page
of the user-mode process that maps to the shared
physical memory page, which causes the guest operat-
ing system to allocate a private physical memory page
to the user-mode process, copy data from the shared
physical memory page to the private physical memory
page, and modily the private physical memory page
with existing data on the shared physical memory page.,
wherein another virtual memory page of another pro-
cess, which differs from the user-mode process, 1s also
mapped to the shared physical memory page, and the
private physical memory page modified with the exist-
ing data 1s identical to the shared physical memory
page,
cause the hypervisor to protect the private physical
memory page by monitoring the private physical
memory page and generating an alert when the private
physical memory page 1s accessed by any process; and

resume execution of the user-mode process after said
causing the hypervisor to protect the private physical
memory page.

8. The storage medium of claim 7, wherein the storage
medium further comprises additional instructions, which in
response to the protection module executing the instructions,
cause the processor to:

recerve the alert that the private physical memory page 1s

being modified; and

take an action in response to recerving the alert.

9. The storage medium of claim 7, wherein the instruc-
tions for moditying the shared physical memory page in the
context of the user-mode process, which 1n response to the
protection module executing the instructions, cause the
processor to:

modily page permission to allow the protection module to

write to the virtual memory page of the user-mode
process mapped to the shared physical memory page;
and

modily the virtual memory page of the user-mode pro-

CESS.

10. The storage medium of claim 7, wherein the nstruc-
tions for moditying the shared physical memory page in the
context of the user-mode process, which 1n response to the
protection module executing the instructions, cause the
processor to:

use an asynchronous procedure call to 1nject a dynamic

link library 1n the user-mode process, the dynamic link
library causing a write to the shared physical memory
page.

11. The storage medium of claim 7, wherein the instruc-

tions for modifying the shared physical memory page 1n the
context of the user-mode process, which 1n response to the
protection module executing the instructions, cause the
processor to:

US 11,188,367 B2
7

modily an entry point of the user-mode process of redirect
a call to the protection module, the protection module

causing a write to the shared physical memory pages 1n

response to the call.
12. The storage medium of claim 7, wherein the mstruc- 5

tions for moditying the shared physical memory page, which
in response to the protection module executing the mstruc-

tions, cause the processor to:
read data from a location of the virtual memory page of

the user-mode process and writing the same data back 10
to the location of the virtual memory page of the
user-mode process.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

