12 United States Patent

(10) Patent No.:

US011182486B2

US 11,182,486 B2

Cosgrove et al. 45) Date of Patent: Nov. 23, 2021
(54) EARLY BOOT DRIVER FOR START-UP 8,856,927 B1* 10/2014 Beloussov GOG6F 21/53
DETECTION OF MALICIOUS CODE 726/23
9,336,385 B1* 5/2016 Spencer GO6F 21/56
S
(71) Applicant: Sophos Limited, Abingdon (GB) 2004/0181303 Al 272004 Walmsley B41J%O(iﬁ;
2006/0236108 Al 10/2006 Andr
(72) Inventors: Richard Paul Co.sgrove,, .Abingdon 2008/01779904 Al 7/2008 May;ws
(GB); Mark David Harris, Oxon (GB); 2012/0060217 Al 3/2012 Sallam
Andrew G. P. Smith, Oxford (GB) 2012/0254982 Al* 10/2012 Sallam GO6F 21/564
726/16
(73) Assignee: Sophos Limited, Abingdon (GB) 2013/0347131 Al* 12/2013 Mooring GO6F 21/50
726/29
(*) Notice: Subject to any disclaimer, the term of this 2017/0147819 Al : 5/2017 Vasilenko GOOK 21/554
patent is extended or adjusted under 35 2019/0205533 Al 7/2019 ‘Dlehl HO4L 9/3268
U.S.C. 154(b) by 151 days. (Continued)
(21) Appl. No.: 16/438,045 OTHER PUBLICATIONS
(22) Filed: Jun. 11, 2019 Gu, Zhongshu et al. DRIP: A framework for purifying trojaned
kernel drivers. 2013 43rd Annual IEEE/IFIP International Confer-
(65) Prior Publication Data ence on Dependable Systems and Networks (DSN). https://ieeexplore.
IS 2020/0394305 A1 Dec. 17, 2020 1ece.org/stamp/stamp.jsp?tp=&arnumber=6575342 (Year: 2013).*
(Continued)
(51) Int. CL
GO6F 21/00 (2013.01)
GO6F 21/57 (2013.01) Primary Examiner — Jeremiah L Avery
GO6F 21/54 (2013'02") (74) Attorney, Agent, or Firm — Strategic Patents, P.C.
GO6F 21/56 (2013.01)
(52) U.S. CL
CPC GO6rl’ 21/575 (2013.01); GO6F 21/54 (57) ABSTRACT
(2013.01); GO6F 21/56 (2013.01); GO6F
2221/033 (2013.01) A security dniver loads early in the boot process for a
(58) Field of Classification Search compute instance and detects processes that are subse-
None quently launched. The detected processes can be recorded,
See application file for complete search history. and then scanned with any suitable malware scanning tool(s)
once a user mode 1s available on the compute instance. After
(56) References Cited the operating system 1s installed and a user mode 1s avail-

U.S. PATENT DOCUM

7,783,886 B2 *

7,934,261 Bl

able, other scanning tools may also be deployed (e.g., 1n the
user mode) to augment security of the compute instance.

20 Claims, 6 Drawing Sheets

APPLICATION PROTECTION
£.0, WES, EMAIL, CLOUD APP 150

[FE T T T T

PN T N S g PR R W e g F

. . MARKETPLACE
' «——» PROVIDER
199

— et em oan oo auoas e oa

: IDENTITY
| PROVIDER

8/2010 Walmsley GO6F 21/64
713/176
4/2011 Tan et al.
1
POLICY _ DYMAMIC MARKETBLACE |
MANAGEMENT 151££1N%T|GN5 tlJ EPEE}ATES ﬂ;l‘;: LYTICS OLICIES NTERFACE
iid = = - L 174
SECURITY NETWORK REMEDIAL EVEMT ASSET IDEH:!:%'I"Y
MANAGEMENTE | ACCESS ACTIONS LOGEGEING CLASSIHICATION] | MGaT
122 124 123 166 £60 172
TECHNIQUES COLLECTION MODELS
130 164 pLsy

INSTANCE 109

5 CLOUD COMPUTING

i ENTERFRISE FACILITY 102

FIREWALL 10

e

WIRELESS ACCESS
POINT 11

SERVER 2D

5

WMOBILE DEVICE 26

. 101

#1 <

5

1
MOSILE DEVICE 16 ; 3
f

EMNOPOINT 22

¥

5 | ENDPOINT 12 10T DEVICE 18

¥

¢ |SERVER 34 .

CLOUD COMPUTING {
F

INSTAMCE 19

NOTE: S = SECURITY AGENT

US 11,182,486 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2020/0394300 Al 12/2020 Harrs et al.

OTHER PUBLICATIONS

Zhang, Cong et al. Research and implementation of file security
mechanisms based on file system filter driver. 2017 Annual Reli-
ability and Maintainability Symposium (RAMS). https://1eeexplore.
lece.org/stamp/stamp.jsp?tp=&arnumber=7889772 (Year: 2017).*
Musavi, Seyyedeh Atefeh; Kharrazi, Mehdi. Back to Static Analysis
for Kernel-Level Rootkit Detection. IEEE Transactions on Infor-
mation Forensics and Security, vol. 9, Issue: 9. https://1eeexplore.
1ece.org/stamp/stamp.jsp?tp=&arnumber=6850033 (Year: 2014).*
Rhee, Junghwan. Data-Centric OS Kernel Malware Characteriza-
tion. IEEE Transactions on Information Forensics and Security vol.
9, Issue: 1. https://1eeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6671356 (Year: 2014).*

L1, Shaobo et al. Research and Application of USB Filter Driver
Based on Windows Kernel. 2010 Third International Symposium on
Intelligent Information Technology and Security Informatics, https://
iecexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber=5453612 (Year:
2010).*

Javaheri, Danial et al. Detection and Elimination of Spyware and
Ransomware by Intercepting Kernel-Level System Routines. IEEE
Access, vol. 6. https://1eeexplore.IEEE.org/stamp/stamp.jsp?tp=
&arnumber=8566151 (Year: 2018).*

Kirmani, Maritya S et al., “Analyzing Detection Avoidance of
Malware by Process Hiding”, 2018, 5 pages.

Shahzad, Farrukh et al., “In-Execution Malware Detection using
Task Structures of Linux Processes”, 2011, 6 pages.

USPTO, “U.S. Appl. No. 16/437,999 Notice of Allowance dated
Dec. 9, 20207, 15 pages.

* cited by examiner

US 11,182,486 B2

Sheet 1 of 6

Nov. 23, 2021

U.S. Patent

I

L0l ™

SVVS

e
O
<
L)
-
0o
o
<

d3dIANOHd
ALILNIQ]

OV IdLINGVIN

d3TINOYd m

6T IDONVISNI

DONILNdNOD NGO

ANADV ALIFINO4S =5 -31L0N

27 INIOdAN3

9¢ IDIA3Q SO

TT INIOd
SS3IDDV SSITIYIM

0T 1TVYAIYIA

60T IDONVLISNI

iii:ii;iilliiiii!liiiiiiiiiiiiiiiiiii*iiiiii;iiiiiiiilli*;iiiiiiiiiiii;iiiliiiiiii*iiilié

0ST ddV aNO012 "NVING '93IM “D'3

00T ALITIDVH INFWIOVNYIN LVIHHL

NOILI310dd NOILLVYII1ddV

797 9T O¢T
STIAON NOILDITI0D S3NVINHDAL
ALILN3 INELE NOILLDI13a

Ut | 09T | | 59T 87T Vet
1OW NOLLYOIISSYTD | | ONIDD0T SNOILLOVY 5S40V INJWADVYNYIN
ALILN3dL 13SSY IN3AJ NeEINER NYOMLIN ALIYNDIS

VLT OLT momne T 3
891 QC1 V1T
JOV4HIIN] . SI1D170d INANADYNYIN
S
Y 1d 1IN IA N IANYNAG SOILATYNY 4 1LV{dN SNOILINI4Ed AI10d

US 11,182,486 B2

Sheet 2 of 6

Nov. 23, 2021

U.S. Patent

61 IDNVLISN]
ONILNAdINQD ANOT1D

¢ 9l LN39V ALIMNI3IS =S :31ON
GETTN 21 wniodan3 | S

~ ZC INIOdAaN3 — 5 _ 1 4DIA40Q J1I80ON

LO0C ~I T 4/_-, _
— _ TT INIOd
37 191730 Tgon | S ¢ d3Ndd5 H SSIIDV $STTIHIM
0T 1TYM3IYIA
\ v :
iiiiiiiiiiiiiiiiiiiiiiiiiii “3 ‘
‘x 7ST MHOMLIN w

NN N N TE Tt T T Y T TN O FE T O OTEE TR ST O T OB O EOFTE O AT OB W O OTE O O el
AW PR W T TN TN OTRR T W T TR TN O FTW OREW PR PR W TR TR O RTW P TR TR T O FRRR R T TR PR ek Ak e

28C TIVM3IYH

_ %5\,&%_ > _
S

60T IDNVISNI
ONILNdNOD ANOTD H

Friviririririrrriririririinie

98¢ Y3NAYIS

iiiiiiii*iiiii*;iiiii;iiili;;iiiiiiiii*iiiiii*iiiiii;iiiiiiiiiiiiiiliiiiiliii;iiiiiiiiiié

0T dd¥ ANOT “IVINT ‘93M “9°3 00T ALITIDVH INFWIOVNYW LVIHHL

087 ALNIDVH
ISIHdYILNT ANO1D

NOILLJIALOAd NOILLVYOI1ddV

“
m m
iiiiiiiiiiiiiiiiiiiiiiiiii P 79T 791 OLT |
H “ S1300N NOILDITI0D SINDINHOZL | |
R ERb LUEEEEED : “ ALILN3 INIAZ NOID3LAd |,
” 85T “ | —
m 43AINOYd | (! 43 05T 55T | | 343 Zd |
| ALILN3Q! u LOW [INOILYDHHISSYTD ONIDOOT SNOLLDY SSIOIV | [INIWIOVNY | |
e e e e e | “ ALILNII 13SSY INIAT |] VIQINIY AJOMLIN ALIYND3S |
| | .
o 66T ! “ VZT 0rT o __ . 7 | !
ﬂ —p | 89T 0ZT 1T _
“ 43dIA0dd “ 2OvAaaLN 231110 SOILATYNY $31vadn SNOLLIN3G | [T VARV
! IV I4LDIYYIN | | IV IdLIHEVYIN DINVYNAQ AJ110d !
' . :

0€c
¥3SN 01l€ A2IAIA SNILNAINOD

9ce

US 11,182,486 B2

=== IYVMAUVH
0CE ¥3HLO
S 1VeddHdld3d LNdLNO / LNdNI
&
S
-
o
3
—
79
olE — —
~ 2% Z1E
S NOSVTER AHOWIN ¥0SS3I00Yd
~
>
&
2

0€ 00%C

=~ & Ol

U.S. Patent

U.S. Patent Nov. 23, 2021 Sheet 4 of 6 US 11,182,486 B2

400

405

-

vy 1v3g9ldv3aH

0Ly DONIHO 100

ENDPOINT THREAT DETECTION
420

SERVER 406

<t
-,
<
]
o
S
1]
0
L

ENDPOINT 402

80%7 ALITIOVA

INJWNFIOVNVIA 1VJdHL

FIG. 4

US 11,182,486 B2

&
Sol
-—
\r,
3
=
s 9,
o
e
—
-
X 015
g AYOWIN

U.S. Patent

G Ol
40)°

¥0S
NTLSAS ONILYHIdO

909

80 300N ¥3SN

JA0IN TANd A

713

NOILVOl 1ddV

ClS
1dNddA SO

e e e e e e e e e e e e e e e e e e e]

9 OlA

009
J A

US 11,182,486 B2

= ce9
= NVOS
© ANNOYONOVE
3
7 0¢9
HINNVOS

QYIHL HONNYT
_ |
e
—
o s
e 819
R $35S3008d MaN
C NYOS ANV 103130

919
dANNYOS
ANOOD4S HONNV']

U.S. Patent

79
SNVOS 1S1Sd4d

A

719
J41VIUdN-DA

L9
$3SS3004d
a399071 NVOS

vivmiriemirberomivsirwinpiemivsieinirsiovieisivsiviesinibeimi

0l9
S455300dd
43499071 1S4N03Y

809
dANNVYOS
1Sdlid HONNY'

30VdS 4450

wwr peidp el il miebr o et pie ey et b b Wb R b by by M kb ik el ek ojeiphk gk kil bkl e bl el WER PR R R W

909
5455400dd 901

09
S455400dd
10414d

€09
ddNAIHA AVO'l

209
1004

40VdS 1aNd A

US 11,182,486 B2

1

EARLY BOOT DRIVER FOR START-UP
DETECTION OF MALICIOUS CODE

CROSS-REFERENCE TO RELATED
APPLICATIONS D

This application 1s related to the following commonly-
owned U.S. patent application Ser. No. 16/4377,999 filed on

even date herewith and incorporated herein by reference 1n
its entirety: entitled “Early Boot Driver for Start-Up Detec-
tion of Malicious Code.”

10

FIELD

The present disclosure generally relates to a threat man- 15
agement system and threat management techniques, and
more particularly to malware mitigation based on detection
ol malicious processes executing before a user mode scan-

ning tool 1s available.
20

BACKGROUND

Some exploits can evade detection on a compute 1nstance
by launching processes early in a boot, e.g., before a
corresponding malware scanning tool can begin executing in 25
the user mode. There remains a need for improved detection
techniques that can detect and mitigate this type of exploit.

SUMMARY
30

A security driver loads early 1n the boot process for a
compute instance and detects processes that are subse-
quently launched. The detected processes can be recorded,
and then scanned with any suitable malware scanning tool(s)
once a user mode 1s available on the compute instance. After 35
the operating system 1s installed and a user mode 1s avail-
able, other scanning tools may also be deployed (e.g., 1n the
user mode) to augment security of the compute instance.

In one aspect, a computer program product disclosed
herein mcludes computer executable code embodied 1n a 40
non-transitory computer readable medium that, when
executing on a computing device, performs the steps of
loading a driver in a kernel mode of an operating system
during a boot of the operating system on a compute instance
before a user mode of the operating system 1s available, the 45
driver configured to detect processes starting on the compute
instance, storing a list of processes detected by the driver
and executing on the compute instance, launching a {first
scanner in the user mode, the first scanner configured to
asynchronously perform a first scan for malware 1n each 50
process 1dentified in the list of processes from the driver by
scanning at least an executable and an executable file path
associated with each process, launching a second scanner 1n
the user mode, the second scanner configured to detect one
or more other processes started after the first scanner 1s 55
launched, to synchronously perform a second scan for
malware 1n each of the one or more other processes, and to
prevent an execution of each of the one or more other
processes until a corresponding scan has been completed,
and remediating malicious code 1dentified 1n at least one of 60
the first scan and the second scan.

The second scanner may begin to scan after the first
scanner completes a scan of all of the processes 1dentified 1n
the list of processes. The first scan may include a scan of at
least one of an executable associated with one of the 65
processes, files 1n an executable path associated with one of
the processes, or a dynamic linked library loaded by one of

2

the processes. Loading the driver may include registering
the driver as a kernel-mode driver for execution at an early
stage 1n a boot process. The driver may record a time stamp
indicating a start time for each process identified 1n the list
of processes. The computer program product may further
include computer executable code that performs the step of
launching a third scanner configured to perform a third scan
including a background scan of an enftire disk associated
with the compute instance. The computer program product
may further include computer executable code that performs
the step of persisting at least one of the first scan, the second
scan, and the third scan with a heartbeat to a threat man-
agement facility.

In another aspect, a method disclosed herein includes
loading a driver during a boot of an operating system on a
compute instance, the driver loaded before a user mode of
the operating system 1s available and the driver configured
to store a list of processes executing on the compute
instance; launching a first scanner 1n the user mode, the first
scanner configured to perform a first scan for malware 1n
cach process 1dentified in the list of processes when the first
scanner launches; and launching a second scanner 1n the user
mode, the second scanner configured to detect one or more
other processes started aifter the first scanner 1s launched, to
perform a second scan for malware in each of the one or
more other processes, and to prevent an execution of each of
the one or more other processes until a corresponding scan
has been completed.

The second scanner may synchronously scan the one or
more other processes i an order that the one or more other
processes launched. The second scanner may begin to scan
alter the first scanner completes a scan of all processes
identified in the list of processes. The first scanner may
asynchronously scan processes 1dentified 1n the list of pro-
cesses. The first scan may include a scan of at least one of
an executable associated with a process 1n the list of pro-
cesses, files 1n an executable path associated with a process
in the list of processes, or a dynamic linked library loaded
by a process in the list of processes. Loading the driver may
include loading the driver early 1n the boot of the operating
system. Loading the driver may include registering the
driver as a kernel-mode driver for execution at an early stage
in a boot process. The driver may include a certificate for use
by a boot time detection driver of the operating system of the
compute instance. The driver may record a time stamp
indicating a start time for each process 1dentified 1n the list
of processes. The method may further include persisting the
first scan with a heartbeat to a threat management facility.
The method may turther include launching a third scanner,
where the third scanner 1s configured to perform a back-
ground scan of an entire disk associated with the compute
instance. The method may further include persisting the
background scan with a heartbeat to a threat management
facility.

In another aspect, a system disclosed herein includes a
compute instance, a driver loaded into and executing in a
kernel mode of an operating system for the compute instance
before a user mode of the operating system 1s available, the
driver configured to record a list of processes executing on
the compute mstance by recording processes started on the
compute instance after the driver i1s loaded, a first scanner
executing 1n the user mode of the operating system, the first
scanner configured to perform a first scan for malware 1n
cach process 1dentified 1n the list of processes at a time that
the first scanner launches, and a second scanner executing in
the user mode of the operating system, the second scanner
configured to detect one or more other processes started after

US 11,182,486 B2

3

the second scanner 1s launched, to perform a second scan for
malware 1n each of the one or more other processes, and to
prevent an execution of each of the one or more other
processes until a corresponding scan has been completed.

A security driver loads early 1n the boot process for a
compute instance and detects processes that are subse-
quently launched and/or terminated. The detected processes
can be recorded, and then scanned with any suitable mal-
ware scanning tool(s) once a user mode 1s available on the
compute instance, including any processes that are termi-
nated before such scanning tools are launched. After the
operating system 1s installed and a user mode 1s available,
other scanning tools may also be deployed (e.g., 1n the user
mode) to augment security of the compute instance.

In one aspect, a computer program product disclosed
herein includes computer executable code embodied 1n a
non-transitory computer readable medium that, when
executing on a computing device, performs the steps of
booting an operating system on a compute instance; during,
the boot and before a user mode 1s available, loading a driver
in a kernel mode of the operating system, the driver con-
figured to detect and record each process started and stopped
on the compute 1nstance as a list of processes; when the user
mode 1s available, launching a scanner in the user mode;
requesting, with the scanner, the list of processes detected by
the driver, including any processes that have stopped; scan-
ning, with the scanner, one or more files associated with each
process 1n the list of processes; and, 1 malicious code 1s

[

identified 1n the one or more files associated with one of the
processes 1n the list of processes, remediating the one of the
Processes.

In another aspect, a method disclosed herein includes
loading a driver during a boot of an operating system on a
compute instance, the driver loaded before a user mode of
the operating system 1s available and the driver configured
to record a list of processes including each process started
and stopped on the compute instance; launching a scanner 1n
the user mode; requesting, with the scanner, the list of
processes recorded by the driver, including any processes
that have stopped; and scanning, with the scanner, one or
more files associated with each process 1n the list of pro-
CEeSSes.

The method may further include launching a second
scanner i1n the user mode, where the second scanner 1s
configured to detect one or more other processes started after
the scanner 1s launched, to perform a second scan for
malware 1n each of the one or more other processes, and to
prevent an execution of each of the one or more other
processes until a corresponding scan has been completed.
The second scanner may begin to scan after the scanner
completes a scan of all of the processes 1identified 1n the list
of processes. The method may further include persisting at
least one of the scanner and the second scanner with a
heartbeat to a threat management facility. The method may
turther include launching a third scanner, the third scanner
configured to perform a background scan of an entire disk
associated with the compute instance. The scanner may
asynchronously scan the processes 1dentified in the list of
processes. The scanner may scan at least one of an execut-
able associated with a process 1n the list of processes, files
in an executable path associated with a process in the list of
processes, or a dynamic linked library loaded by a process
in the list of processes. Loading the driver may include
loading the driver early in the boot of the operating system.
Loading the driver may include registering the driver as a
kernel-mode driver for execution at an early stage 1n a boot

process. The driver may include a certificate for use by a

10

15

20

25

30

35

40

45

50

55

60

65

4

boot time detection driver of the operating system of the
compute 1mstance. The driver may record a time stamp 1n the
list of processes indicating a start time for each process
identified 1n the list of processes. The method may further
include, 1f malicious code 1s 1dentified 1n the one or more
files associated with one of the processes in the list of
processes that 1s still executing, remediating the one of the
processes. Remediating the one of the processes may
include quarantining the one of the processes. Remediating
the one of the processes may include executing the one of
the processes 1n a sandbox. Remediating the one of the
processes may include restricting access by the one of the
processes to one or more resources of the compute 1nstance.
The method may further include, i malicious code 1is
identified 1n the one or more files associated with one of the
processes 1n the list of processes, remediating the one or
more files associated with the one of the processes. Reme-
diating the one or more files may include executing a
malware detection tool or a malware removal tool for the
compute instance. Remediating the one or more files may
include remediating the compute instance.

In another aspect, a system disclosed herein includes a
compute mnstance, a driver loaded into and executing 1n a
kernel mode of an operating system for the compute instance
betfore a user mode of the operating system 1s available, the
driver configured to record a list of processes including each
process started and stopped on the compute instance after
the driver 1s loaded, a scanner executing 1n the user mode of
the operating system, the scanner configured to perform a
scan for malware in each process identified in the list of
processes at a time that the scanner launches, and a local
security agent executing on the compute instance and con-
figured to remediate malicious code 1dentified by the scan-
ner.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

The foregoing and other objects, features and advantages
of the devices, systems, and methods described herein will
be apparent from the following description of particular
embodiments thereof, as illustrated 1n the accompanying
drawings. The drawings are not necessarily to scale, empha-
s1s 1nstead being placed upon illustrating the principles of
the devices, systems, and methods described herein.

FIG. 1 depicts a block diagram of a threat management
system.

FIG. 2 depicts a block diagram of a threat management
system.

FIG. 3 1illustrates a system for forensic analysis for
computer processes.

FIG. 4 illustrates a threat management system.

FIG. 5 shows a block diagram for a computing device.

FIG. 6 shows a method for malware detection.

DESCRIPTION

Embodiments will now be described with reference to the
accompanying figures. The foregoing may, however, be
embodied 1n many different forms and should not be con-
strued as limited to the illustrated embodiments set forth
herein.

All documents mentioned herein are hereby incorporated
by reference in their enftirety. References to items in the
singular should be understood to include 1tems 1n the plural,
and vice versa, unless explicitly stated otherwise or clear
from the text. Grammatical conjunctions are intended to
express any and all disjunctive and conjunctive combina-

US 11,182,486 B2

S

tions of conjoined clauses, sentences, words, and the like,
unless otherwise stated or clear from the context. Thus, the
term “‘or” should generally be understood to mean “and/or”
and so forth.

Recitation of ranges of values herein are not mtended to
be limiting, referring instead individually to any and all
values falling within the range, unless otherwise indicated
herein, and each separate value within such a range 1s
incorporated 1nto the specification as 11 1t were imdividually
recited heremn. The words “about,” “approximately” or the
like, when accompanying a numerical value, are to be
construed as indicating a deviation as would be appreciated
by one of ordinary skill in the art to operate satisfactorily for
an intended purpose. Similarly, words of approximation
such as “approximately” or “substantially” when used 1n
reference to physical characteristics, should be understood
to contemplate a range of deviations that would be appre-
ciated by one of ordinary skill 1n the art to operate satisfac-
torily for a corresponding use, function, purpose, or the like.
Ranges of values and/or numeric values are provided herein
as examples only, and do not constitute a limitation on the
scope ol the described embodiments. Where ranges of
values are provided, they are also intended to include each
value within the range as if set forth individually, unless
expressly stated to the contrary. The use of any and all
examples, or exemplary language (“e.g.,” “such as,” or the
like) provided herein, 1s intended merely to better 1lluminate
the embodiments and does not pose a limitation on the scope
of the embodiments. No language in the specification should
be construed as indicating any unclaimed element as essen-
tial to the practice of the embodiments.

In the following description, it 1s understood that terms
such as “first,” “second,” “top,” “bottom,” “up,” “down,”
and the like, are words of convenience and are not to be
construed as limiting terms unless specifically stated to the
contrary.

FIG. 1 depicts a block diagram of a threat management
system 101 providing protection against a plurality of
threats, such as malware, viruses, spyware, cryptoware,
adware, Trojans, spam, intrusion, policy abuse, improper
configuration, vulnerabilities, improper access, uncontrolled
access, and more. A threat management facility 100 may
communicate with, coordinate, and control operation of
security functionality at diflerent control points, layers, and
levels within the system 101. A number of capabilities may
be provided by a threat management facility 100, with an
overall goal to intelligently use the breadth and depth of
information that 1s available about the operation and activity
of compute instances and networks as well as a variety of
available controls. Another overall goal 1s to provide pro-
tection needed by an organization that i1s dynamic and able
to adapt to changes 1n compute instances and new threats. In
embodiments, the threat management facility 100 may pro-
vide protection from a variety of threats to a variety of
compute instances in a variety of locations and network
configurations.

Just as one example, users of the threat management
tacility 100 may define and enforce policies that control
access to and use of compute 1nstances, networks, and data.
Administrators may update policies such as by designating
authorized users and conditions for use and access. The
threat management facility 100 may update and enforce
those policies at various levels of control that are available,
such as by directing compute instances to control the net-
work traflic that 1s allowed to traverse firewalls and wireless
access points, applications, and data available from servers,
applications, and data permitted to be accessed by endpoints,

10

15

20

25

30

35

40

45

50

55

60

65

6

and network resources and data permitted to be run and used
by endpoints. The threat management facility 100 may
provide many different services, and policy management
may be oflered as one of the services.

Turning to a description of certain capabilities and com-
ponents of the threat management system 101, an exemplary
enterprise facility 102 may be or may include any networked
computer-based inirastructure. For example, the enterprise
facility 102 may be corporate, commercial, organizational,
educational, governmental, or the like. As home networks
get more complicated, and include more compute nstances
at home and 1n the cloud, an enterprise facility 102 may also
or instead include a personal network such as a home or a
group of homes. The enterprise facility’s 102 computer
network may be distributed amongst a plurality of physical
premises such as buildings on a campus, and located 1n one
or 1n a plurality of geographical locations. The configuration
of the enterprise facility as shown 1s merely exemplary, and
it will be understood that there may be any number of
compute instances, less or more of each type of compute
instances, and other types of compute mstances. As shown,
the exemplary enterprise facility includes a firewall 10, a
wireless access point 11, an endpoint 12, a server 14, a
mobile device 16, an appliance or 10T device 18, a cloud
computing mnstance 19, and a server 20. Again, the compute
instances 10-20 depicted are exemplary, and there may be
any number or types of compute instances 10-20 1n a given
enterprise facility. For example, 1n addition to the elements
depicted 1n the enterprise facility 102, there may be one or
more gateways, bridges, wired networks, wireless networks,
virtual private networks, other compute mstances, and so on.

The threat management facility 100 may include certain
facilities, such as a policy management facility 112, security
management facility 122, update facility 120, definitions
facility 114, network access rules facility 124, remedial
action facility 128, detection techniques facility 130, appli-
cation protection facility 150, asset classification facility
160, entity model facility 162, event collection facility 164,
event logging facility 166, analytics facility 168, dynamic
policies facility 170, identity management facility 172, and
marketplace management facility 174, as well as other
facilities. For example, there may be a testing facility, a
threat research facility, and other facilities. It should be
understood that the threat management facility 100 may be
implemented 1 whole or in part on a number of different
compute mnstances, with some parts of the threat manage-
ment facility on different compute instances i different
locations. For example, some or all of one or more of the
various facilities 100, 112-174 may be provided as part of a
security agent S that 1s included in software runming on a
compute instance 10-26 within the enterprise facility. Some
or all of one or more of the facilities 100, 112-174 may be
provided on the same physical hardware or logical resource
as a gateway, such as a firewall 10, or wireless access point
11. Some or all of one or more of the facilities may be
provided on one or more cloud servers that are operated by
the enterprise or by a security service provider, such as the
cloud computing instance 109.

In embodiments, a marketplace provider 199 may make
available one or more additional facilities to the enterprise
facility 102 via the threat management facility 100. The
marketplace provider may communicate with the threat
management facility 100 via the marketplace interface facil-
ity 174 to provide additional functionality or capabilities to
the threat management facility 100 and compute instances
10-26. A marketplace provider 199 may be selected from a
number of providers in a marketplace of providers that are

US 11,182,486 B2

7

available for integration or collaboration via the marketplace
interface facility 174. A given marketplace provider 199
may use the marketplace interface facility 174 even 1f not
engaged or enabled from or in a marketplace. As non-
limiting examples, the marketplace provider 199 may be a
third-party information provider, such as a physical security
event provider; the marketplace provider 199 may be a
system provider, such as a human resources system provider
or a fraud detection system provider; the marketplace pro-
vider 199 may be a specialized analytics provider; and so on.
The marketplace provider 199, with appropriate permissions
and authorization, may receive and send events, observa-
tions, inferences, controls, convictions, policy violations, or
other information to the threat management facility. For
example, the marketplace provider 199 may subscribe to and
receive certain events, and in response, based on the
received events and other events available to the market-
place provider 199, send inferences to the marketplace
interface, and 1n turn to the analytics facility 168, which 1n
turn may be used by the security management facility 122,

The 1dentity provider 158 may be any remote i1dentity
management system or the like configured to communicate
with an i1dentity management facility 172, e.g., to confirm
identity of a user as well as provide or receive other
information about users that may be useful to protect against
threats. In general, the 1dentity provider may be any system
or entity that creates, maintains, and manages 1dentity infor-
mation for principals while providing authentication ser-
vices to relying party applications, e.g., within a federation
or dlstrlbuted network. The identity prowder may, for
example, ofler user authentication as a service, where other
applications, such as web applications, outsource the user
authentication step to a trusted i1dentity provider.

In embodiments, the 1dentity provider 158 may provide
user 1dentity information, such as multi-factor authentica-
tion, to a SaaS application. Centralized 1dentity providers
such as Microsolt Azure, may be used by an enterprise
tacility instead of maintaining separate identity information
for each application or group of applications, and as a
centralized point for integrating multifactor authentication.
In embodiments, the identity management facility 172 may
communicate hygiene, or security risk information, to the
identity provider 158. The 1dentity management facility 172
may determine a risk score for a user based on the events,
observations, and inferences about that user and the compute
instances associated with the user. If a user 1s perceived as
risky, the identity management facility 172 can mnform the
identity provider 158, and the identity provider 158 may take
steps to address the potential risk, such as to confirm the
identity of the user, confirm that the user has approved the
SaaS application access, remediate the user’s system, or
such other steps as may be useful.

In embodiments, threat protection provided by the threat
management facility 100 may extend beyond the network
boundaries of the enterprise facility 102 to include clients
(or client facilities) such as an endpoint 22 outside the
enterprise facility 102, a mobile device 26, a cloud comput-
ing instance 109, or any other devices, services or the like
that use network connectivity not directly associated with or
controlled by the enterprise facility 102, such as a mobile
network, a pubhc cloud network, or a w1reless network at a
hotel or coflee shop. While threats may come from a variety
of sources, such as from network threats, physical proximity
threats, secondary location threats, the compute instances
10-26 may be protected from threats even when a compute
instance 10-26 1s not connected to the enterprise facility 102
network, such as when compute instances 22, 26 use a

10

15

20

25

30

35

40

45

50

55

60

65

8

network that 1s outside of the enterprise facility 102 and
separated from the enterprise facility 102, e.g., by a gateway,
a public network, and so forth.

In some 1mplementations, compute instances 10-26 may
communicate with cloud applications, such as a SaaS appli-
cation 156. The SaaS application 156 may be an application
that 1s used by but not operated by the enterprise facility 102.
Exemplary commercially available SaaS applications 156
include Salestorce, Amazon Web Services (AWS) applica-
tions, Google Apps apphcatlons Microsoft Office 365 appli-
cations, and so on. A given SaaS application 156 may
communicate with an i1dentity provider 158 to verily user
identity consistent with the requirements of the enterprise
facility 102. The compute stances 10-26 may communi-
cate with an unprotected server (not shown) such as a web
site or a third-party application through an mternetwork 154
such as the Internet or any other public network, private
network, or combination of these.

In embodiments, aspects of the threat management facil-
ity 100 may be provided as a stand-alone solution. In other
embodiments, aspects of the threat management facility 100
may be integrated into a third-party product. An application
programming interface (e.g., a source code interface) may be
provided such that aspects of the threat management facility
100 may be itegrated mto or used by or with other
applications. For instance, the threat management facility
100 may be stand-alone in that it provides direct threat
protection to an enterprise or computer resource, where
protection 1s subscribed to directly 100. Alternatively, the
threat management facility may offer protection indirectly,
through a third- -party product, where an enterprise¢ may
subscribe to services through the third-party product, and
threat protection to the enterprise may be provided by the
threat management facility 100 through the third-party prod-
uct.

The security management facility 122 may provide pro-
tection from a variety of threats by providing, as non-
limiting examples, endpoint security and control, email
security and control, web security and control, reputation-
based filtering, machine learning classification, control of
unauthorized users, control of guest and non-compliant
computers, and more.

The security management facility 122 may provide mali-
cious code protection to a compute instance. The security
management facility 122 may include functionality to scan
applications, files, and data for malicious code, remove or
quarantine applications and files, prevent certain actions,
perform remedial actions, as well as other security measures.
Scanning may use any of a variety of techniques, including
without limitation signatures, identities, classifiers, and
other suitable scanning techniques. In embodiments, the
scanning may 1nclude scanning some or all files on a
periodic basis, scanning an application when the application
1s executed, scanning data transmitted to or from a device,
scanning in response to predetermined actions or combina-
tions of actions, and so forth. The scanning of applications,
files, and data may be performed to detect known or
unknown malicious code or unwanted applications. Aspects
of the malicious code protection may be provided, for
example, i the security agent of an endpoint 12, 1n a
wireless access point 11 or firewall 10, as part of application
protection 150 provided by the cloud, and so on.

In an embodiment, the security management facility 122
may provide for email security and control, for example to
target spam, viruses, spyware and phishing, to control email
content, and the like. Email security and control may protect
against mnbound and outbound threats, protect email 1nfra-

US 11,182,486 B2

9

structure, prevent data leakage, provide spam filtering, and
more. Aspects of the email security and control may be
provided, for example, 1n the security agent of an endpoint
12, 1n a wireless access point 11 or firewall 10, as part of
application protection 150 provided by the cloud, and so on.

In an embodiment, security management facility 122 may
provide for web security and control, for example, to detect
or block viruses, spyware, malware, unwanted applications,
help control web browsing, and the like, which may provide
comprehensive web access control enabling safe, productive
web browsing. Web security and control may provide Inter-
net use policies, reporting on suspect compute instances,
security and content filtering, active monitoring of network
tratic, URI filtering, and the like. Aspects of the web
security and control may be provided, for example, in the
security agent of an endpoint 12, 1n a wireless access point
11 or firewall 10, as part of application protection 150
provided by the cloud, and so on.

In an embodiment, the security management facility 122
may provide for network access control, which generally
controls access to and use of network connections. Network
control may stop unauthorized, guest, or non-compliant
systems from accessing networks, and may control network
traflic that 1s not otherwise controlled at the client level. In
addition, network access control may control access to
virtual private networks (VPN), where VPNs may, for
example, 1nclude communications networks tunneled
through other networks and establishing logical connections
acting as virtual networks. In embodiments, a VPN may be
treated 1n the same manner as a physical network. Aspects
of network access control may be provided, for example, 1n
the security agent of an endpoint 12, 1n a wireless access
point 11 or firewall 10, as part of application protection 150
provided by the cloud, e.g., from the threat management
tacility 100 or other network resource(s).

In an embodiment, the security management facility 122
may provide for host intrusion prevention through behav-
ioral monitoring and/or runtime momtoring, which may
guard against unknown threats by analyzing application
behavior before or as an application runs. This may include
monitoring code behavior, application programming inter-
face calls made to libraries or to the operating system, or
otherwise monitoring application activities. Monitored
activities may include, for example, reading and writing to
memory, reading and writing to disk, network communica-
tion, process interaction, and so on. Behavior and runtime
monitoring may intervene 1f code 1s deemed to be acting in
a manner that 1s suspicious or malicious. Aspects of behavior
and runtime monitoring may be provided, for example, 1n
the security agent of an endpoint 12, 1n a wireless access
point 11 or firewall 10, as part of application protection 150
provided by the cloud, and so on.

In an embodiment, the security management facility 122
may provide for reputation {filtering, which may target or
identify sources of known malware. For instance, reputation
filtering may include lists of URIs of known sources of
malware or known suspicious IP addresses, code authors,
code signers, or domains, that when detected may invoke an
action by the threat management facility 100. Based on
reputation, potential threat sources may be blocked, quar-
antined, restricted, monitored, or some combination of these,
before an exchange of data can be made. Aspects of repu-
tation filtering may be provided, for example, 1n the security
agent of an endpoint 12, 1n a wireless access point 11 or
firewall 10, as part of application protection 150 provided by
the cloud, and so on. In embodiments, some reputation
information may be stored on a compute instance 10-26, and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

other reputation data available through cloud lookups to an
application protection lookup database, such as may be
provided by application protection 150.

In embodiments, information may be sent from the enter-
prise facility 102 to a third party, such as a security vendor,
or the like, which may lead to improved performance of the
threat management facility 100. In general, feedback may be
useiul for any aspect of threat detection. For example, the
types, times, and number of virus interactions that an
enterprise facility 102 experiences may provide useful infor-
mation for the preventions of future virus threats. Feedback
may also be associated with behaviors of individuals within
the enterprise, such as being associated with most common
violations of policy, network access, unauthorized applica-
tion loading, unauthorized external device use, and the like.
In embodiments, feedback may enable the evaluation or
profiling of client actions that are violations of policy that
may provide a predictive model for the improvement of
enterprise policies.

An update management facility 120 may provide control
over when updates are performed. The updates may be
automatically transmitted, manually transmitted, or some
combination of these. Updates may include software, defi-
nitions, reputations or other code or data that may be usetul
to the various facilities. For example, the update facility 120
may manage receiving updates from a provider, distribution
of updates to enterprise facility 102 networks and compute
instances, or the like. In embodiments, updates may be
provided to the enterprise facility’s 102 network, where one
or more compute instances on the enterprise facility’s 102
network may distribute updates to other compute instances.

The threat management facility 100 may include a policy
management facility 112 that manages rules or policies for
the enterprise facility 102. Exemplary rules include access
permissions associated with networks, applications, com-
pute mstances, users, content, data, and the like. The policy
management facility 112 may use a database, a text file,
other data store, or a combination to store policies. In an
embodiment, a policy database may include a block list, a
black list, an allowed list, a white list, and more. As a few
non-limiting examples, policies may include a list of enter-
prise facility 102 external network locations/applications
that may or may not be accessed by compute instances, a list
of types/classifications of network locations or applications
that may or may not be accessed by compute instances, and
contextual rules to evaluate whether the lists apply. For
example, there may be a rule that does not permit access to
sporting websites. When a website 1s requested by the client
facility, a security management facility 122 may access the
rules within a policy facility to determine if the requested
access 1s related to a sporting website.

The policy management facility 112 may include access
rules and policies that are distributed to maintain control of
access by the compute mnstances 10-26 to network resources.
Exemplary policies may be defined for an enterprise facility,
application type, subset of application capabilities, organi-
zation hierarchy, compute instance type, user type, network
location, time of day, connection type, or any other suitable
definition. Policies may be maintained through the threat
management facility 100, in association with a third party, or
the like. For example, a policy may restrict instant messag-
ing (IM) activity by limiting such activity to support per-
sonnel when communicating with customers. More gener-
ally, this may allow communication for departments as
necessary or helpful for department functions, but may
otherwise preserve network bandwidth for other activities by
restricting the use of IM to personnel that need access for a

US 11,182,486 B2

11

specific purpose. In an embodiment, the policy management
facility 112 may be a stand-alone application, may be part of
the network server facility 142, may be part of the enterprise
tacility 102 network, may be part of the client facility, or any
suitable combination of these.

The policy management facility 112 may include dynamic
policies that use contextual or other information to make
security decisions. As described herein, the dynamic policies
tacility 170 may generate policies dynamically based on
observations and inferences made by the analytics facility.
The dynamic policies generated by the dynamic policy
facility 170 may be provided by the policy management
facility 112 to the security management facility 122 for
enforcement.

In embodiments, the threat management facility 100 may
provide configuration management as an aspect of the policy
management facility 112, the security management facility
122, or some combination. Configuration management may
define acceptable or required configurations for the compute
instances 10-26, applications, operating systems, hardware,
or other assets, and manage changes to these configurations.
Assessment of a configuration may be made against standard
configuration policies, detection of configuration changes,
remediation of improper configurations, application of new
configurations, and so on. An enterprise facility may have a
set of standard configuration rules and policies for particular
compute mstances which may represent a desired state of the
compute mstance. For example, on a given compute instance
12, 14, 18, a version of a client firewall may be required to
be running and installed. If the required version 1s 1nstalled
but 1n a disabled state, the policy violation may prevent
access to data or network resources. A remediation may be
to enable the firewall. In another example, a configuration
policy may disallow the use of USB disks, and policy
management 112 may require a configuration that turns ofl
USB drive access via a registry key of a compute instance.
Aspects of configuration management may be provided, for
example, 1 the security agent of an endpomnt 12, 1n a
wireless access point 11 or firewall 10, as part of application
protection 150 provided by the cloud, or any combination of
these.

In embodiments, the threat management facility 100 may
also provide for the 1solation or removal of certain applica-
tions that are not desired or may intertere with the operation
of a compute nstance 10-26 or the threat management
tacility 100, even 11 such application 1s not malware per se.
The operation of such products may be considered a con-
figuration violation. The removal of such products may be
iitiated automatically whenever such products are detected,
or access to data and network resources may be restricted
when they are installed and runming. In the case where such
applications are services which are provided indirectly
through a third-party product, the applicable application or
processes may be suspended until action 1s taken to remove
or disable the third-party product.

The policy management facility 112 may also require
update management (e.g., as provided by the update facility
120). Update management for the security facility 122 and
policy management facility 112 may be provided directly by
the threat management facility 100, or, for example, by a
hosted system. In embodiments, the threat management
tacility 100 may also provide for patch management, where
a patch may be an update to an operating system, an
application, a system tool, or the like, where one of the
reasons for the patch 1s to reduce vulnerability to threats.

In embodiments, the security facility 122 and policy
management facility 112 may push information to the enter-

10

15

20

25

30

35

40

45

50

55

60

65

12

prise facility 102 network and/or the compute instances
10-26, the enterprise facility 102 network and/or compute
instances 10-26 may pull information from the security
facility 122 and policy management facility 112, or there
may be a combination of pushing and pulling of information.
For example, the enterprise facility 102 network and/or
compute instances 10-26 may pull update information from
the security facility 122 and policy management facility 112
via the update facility 120, an update request may be based
on a time period, by a certain time, by a date, on demand, or
the like. In another example, the security facility 122 and
policy management facility 112 may push the information to
the enterprise facility’s 102 network and/or compute
instances 10-26 by providing notification that there are
updates available for download and/or transmitting the
information. In an embodiment, the policy management
facility 112 and the security facility 122 may work 1n concert
with the update management facility 120 to provide infor-
mation to the enterprise facility’s 102 network and/or com-
pute 1stances 10-26. In various embodiments, policy
updates, security updates and other updates may be provided
by the same or different modules, which may be the same or
separate from a security agent running on one of the com-
pute instances 10-26.

As threats are identified and characterized, the definition
facility 114 of the threat management facility 100 may
manage definitions used to detect and remediate threats. For
example, 1dentity definitions may be used for scanning files,
applications, data streams, etc. for the determination of
malicious code. Identity definitions may include instructions
and data that can be parsed and acted upon for recognizing
features of known or potentially malicious code. Definitions
also may include, for example, code or data to be used 1n a
classifier, such as a neural network or other classifier that
may be traimned using machine learning. Updated code or
data may be used by the classifier to classily threats. In
embodiments, the threat management facility 100 and the
compute mstances 10-26 may be provided with new defi-
nitions periodically to include most recent threats. Updating,
ol defimtions may be managed by the update facility 120,
and may be performed upon request from one of the com-
pute istances 10-26, upon a push, or some combination.
Updates may be performed upon a time period, on demand
from a device 10-26, upon determination of an important
new definition or a number of definitions, and so on.

A threat research facility (not shown) may provide a
continuously ongoing eflort to maintain the threat protection
capabilities of the threat management facility 100 1n light of
continuous generation of new or evolved forms of malware.
Threat research may be provided by researchers and analysts
working on known threats, in the form of policies, defini-
tions, remedial actions, and so on.

The security management facility 122 may scan an out-
going file and verily that the outgoing file 1s permitted to be
transmitted according to policies. By checking outgoing
files, the security management facility 122 may be able
discover threats that were not detected on one of the com-
pute mstances 10-26, or policy violation, such transmittal of
information that should not be communicated unencrypted.

The threat management facility 100 may control access to
the enterprise facility 102 networks. A network access
facility 124 may restrict access to certain applications,
networks, files, printers, servers, databases, and so on. In
addition, the network access facility 124 may restrict user
access under certain conditions, such as the user’s location,
usage history, need to know, job position, connection type,
time of day, method of authentication, client-system con-

US 11,182,486 B2

13

figuration, or the like. Network access policies may be
provided by the policy management facility 112, and may be
developed by the enterprise facility 102, or pre-packaged by
a supplier. Network access facility 124 may determine 1f a
grven compute mstance 10-22 should be granted access to a 5
requested network location, e.g., mside or outside of the
enterprise facility 102. Network access facility 124 may
determine 11 a compute instance 22, 26 such as a device
outside the enterprise facility 102 may access the enterprise
tacility 102. For example, in some cases, the policies may 10
require that when certain policy violations are detected,
certain network access 1s denied. The network access facility
124 may communicate remedial actions that are necessary or
helptul to bring a device back into compliance with policy
as described below with respect to the remedial action 15
tacility 128. Aspects of the network access facility 124 may
be provided, for example, 1n the security agent of the
endpoint 12, in a wireless access point 11, 1n a firewall 10,
as part of application protection 150 provided by the cloud,
and so on. 20

In an embodiment, the network access facility 124 may
have access to policies that include one or more of a block
list, a black list, an allowed list, a white list, an unacceptable
network site database, an acceptable network site database,

a network site reputation database, or the like of network 25
access locations that may or may not be accessed by the
client facility. Additionally, the network access facility 124
may use rule evaluation to parse network access requests
and apply policies. The network access rule facility 124 may
have a generic set of policies for all compute instances, such 30
as denying access to certain types ol websites, controlling
instant messenger accesses, or the like. Rule evaluation may
include regular expression rule evaluation, or other rule
evaluation method(s) for interpreting the network access
request and comparing the interpretation to established rules 35
for network access. Classifiers may be used, such as neural
network classifiers or other classifiers that may be trained by
machine learning.

The threat management facility 100 may include an asset
classification facility 160. The asset classification facility 40
will discover the assets present in the enterprise facility 102.

A compute instance such as any of the compute nstances
10-26 described herein may be characterized as a stack of
assets. The one level asset 1s an 1tem of physical hardware.
The compute instance may be, or may be implemented on 45
physical hardware, and may have or may not have a hyper-
visor, or may be an asset managed by a hypervisor. The
compute 1nstance may have an operating system (e.g.,
Windows, MacOS, Linux, Android, 10S). The compute
instance may have one or more layers ol containers. The 50
compute mstance may have one or more applications, which
may be native applications, e.g., for a physical asset or
virtual machine, or running 1n containers within a computing,
environment on a physical asset or virtual machine, and
those applications may link libraries or other code or the 55
like, e.g., for a user interface, cryptography, communica-
tions, device drnivers, mathematical or analytical functions
and so forth. The stack may also interact with data. The stack
may also or instead interact with users, and so users may be
considered assets. 60

The threat management facility may include entity models
162. The entity models 162 may be used, for example, to
determine the events that are generated by assets. For
example, some operating systems may provide usetul infor-
mation for detecting or i1dentifying events. For examples, 65
operating systems may provide process and usage informa-
tion that accessed through an API. As another example, 1t

14

may be possible to mstrument certain containers to monitor
the activity of applications running on them. As another
example, entity models for users may define roles, groups,
permitted activities, and other attributes.

The event collection facility 164 may be used to collect
cvents from any of a wide variety of sensors that may
provide relevant events from an asset, such as sensors on any
of the compute instances 10-26, the application protection
tacility 150, a cloud computing instance 109 and so on. The
events that may be collected may be determined by the entity
models. There may be a variety of events collected. Events
may include, for example, events generated by the enterprise
facility 102 or the compute instances 10-26, such as by
monitoring streaming data through a gateway such as fire-
wall 10 and wireless access point 11, monitoring activity of
compute nstances, monitoring stored files/data on the com-
pute imstances 10-26 such as desktop computers, laptop
computers, other mobile computing devices, and cloud
computing instances 19, 109. Events may range in granu-
larity. An exemplary event may be communication of a
specific packet over the network. Another exemplary event
may be 1dentification of an application that 1s communicat-
ing over a network.

The event logging facility 166 may be used to store events
collected by the event collection facility 164. The event
logging facility 166 may store collected events so that they
can be accessed and analyzed by the analytics facility 168.
Some events may be collected locally, and some events may
be communicated to an event store 1n a central location or
cloud facility. Events may be logged 1n any suitable format.

Events collected by the event logging facility 166 may be
used by the analytics facility 168 to make inferences and
observations about the events. These observations and infer-
ences may be used as part of policies enforced by the
security management facility. Observations or inferences
about events may also be logged by the event logging
tacility 166.

When a threat or other policy violation 1s detected by the
security management facility 122, the remedial action facil-
ity 128 may be used to remediate the threat. Remedial action
may take a variety of forms, non-limiting examples includ-
ing collecting additional data about the threat, terminating or
modifying an ongoing process or interaction, sending a
warning to a user or administrator, downloading a data file
with commands, definitions, instructions, or the like to
remediate the threat, requesting additional information from
the requesting device, such as the application that initiated
the activity of interest, executing a program or application to
remediate against a threat or violation, increasing telemetry
or recording 1nteractions for subsequent evaluation, (con-
tinuing to) block requests to a particular network location or
locations, scanning a requesting application or device, quar-
antine of a requesting application or the device, 1solation of
the requesting application or the device, deployment of a
sandbox, blocking access to resources, e.g., a USB port, or
other remedial actions. More generally, the remedial action
facility 122 may take any steps or deploy any measures
suitable for addressing a detection of a threat, potential
threat, policy violation or other event, code, or activity that
might compromise security ol a computing instance 10-26
or the enterprise facility 102.

FIG. 2 depicts a block diagram of a threat management
system 201 such as any of the threat management systems
described herein, and including a cloud enterprise facility
280. The cloud enterprise facility 280 may include servers
284, 286, and a firewall 282. The servers 284, 286 on the

cloud enterprise facility 280 may run one or more enterprise

US 11,182,486 B2

15

applications and make them available to the enterprise
tacilities 102 compute mstances 10-26. It should be under-
stood that there may be any number of servers 284, 286 and
firewalls 282, as well as other compute 1nstances in a given
cloud enterprise facility 280. It also should be understood
that a given enterprise facility may use both SaaS applica-
tions 156 and cloud enterprise facilities 280, or, for example,
a SaaS application 156 may be deployed on a cloud enter-
prise facility 280. As such, the configurations in FIG. 1 and

FIG. 2 are shown by way of examples and not exclusive
alternatives.

Having provided an overall context for threat detection,
the description now turns to a brief discussion of an example
of a computer system that may be used for any of the entities
and facilities described above.

FIG. 3 illustrates a computer system. In general, the
computer system 300 may include a computing device 310
connected to a network 302, e.g., through an external device
304. The computing device 310 may be or include any type
ol network endpoint or endpoints as described herein, e.g.,
with reference to FIG. 1 above. For example, the computing,
device 310 may include a desktop computer workstation.
The computing device 310 may also or instead be any other
device that has a processor and communicates over a net-
work 302, including without limitation a laptop computer, a
desktop computer, a personal digital assistant, a tablet, a
mobile phone, a television, a set top box, a wearable
computer (e.g., watch, jewelry, or clothing), a home device
(c.g., a thermostat, humidistat, appliance or a home appli-
ance controller), just as some examples. The computing
device 310 may also or instead include a server, or 1t may be
disposed on a server or within a virtual or physical server
farm.

The computing device 310 may be any of the entities in
the threat management environment described above with
reference to FIG. 1. For example, the computing device 310
may be a server, a client an enterprise facility, a threat
management facility, or any of the other facilities or com-
puting devices described therein. In certain aspects, the
computing device 310 may be implemented using hardware
(c.g., 1n a desktop computer), software (e.g., 1n a virtual
machine or the like), or a combination of software and
hardware (e.g., with programs executing on the desktop
computer), and the computing device 310 may be a stand-
alone device, a device integrated into another enfity or
device, a platform distributed across multiple entities, or a
virtualized device executing 1n a virtualization environment.

The network 302 may include any network or combina-
tion of networks, such as one or more data networks or
internetworks suitable for communicating data and control
information among participants in the computer system 300.
The network 302 may include public networks such as the
Internet, private networks, and telecommunications net-
works such as the Public Switched Telephone Network or

cellular networks using third generation cellular technology

(e.g., 3G or IMT-2000), fourth generation cellular technol-
ogy (e.g., 4G, LTE. MT-Advanced, E-UTRA, etc.) or
WiMax-Advanced (IEEE 802.16m)) and/or other technolo-
gies, as well as any of a varniety of corporate area, metro-
politan area, campus or other local area networks or enter-
prise¢ networks, along with any switches, routers, hubs,
gateways, and the like that might be used to carry data
among participants in the computer system 300. The net-
work 302 may also include a combination of data networks,
and need not be lmmited to a strictly public or private
network.

10

15

20

25

30

35

40

45

50

55

60

65

16

The external device 304 may be any computer or other
remote resource that connects to the computing device 310
through the network 302. This may include threat manage-
ment resources such as any of those contemplated above,
gateways or other network devices, remote servers or the
like containing content requested by the computing device
310, a network storage device or resource, a device hosting
content, or any other resource or device that might connect
to the computing device 310 through the network 302.

The computing device 310 may include a processor 312,
a memory 314, a network interface 316, a data store 318, and
one or more mput/output devices 320. The computing device
310 may further include or be in communication with one or
more peripherals 322 and other external input/output devices
224,

The processor 312 may be any as described herein, and 1n
general may be capable of processing instructions for execu-
tion within the computing device 310 or computer system
300. The processor 312 may 1include a single-threaded
processor, a multi-threaded processor, a multi-core proces-
sor, or any other processor, processing circuitry, or combi-
nation of the foregoing suitable for processing data and
instructions as contemplated herein. The processor 312 may
be capable of processing instructions stored in the memory
314 or on the data store 318.

The memory 314 may store information within the com-
puting device 310 or computer system 300. The memory 314
may include any volatile or non-volatile memory or other
computer-readable medium, including without limitation a
Random-Access Memory (RAM), a flash memory, a Read
Only Memory (ROM), a Programmable Read-only Memory
(PROM), an Frasable PROM (EPROM), registers, and so
forth. The memory 314 may store program instructions,
program data, executables, and other software and data
usetul for controlling operation of the computing device 310
and configuring the computing device 310 to perform func-
tions for a user. The memory 314 may include a number of
different stages and types for diflerent aspects of operation
of the computing device 310. For example, a processor may
include on-board memory and/or cache for faster access to
certain data or instructions, and a separate, main memory or
the like may be included to expand memory capacity as
desired.

The memory 314 may, in general, include a non-volatile
computer readable medium containing computer code that,
when executed by the computing device 310 creates an
execution environment for a computer program in question,
¢.g., code that constitutes processor firmware, a protocol
stack, a database management system, an operating system,
or a combination of the foregoing, and/or code that performs
some or all of the steps set forth 1n the various flow charts
and other algorithmic descriptions set forth herein. While a
single memory 314 1s depicted, 1t will be understood that any
number of memories may be usefully incorporated into the
computing device 310. For example, a first memory may
provide non-volatile storage such as a disk drive for perma-
nent or long-term storage of files and code even when the
computing device 310 1s powered down. A second memory
such as a random-access memory may provide volatile (but
higher speed) memory for storing instructions and data for
executing processes. A third memory may be used to
improve performance by providing even higher speed
memory physically adjacent to the processor 312 for regis-
ters, caching and so forth.

The network interface 316 may include any hardware
and/or software for connecting the computing device 310 1n
a communicating relationship with other resources through

US 11,182,486 B2

17

the network 302. This may include connections to resources
such as remote resources accessible through the Internet, as
well as local resources available using short range commu-
nications protocols using, e.g., physical connections (e.g.,
Ethernet), radio frequency communications (e.g., Wik1),
optical communications, (e.g., fiber optics, infrared, or the
like), ultrasonic communications, or any combination of
these or other media that might be used to carry data
between the computing device 310 and other devices. The
network interface 316 may, for example, include a router, a
modem, a network card, an infrared transceiver, a radio
frequency (RF) transceiver, a near field communications
interface, a radio-frequency 1dentification (RFID) tag reader,
or any other data reading or writing resource or the like.

More generally, the network interface 316 may include
any combination of hardware and software suitable for
coupling the components of the computing device 310 to
other computing or communications resources. By way of
example and not limitation, this may include electronics for
a wired or wireless Ethernet connection operating according
to the IEEE 802.11 standard (or any variation thereotf), or
any other short or long range wireless networking compo-
nents or the like. This may also or instead include hardware
for short range data communications such as Bluetooth or an
infrared transceiver, which may be used to couple to other
local devices, or to connect to a local area network or the like
that 1s 1n turn coupled to a data network 302 such as the
Internet. This may also or instead include hardware/software
for a WiMax connection or a cellular network connection
(using, e¢.g., CDMA, GSM, LTE, or any other suitable
protocol or combination of protocols). The network inter-
face 316 may be included as part of the input/output devices
320 or vice-versa.

The data store 318 may be any internal memory store
providing a computer-readable medium such as a disk drive,
an optical drive, a magnetic drive, a flash drive, or other
device capable of providing mass storage for the computing
device 310. The data store 318 may store computer readable
instructions, data structures, program modules, and other
data for the computing device 310 or computer system 300
in a non-volatile form for subsequent retrieval and use. The
data store 318 may store computer executable code for an
operating system, application programs, and other program
modules, software objects, libraries, executables, and the
like the like. The data store 318 may also store program data,
databases, files, media, and so forth.

The mput/output interface 320 may support mput from
and output to other devices that might couple to the com-
puting device 310. This may, for example, include serial
ports (e.g., RS-232 ports), umiversal serial bus (USB) ports,
optical ports, Ethernet ports, telephone ports, audio jacks,
component audio/video mputs, HDMI ports, and so forth,
any of which might be used to form wired connections to
other local devices. This may also or instead include an
infrared interface, RF interface, magnetic card reader, or
other mput/output system for coupling 1n a communicating
relationship with other local devices. It will be understood
that, while the network interface 316 for network commu-
nications 1s described separately from the input/output inter-
face 320 for local device communications, these two inter-
faces may be the same, or may share functionality, such as
where a USB port 1s used to attach to a WiF1 accessory or
other network interfacing device, or where an Ethernet
connection 1s used to couple to a local network attached
storage.

The peripherals 322 may include any device or combi-
nation of devices used to provide mformation to or receive

10

15

20

25

30

35

40

45

50

55

60

65

18

information from the computing device 310. This may
include human input/output (I/0) devices such as a key-
board, a mouse, a mouse pad, a track ball, a joystick, a
microphone, a foot pedal, a camera, a touch screen, a
scanner, or other device that might be employed by the user
330 to provide mput to the computing device 310. This may
also or instead include a display, a speaker, a printer, a
projector, a headset or any other audiovisual device for
presenting 1nformation to a user or otherwise providing
machine-usable or human-usable output from the computing
device 310. The peripheral 322 may also or 1nstead include
a digital signal processing device, an actuator, or other
device to support control of or communication with other
devices or components. Other I/O devices suitable for use as
a peripheral 322 include haptic devices, three-dimensional
rendering systems, augmented-reality displays, magnetic
card readers, three-dimensional printers, computer-numeri-
cal controlled manufacturing machines and so forth. In one
aspect, the peripheral 322 may serve as the network interface
316, such as with a USB device configured to provide
communications via short range (e.g., Bluetooth, Wiki,
Infrared, RFE, or the like) or long range (e.g., cellular data or
WiMax) communications protocols. In another aspect, the
peripheral 322 may provide a device to augment operation
of the computing device 310, such as a global positioning
system (GPS) device, a security dongle, a projector, or the
like. In another aspect, the peripheral may be a storage
device such as a flash card, USB drive, or other solid-state
device, or an optical drive, a magnetic drive, a disk drive, or
other device or combination of devices suitable for bulk
storage. More generally, any device or combination of
devices suitable for use with the computing device 310 may
be used as a peripheral 322 as contemplated herein.

Other hardware 326 may be incorporated into the com-
puting device 310 such as a co-processor, a digital signal
processing system, a math co-processor, a graphics engine,
a video dniver, and so forth. The other hardware 326 may
also or instead include expanded input/output ports, extra
memory, additional drives (e.g., a DVD drive or other
accessory), and so forth.

A bus 332 or combination of busses may serve as an
clectromechanical platform for interconnecting components
of the computing device 310 such as the processor 312,
memory 314, network interface 316, other hardware 326,
data store 318, and input/output interface. As shown 1n the
figure, each of the components of the computing device 310
may be interconnected using a system bus 332 or other
communication mechanism for communicating information.

Methods and systems described herein can be realized
using the processor 312 of the computer system 300 to
execute one or more sequences ol 1nstructions contained 1n
the memory 314 to perform predetermined tasks. In embodi-
ments, the computing device 310 may be deployed as a
number of parallel processors synchronized to execute code
together for improved performance, or the computing device
310 may be realized i a virtualized environment where
soltware on a hypervisor or other virtualization management
facility emulates components of the computing device 310
as appropriate to reproduce some or all of the functions of
a hardware instantiation of the computing device 310.

FIG. 4 1llustrates a threat management system according
to some 1mplementations. In general, the system 400 may
include an endpoint 402, a firewall 404, a server 406, and a
threat management facility 408 coupled to one another
directly or indirectly through a data network 405, all as
generally described above. Each of the entities depicted 1n
FIG. 4 may, for example, be implemented on one or more

US 11,182,486 B2

19

computing devices such as the computing device described
above. A number of systems may be distributed across these
various components to support threat detection, such as a
coloring system 410, a key management system 412, and a
heartbeat system 414 (or otherwise an endpoint health
system), each of which may include software components
executing on any of the foregoing system components, and
cach of which may communicate with the threat manage-
ment facility 408 and an endpoint threat detection agent 420
executing on the endpoint 402 to support improved threat
detection and remediation.

The coloring system 410 may be used to label or ‘color’
soltware objects for improved tracking and detection of
potentially harmtul activity. The coloring system 410 may,
for example, label files, executables, processes, network
communications, data sources, and so forth with any suitable
label. A variety of techniques may be used to select static
and/or dynamic labels for any of these various software
objects, and to manage the mechanics of applying and
propagating coloring information as appropriate. For
example, a process may inherit a color from an application
that launches the process. Similarly, a file may inherit a color
from a process when it 1s created or opened by a process,
and/or a process may inherit a color from a file that the
process has opened. More generally, any type of labeling, as
well as rules for propagating, inheriting, changing, or oth-
erwise manipulating such labels, may be used by the color-
ing system 410 as contemplated herein.

The key management system 412 may support manage-
ment of keys for the endpoint 402 1n order to selectively
permit or prevent access to content on the endpoint 402 on
a file-specific basis, a process-specific basis, an application-
specific basis, a user-specific basis, or any other suitable
basis 1 order to prevent data leakage, and 1n order to support
more fine-grained and immediate control over access to
content on the endpoint 402 when a security compromise 1s
detected. Thus, for example, 1f a particular process executing
on the endpoint 1s compromised, or potentially compro-
mised or otherwise under suspicion, access by that process
may be blocked (e.g., with access to keys revoked) i order
to prevent, e.g., data leakage or other malicious activity.

The heartbeat system 414 may be used to provide periodic
or aperiodic information from the endpoint 402 or other
system components about system health, security, status,
and so forth. The heartbeat system 414 or otherwise an
endpoint health system may thus 1n general include a health
status report system for the endpoint 402, such as through
the use of a heartbeat system or the like. A heartbeat may be
encrypted or plaintext, or some combination of these, and
may be communicated unidirectionally (e.g., from the end-
point 408 to the threat management facility 408) or bidirec-
tionally (e.g., between the endpoint 402 and the server 406,
or any other pair of system components) on any useful
schedule.

In general, these various monitoring and management
systems may cooperate to provide improved threat detection
and response. For example, the coloring system 410 may be
used to evaluate when a particular process 1s potentially
opening inappropriate files, and a potential threat may be
confirmed based on an interrupted heartbeat from the heart-
beat system 414. The key management system 412 may then
be deployed to revoke access by the process to certain
resources (€.g., keys or file) so that no further files can be
opened, deleted, or otherwise modified. More generally, the
cooperation of these systems enables a wide vanety of
reactive measures that can improve detection and remedia-
tion of potential threats to an endpoint.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 5 shows a block diagram of a computing system. In
general, the computing system 500 may include a compute
istance 502, such as a virtual device, physical device, or
any of the other endpoints or compute instances described
herein, executing an operating system 504. The compute
instance 502 may include a processor executing 1n a user
mode 506 and/or a kernel mode 508, along with memory
510 which may be partitioned into a corresponding user
space and kernel space. The user space provides memory for
general use, e.g., for the user mode 508, while the kernel
space provides memory lor exclusive use by the kernel
mode 508. This latter memory—the kernel space—i1s gen-
erally protected against access from the user mode 506. In
general, the kernel mode 508 supports the operation and use
ol a computing system with an operating system kernel 512,
along with any file system drivers, kernel-mode drivers, and
a hardware abstraction layer for access to hardware, physical
memory, and the like. The user mode 506 provides an
environment for users to run applications. While the user
mode 506 1s non-privileged, and cannot access portions of
memory allocated to the kernel mode 508, the kernel mode
508 will generally have root access permissions to access
any memory space or other system resources. This general
architecture helps to protect the operating system kernel 512
against accidental or intentional (e.g., malicious) interfer-
ence by applications 514 executing in the user mode 506.
While the foregoing 1s representative of the structure of
many modern operating systems, 1t will be understood that
the terminology and architecture may vary without departing
from the present disclosure, which may be useful 1n any
environment where a progressive boot process or the like
builds an operating system or other operating environment
before permitting execution of applications, and 1n particu-
lar, malware scanners or the like.

In general, a boot or start-up sequence for the compute
instance 502 may initiate a progressive execution of code 1n
segments that generally increase 1n size and complexity until
the tull operating system 504 1s deployed. For example, the
boot may begin with an 1mitial read of a boot record or the
like from a bootable memory that includes a partition table
identifving 1dentifies a file system. The boot record may also
include boot code to process the partition table and 1dentity
a bootable partition that includes, e.g., an operating-system-
specific boot sector. After the boot, the boot record may then
transier control to the boot sector which may 1n turn detect
and configure hardware as appropriate, and progressively
load the operating system kernel 512 (and related 1tems) 1n
the kernel mode 508 of the operating system 304. The
operating system 504 may more generally include, e.g., an
operating system kernel 512 that supports core functions of
the operating system 304, an application programming inter-
face to the operating system kernel 512, a file system, a user
interface, device drivers, hardware devices, and so forth.
Once the operating system 3504 has been launched, a user
mode 506 1s available for use, e.g., by a human or computer
user, 1n executing an application 514. This may include any
application, combination of applications, processes, or the
like suitable for execution within the user mode 506 of a
compute instance 502.

In general, this architecture works well, and provides for
a secure, stable operating system platform upon which user
applications can be launched. However, one security expo-
sure 1s a vulnerability to malware that launches early 1n the
boot process, e.g., before the operating system 1s 1nstalled to
support programs such as malware scanners or other code
that might otherwise detect and respond to malicious activ-
ity. Various techniques have been developed to address this

US 11,182,486 B2

21

potential exposure, such as the Early Launch Anti-Malware
(ELAM) module introduced i Microsoft Corporation’s
Windows 8 operating system, and the Kermnel-Mode Code
Signing Policy, introduced 1n Windows Vista. For example,
the Kernel-Mode Code Signing Policy generally protects the 5
operating system by imposing digital signature requirements

on 1tems loaded into the kernel mode 508. Similarly, the
ELAM module 1s a detection mechanism that facilitates
loading and execution of registered third-party code early 1n
the boot process, and classifies boot-start drivers for condi- 10
tional execution during the boot. However, because these
and similar modules launch early 1n the boot process, they
can be significantly constramned in terms of computing
resources, and they typically operate on very limited infor-
mation sets such as a single filename, hash, signature, or the 15
like for each new boot 1tem. As such, 1t can be difhicult to
balance the computational tax of false positives and nega-
tives with a speedy and error free boot process.

To address these challenges, the techniques described
herein employ a relatively simple boot driver that detects 20
and logs each new process as a device boots and loads and
operating system, combined with a robust, user-mode mal-
ware scanner that 1s loaded after a boot 1s completed and
applied to scan data associated with the logged processes. In
this manner, the full computational and contextual resources 25
of the operating system 504 and user mode 506 for a
compute instance are available to analyze (and remediate, as
necessary) processes launched early 1n a boot process.

FIG. 6 shows a method for malware detection. In the
method 600, a security driver loads early 1n the boot process 30
for a compute mstance and detects processes that are sub-
sequently launched. The detected processes can be recorded,
and then scanned with any suitable malware scanning tool(s)
once a user mode 1s available on the compute instance,
optionally including a scan of processes that have terminated 35
before any user mode scanning tools have launched. After
the operating system 1s installed and a user mode 1s avail-
able, other scanning tools may also be deployed (e.g., 1n the
user mode) to augment security of the compute instance.

As shown 1n step 602, the process 600 may begin with a 40
boot of a compute instance. As described above, the start-up
sequence may begin with a boot of an operating system on
a compute instance, and inifiate a progressive execution of
code 1n segments that generally increase 1n size and com-
plexity until a full operating system 1s deployed on the 45
compute mstance and available for execution of user mode
applications and the like.

As shown 1n step 603, the method 600 may include
loading a driver to detect and record processes launched
during startup. In general, this driver 1s preferably loaded as 50
carly as possible 1n the startup process 1n order to increase
the detection of boot and startup processes executing on the
compute instance. For example, loading the driver may
include loading a dniver, e.g., in a kemel mode of an
operating system, during a boot of the operating system on 55
a compute instance before a user mode of the operating
system 1s available, or otherwise loading the driver early 1n
the boot of the operating system. In general, the driver may
be configured to detect processes starting on the compute
instance, and store a list of such processes as each new 60
process 1s detected. The driver may also or instead be
configured to record each process started and stopped on the
compute instance in order to reflect processes that have
terminated before a user mode scanner has an opportunity to
perform suitable malware analysis. 65

Loading this drniver may include applying the ELAM
module or any other suitable early execution techniques. For

22

example, loading the driver may include registering the
driver as a kernel-mode driver for execution at an early stage
in a boot process. The driver may include a certificate or the
like for use by a boot time detection driver of the operating
system of the compute instance, e.g., to facilitate accurate
identification and registration of the dniver during startup.
These techniques can facilitate identification and launching
of the driver very early 1n the boot process, €.g., before other,
unregistered drivers and other processes such as potential
malware.

As shown in step 604, the method 600 may include
detecting processes, €.g., as each new process 1s launched on
the compute nstance. This may include any suitable instru-
mentation to detect new processes. When available, this may
use monitoring functions in the kernel. Alternatively, this
may include any other suitable instrumentation or the like,
¢.g., where the corresponding kernel functions are not yet
available within the context of the boot and startup of the
compute instance.

As shown in step 606, the method 600 may include
storing a list of processes detected by the driver and execut-
ing on the compute mstance, €.g., by logging such processes
in a log 607. The list of processes may include any suitable
information about processes that have been detected such as
a name, location, time stamp, and the like. Thus, for
example, the driver may record a time stamp indicating a
start time for each process i1dentified 1n the list of processes,
and where appropriate, a second time stamp 1ndicating a stop
time when the corresponding process terminated.

As shown in step 608, the method 600 may include
launching a first scanner in the user mode. In general, the
first scanner may be launched when the user mode 1is
available (e.g., after other prerequisite boot and startup
processes have launched or completed), and may be con-
figured to perform a first scan for malware 1n each process
identified in the list of processes when the first scanner
launches. It will be noted that the scanning activity such as
steps 608, 610, and 620 occur 1n the “user space” on the right
side of FIG. 6, which represents the memory available to the
user mode of a compute mstance, as distinguished from the
kernel space memory which 1s generally reserved for kernel
functions and other system operations.

As shown 1n step 610, the method may include requesting
logged processes from the log 607 by the first scanner.
Where available, this may include a list of processes that
have stopped or terminated before the user mode was
avallable, and/or betore the first scanner was launched. This
useiully prevents early-launching malware from injecting
code or otherwise compromising other aspects of the com-
pute stance, and then terminating to prevent detection. It
will be noted that the log 607 1s depicted between the kernel
space and the user space in FIG. 6. In general, the log 607
may be located 1n the kernel space, the user space, or some
combination of these.

As shown 1n step 612, the method 600 may include
scanning the logged processes. In one aspect, the first
scanner may be configured to asynchronously perform a first
scan for malware 1n each process i1dentified in the list of
processes from the driver by scanning at least an executable
and an executable file path associated with each process. In
this context, the asynchronous execution contemplates
execution of the scanning function without gating other
program execution on completion of a scan of the processes
recorded 1n the log 607. Asynchronous execution may also
optionally include permitting the processes in the list of
processes to continue executing until a scan 1s completed.
While this may present some interstitial risk to the compute

US 11,182,486 B2

23

instance, 1t may also permit important system functions to
continue operating during the first scan and can avoid a
bottleneck that prevents all user mode activity. In another
aspect, the first scanner may execute synchronously in order
to ensure a complete scan of all startup processes before
other user mode programs can execute. In one aspect, the
asynchronous scan may be executed as a single thread.

In general, the first scanner may scan one or more liles
associated with each process 1n the list of processes. This
may also or mstead include scanning related items such as
an executable associated with one of the processes, files 1n
an executable path associated with one of the processes, or
a dynamic linked library loaded by one of the processes.
Because the first scanner 1s executing 1n the user mode, any
of a wide variety of malware detection techniques may be
deployed by the first scanner, including any of the malware
detection techniques described herein. It should also be
appreciated that, while the first scanner may usefully be
applied whenever a compute instance 1s booted or rebooted,
the first scanner may also be useful 1n other contexts, e.g., 1T
there 1s a policy change or the like applicable to the compute
instance that might alter the scan results.

As shown 1n step 614, the method 600 may include
remediating malicious code identified 1n any of the scans
described above, e.g., the first scan by first scanner, the
second scan by the second scanner, and/or the third scan by
the third scanner. For example, the method 600 may include,
i malicious code 1s i1dentified 1n the one or more files
associated with one of the processes 1n the list of processes
in the log 607, remediating the one of the processes. The
remediation may also or instead be directed toward the one
or more files associated with the one of the processes in the
list of process, e.g., where the process has already termi-
nated as described above, but has been logged by the driver
during the boot.

This may include any suitable remediation for malware or
other actual or suspected malicious activity. For example, 1n
one aspect, remediating the one of the processes includes
quarantining the one of the processes. In another aspect,
remediating the one of the processes includes executing the
one of the processes 1 a sandbox or other 1solated environ-
ment or the like. In another aspect, remediating the one of
the processes mcludes restricting access by the one of the
processes to one or more resources of the compute nstance
such as encrypted files, encryption keys, a network connec-
tion, a remote storage facility, a directory, locally connected
devices such as removable drives or other peripherals, and
so forth. In another aspect, remediating the one of the
processes includes executing a malware removal tool for the
compute instance to remove the process and/or malware
associated with the process. In another aspect, remediating
the one of the processes includes executing a malware
detection tool for the compute instance, which may include
a detection tool for one or more specific malware types or a
general malware scanner. It will be understood that reme-
diating the one of the processes may include remediating a
specific process or group of related processes, or this may
include remediating an entire compute nstance, €.g., using
any of the techniques described above.

It will be appreciated that a wide range of remediation
techniques are known 1n the art, and may be used instead of,
or 1 addition to, the techniques described above. For
example, while code termination may be an important form
of intervention, other mitigation techniques may also or
instead be used, either alone or in combination with termi-
nation of the offending code segment(s). For example, any
processes or memory locations causally associated with the

10

15

20

25

30

35

40

45

50

55

60

65

24

code, e.g., by acting on or being acted on by the relevant
code, may be labeled as suspicious. These causally related
computing objects may also or instead be terminated,
deleted, or otherwise remediated. For example, a root cause
analysis may be undertaken, e.g., to determine an itial
event or root cause of the attack, and to determine related
events and associated assets that may have been compro-
mised. Code mitigation may also or instead include quar-
antine, observation, or the like. In another aspect, the code
or associated files or network streams may be colored to
indicate suspiciousness, vulnerability, potential compro-
mise, and so forth so that other relevant rules can be applied
based on this categorization. For example, 1n some cases, 1t
may be determined that a vulnerability 1n an otherwise
normal application was exploited 1n an attack that resulted in
the deployment of malware code. Steps may be taken to
update or otherwise protect the vulnerable application or to
limit or more closely monitor the activity of the application.
In another aspect, the code may be moved to a sandbox for
execution and examination, or forwarded to a remote mal-
ware analysis resource for further review. More generally,
any tools or resources for remediating malware, or an
aflected compute nstance, may usefully be deployed upon

the detection of actual or potential malware as contemplated
herein.

Remediation may also or instead include performing a
security update and executing mitigations based on the
security update. For example, this may include performing
a malware scan, e.g., alter waiting the predetermined time
period for new security updates. In general, performing the
malware scan may include performing signature-based
detections for related processes, programs, files, and other
computing objects. This may also or instead include mal-
ware remediations, e.g., for finding and removing related
code, repairing or reinstalling infected programs, and so
forth, rolling back registry updates, cleaning up browsers
(e.g., to restore settings, clear caches, etc.), updating certifi-
cates, and so forth. Where a root cause analysis 1s performed
as described herein, executing mitigations may include
remediating the root cause as appropriate.

A history of the compute 1nstance may also or instead be
used to detect and remediate malware. For example, where
events detected on the compute instance deviate from a
baseline of expected activity, any number of responses may
be mtiated by a local securnity agent or the like. In one
aspect, this may include deployment of known remediations
for malicious activity such as quarantine, termination of
network commumnications, termination of processes or appli-
cations, an 1crease 1n local monitoring activity, messages to
a network administrator, filtering of network activity, anti-
virus scans, deployment of security patches or fixes, and so
forth. This may also include policy updates. For example,
security policies for compute nstances, users, applications,
or the like may be updated to security settings that impose
stricter controls or limits on activity including, e.g., network
activity (bandwidth, data quotas, permitted network
addresses, etc.), system changes (e.g., registry entries, cer-
tain system calls, etc.), file activity (e.g., changes to file
permissions), increased levels of local activity monitoring,
and so forth.

Still more generally, any forms of remediation that might
useiully follow a malicious activity detection using the
scanners described above may usefully be employed 1n a
remediation as described herein.

As shown in step 616, the method 600 may include
launching a second scanner in the user mode. This second

US 11,182,486 B2

25

scanner may be configured to detect one or more other
processes started after the first scanner 1s launched.

As shown 1n step 618, the method 600 may include
detecting and scanning new processes with the second
scanner. The second scanner may synchronously perform a
second scan for malware in each of the one or more other
processes as they are launched, e.g., in the order that they are
launched. This synchronous scanning may be multi-
threaded, e.g., with a new thread for each new process that
1s detected, and may be configured to prevent an execution
of each of the one or more other processes until a corre-
sponding scan has been completed. Thus, the second scanner
may generally detect and check each new process as 1t 1s
launched. In one aspect, the second scanner may begin to
scan only after the first scanner completes a scan of all of the
processes 1dentified 1n the list of processes. If any malware
or other malicious or suspicious activity 1s detected, the
method 600 may proceed to step 614 where remediation can
be performed.

As shown 1n step 620, the method 600 may include
launching a third scanner, e.g., in the user mode. The third
scanner may be configured to perform a third scan including
a background scan of an enftire disk associated with the
compute instance.

As shown 1n step 622, the method 600 may include
performing a background scan with the third scanner. In one
aspect, this may include a low-priority scan of all available
storage for the compute instance, including one or more
physical or logical drives and any other memory or storage
resources. If any malware or other malicious or suspicious
activity 1s detected, the method 600 may proceed to step 614
where remediation can be performed.

As shown 1n step 624, the method 600 may include
persisting one or more of the scans. For example, this may
include persisting the first scan with a heartbeat or other
message to a threat management facility or other remote
security resource. The method 600 may also or instead
include persisting a scan from at least one of the first scanner
and the second scanner, for example, by capturing interim
scan results and periodically sending these results with a

heartbeat to a threat management facility. In another aspect,
the method 600 may include persisting a background scan,
¢.g., the third scan of steps 620-622, with a heartbeat to a
threat management facility. While step 624 1s 1llustrated as
occurring after a remediation step 614, 1t will be understood
that step 624 may occur prior to, concurrently with, or after
any remediation, or any combination of these, or at any other
time or combination of times consistent with operation of
the method 600 described herein.

More generally, the scans may be persisted 1 any of a
variety of ways. This may include logging directories and
files that have been scanned in order to facilitate resuming
the scan at a later time. This may also or instead include
logging scan results, e.g., with 1dentifiers of suspicious or
malicious computing objects. This, or any other suitable
interim scan mformation, may be communicated to a threat
management facility in a secure heartbeat or the like, or the
interim scan information may be locally stored on a compute
instance by a local security agent, with a pointer or identifier
to the scan log embedded into a heartbeat to the threat
management facility for subsequent location and retrieval of
information. More generally, any technmique for storing
interim scan information, either locally, remotely (e.g., at the
threat management facility) or some combination of these,
may be used. Similarly, the scan information may be com-

10

15

20

25

30

35

40

45

50

55

60

65

26

pressed, indexed, encrypted, time stamped, digitally signed,
or otherwise processed to 1mprove accessibility, security,
reliability, and so forth.

While any scan might usefully be persisted in order to
avoid repetition of effort in the event of an unexpected or
otherwise sudden shutdown of the compute instance, the
background scan may be a slow, low-priority, long-term
process extending over minutes, hours, or days 1n order to
prevent excessive use of computing resources that interferes
with other user and system functions. In this context, peri-
odic snapshots or the like may be particularly useful to
preserve progress that has been made toward a complete
scan. When a compute istance 1s restarted, any persisted
scan results may be retrieved from the threat management
facility 1n order to prevent repetition.

Persisting may also be used to fingerprint startup pro-
cesses. For example, when a compute instance 1s rebooted,
the processes detected by the first scanner may be compared
to a record of processes that have been scanned and
approved 1n a prior startup scan. By communicating with a
threat management facility or another local or remote
resource that stores these prior results, the first scanner may
simply refer to this record 1n lieu of a new scan, subject to
changes in the context such as policy changes, reputation
changes, or the like that might otherwise alter scan results
such as malware detections.

Also disclosed herein are systems for scanning and reme-
diating using the methods described above. In one aspect, a
system may include a compute instance, a driver, a first
scanner, and a second scanner. The driver may be loaded nto
and executing 1n a kernel mode of an operating system for
the compute 1stance before a user mode of the operating
system 1s available, and the driver may be configured to
record a list of processes executing on the compute instance
by recording processes started on the compute instance after
the driver 1s loaded. The first scanner may be executing in
the user mode of the operating system, and configured to
perform a first scan for malware 1n each process i1dentified in
the list of processes at a time that the first scanner launches.
The second scanner may be executing in the user mode of
the operating system, and configured to detect one or more
other processes started after the second scanner 1s launched,
to perform a second scan for malware 1n each of the one or
more other processes, and to prevent an execution of each of
the one or more other processes until a corresponding scan
has been completed.

In another aspect, a system may include a compute
instance, a driver, a scanner, and a local security agent. The
driver may be loaded into and executing in a kernel mode of
an operating system for the compute instance before a user
mode of the operating system 1s available, and the driver
may be configured to record a list of processes including
cach process started and stopped on the compute instance
after the driver 1s loaded. The scanner may be executing 1n
the user mode of the operating system, and configured to
perform a scan for malware 1n each process 1dentified in the
list of processes at a time that the scanner launches. The
local security agent may be executing on the compute
instance (e.g., 1 the user mode) and configured to remediate
malicious code 1dentified by the scanner.

In general, these systems may also be configured to
remediate the compute instance as generally described
herein, and/or otherwise perform any of the steps described
above.

The above systems, devices, methods, processes, and the
like may be realized 1n hardware, soiftware, or any combi-
nation of these suitable for a particular application. The

US 11,182,486 B2

27

hardware may include a general-purpose computer and/or
dedicated computing device. This includes realization 1n one

Oor more microprocessors, microcontrollers, embedded
microcontrollers, programmable digital signal processors or
other programmable devices or processing circuitry, along 5
with iternal and/or external memory. This may also, or
instead, include one or more application specific integrated
circuits, programmable gate arrays, programmable array
logic components, or any other device or devices that may

be configured to process electronic signals. It will further be 10
appreciated that a realization of the processes or devices
described above may include computer-executable code
created using a structured programming language such as C,

an object oriented programming language such as C++, or
any other high-level or low-level programming language 15
(including assembly languages, hardware description lan-
guages, and database programming languages and technolo-
gies) that may be stored, compiled or interpreted to run on
one of the above devices, as well as heterogeneous combi-
nations ol processors, processor architectures, or combina- 20
tions of different hardware and software. In another aspect,
the methods may be embodied 1n systems that perform the
steps thereof, and may be distributed across devices 1n a
number of ways. At the same time, processing may be
distributed across devices such as the various systems 25
described above, or all of the functionality may be integrated
into a dedicated, standalone device or other hardware. In
another aspect, means for performing the steps associated
with the processes described above may include any of the
hardware and/or software described above. All such permu- 30
tations and combinations are intended to fall within the
scope of the present disclosure.

Embodiments disclosed herein may include computer
program products comprising computer-executable code or
computer-usable code that, when executing on one or more 35
computing devices, performs any and/or all of the steps
thereol. The code may be stored 1n a non-transitory fashion
in a computer memory, which may be a memory from which
the program executes (such as random-access memory asso-
ciated with a processor), or a storage device such as a disk 40
drive, flash memory or any other optical, electromagnetic,
magnetic, infrared or other device or combination of
devices. In another aspect, any of the systems and methods
described above may be embodied 1n any suitable transmis-
s1on or propagation medium carrying computer-executable 45
code and/or any inputs or outputs from same.

The method steps of the implementations described herein
are mntended to include any suitable method of causing such
method steps to be performed, consistent with the patent-
ability of the following claims, unless a diflerent meaning 1s 50
expressly provided or otherwise clear from the context. So,
for example, performing the step of X includes any suitable
method for causing another party such as a remote user, a
remote processing resource (e.g., a server or cloud com-
puter) or a machine to perform the step of X. Simularly, 55
performing steps X, Y and Z may include any method of
directing or controlling any combination of such other
individuals or resources to perform steps X, Y and Z to
obtain the benefit of such steps. Thus, method steps of the
implementations described herein are intended to include 60
any suitable method of causing one or more other parties or
entities to perform the steps, consistent with the patentability
of the following claims, unless a different meamng 1is
expressly provided or otherwise clear from the context. Such
parties or entities need not be under the direction or control 65
of any other party or entity, and need not be located within
a particular jurisdiction.

28

It will be appreciated that the methods and systems
described above are set forth by way of example and not of
limitation. Numerous variations, additions, omissions, and
other modifications will be apparent to one of ordinary skill
in the art. In addition, the order or presentation of method
steps 1n the description and drawings above 1s not intended
to require this order of performing the recited steps unless a
particular order 1s expressly required or otherwise clear from
the context. Thus, while particular embodiments have been
shown and described, 1t will be apparent to those skilled 1n
the art that various changes and modifications 1n form and
details may be made therein without departing from the
spirit and scope of this disclosure and are intended to form
a part of the invention as defined by the following claims,
which are to be interpreted 1n the broadest sense allowable
by law.

What 1s claimed 1s:

1. A computer program product comprising computer
executable code embodied 1n a non-transitory computer
readable medium that, when executing on a computing
device, performs the steps of:

loading a driver 1n a kernel mode of an operating system

during a boot of the operating system on a compute
instance before a user mode of the operating system 1s
available, the driver configured to detect processes
starting on the compute nstance;

storing a list of processes detected by the dnver and

executing on the compute nstance;
launching a first scanner 1n the user mode, the first scanner
configured to asynchronously perform a first scan for
malware 1n each process identified in the list of pro-
cesses from the driver by scanning at least an execut-
able and an executable file path associated with each
process;
launching a second scanner in the user mode, the second
scanner configured to detect one or more other pro-
cesses started after the first scanner 1s launched, to
synchronously perform a second scan for malware in
cach of the one or more other processes, and to prevent
an execution of each of the one or more other processes
until a corresponding scan has been completed; and

remediating malicious code 1dentified 1n at least one of the
first scan and the second scan.

2. The computer program product of claim 1 wherein the
second scanner begins to scan after the first scanner com-
pletes a scan of all of the processes 1dentified in the list of
Processes.

3. The computer program product of claim 1 wherein the
first scan includes a scan of at least one of an executable
associated with one of the processes, files 1n an executable
path associated with one of the processes, or a dynamic
linked library loaded by one of the processes.

4. The computer program product of claim 1 wherein
loading the driver includes registering the driver as a kernel-
mode driver for execution at an early stage 1n a boot process.

5. The computer program product of claim 1 wherein the
driver records a time stamp indicating a start time for each
process 1dentified in the list of processes.

6. The computer program product of claim 1 further
comprising computer executable code that performs the step
of launching a third scanner configured to perform a third
scan including a background scan of an entire disk associ-
ated with the compute 1nstance.

7. The computer program product of claim 6 further
comprising computer executable code that performs the step

US 11,182,486 B2

29

of persisting at least one of the first scan, the second scan,
and the third scan with a heartbeat to a threat management
facility.

8. A method comprising:

loading a driver during a boot of an operating system on

a compute instance, the driver loaded before a user
mode of the operating system 1s available and the driver
configured to store a list of processes executing on the
compute instance;

launching a first scanner 1n the user mode, the first scanner

configured to perform a first scan for malware in each
process 1dentified 1n the list of processes when the first
scanner launches; and

launching a second scanner in the user mode, the second

scanner configured to detect one or more other pro-
cesses started after the first scanner 1s launched, to
perform a second scan for malware 1 each of the one
or more other processes, and to prevent an execution of
cach of the one or more other processes until a corre-
sponding scan has been completed.

9. The method of claim 8 wherein the second scanner
synchronously scans the one or more other processes 1n an
order that the one or more other processes launched.

10. The method of claim 8 wherein the second scanner
begins to scan after the first scanner completes a scan of all
processes 1dentified 1n the list of processes.

11. The method of claam 8 wherein the first scanner
asynchronously scans processes identified in the list of
Processes.

12. The method of claim 8 wherein the first scan includes
a scan ol at least one of an executable associated with a
process 1n the list of processes, files 1n an executable path
associated with a process 1n the list of processes, or a
dynamic linked library loaded by a process in the list of
Processes.

13. The method of claim 8 wherein loading the driver
includes loading the driver early 1n the boot of the operating
system.

10

15

20

25

30

35

30

14. The method of claim 8 wherein loading the driver
includes registering the driver as a kernel-mode driver for
execution at an early stage 1n a boot process.

15. The method of claim 8 wherein the driver includes a
certificate for use by a boot time detection driver of the
operating system of the compute instance.

16. The method of claim 8 wherein the driver records a
time stamp 1ndicating a start time for each process 1dentified

in the list of processes.

17. The method of claim 8 further comprising persisting
the first scan with a heartbeat to a threat management
facility.

18. The method of claim 8 further comprising launching
a third scanner, the third scanner configured to perform a
background scan of an entire disk associated with the
compute instance.

19. The method of claim 18 further comprising persisting
the background scan with a heartbeat to a threat manage-
ment facility.

20. A system comprising;:

a compute 1nstance;

a driver loaded mto and executing 1n a kernel mode of an

operating system for the compute 1nstance before a user
mode of the operating system 1s available, the driver
configured to record a list of processes executing on the
compute mstance by recording processes started on the
compute instance aiter the drniver 1s loaded;

a first scanner executing in the user mode of the operating,
system, the first scanner configured to perform a first
scan for malware 1n each process 1dentified in the list of
processes at a time that the first scanner launches; and

a second scanner executing in the user mode of the
operating system, the second scanner configured to
detect one or more other processes started after the
second scanner 1s launched, to perform a second scan
for malware 1n each of the one or more other processes,
and to prevent an execution of each of the one or more
other processes until a corresponding scan has been
completed.

	Front Page
	Drawings
	Specification
	Claims

