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APPARATUS, SYSTEMS AND METHODS
FOR USING PUPILLOMETRY PARAMETERS
FOR ASSISTED COMMUNICATION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to U.S. Provisional Appli-
cation No. 62/584,433 filed Nov. 10, 2017 and entitled
“Methods For Using Pupillometry Parameters For Assisted
Communication And Related Systems.” which i1s hereby
incorporated by reference 1n its entirety under 35 U.S.C. §

119(e).
TECHNICAL FIELD

The disclosed technology relates generally to systems,
methods, and devices for the improved selection of visually
displayed targets, icons, or symbols, letters, words, or other
symbols using pupillometry parameters. In certain embodi-
ments, the disclosed technology relates to assistive tech-
nologies for the purposes of aided commumication in
patients who have experienced loss of verbal and/or gestural
communication.

BACKGROUND

Humans process mnformation and complete tasks using
processes such as sensory and perceptual processing, atten-
tion, memory, response selection, response execution, and
system or performance feedback. In some circumstances,
these processes may be negatively aflected by a physically
or technologically limited operational environment or a
physical limitation of an individual or operator. For
example, when patients sufler from severe motor disorders,
such as those that accompany amyotrophic lateral sclerosis
(ALS), brainstem stroke, or cerebral palsy, alternative forms
of communication may be required to offset the loss of
verbal and gestural communication that result from a physi-
cal limitation of the person. Alternatively, in complex opera-
tional environments, such as those requiring the use of hands
and/or feet like the piloting of aircrait and the playing of
modern video games, additional response selections and
executions can be limited due to those complex operational
environments. Further, 1n some instances, the use of pupil
dynamics such as a change in pupil size, may be useful 1n
contexts 1 which a standard user interface 1s not practical,
such as controlling a virtual reality headset.

In these contexts, response selection and execution would
improve 1i the individual were able to make controlled
inputs to the system or selections that were not gestural or
verbal 1n nature. The disclosed systems, devices and meth-
ods are directed to enabling individuals to make response
selections by detecting changes 1n the eye pupillary response
to a visual display. In a general sense, the disclosed systems,
devices and methods provide new and useful tools for use 1n
the field of assistive communication technologies. In addi-
tion, the disclosed systems, devices and methods provide
new and useful approaches for use by those who wish to
improve and/or reach their optimal performance potential
with respect to increasing the accuracy or rate of response
selections without the need for verbal or gestural responses,

such as in transportation, video gaming, controlling virtual

reality headsets, and the like.

BRIEF SUMMARY

Discussed herein are various devices, systems and meth-
ods relating to the improved selection of visually displayed
targets, 1cons, or symbols, using pupillometry parameters.
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2

In various Examples, a system of one or more computers
can be configured to perform particular operations or actions
by virtue ol having software, firmware, hardware, or a
combination of them installed on the system that 1n opera-
tion causes or cause the system to perform the actions. One
or more computer programs can be configured to perform
particular operations or actions by virtue of including
instructions that, when executed by data processing appa-

ratus, cause the apparatus to perform the actions.

One Example includes an assisted communication sys-
tem, mcluding: at least one assistive communication tech-
nology device constructed and arranged to generate subject
data; at least one computing device including at least one
processor constructed and arranged for executing a classi-
fication algorithm including: grouping subject data into
sample blocks, executing a feature extraction algorithmic
step to produce at least one feature vector, translating the at
least one {feature vector, and providing feedback. The
assisted communication system also includes an operations
system constructed and arranged to communicate the feed-
back Other embodiments of this Example include corre-
sponding computer systems, apparatus, and computer pro-
grams recorded on one or more computer storage devices,
cach configured to perform the actions of the methods.

Implementations according to this Example may include
one or more of the following features. The system where the
subject data includes pupillary response data and other
physiological response data. The system where the subject
data includes brain signal data. The system further including
an EEG. The system further including a display constructed
and arranged to provide the feedback. The system where at
least one assistive communication technology device 1is
constructed and arranged to measure at least one response
selected from the group including of pupil size, eye gaze
dwell time, eye blink and eye movement. Implementations
of the described techniques may include hardware, a method
Or process, or computer software on a computer-accessible
medium.

Another Example includes a pupillary assisted commu-
nication system, including: at least one sensing device
constructed and arranged to generate subject data; b. at least
one computing device including at least one processor
constructed and arranged for executing a classification algo-
rithm including: grouping subject data into sample blocks,
executing a feature extraction algorithmic step to produce at
least one feature vector, and translating the at least one
feature vector, where the at least one sensing device includes
at least one assistive communication technology device
constructed and arranged to collect subject data via pupillary
response. Other embodiments of this Example include cor-
responding computer systems, apparatus, and computer pro-
grams recorded on one or more computer storage devices,
cach configured to perform the actions of the methods.

Implementations according to this Example may include
one or more of the following features. The system further
including a non-pupillary physiological sensor. The system
where the subject data includes at least one response
selected from the group including of pupil size, eye gaze
dwell time, eye blink, eye movement. EEG, functional near
inirared spectroscopy, electrocorticographraphy, ultrasound,
change 1n heart rate, motor evoked responses and galvanic
skin responses. The system where the algorithm 1s a hybnd
algorithm. The system where subject data 1s generated via
BCI. The system where the subject data 1s generated via
augmentative and alternative communication. Implementa-
tions ol the described techniques in this Example may
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include hardware, a method or process, or computer soit-
ware on a computer-accessible medium.

Another Example includes a pupillary assisted commu-
nication system, including: a pupillary-response sensing
device constructed and arranged to generate subject data; a
non-pupillary response sensing device constructed and
arranged to generate subject data; at least one computing
device including a display, memory, and at least one pro-
cessor constructed and arranged for executing a hybnd
classification algorithm including a plurality of steps includ-
ing: grouping subject data from the pupillary-response and
non-pupillary response sensing devices 1into sample blocks,
executing a feature extraction algorithmic step to produce at
least one feature vector, and translating the feature vector.
Other embodiments of this Example include corresponding
computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods.

Implementations according to this Example may include
one or more of the following features. The system where the
subject data includes at least one response selected from the
group including of pupil size, eye gaze dwell time, eye blink,
eye movement, EEG, functional near infrared spectroscopy,
clectrocorticography, ultrasound, change 1n heart rate, motor
evoked responses and galvanic skin responses. The system
where subject data 1s generated via BCI. The system where
the subject data 1s generated via augmentative and alterna-
tive communication. The system where the feature algorith-
mic step further includes a plurality of sub-steps. The system
where the feature algorithmic sub-steps includes: a vector
computing sub-step. The system may also include a scatter
matrix computing sub-step. The system may also include an
eigenvector and eigenvalue computing sub-step. The system
where the feature algorithmic sub-steps includes an eigen-
value sorting step. The system where the feature algorithmic
sub-steps includes a sample transforming step. Implemen-
tations of the described techniques may include hardware, a
method or process, or computer software on a computer-
accessible medium.

While multiple embodiments are disclosed, still other
embodiments of the disclosure will become apparent to
those skilled 1n the art from the following detailed descrip-

tion, which shows and describes 1llustrative embodiments of

the disclosed apparatus, systems, and methods. As will be
realized, the disclosed apparatus, systems and methods are
capable of modifications in various obvious aspects, all
without departing from the spirit and scope of the disclosure.
Accordingly, the drawings and detailed description are to be
regarded as 1llustrative 1n nature and not restrictive.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1A 1s a process view of an exemplary embodiment
of the classification system described, consisting of a sub-
ject, sensing devices, computing devices, and a display
system.

FIG. 1B shows the corresponding process steps utilized
by the implementation exemplified in FIG. 1A.

FIG. 1C 1s a process view of one implementation of a
feature extraction algorithmic step, according to the imple-
mentation of FIG. 1B.

FIG. 2 1s a pictorial representation of the hybrid pupil-
EEG BCI speller device used as an exemplar system.

FIG. 3 shows the pupil diameter increase for target vs.
nontarget letter stimuli. Pupil diameter was determined by
finding the maximum difference between baseline (100 ms
pre-stimulus) and post-stimulus (up to 1000 ms) for 26 target
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(grey) and 26 randomly selected non-target letters (blue) at
cach of the target stimuli presentation rates (250 ms, 500 ms,

750 ms, and 1000 ms). Pupil size increased for target vs.
nontarget letter stimuli at each of the presentation rates (250
ms, 500 ms, 750 ms, and 1000 ms).

FIG. 4 shows average Event Related Potentials (ERPs). A
prominent P300 ERP occurring around 250-450 ms can be
identified 1n those trials in which a target stimulus was
presented (red line) when compared to those trials 1n which
a nontarget letter was presented (black line). As expected,
the primary distribution of the P300 was in the centro-
parietal regions of the scalp. P300 amplitude increased for
target vs. nontarget letter stimuli at each of the stimuli
presentation rates (250 ms, 500 ms, 750 ms, and 1000 ms).

FIG. 5§ shows EEG Measurements of the P300 across
clectrode sites for the 250 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeframe
following stimulus presentation. All electrode sites show a
robust P300 following presentation of the target stimuli at
the 250 ms presentation rate.

FIG. 6 shows EEG Measurements of the P300 across
clectrode sites for the 500 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeirame
following stimulus presentation. All electrode sites show a
robust P300 following presentation of the target stimuli at
the 500 ms presentation rate.

FIG. 7 shows EEG Measurements of the P300 across
clectrode sites for the 750 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeirame
following stimulus presentation. The majority of electrode
sites (36) show a robust P300 following presentation of the
target stimuli at the 750 ms presentation rate.

FIG. 8 shows EEG Measurements of the P300 across
clectrode sites for the 1000 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeirame
following stimulus presentation. The majority of electrode
sites (%%) show a robust P300 following presentation of the
target stimul1 at the 1000 ms presentation rate.

FIG. 9 1s a bar graph showing sensitivity (d') for target
letter classification performance using pupil diameter alone

(vellow). P300 ERP alone (green), and the hybrid combi-
nation of pupil diameter and P300 ERP (blue). Multivanate
test statistics demonstrated a significant main effect of
classifier type [F(2,8)=20.597; Wilks A=0.163; p=0.001].
Post-hoc tests revealed signmificant diflerences between the

hybrid combination of pupil diameter/P300 ERP and each
individual classifier (P’s<0.05).*Sample size N=11.

FIG. 10 shows the NASA Task Load Index (NASA-TLX)
workload value diflerences based on rate of letter presenta-
tion. NASA-TLX was administered after each block of trials

for each presentation rate (250 ms, 500 ms, 750 ms, 1000
ms) to assess subjective ratings of perceived workload.
Results demonstrated that perceived workload increased
with presentation rate, though classification performance
based on sensitivity (d') did not [F(3,7)=2.531; Wilks
+=0.480; p=0.141].

DETAILED DESCRIPTION

The various embodiments disclosed or contemplated
herein relate to the use of eye pupil features, such as pupil
s1ze, as a single mput or along with other physiological
inputs 1n operational systems to enhance the performance of
those operational systems. In various implementations, an
assistive communication technology combines one or more
physiological mputs—such as pupillary response, EEG, or
any of the others described herein—using a hybrid classi-




US 11,175,736 B2

S

fication algorithm to assess physiological feedback and yield
improved accuracy 1n response to cues over known systems
and methods. Additionally, 1n alternate implementations, eye
pupil features alone, such as a change 1n size, may be used
as a single mput to a classification algorithm to identify user
intent for assisted communication or other technologies. It 1s
understood that 1n these implementations, the disclosed
systems may be used for assisted communication by com-
bining brain signals, or other physiological or biological
signals described herein, with eye pupil features via such a
hybrid classification algorithm to generate operational out-
puts, or by using eye pupil features as the sole nput.

As shown 1n FIG. 1A and FIG. 1B, various implementa-
tions of the devices, systems and methods discussed herein
utilize several optional components (FIG. 1A) implementing
several optional steps (FIG. 1B). In certain of these imple-
mentations, and as shown 1n FIG. 1A, an assisted commu-
nication (AC) system 10 such as a pupillary response
assisted communication system 10 comprises at least one
sensing device 12 such as an assistive communication
technology device 12A or physiological sensor 12B used to
measure physiological response to extract and transduce
subject data via a classification algorithm 100 such as a
hybrid classification algorithm 100, as described 1n relation
to FIG. 1B. It 1s understood that 1n various implementations,
one assistive communication technology device 12A 1s
constructed and arranged to measure pupillary response
subject data, while another device 12B 1s constructed and
arranged to collect other physiological subject 1 data in
response to cues 2, in the case of a hybnid classification
system 10 and associated classification algorithm 100.

It 1s understood that as discussed herein, the wvarious
physiological mput sensors or devices may be referred to
generally 1n several ways, and that while many such sensing
devices such as the EEG can have a plurality of other
functions in other applications, in the presently-disclosed
implementations each of these 1s service as an assistive
communication technology device.

In various implementations, the AC system 10 such as a
hybrid pupillary AC system 10 may also be operatively
connected directly and/or indirectly, such as over a network
or wired connection, to one or more computing devices 14,
that may include at least one processor 16 coupled to a
system memory 18, as shown in FIG. 1A. The system
memory 18 may include computer program modules and
program data. As described above, the operations associated
with respective computer-program instructions in the pro-
gram modules could be distributed across multiple comput-
ing devices 14. A display 20 can also be provided for the
depiction of output information.

The system 10 can also be 1n electronic communication
via a connection 22 with system databases 24 (e.g., database
1, database 2, . . . , database n). Various devices may be
connected to the system, including, but not limited to,
medical devices, medical monitoring systems, client com-
puting devices, consumer computing devices, provider com-
puting devices, remote access devices, and the like. This
system 10 may receive one or more mnputs and/or one or
more outputs from the various sensors, medical devices,
computing devices, servers, databases, and the like.

In various implementations, the connection 22 may rep-
resent, for example, a hardwire connection, a wireless con-
nection, any combination of the Internet, local area
network(s) such as an 1ntranet, wide area network(s), cellu-
lar networks, Wi-F1 networks, and/or so on. The one or more
sensors 12A, 12B, which may themselves include at least
one processor and/or memory, may represent a set of arbi-
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trary sensors, medical devices or other computing devices
executing application(s) that respectively send data inputs to
the one or more servers/computing devices and/or receive
data outputs from the one or more servers/computing
devices. Such servers/computing devices 24 may include,
for example, one or more of desktop computers, laptops,
mobile computing devices (e.g., tablets, smart phones, wear-
able devices), server computers, and/or so on. In certain
implementations, the input data may include, for example,
analog and/or digital signals.

Subject data from the subject 1 via the sensors 12A, 12B
may be processed by the computing device 14 on the
processor(s) 16 via a classification algorithm 100—such as
a hybrid classification algorithm 100—where pupillary and
non-pupillary responses are measured—comprising a plu-
rality of optional steps. In various implementations, this
processing via the computing device 14 and/or display 20
provides target selection, letter selection, confirmation of
information, or icon selection, for example. The inclusion of
pupil mformation 1s a technological improvement over the
prior art as 1t may be used in single-trial selection paradigms
and requires no 1nitial operator or user training. In essence,
providing an additional physiological signal with subject
data that correlates with target selection i1s eflective at
reducing the decision manifold allowing for quicker and
more accurate classifications.

In one step of an exemplary classification algorithm 100,
and as shown 1n FIG. 1B, subject data 1s generated by being
measured (box 102) via the one or more sensors 12A, 12B
to be stored for further processing. In various implementa-
tions, for example, when utilizing a hybrid classification
algorithm 100, the measured subject data (measured at box
102 via the first sensor 12A) can include data such as
pupillary response or other eye behavior, such as pupil size,
eye gaze dwell time, eye blink, eye movements, as well as
other physiological responses to the cue (shown 1n FIG. 1A
at reference number 2) from the other sensor 12B such as
brain signal data as recorded by EEG, functional near
infrared spectroscopy (INIRS), electrocorticographraphy,
ultrasound, or other peripheral physiological responses such
as change 1n heart rate, motor evoked responses or galvanic
skin response. Other examples are of course possible.

In a subsequent optional step, the subject data 1s digitized
(box 104) via the computing device 14 and/or sensing device
12A, 12B for storage and processing, as would be under-
stood. It 1s understood that 1n various implementations, the
data 1s digitized as part of the hardware/software that i1s
controlling the specific computing device, sensor or com-
ponent.

In a subsequent optional step, the subject data 1s enhanced
(box 106) via the computing device 14 and/or sensing device
12A, 12B. It 1s understood that various enhancements can be
made, such as signal boosting and noise reduction, amongst
others. For example, when measuring pupil size, one method
ol accounting for variable baseline pupil diameter between
individuals can be addressed by subtracting a pre-trial
baseline value (which may be the mean of several pre-trial
samples), such that pupil size data 1s transformed into
relative changes 1n pupil diameter, which standardizes the
sample at (or near) zero at the onset of trials. This allows for
detecting changes 1n pupil size as a function of different
conditions (such as target symbol vs. nontarget symbol), and
may account for differences in luminance conditions that
naturally occur over time.

In a subsequent optional step, the subject data 1s grouped
(box 108) via the computing device 14 and referenced to a
common timing signal. For example, both pupil and EEG
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data may be grouped according to its proximity to presented
targets as being within a window where features should be
extracted.

In a subsequent optional step of the classification algo-
rithm 100, a feature extraction algorithmic step (box 110)
analyzes the incoming sample block from various modes of
subject data—such as pupillary data and FEG data—inde-
pendently to produce features that constitute corresponding,
feature vectors: such as a pupillary vector and an EEG
vector. It 1s understood that the feature extraction algorith-
mic step can include a wide range of spatial, temporal, or
spectral transformations depending on the specific applica-
tion.

For example, 1n one exemplary process imnvolving several
sub-steps and as shown 1n FIG. 1C, the system 10 compris-
ing a feature extraction algorithmic step 110 executes a
computing (box 120) sub-step wherein the processor or
computing devices computes the d-dimensional mean vec-
tors for each of the classes of subject data (such as pupillary
and EEG) from the collected and grouped dataset of subject
data, so as to compare target vs. non-target responses and
evaluate those subject data modes.

In another sub-step, the system 10 computes scatter
matrices (box 122) for both the in-between-class and within-
class subject data datasets.

In another sub-step, eigenvectors and the corresponding
cigenvalues are computed (box 124) for the computed
scatter matrices.

In another sub-step, the eigenvectors are sorted by
decreasing eigenvalues (box 126), and (k) number of e1gen-
vectors with the largest eignenvalues are chosen to form a
dxk dimensional matrix.

In another sub-step, this matrix 1s used to transform
samples (box 128) onto the newly created subspace via
simple matrix multiplication to produce feature vectors
separated by the linear discriminant classifier. It 1s fully
appreciated that myriad alternate implementations are pos-
sible.

Returning to the implementation of FIG. 1B, 1n a subse-
quent optional step, the feature vector is translated via a
translation algorithmic sub-step (box 112). It 1s appreciated
that 1n various implementations, the translation algorithmic
sub-step operates in concert with software designed to
analyze such signals. For example, feature translation may
use linear discriminant analysis to classify the selection of a
target letter from a series of non-target letters for the various
feature vectors. In certain of these implementations, a trans-
lation algorithmic sub-step translates the feature vector into
device command(s) that carry out the intent or choice
selection of the user, as would be appreciated by one of skill
in the art.

In a subsequent optional step of the classification algo-
rithm, the device responds to the command provided by the
feature translation, with feedback of this selection being
provided (box 114) to the user on the user interface running
on a second personal computer, connected via TCP/IP
protocols, or for example, via an operations system like the
device 14—having a standard computer monitor display 20.
Other operations systems such as in the video gaming or
piloting applications, for example, would be readily appar-
ent to those of skill i the art. In various 1implementations,
soltware or firmware can be integrated to receive the feed-
back and provide commands to downstream devices and
operations systems to perform commands, operate equip-
ment or any of the other features or systems that require user
input and would be appreciated by those of skill 1n the art.
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Further discussion of each of these steps and sub-steps
occurs below, 1 relation to the example of FIG. 2.

In various implementations, the disclosed AC systems 10,
methods and devices make use of assistive communication
technologies to improve system performance. Such assistive
communication technologies include but are not limited to
augmentative and alternative communication (AAC),
including brain-computer interfaces (BCI), and can com-
prise electronic devices that utilize eye-tracking or camera
technologies. To that end, 1t 1s understood that approaches
these implementations can take/use assistive communication
technologies such as BCI spellers and AAC technologies,
some non-limiting examples 1including eye gaze devices by
Tobu1 Dynavox such as PCEye Plus, I-12+, I-15+; LC
Technologies products such as the Eyegaze Edge; PRC’s
NuEye® Tracking System; and Talk to Me Technologies
eyespeak.

In various implementations, the assistive communication
technology 12 1s a BCI. BCIs enable commumnication
between humans and machines by utilizing electrical or
metabolic brain signals to classily user intent. Typically,
these brain signals are recorded non-invasively either by
clectroencephalography (EEG), ultrasound, or functional
near inirared spectroscopy (INIRS), or invasively with elec-
trocorticographic activity or single neuron activity as
assessed by microelectrode arrays or glass cone electrodes.
Hybrid brain computer interfaces typically combine two
physiological signals to improve system communication
speed and accuracy.

In various implementations, the system 10 uses an aug-
mentative and alternative communication (AAC) as an input
technology 12. In certain implementations, the AAC 1s a
vision-controlled AAC, such as an eye gaze AAC similar to
and including eye gaze devices by Tobu1 Dynavox such as
PCEye Plus. 1-12+, I-15+; LC Technologies such as the
Evegaze Edge; PRC’s NuEye® Tracking System; and Talk
to Me Technologies eyespeak.

Certain implementations of the AC system 10 relate to
methods for improving the online classification performance
ol assistive communication technologies by using changes
in the eye pupil features—such as size—as a physiological
input. More specifically, pupil features could be used 1n
1solation or 1in combination with another type of physiologi-
cal input, such as other known ocular measures, peripheral
physiological signals, or brain signals. That 1s, pupil features
can be used 1n 1solation or in combination with other features
to reliably convey the user’s intent for communication or
target selection. Thus, 1n certain implementations, the use of
eye pupil features can improve the performance of BCI
and/or AAC assisted communication. Additional applica-
tions are of course possible.

While it 1s possible to use a fundamental signal feature,
such as changes 1n pupil size or rate of change of pupil size
within a specified window—{for example one second fol-
lowing stimulus presentation—user intent may be more
accurately represented through the use of more complex
feature combinations. Thus, 1n certain embodiments of the
AC system 10, pupil features are used that are linear or
nonlinear combinations, ratios, statistical measures, or other
transformations ol multiple fundamental features detected at
multiple time points; models such as artificial neural net-
works that do not model feature extraction or translation as
distinct, cascaded stages may also be used. Further, both the
user and the system may adapt so that the optimum classi-
fication algorithm at one time 1s different later. In various
implementations, the system operation may depend on the
interaction of the two for optimum performance. For the
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purpose of a BCI implementation, one such method 1s to
combine pupil features with brain signal features using one
of the specified complex feature combinations, 1 order to
reflect the user’s intent more accurately. The specific model
utilized may be dependent on the BCI or AAC application,
the user environment, as well as the user. Further imple-
mentations are of course possible.

Various implementations of the system 10 and associated
devices and methods use eye pupil features as a physiologi-
cal signal 1nput to an assistive technology for the purposes
of aided communication, such as with BCI or other AAC
technologies. For example, pupil features can be used as part
of a hybrid brain-computer intertace that also uses brain
signals to assist in classifying target versus non-target let-
ters, words, or phrases for spelling. Pupil features could also
be used as an input with AAC technology. For example,
pupil size could be used to identity the user’s intended
picture, letters, words, or phrases with electronic devices
that employ a camera or eye-tracking technology. Including
pupil features as a physiological mput with assistive tech-
nologies provides a number of advantages over similar
systems/techniques known 1in the art, such as improved
target detection, reduced errors, and the potential to assist
individuals without volitional control over eye movement.

Certain embodiments herein relate to a process for utiliz-
ing eye pupil features in response to target letters, symbols,
words, or phrases, for BCI or AAC assisted communication.
Note that the user does not need to be able to perform any
movement; just attending to a wvisual display with an
intended target 1n mind 1s enough to induce a pupillary
response.

Brietly, 1n accordance with one implementation, the pro-
cess Tor pupillary response controlled functions 1s comprised
of the steps of: non-invasively recording the pupil feature
signal with known eye-tracking or camera technologies,
such as the TOBII Pro TX300 remote eye-tracking system
(Tobi1 Technology, Inc.) or SMI eye-tracking glasses (Sen-
soMotoric Instruments, Teltow, Germany), processing the
recording using signal conditioning software such as that
provided with the open-source software BCI2000, or soft-
ware developed with MATLAB (MathWorks, Inc.) or
LabVIEW (National Instruments. Austin, Tex.), and trans-
ducing the signal into a functional command, such as target
identification and user feedback) useful to the BCI or AAC
application using classification algorithms, such as linear
discriminant analysis, after training has been acquired.

Returming to the drawings, an exemplary implementation
of a hybrnid AC system 10 i1s set forth 1n FIG. 2 (below),
according to one specific embodiment, in which a hybnd
BCI combines pupillary response 12A and another sensing
device, here an EEG 12B, using a hybrid pupil/P300 BCI
speller classification algorithm, resulting 1n 1improved accu-
racy over known systems and methods. It 1s understood that
the P300 BCI speller paradigm has been the benchmark for
BCI applications, and utilizes brain signals as measured with
clectroencephalography (EEG) to evoke a P300 event-re-
lated potential (ERP) in response to wvisually displayed
stimuli, such as letters. A P300 ERP 1s typically generated
during an oddball paradigm 1n which a series of stimuli of
two classes—target vs. non-target—are presented. The
rarely presented target generates a peak approximately 300
ms after stimulus onset, which can be used to i1dentily the
intended letter for spelling, and thus communication. In this
example, this system 1s used for assisted communication by
combining subject data comprising brain signals (P300) as
well as eye pupil features (pupillary response) in a hybrid
classification algorithm. The output according to these
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implementations 1s letters used to spell words and sentences,
though 1t 1s appreciated that a wide array of possible outputs
are possible. For example, alternative outputs may include
the selection of icons from a pictorial array, selecting
between alternatives presented to an operator, or acknowl-
edgement of error states presented. Data collection and
signal classification can be performed by standard personal
computers runmng specialized software designed for the
capture and classification of signals used to control a remote
computer, such as BCI2000, MATLAB, LabView and the
like.

In this exemplary implementation of the AC system 10,
the process of feature extraction and transduction using the
system of FIG. 2 includes the pupillary response process
steps 1n combination with the following steps:

In a first step, subject data 1s collected (box 102 1n FIG.
1B) via sensing devices 12A, 12B, and in the case of
clectroencephalography are amplified at levels suitable for
clectronic processing, though the use of active or passive
clectroencephalography electrodes, such as the Biopac
MP150. In this example, pupillary response 1s used as part
of a hybrid brain-computer interface for assisted communi-
cation. Sensing device 12 A represents pupil size, as recorded
noninvasively with a pair of SMI eye-tracking glasses and
1View ETG 2.2 experimental software (SensoMotoric
Instruments, Teltow, Germany) with binocular tracking
(sampling rate=30 Hz; gaze tracking range=800 horizontal,
600 wvertical; accuracy=0.50; scene camera resolu-
t1on=1280x960). Sensing device 12B represents electroen-

— -

cephalography (EEG) data. For recording and acquiring the
clectroencephalography (EEG) signal, BIOPAC MP150
(Biopac Systems, Inc, California, USA) data acquisition
hardware and AcgKnowledge software were used.

The subject data are digitized (box 104 i FIG. 1B) and
transmitted to a computer using digital acquisition devices
such as a Biopac MP130. Signal conditioning acts to
enhance (box 106 in FIG. 1B) the signal and remove
extraneous mformation. Namely, the subject data were col-
lected from nine channels (FZ, F3, F4, CZ, C3, C4, PZ, P3,
and P4) following the 1nternat10nal 10-20 montage for
clectrode placement. EEG activity was sampled at a ire-
quency ol 1000 Hz, and filtered online so that nonphysi-
ological signals below about 0.1 Hz and above about 35 Hz
were attenuated. Data were grounded by a midirontal elec-
trode, and all channels were referenced using the averaged
mastoids technique. Letter stimuli were presented on a 45.5
cm [17.9 1] CRT monitor (Sony Trinitron Multiscan G400)
running at 85 Hz re 1). Stimulus presentation and data
acquisition were driven by a Hewlett Packard PC (Hewlett-
Packard Development Co., Palo Alto, Calif.) with an Intel®
Core™ 15-2400 CPU @ 3.10 GHz, 3101 MHz, 4 Core(s)
processor and 64-bit Operating System. The monitor was
placed along the midline of a large work surface, centered
approximately 50 ¢cm 1n front of the seated participant
(visual angle of 39.96° horizontal and 30.88° vertical). A
customized LabVIEW 12 (National Instruments, Austin,
Tex.) program was used to control letter display to the
screen, and to send a digital TTL signal from the PC
presenting the stimuli to the Biopac MP150 to mark letter
display events 1n the AcqgKnowledge software recording.
This customized solftware was used 1n conjunction with a NI
LabVIEW Real-Time Module, which included a real-time
operating system (OS) for more precise and predictable
timing characteristics.

Subsequently, the digitized signals are grouped into
sample blocks (box 108 in FIG. 1B), and a feature extraction

algorithm (box 110 1n FIG. 1B and 1 exemplary detail 1n
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FIG. 1C) 1s used to analyze the incoming sample block from
pupil and brain independently to produce {features that
constitute the feature vector. In various implementations, the
extracted features may include a wide range of spatial,
temporal, or spectral transformations. The feature vector 1s
passed to the feature translation stage (box 112 in FIG. 1B)
in concert with software designed to analyze such signals,
such as BCI2000, MATLAB, or LabView. The device com-
mand responds to the feature translation and feedback 1s
provided (box 114 i FIG. 1B) to the user on the user
interface running on a second personal computer, connected
via TCP/IP protocols, for example, via a standard computer
monitor.

Alternatively, for an AAC application, the process of
extracting and transducing pupil features can be the same.
Combining other ocular features (e.g., dwell time) can take
place at the feature vector to feature translation stage (shown
at box 112 1n FIG. 1B), which can also be performed through
LabView or MatLab software, for example.

Because the subject data features (brain signals, ocular
measures, or peripheral signals) are indirect signals of user
intent, in one embodiment, the algorithm, such as a linear
discriminant analysis translates them into appropriate device
commands for conveying the intended message. The trans-
lation algorithm (shown at box 112 in FIG. 1B) uses the set
of features provided at a given instant as the input and
processes the feature vector to output, compares that set of
features to known training states, makes a state classification
as to user intent, which the application device can recognize.
The translation algorithm may be comprised of a mathemati-
cal equation, set of equations, or a mapping mechanism such
as a lookup table. In its simplest form, a discriminant
function (1.e., classification function) would translate the
feature vectors into discrete categories ol output. For
example, the output of the model could be a translated
command, such as a binary 0 or 1 that identifies a visually
presented letter or symbol as a “target” or “non-target”. It 1s
readily appreciated that certain implementations can be
supplemented via machine learning algorithms to improve
classification accuracy.

Including pupil size as a physiological input to assistive
technologies for aided communication has a number of
benefits. One benefit 1s that this method could be employed
with existing market technologies that have eye tracking or
camera ability, such as those provided by Tob11 Dynavox and
Access Ingenuity, thus potentially improving the perfor-
mance of these technologies without any additional hard-
ware-associated expense. Further, as EEG becomes less
expensive, this could become a commercial-ofi-the-shelf
EEG-based BCI that provides a feasible and aflordable
solution for individuals with movement disorders. Such
examples of low-cost EEG solutions are systems provided
by EMOTIV technologies. In addition, new AAC or BCls
that utilize pupil features may be less expensive than eye
tracking based technologies, as recording pupillometry does
not require expensive eye-tracking technology, and may be
possible with standard personal computer and laptop com-
puter web cameras. Plus, AAC and BCls that require eye
movement are not usable for locked-in patients or 1n envi-
ronments where eye-tracking 1s not feasible (such as in
natural sunlight). This 1s 1important, as this one assistive
technology could be used from early to late stage ALS,
ensuring the patient does not need to switch technologies as
their disease progresses. For example, those with spinal-
onset ALS typically retain intelligible speech longer, but
lose limb control first. These users would be able to employ
the system to interface with a computer for written commu-
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nication initially, and transition to speech output through
synthesized speech when necessary. Those with bulbar-onset
ALS typically experience speech and swallowing deficits
first, but continue to walk, drive, write, and type for a period
before losing motor control. These users would need to
interface with the system for speech output, and would
benellt from being able to make selections from the display
with less eflort, thereby preserving their energy.

Existing AAC systems use camera or eye-tracking tech-
nology to determine eye movements or gaze, but not
changes 1n pupil features. According to certain specific
embodiments herein, the process for the analysis and con-
version ol eye pupil features, such as size, can be used as
part of a vision-controlled AAC to be used as an mput for
determining the user’s imtended target; pupil size can be
combined with dwell time, eye blink, or other selection
techniques to improve classification performance.

When a BCI utilizes more than one physiological input, it
1s referred to as a hybrid brain-computer interface. Hybnd
BCIs may be composed of two signals recorded directly
from the brain, or one brain signal and another system.
Non-mnvasive hybrid BCls for communication offer the
potential of increased performance (1.e., classification accu-
racy) without an increase in clinical risk. In one embodi-
ment, there 1s provided a process for the analysis and
conversion ol pupil features as part of a BCI to classity the
user’s intended target to assist with aided communication.

EXPERIMENTAL EXAMPLES

The following examples are put forth so as to provide
those of ordinary skill 1n the art with a complete disclosure
and description of how the articles, devices and/or methods
claimed herein are made and evaluated, and are intended to
be purely exemplary of the invention and are not imntended to
limit the scope of what the inventors regard as their inven-
tion. However, those of skill in the art should, in light of the
present disclosure, appreciate that many changes can be
made 1n the specific embodiments which are disclosed and
still obtain a like or similar result without departing from the
spirit and scope of the disclosure.

Participants.

Twenty-five healthy participants (n=25, Age range 21-57,
18 female) from the University of South Dakota participated
in this experiment.

Procedure.

Participants were given a target letter, which would
appear randomly within the stimulus set. Each letter was

used as a target one time, resulting in 26 trials for each of 4
inter-stimulus presentation rates: 250 ms, 500 ms, 750 ms,
and 1000 ms. NASA Task Load Index (NASA-TLX) was
used to assess subjective workload after each presentation
rate.

Results.

FIG. 3 shows the pupil diameter increase for target vs.
nontarget letter stimuli. Pupil diameter was determined by
finding the maximum difference between baseline (100 ms
pre-stimulus ) and post-stimulus (up to 1000 ms) for 26 target
and 26 randomly selected non-target letters.

FIG. 4 shows average ERPs. A prominent P300 occurring
around 250-450 ms can be 1dentified 1n those trials in which
a target stimulus was presented (red line) when compared to
those trials 1n which a distracter letter was presented (black
line). As expected, the primary distribution of the P300 was
in the centro-parietal regions of the scalp. P300 amplitude




US 11,175,736 B2

13

increase for target vs. nontarget letter stimuli at each of the
target stimuli presentation rates (250 ms, 500 ms, 750 ms,
and 1000 ms).

FIG. 5 shows EEG Measurements of the P300 across
clectrode sites for the 250 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeframe
following stimulus presentation. All electrode sites show a
robust P300 following presentation of the target stimuli at
the 250 ms presentation rate.

FIG. 6 shows EEG Measurements of the P300 across
clectrode sites for the 500 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeframe
following stimulus presentation. All electrode sites show a
robust P300 following presentation of the target stimuli at
the 500 ms presentation rate.

FIG. 7 shows EEG Measurements of the P300 across
clectrode sites for the 750 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeirame
following stimulus presentation. The majority of electrode
sites (36) show a robust P300 following presentation of the
target stimuli at the 750 ms presentation rate.

FIG. 8 shows EEG Measurements of the P300 across
clectrode sites for the 1000 ms presentation rate. Areas under
the curve were calculated for the 250 ms-450 ms timeframe
tollowing stimulus presentation. The majority of electrode
sites (%0) show a robust P300 following presentation of the
target stimuli1 at the 1000 ms presentation rate.

Tables 1-3 show classification accuracy for pupil diam-
cter, P300 ERP, and hybrid pupil diameter+P300 ERP.
BCILAB was used to test classifier accuracy for pupil
diameter, P300, and the hybrid pupil+P300. Five classifiers
were assessed for performance based on true negative and
true positive rates. CSP was an eflective classifier, and was
used to calculate a sensitivity mdex (d').

Due to violations of sphericity, multivariate test statistics
were used. A significant main effect of classifier type was
observed [F(2,8)=20.597; Wilks A=0.163; p=0.001]. Post-
hoc tests revealed significant differences between the com-

bined model and each individual classifier performance
(P’s<0.03), as 1s shown 1n FIG. 9.*Sample size N=11.

FIG. 10 shows the NASA-TLX workload values differ-
ences based on rate of letter presentation.

The main effect of presentation rate was significant
[F(2.02, 48.46)=7.118, p=0.002]. Mental demand and time
pressure were highest 1n the 250 ms presentation condition.

In this example, pupil diameter increases as a function of
target letter when using a single-letter presentation BCI
format. A prominent P300 1s observable at multiple elec-
trode sites and at multiple presentation rates that would be
suitable for use in single-letter presentation BCI applica-
tions. Classification accuracy 1s significantly improved
through the use of a hybrid pupil/P300 classification algo-
rithm. Subjective assessments of various presentation rates
demonstrates increases 1 workload during faster presenta-
tion rates.

In summary, this example demonstrates the uftility of
combining pupil response i BCI systems as a readily
available physiological measurement that increases classi-
fication performance above current BCI interfaces.

Ranges can be expressed herein as from “about” one
particular value, and/or to “about” another particular value.
When such a range 1s expressed, a further aspect includes
from the one particular value and/or to the other particular
value. Similarly, when values are expressed as approxima-
tions, by use of the antecedent “about,” 1t will be understood
that the particular value forms a further aspect. It will be
turther understood that the endpoints of each of the ranges
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are significant both 1n relation to the other endpoint, and
independently of the other endpoint. It 1s also understood
that there are a number of values disclosed herein, and that
cach value 1s also herein disclosed as “about” that particular
value 1n addition to the value 1tself. For example, 1f the value
“10” 1s disclosed, then “about 107 1s also disclosed. It 1s also
understood that each unit between two particular units are
also disclosed. For example, 11 10 and 15 are disclosed, then
11, 12, 13, and 14 are also disclosed.

As used herein, the term “subject” refers to the target of
administration, e.g., an animal. Thus, the subject of the
herein disclosed methods can be a human, non-human
primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea
pig or rodent. The term does not denote a particular age or
sex. Thus, adult and newborn subjects, as well as fetuses,
whether male or female, are intended to be covered. In one
aspect, the subject 1s a mammal. A patient refers to a subject
afllicted with a disease or disorder. The term “patient”
includes human and veterinary subjects. In some aspects of
the disclosed systems and methods, the subject has been
diagnosed with a need for treatment of one or more disor-
ders.

Although the disclosure has been described with reference
to preferred embodiments, persons skilled 1n the art will
recognize that changes may be made in form and detail
without departing from the spirit and scope of the disclosed
apparatus, systems and methods.

What 1s claimed 1s:

1. A pupillary assisted communication system, compris-
ng:

a. a pupillary-response sensing device constructed and

arranged to generate subject data;

b. a non-pupillary response sensing device constructed
and arranged to generate subject data;

c. at least one computing device comprising a display,
memory, and at least one processor constructed and
arranged for executing a hybrid classification algorithm
comprising a plurality of steps, comprising:

1. grouping subject data from the pupillary-response
and non-pupillary response sensing devices into
sample blocks;

11. executing a feature extraction algorithmic step to
produce at least one feature vector, the feature algo-
rithmic step comprising:

a vector computing sub-step;
a scatter matrix computing sub-step; and
an eigenvector and eigenvalue computing sub-step;

111. translating the feature vector; and

1v. providing feedback via the at least one computing
device display.

2. The system of claim 1, wherein the subject data
comprises at least one response selected from the group
consisting of pupil size, eye gaze dwell time, eye blink, eye
movement, EEG, functional near infrared spectroscopy,
clectrocorticography, ultrasound, change 1n heart rate, motor
evoked responses and galvanic skin responses.

3. The system of claim 1, wherein subject data 1s gener-
ated via BCI.

4. The system of claam 1, wherein the subject data 1s
generated via augmentative and alternative communication.

5. The system of claim 1, further comprising an eigen-
value sorting sub-step.

6. The system of claim 35, wherein the plurality of sub-
steps comprises a sample transforming step.

7. The system of claim 1, wherein the subject data
comprises brain signal data.
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8. The system of claim 1, wherein the subject data 1s
generated via augmentative and alternative communication.

9. A pupillary assisted communication system, compris-
ng:

a. a pupillary-response sensing device constructed and
arranged to generate subject data;

b. a non-pupillary response sensing device constructed
and arranged to generate subject data;

c. at least one computing device constructed and arranged
for executing a hybnid classification algorithm com-
prising a plurality of steps, comprising:
grouping subject data from the pupillary-response and

non-pupillary response sensing devices mnto sample
blocks:

executing a feature extraction algorithmic step to pro-
duce at least one feature vector, the feature algorith-
mic step comprising:
a vector computing sub-step;
a scatter matrix computing sub-step; and
an eigenvector and eigenvalue computing sub-step;

and

translating the feature vector.

10. The system of claim 9, further comprising an eigen-
value sorting sub-step.

11. The system of claim 9, further comprising a sample
transforming step.

12. The system of claim 9, wherein the subject data
comprises at least one response selected from the group
consisting of pupil size, eye gaze dwell time, eye blink, eye
movement, FEG, functional near infrared spectroscopy,
clectrocorticography, ultrasound, change in heart rate, motor
evoked responses and galvanic skin responses.

13. The system of claim 9, wherein subject data is
generated via BCI.

14. The system of claim 9, wherein the subject data 1s
generated via augmentative and alternative communication.
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15. The system of claam 9, wherein the subject data
comprises brain signal data.

16. The system of claim 15, further comprising an EEG.

17. The system of claim 9, further comprising a display
constructed and arranged to provide the feedback.

18. The system of claim 9, wherein the pupillary-response
sensing device 1s constructed and arranged to measure at
least one response selected from the group consisting of
pupil size, eye gaze dwell time, eye blink and eye move-
ment.

19. A pupillary assisted communication system, compris-
ing a computing device constructed and arranged for:

a. rece1ving subject data generated from:

1. a pupillary-response sensing device constructed and
arranged to generate subject data; and

11. a non-pupillary response sensing device constructed
and arranged to generate subject data; and

b. executing a hybrid classification algorithm comprising

a plurality of steps comprising:

1. grouping subject data from the pupillary-response
and non-pupillary response sensing devices 1nto
sample blocks;

11. executing a feature extraction algorithmic step to
produce at least one feature vector, the feature algo-
rithmic step comprising:

A. a vector computing sub-step;

B. a scatter matrix computing sub-step; and

C. an eigenvector and eigenvalue computing sub-
step; and

111. translating the feature vector.

20. The system of claim 19, wherein the subject data
comprises at least one response selected from the group
consisting of pupil size, eye gaze dwell time, eye blink, eye
movement, EEG, functional near inifrared spectroscopy,
clectrocorticography, ultrasound, change in heart rate, motor
evoked responses and galvanic skin responses.
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