US011169962B2

a2 United States Patent (10) Patent No.: US 11,169,962 B2

Wang 45) Date of Patent: Nov. 9, 2021
(54) FILE MANAGEMENT SYSTEM, FILE (358) Field of Classification Search
MANAGEMENT METHOD, COLLECTION CPC GO6F 16/122; GO6F 16/1734; GO6F 12/00;
PROGRAM, AND NON-TRANSITORY GO6F 7/588; GO6F 17/10
COMPUTER-READABLE INFORMATION See application file for complete search history.

RECORDING MEDIUM

56 Ref Cited
(71) Applicant: Rakuten Group, Inc., Tokyo (JP) (56) clerenees e

U.S. PATENT DOCUMENTS

(72) Inventor: Yongkun Wang, Tokyo (CN)

5,720,026 A * 2/1998 Uemura GO6F 11/1451
(73) Assignee: Rakuten Group, Inc., Tokyo (IP) 714/6.3
5,926,821 A * T7/1999 Hiroseccooev.., GO6F 3/0619
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 526 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 16/085,435 JP 2014-81898 A 5/2014
(22) PCT Filed: Mar. 17, 2016 Primary Examiner — Robert W Beausoliel, Jr.
Assistant Examiner — Susan IF Rayyan
(86) PCT No.: PCT/JP2016/058527 (74) Attorney, Agent, or Firm — Sughrue Mion, PLLC
§ 371 (c)(1).
(2) Date: Sep. 14, 2018 (57) ABSTRACT

In a server (111), an updater (201) updates a file by an

(87) PCT Pub. No.: WO2017/158794 editing process that includes an adding process that adds a

PCT Pub. Date: Sep. 21, 2017 record to the end of a file. A collector (202) reads, 1n order
of location 1n the file, a record included 1n the file, causes a
(65) Prior Publication Data collection device of a collection system to associate and
US 2019/0114286 A1 Apr. 18, 2019 collect the record and a position of the record 1n the file, and
non-transitorily stores the position as an oflset. An estimator
(51) Int. ClL (203) estimates whether header records located between the
GO6F 16/11 (2019.01) beginning of the file and the recorded oflset are updated.
GOGF 12/00 (2006.01) When 1t 1s estimated that any of the header records are
GO6F 16/17 (2019.01) updated, a starter (204) causes the collector (202) to start
GO6F 7/58 (2006.01) reading the record from the beginning of the file. When 1t 1s
GO6F 17710 (2006.01) estimated that none of the header records have been updated,
(52) U.S. CL. the starter 204 causes the co{lector (202 to start reading the

CPC ... GO6F 16/122 (2019.01); GO6F 7/588 record from the recorded offset.

(2013.01); GO6F 12/00 (2013.01); GO6F
16/1734 (2019.01); GO6F 17/10 (2013.01) 11 Claims, 5 Drawing Sheets
111
y

ik
OFFSET

COLLECTION
SYSTEM

US 11,169,962 B2

(56)

6,009,502
0,339,795
6,604,236
7,277,905
7,890,469
8,032,009
8,135,676
8,601,225
8,600,944

8,694,458

A=I=

Bl *

Bl *

B2 *

Bl *

B2 *

Bl *

B2 *

B2 *

B2 *

References Cited

U.S. PATENT DOCUM

12/1999

1/2002

8/2003

10/2007

2/2011

10/2011

3/2012

12/2013

3/2014

4/2014

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiii

tttttttttttttttttttttt

iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiii

tttttttttttttttttt

ttttttttttttttt

ttttttttttttttttt

ttttttttttttttttt

ttttttttttttttttttttttt

Page 2
9,020,987
9,171,002
9.201.906
GO6F 11/1435 9,251,186
707/999.202 9,286,165
GO6F 16/258 9,311,333
700/946 0,442,955
GOGF 8/66 g,j;lg,(l)%
717/170 e
GO6F 16/221 o330
707/648 10.250.446
GO6F 16/10 10320 141
707/654 10.514.985
G11B 27/034 10267 500
386/279 10,776,209
GO6F 11/1451 2008/0215834
707/646
GO6F 11/1456 2012/0246125
711/162
GO6F 11/1469 2016/0210194
707/679 2018/0165345
GO6N 20/00
706/46

Al*

Al*
Al*

* cited by examiner

4/2015

10/201
12/201
2/201
3/201
4/201
9/201
9/201
10/201
4/201
10/201
4/201
8/201
12/201
2/2020
9/2020
9/2008

OO N =~ ~ITONONOY ONONY O LA

9/2012

7/2016
6/2018

Nanda GO6F 16/1734

707/821
Mamcccevvnn, GO6F 3/0679
Kumarasamy GOO6F 3/067
Muller GO6F 16/185
Hwang GOG6F 11/1435
Pawar GOG6F 16/1865
Pawar GO6F 17/00
Woodcooeeeel, GOG6F 21/6227
Pawar GO6F 16/1865
Vyayan GO6F 11/1451
Madhavarapu GO6F 3/065
Prasad HO4L 41/046
Chepel GO6F 11/1471
Patwardhan GO6F 11/1451
Leshinsky HO4L 67/1076
Pawar GO6F 11/2094
Dumitru GO6F 3/0674

711/161
Kato ...ooooovvivvinnnn, GO6F 16/10

707/692
Kumarasamy GO6F 3/0619
Nomura GO6F 11/1453

U.S. Patent Nov. 9, 2021 Sheet 1 of 5 US 11,169,962 B2

R i R S T o T R N R R e S e R G A R R RN N
+

* L]
L]

+ -
+

- .
*

+ L]
-

+]
+

- -
+

+ . L]
-

+ -
+

- .
+

+ L]

+ H d d
+

- .
*

+ L]
-

+]
+

- .
+

+ L]
r

+ -

i -
+

+ b+ + b ¥+ hd Fr-d+F F+FFFFFFRFAFFAdF A Frd e d e d e d FFFFwrtFFd Fwd Fwd Fwd FFAFwd o+
+* .

HHHHﬂﬂﬂﬂﬁﬁﬁﬂﬁﬁﬁﬂﬁﬂﬂﬂHﬂﬂﬁﬂﬂﬁﬂﬁﬂﬂﬁﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂﬁﬂﬂﬂ!ﬁﬁﬁﬂﬂHHHHHHHEHEHHHHHHHE!LHHHHHE

122 122

."/\‘_“'"\M ..-:::-.::::._:._.;_._;:.::_-;: - . -'..:-::.::::::'.:3-'3;_-;:__.:_-5:____ {’m

STl
P RN : + b+ w4 j
4+ A+ F A FFAFFET AN F A FFFFLFFY A FFAFFAFFAFFEP LA A R J.|-|--I--I-I--I--I-I--'l-l--l--I-I--I--II'-I--I-I--I-l-I--I--I-I--I--I‘I-'I-l‘l-‘l-l‘l-‘l-l‘I-'I-l‘l-‘l--!‘l-‘l--l‘I-'I--I‘l-‘l--!‘l-‘l-l‘l-
=
+ Il
+ +
= .
4 4
* -
[w
4 []
4 + +
- .
4 +
+ ——=e == == F 1_ —_== = —==-
+ -
- +I +
1 1
N , ' [B " | N E ¥ ¥ | B | | | [3
- - .
+ Il
L] +
" .
H 4 +
+ r
r r
+ []
. . .
- .
+ +
+3 i 1_
R T I T L L T L L
'
'

A+ md+ hd+ hd+ hdorw o4+
PRI B A M A B N I)

rr w4 +F b4+ LF AR FREAF I'd + b d + b d + b d + 4 r+ hbd + b d + b rd b r++d+4>++r
+ = 4+ = FF P AL AL g AL g [l B e Bl i e R B B O B B . PO B N SN N . P PUL. B . . . P
- L]
+ +
+ L]
- =
4 d
+* +*
= Ll
F +
+ L]
- [
4 []
+ +
= Ll
o+ +
+ 1
-]
- d
-+ "+
- L]
+ +
+ L]
- -
4 d
* +*
= Ll
+ +
+ L]
T *
L []
+ +
Ll Ll
F +
+ 1
- [
+ + b r ¥+ b4+ b d F b4 F A F A F L FRd FhdFEdFEd ¥ Rd F A F LA+ A+ A A A+ kA FRd Fed F+ hd o+ Ed AL R rd F
E 4+ + &% + &+ & 4 4 & & 4 & & 4 & & 4 8 & 4 F = § & & 4 & L § A L B L B L g N L AL ok B A g S A S E A A A

U.S. Patent Nov. 9, 2021 Sheet 2 of 5 US 11,169,962 B2

UPDATER

FILE
OFFSET

--

. . K

. . .
* - k

N A .
* " .

. - .
* 1 -

. . .
*) h
* . b

. . .
* - .

- A .
. . -

a . .
. - .

; . N . .
+ - . K
. g ol .
.. + — BT T T e e e e e e e e e e e L L L T T
B L L P PR TI T L T i . Lttt K
+ " L. .
: . A . .
+ . b
. b 3 ., .

. . .
* " .

- - .

d * i)
- " h

. - .
*) b

- A .
* . .

T . .

. L .
* " .

nn
11

COLLECTION
SYSTEM

STARTER |a— _ S TIVMATOR

U.S. Patent Nov. 9, 2021 Sheet 3 of 5 US 11,169,962 B2

Figd

UPDATE PROCESS |

WAIT UNTIL EVENT
OCCURRENCGE

U.S. Patent Nov. 9, 2021 Sheet 4 of 5 US 11,169,962 B2

iy
09
X

rrr

GOLLEGTION
F’F%GGESS

" HEADER REGORD ~___No
| UPE}ATED‘*’ ?

--

READ RECORD

- RUOM HLE

WAIT UNTIL FILE
UPDATE 9412

| COMMAND STORAGE OF [S408
| OFFSET AND RECORD |

++
-

| WAIT FOR Rﬁpom 5
. OF STORAGE PROCESS |
f CQMPLETI@N 3409

--

+++

+++

++

U.S. Patent Nov. 9, 2021 Sheet 5 of 5 US 11,169,962 B2

]
0%
O

{ RESPONSE PROCESS

WAIT FOR N\,
COMMAND? -*

COLLECTION | | _
COMMAND | S602 QUERY QAN Gthﬁr

DEVICE
RESPONSIBLE?

ETGTED |

RECORD?
Yes } S606

ll

US 11,169,962 B2

1

FILE MANAGEMENT SYSTEM, FILLE
MANAGEMENT METHOD, COLLECTION
PROGRAM, AND NON-TRANSITORY
COMPUTER-READABLE INFORMATION
RECORDING MEDIUM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a National Stage of International
Application No. PCT/JIP2016/058527 filed Mar. 17, 2016,
the disclosure of which 1s incorporated herein 1n its entirety
by reference.

TECHNICAL FIELD

The present disclosure relates to a file management sys-
tem, a fille management method, a collection program, and a
non-transitory computer-readable information recording
medium.

BACKGROUND ART

In the related art, technologies for copying a plurality of
records included i1n a file from one computer to another
computer are widely used. For example, Patent Literature 1
proposes a divided file backup system that enables saving
while maintaining redundancy. In this system, the data of a
file 1s divided into a plurality of records and the various
records are distributed to a plurality of mobile terminals.

In web servers, for example, an editing process that adds
a record to the end of a file 1s frequently performed to record
accesses to the web server 1 a log file. In many server
devices, when various events occur, an editing process 1s
executed that adds a record expressing the details of that
event to the end of the log file.

It 1s rare that a log file 1s subjected to an editing process
that replaces, deletes, or mserts a record 1n the middle of the
log file. That 1s, 1n cases such as when the log file has
become large, typically, the log file to be subjected to the
editing process 1s cleared by performing a process that
deletes or renames the log file and, thereafter, an adding
process 1s performed.

In the information processing 1n a personal computer, an
adding process that adds a record to the end of the file 1s
executed more frequently than other types of editing pro-
CEeSSes.

The simplest method for matching the content of the
plurality of records included in such a file between one
computer and another computer includes detecting that an
editing process has been performed on the file by monitoring
the update timestamp of the file, and then copying the entire
file that was subjected to the editing process.

CITATION LIST
Patent Literature

Patent Literature 1: Unexamined Japanese Patent Appli-
cation Kokai Publication No. 2014-81898

SUMMARY OF INVENTION

Technical Problem

However, when a file 1s frequently updated as described
above, situations may occur 1n which a record 1s added to the

10

15

20

25

30

35

40

45

50

55

60

65

2

end of a file during the period from when the copying of the
entire file 1s started to when the copying 1s completed. In
such situations, the update timestamp of the file changes,
making it necessary to re-copy the file from the beginning.
Accordingly, with the method of copying the entire file,
there are many cases in which, in practice, it 1s difhicult to
match the content of the plurality of records included in the
file between computers.

In situations 1 which the power of the server device that
manages the original file 1s turned off due to maintenance or
the like, or when the operating system or a program of the
server device 1s being updated, the program for matching the
plurality of records included in the file between computers
1s temporarily ended. Consequently, the program must be
re-executed when the computer, the operating system, or the
like 1s restarted. As such, when re-executing the program, i1t
1s desirable that the imitialization of the program i1s com-
pleted as quickly as possible so that the process that matches
the plurality of records included in the file between com-
puters can be resumed.

In light of these problems, an objective of the present
disclosure 1s to provide a file management system 1n which
a server device, which performs an adding process that adds
a record to an end of a file, causes a collection device to
collect the records included 1n the file. Such a file manage-
ment system 1s suited to suppress the calculation load of the
server device and the communication load between the
server device and the collection device. The objective of the
present disclosure further includes providing a file manage-
ment method, a collection program for realizing the server
device using a computer, and a non-transitory computer-
readable information recording medium on which the col-
lection program 1s recorded.

Solution to Problem

The file management system of the present disclosure
includes a server device that non-transitorily stores a file and
an offset for the file, and a collection system. In this file
management system,

(a) the server device executes an editing program, thereby
updating the file by an editing process that includes an
adding process that adds a record to an end of the file;

(b) the server device executes a collection program,
thereby reading, in order of location in the file, a record
included 1n the file, causing the collection system to asso-
ciate and collect the read record and a position where a
beginning of the read record 1s located in the file, and
updating the non-transitorily stored offset to a position
where an end of the collected record 1s located 1n the file; and

(c) when the execution of the collection program 1s
started, the server device estimates whether any header
records located between the beginning of the file and the
non-transitorily stored oflset are updated and,

when 1t 15 estimated that any of the header records are
updated, starts reading the record of the file from the
beginning of the file, and when 1t 1s estimated that none of
the header records are updated, starts reading the record of
the file from the non-transitorily stored oflset.

Advantageous Effects of Invention

According to the present disclosure, a file management
system can be provided in which a server device, which
performs an adding process that adds a record to an end of
a file, causes a collection device to collect the records
included 1n the file. This file management system is suited to

US 11,169,962 B2

3

suppress the calculation load of the server device and the
communication load between the server device and the
collection device. Additionally, a file management method,
a collection program for realizing the server device using a
computer, and a non-transitory computer-readable informa-
tion recording medium on which the collection program 1s
recorded can be provided.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s an explanatory drawing illustrating the configu-
ration of a file management system according to an embodi-
ment of the present disclosure;

FIG. 2 1s an explanatory drawing illustrating the configu-
ration of a server device of the file management system
according to an embodiment of the present disclosure;

FIG. 3 1s a flowchart 1llustrating the control of an update
process executed by the server device according to an
embodiment of the present disclosure;

FI1G. 4 1s a flowchart illustrating the control of a collection
process executed by the server device according to an
embodiment of the present disclosure; and

FIG. 5 15 a flowchart illustrating the control of a response
process executed by a collection device of a collection
system according to an embodiment of the present disclo-
sure.

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present disclosure are
described. However, the following embodiments are pre-
sented for the purpose of explanation and should not be
construed as limiting the scope of the mmvention of the
present disclosure. Therefore, embodiments 1n which some
clements or all elements of these embodiments are replaced
with equivalent elements by one skilled 1n the art can also be
employed, and such embodiments are also included within
the scope of the present disclosure.

Embodiment 1

FIG. 1 1s an explanatory drawing illustrating the configu-
ration of a file management system according to an embodi-
ment of the present disclosure. Hereinafter, the file manage-
ment system 1s described while referencing FIG. 1.

The file management system 101 according to the present
embodiment includes a server device 111 and a collection
system 121. The file management system can also include a
client terminal 141 as an optional element.

The server device 111 1s a computer on which a file
updating (editing) process 1s performed. In one example,
when the server device 111 functions as a web server, each
time an access event to the web server occurs, the server
device 111 executes an adding process that adds a record
representing that event to the end of a log file.

When performing an access analysis on the basis of the
log file, the file management system 101 causes the collec-
tion system 121 to collect the various records included in the
log file 1n order to prevent declines 1n the performance of the
web server functions of the server device 111.

The collection system 121 includes one or more collection
devices 122. Each of the collection devices 122 executes a
collection process on the basis of a command from the server
device 111. The collection process 1s a process that receives
and saves the various records included 1n the file managed
on the server device 111.

10

15

20

25

30

35

40

45

50

55

60

65

4

The client terminal 141 1s actually responsible for the web
server access analysis. That 1s, when a query 1s sent from the
client terminal 141 to the collection system 121, the collec-
tion system 121 responds with the records that satisty that
query.

Computers that are prepared for each purpose execute
programs for each purpose to realize the server device 111,
the collection device 122, and the client terminal 141.

These programs can be distributed from a distribution
server (not illustrated in the drawings) via a transitory
transmission medium such as a computer communication
network. Here, the distribution server 1s managed by the
operator of the file management system 101. For example,
the programs can be distributed using the web server func-
tion of the server device 111.

Additionally, these programs can be recorded on a non-
transitory computer-readable information recording medium
such as a compact disk, a flexible disk, a hard disk, a
magneto-optical disk, a digital video disk, a magnetic tape,
read-only memory (ROM), electrically erasable program-
mable ROM (EEPROM), flash memory, and semiconductor
memory. This information recording medium can be distrib-
uted and sold independent from the various computers.

The distributed programs are recorded on a non-transitory
information recording medium such as tflash memory or a
hard disk of the downloading computer.

The central processing unit (CPU) of the computer reads
the non-transitorily stored programs to random access
memory (RAM), and then executes the commands in the
programs. Note that the RAM 1s a temporary storage device.

However, 1n architectures in which the read-only memory
(ROM) and the RAM can be mapped to a single memory
space and the commands 1n the programs can be executed,
the commands in the programs stored in the ROM are read
and executed directly by the CPU.

Note that a configuration 1s possible 1n which dedicated
clectronic circuits are used instead of computers to realize
the various devices of the present embodiment. In this case,
the programs function as materials for generating timing,
charts, wiring diagrams, and the like of the electronic
circuits. Moreover, 1n such a case, the electronic circuits that
satisty the specifications stipulated by the programs are
configured from field programmable gate arrays (FPGA),
application specific integrated circuits (ASIC), or the like.
The electronic circuits function as dedicated devices that
fulfill the functions stipulated by the programs.

FIG. 2 15 an explanatory drawing 1llustrating the configu-
ration of the server device of the file management system
according to an embodiment of the present disclosure.
Hereinafter, the server device 1s described while referencing
FIG. 2.

As 1llustrated 1n FIG. 2, the server device 111 includes an
updater 201, a collector 202, an estimator 203, and a starter
204. The computer for realizing the server device 111
executes an editing program to realize the updater 201, and
executes a collection program to realize the collector 202,
the estimator 203, and the starter 204.

The updater 201 updates the file by an editing process that
includes the adding process that adds a record to the end of
the file.

The file to be subjected to the editing process 1s saved on
a hard disk, flash memory, or the like of the server device
111, or on a non-transitory information recording medium
such as network storage or the like that 1s connected to the
server device 111.

For example, in a case in which the server device 111
provides a web service and the history of access to the server

US 11,169,962 B2

S

device 111 1s recorded 1n a log file, records representing
information related to each access are added to the end of the
log file. Each of the records may have a fixed length (fixed
number of bytes) or may have an arbitrary length (variable
number of bytes). A line feed character attached to the end
of each line may be used as a delimiter between each of the
records.

The updater 201 executes an editing process i which
updates to the file are exclusively appended to the end of the
file. This editing process may be automatically executed by
the server device 111 executing the editing program, or may
be heteronomously executed 1n response to a command from
a user.

The collector 202 reads a record, which 1s included 1n the
file that 1s subjected to the editing process by the updater
201, 1n the order 1n which the record 1s located 1n the file,
causes the collection system 121 to associate and collect the
read record and the position where the beginming of the read
record 1s located in the file, and updates a non-transitorily
stored oflset to the position where the end of the collected
record 1s located in the file.

When the collector 202 executes this process for the first
time, the records are read in order from the beginning of the
file. Each time a record 1s read, the read record 1s copied to
the collection system 121.

Note that, when the collector 202 causes the collection
system 121 to collect a record, the position where the
beginning of that record 1s located 1n the file 1s also recorded.
Thus, even when each record 1s copied to one of the plurality
of collection devices 122, 1t 1s possible to restore the original
file by arranging and concatenating the records saved on the
plurality of collection devices 122 in the order of the
positions.

After the collector 202 has caused the collection system
121 to collect one record, the collector 202 records, on the
non-transitory information recording medium, an oflset indi-
cating the point to which the reading of the records from the
file has been completed or, 1n other words, an offset indi-
cating the point to which the copying to the collection
system 121 has been completed. When the records have a
variable length, the oflset 1s calculated 1n byte units, but
when the record has a fixed length, the oflset may be
calculated in byte units or in record number units.

When a record 1s added to the file by the editing process
while processing 1s progressing smoothly without the server
device 111 breaking down or experiencing problems, the
added record 1s read from the file by the collection process
and the read file 1s copied to the collection system 121.

Accordingly, the original file can be restored by concat-
enating, in the collection system 121, the records collected
by the collection system 121 in the order of the positions
associated with the collected records. Alternatively, the
original file can be restored by the client terminal 141 or the
like acquiring the records collected by the collection system
121 and concatenating these records in the order of the
positions associated with the collected records.

The reading of the record by the collector 202 may be
performed by detecting that the record 1s added to the file.
This detection may be performed by using a file update event
detection function of the operating system (OS), updating a
flag for calling the collection process in the editing process
of the file, or 1ssuing a signal or notification.

In addition, the collector 202 may intermittently (for
example, when the server device 111 1s idling or at low load;
applies hereinaliter) or periodically (for example, every day
late at night or the like, or at a time frame when file updating
frequency 1s expected to be low; applies hereinafter) monitor

10

15

20

25

30

35

40

45

50

55

60

65

6

the size of the file for changes and, 1n cases 1in which there
1s no change, sleep for an appropriately determined amount
of time and then repeat the same process and, 1n cases 1n
which there 1s a change, determine that a record 1s added to
the file and perform the reading.

However, 1n cases in which the server device 111 expe-
riences some sort of breakdown or problem, various types of
maintenance are performed, or there 1s a security update of
the OS, the various applications/programs, or the library
program, the editing program and the collection program
must be ended and then restarted and/or the computer
realizing the server device 111 must be rebooted.

When the collection program 1s restarted in this manner,
the estimator 203 estimates whether any of the header
records located between the beginning of the file and the
non-transitorily stored oflset are updated.

As described above, the header records located between
the beginning of the file and the offset have already been
copied to the collection system 121. Additionally, the editing
process on the file mainly includes adding the record to the
end of the file. Accordingly, provided that none of the header
records are updated, re-copying to the collection system 121
1S not necessary.

Meanwhile, 1t 1s necessary to compare the copied records
on the server device 111 with the collection system 121 1n
order to thoroughly check whether any of the header records
are updated. However, this manner of comparison requires a
tremendous amount of communication time and calculation
time.

As such, 1n the present embodiment, only an estimation as
to whether any of the header records are updated 1s per-
formed. As a result, the communication time and the calcu-
lation time can be reduced and the collection program can be
quickly resumed. Note that estimation techniques are
described later.

When 1t 1s estimated that any of the header records are
updated, the starter 204 causes the collector 202 to start
reading the record from the file from the beginning of the
file. When 1t 1s estimated that none of the header records are
updated, the starter 204 causes the collector 202 to start
reading the record from the file from the non-transitorily
stored oflset. Thus, as described above, the collector 202
causes the collection system 121 to collect the read record 1n
the read order together with the position where the record 1s
located, and non-transitorily stores an offset indicating the
position where the reading of the records ended.

Note that the estimator 203 may periodically or intermat-
tently perform the estimation described above while the
collection program 1s being executed, and not only at the
start of the execution of the collection program. When, as a
result of the estimation, 1t 1s estimated that any of the header
records are updated, the collector 202 reads the record of the
file again from the beginming of the file, and re-copies the
record, from the beginning, to the collection system 121.

Estimation Techniques

Hereinatter, the various estimation techniques performed
by the estimator 203 are described.

A first technique includes acquiring any of header records
randomly or according to a predetermined rule and checking
only the acquired record for changes.

Specifically, the collector 202 acquires an extraction posi-
tion between the beginming of the file and the non-transito-
rily stored oflset. This extraction position 1s referenced in the
estimation by the estimator 203 (described later). As
described above, the extraction position may be determined
randomly, or may be acquired according to a predetermined
rule.

US 11,169,962 B2

7

One example of randomly determining the extraction
position includes generating uniform random numbers from
the beginning of the file to the oflset, or generating random
numbers of a probability distribution that attenuates from the
oflset toward the beginning of the file, and determining the
extraction position using the random numbers. The latter 1s
particularly preferable in situations in which there 1s likely
to be conflict when writing to the end of the file. The
attenuation may be exponential attenuation, linear attenua-
tion, or reciprocal attenuation.

In a situation mm which there 1s a possibility of a user
manually editing the file, random numbers of a probability
distribution that attenuates from the beginning of the file
toward the oflset may be generated, and the extraction
position may be determined using the random numbers.

One example of determining the extraction position
according to a predetermined rule imncludes multiplying the
oflset by a constant that 1s O or greater and less than 1 and
setting the resulting integer as the extraction position.

Then, the collector 202 reads the data located at the
extraction position acquired from the file, calculates a hash
value of the read data, and records the acquired extraction
position and the calculated hash value non-transitorily on a
hard disk, flash disk, network storage connected to the server
device 111, or the like.

The timings when the acquisition of the extraction posi-
tion, the read of the data, the calculation of the hash value,
and the non-transitory recording of the extraction position
and the hash value are performed can be appropriately set
according to the use or the like of the server device 111.
Examples of timings that can be used include when a new
record 1s added to the file, when the calculation load of the
server device 111 1s less than or equal to a threshold, and
when a point 1n time set 1n a pre-planned schedule arrives.

When the collection program starts, the starter 204
acquires the non-transitorily stored extraction position, reads
the data located at the extraction position acquired from the
file, and calculates the hash value of the read data. Typically,
the starter 204 1ssues commands to the estimator 203 to
execute these processes.

If the update to the file 1s only a record addition, the hash
value should match the non-transitorily stored hash value.
Therefore, if the calculated hash value 1s equivalent to the
non-transitorily stored hash value, the estimator 203 esti-
mates that none of the header records are updated.

The second technique determines the extraction position
according to the offset instead of randomly. Accordingly, the
extraction position changes and the hash value i1s updated
cach time the offset 1s updated. Heremnaiter, the second
technique 1s described while focusing on the differences
with the first technique.

Specifically, the collector 202 acquires an extraction posi-
tion that 1s unmiquely associated with the non-transitorily
stored oflset, reads the data located at the extraction position
acquired from the file, calculates the hash value of the read
data, and non-transitorily stores the calculated hash value.

Since the extraction position 1s umquely determined
according to the offset in this embodiment, the extraction
position 1s not non-transitorily stored. Instead, it 1s prefer-
able that the non-transitory recording of the offset and the
calculation and non-transitory recording of the hash value
are performed inseparably at substantially the same time.
That 1s, 1t 1s preferable that the timings at which the
acquisition of the extraction position, the calculation of the
hash value, and the non-transitory recording of the extrac-
tion position and the hash value are performed are set to the
timing at which the oflset 1s non-transitorily stored.

10

15

20

25

30

35

40

45

50

55

60

65

8

When the collection program 1s started, as in the first
technique, the starter 204 acquires the extraction position
that 1s uniquely associated with the non-transitorily stored
oflset, reads the data located at the extraction position
acquired from the file, and calculates the hash value of the
read data. If the calculated hash value 1s equivalent to the
non-transitorily stored hash value, the estimator 203 esti-
mates that none of the header records are updated.

In the second techmique, since the extraction position 1s
unmiquely determined from the oflset, the extraction position
1s not non-transitory recorded. Aside from this point, the
second technique includes the same processes as described
for the first technique.

The third techmique 1s the same as the second technique,
with the exception that the extraction position 1s fixed at the
first record, which 1s located at the beginning of the file. That
15, when the collector 202 reads the first record located at the
beginning of the file and the first record 1s collected by the
collection system 121, the collector 202 calculates the hash
value of the first record and non-transitorily stores the
calculated hash value.

Meanwhile, the starter 204 calculates the hash value of the
first record located at the beginning of the file. If the
calculated hash value i1s equivalent to the non-transitorily
stored hash value, the estimator 203 estimates that none of
the header records are updated.

In these technmiques, 1t 1s simplest when 1 1s set as the
number of records for which the hash value 1s to be
calculated. However, from the perspectives of the sector size
of the hard disk or the like and the bufler size of the file
input/output, reading one record 1s substantially the same as
reading a plurality of records. As such, all of the records read
in one reading instance that are located before the off set may
be referenced when calculating the hash value.

Operations of the Editing Program in the Server Device

Heremnaftter, the flow of the control of the editing program,
which 1s executed 1n the server device 111, 1s described. FIG.
3 1s a flowchart illustrating the control of an update process
executed by the server device according to an embodiment
of the present disclosure. Hereinafter, the update process 1s
described while referencing FIG. 3.

The editing program of the present embodiment performs
a process that appends various events occurring on the
server device 111 to the file. An example of such an event 1s
a record of an access to the server device 111. That 1s, the
server device 111 that has started the execution of the editing
program waits until a monitoring target event occurs (step
S301).

When an event occurs, the server device 111 opens the file
(step S302), and seeks to the end (bottom) of the file (step
S303).

Then, the server device 111 writes, to the file, a record
expressing the details of the event (step S304), closes the file
(step S305), and returns to the processing of step S301.

Records are appended to the end of the file by repeating
these processes.

Note that, in the example described above, the file 1s
opened and closed each time an event occurs. However, a
configuration 1s possible 1n which the file 1s opened when the
editing program 1s started and the file 1s left open. In this
case, 1t 1s preferable that the writing of records to the file 1s
approprately flushed.

In a case 1n which the processes executed 1n steps S302 to
S305 are provided on the basis of a system call or the like,
the processes will be performed atomaically. As a result, it 1s
possible to prevent situations in which a plurality of pro-

US 11,169,962 B2

9

grams write to the end of the file, thereby contlicting with
cach other and leading to the file becoming corrupt.

Operations of the Collection Program in the Server
Device

Hereinafter, the flow of the control of the collection
program, which 1s executed in the server device 111, 1s
described. FI1G. 4 1s a flowchart illustrating the control of the
collection process executed by the server device according
to an embodiment of the present disclosure. Hereinafter, the
collection process 1s described while referencing FIG. 4.
Note that the collection program and the aforementioned
editing program are executed in parallel 1n the server device
111.

First, the server device 111 that has started the execution
of the collection program attempts to read the oflset asso-
cliated with the file from the non-transitory information
recording medium (step S401).

In cases 1n which the reading fails (step S401; FAIL), the
server device 111 sets the oflset to 0 (beginning of the file)
(step S402), and then proceeds to the control of step S403.

In cases 1n which the reading 1s successiul (step S401;
SUCCESS), the server device 111 proceeds to the control of
step 5403.

Next, the server device 111 estimates whether the header
records located between the beginning of the file and the
acquired offset are updated (S403). One of the three tech-
niques described above can be used for the estimating.

In cases 1n which 1t 1s estimated that an update has
occurred (step S403; Yes), the server device 111 sets the
ofIset to O (step S404) and then proceeds to the control of
step S405.

In cases 1 which it 1s estimated that an update has not
occurred (step S403; No), the server device 111 proceeds to
the control of step S403.

Then, the server device 111 seeks the file to the set oflset
(step S405), and checks whether the end of the file has been
reached (step S406).

In cases 1n which the end of the file has not been reached
(step S406; No), the server device 111 reads the record from
the file (step S407), and 1nstructs the collection system 121
to associate and collect the read record with the oflset (step
S408). The server device 111 waits until a report, indicating
that the record has been associated with the oflset and stored,
1s received from the collection system 121 (step S409).

When the report regarding the offset 1s received, the
server device 111 updates the oflset to the current position of
the file (step S410), records the updated ofiset in the
non-transitory storage medium (step S411), and returns to
the control of step S406. Note that, when a report 1s not
received for a predetermined time and a timeout occurs, the
collection system 121 may attempt to resend the record, or
the server device 111 may return to the control of step S401
(not illustrated in the drawings).

In cases 1n which the end of the file 1s reached (step S406;
Yes), the server device 111 waits until the size of the file
changes (step S412), and returns to the control of step S406.
Note that, in cases 1n which the wait time exceeds a
predetermined threshold, instead of step S406, the server
device 111 may return to the control of step S401 and
re-check 1f the header records are modified.

In the present embodiment, the oflset 1s updated and
recorded each time the collection of the records by the
collection program progresses. As such, 1n cases 1 which
the processing deviates from the flow of the control
described above such as the server device 111 being shut
down or the execution of the collection program being
torcibly ended, the records that have already been collected

10

15

20

25

30

35

40

45

50

55

60

65

10

can be skipped after the server device 111 has restarted and
the collection program has been re-executed. Additionally,
the possibility of modifications to the records that have
already been collected can be estimated 1n a short amount of
time by sampling the header records. Accordingly, the server
device 111 can quickly resume collecting.

Collection System

Hereinatter, the form of the collection system 121 1s
described while referencing FIG. 1.

As 1illustrated mm FIG. 1, the collection system 121
includes one or a plurality of collection devices 122. In FIG.
1, an example ol a collection system 121 including a
plurality of collection devices 122 1is 1illustrated, but a
coniiguration 1s possible 1n which the collection system 121
includes one collection device 122. The receiving of com-
mands by the collection system 121 from external devices 1s
realized as a result of each of the collection devices 122
receiving commands, and each of the collection devices 122
appropriately returns a response to the receirved command to
the corresponding external device.

Each of the collection devices 122 executes a response
program to realize the collection system 121. FIG. 5 1s a
flowchart 1llustrating the control of a response process
executed by the collection devices of the collection system
according to an embodiment of the present disclosure.
Heremnafter, the response process 1s described while refer-
encing FIG. 5.

The collection device 122 that started the execution of the
response program waits for a command to arrive from an
external device (step S601).

In cases 1n which the command that arrives 1s a collection
command from the server device 111 (step S601; Collect),
the collection device 122 determines, on the basis of the
oflset stipulated in the collection command, whether the
collection device 122 1s responsible for storing (step S602).

Here, a case 1s considered 1in which N collection devices
122 are used. In this case, an administrator assigns a number
to each of the collection devices 122. The numbers are
unmique and are 0, 1, 2, . . ., N=1. Each of the collection
devices 122 determine that the collection device 122 is
responsible for storing when the remainder of dividing the
oflset by N matches the number assigned to the collection
device 122.

Note that, 1n cases 1n which the size of the records 1s
constant, the remainder may be calculated by dividing the
oflset by the size and then dividing the result by N.

M collection devices 122 may be responsible for the
storing of one record. For example, a configuration 1s
possible 1n which 1t 1s determined that a collection device
122 1s responsible for storing when the remainder obtained
by adding the oflset (or a value obtained by dividing the
oflset by the size of the fixed length record) to the number
assigned to the collection device 122 and dividing the
resulting value by Nisoneof O, 1, . . . , M-1.

When 1t 1s determined that the collection device 122 1s
responsible for storing (step S602; Yes), the collection
device 122 stores the record specified in the collection
command 1n association with the oflset specified in the
collection command (step S603). Most simply, the ofiset can
be used as the file name for storing the record. Additionally,

a configuration 1s possible 1n which the content of the record
1s interpreted according to a predetermined format, and the
resulting plurality of field values and oflset are associated
and stored 1in a database.

US 11,169,962 B2

11

Then, the collection device 122 reports to the server
device 111 that the record associated with the oflset stipu-
lated 1n the command 1s stored (step S604), and returns to the
control of step S601.

In cases in which it 1s determined that the collection >
device 122 1s not responsible for storing (step S602; No), the
collection device 122 returns to the control of step S601.

In cases 1n which the command that arrives from the
external device 1s a query from the client terminal 141 (step
S601; Query), the collection device 122 extracts a record
that satisfies the query from the records stored in the
collection device 122.

Then, in cases in which there 1s an extracted record (step
S605; Yes), the collection device 122 responds to the client
terminal 141 with that record (step S606) and then returns to
the control of step S601. In cases 1n which a record 1s not
extracted (step S605; No), the collection device 122 returns
to the control of step S601.

Note that the ofiset for the record may be included 1n the 3¢
response with the extracted record. In such a case, when the
client terminal 141 1ssues a query for acquiring all records,
cach of the collection devices 122 respond with the records
and oflsets thereot stored therein. The entire file 1n the server
device 111 can be restored by the client terminal 141 25
arranging and concatenating the responded records 1n order
of the offsets.

In cases 1n which the command 1s a different command
(step S601; Other), the collection device 122 executes a

corresponding process (step S607) and then returns to the 30
control of step S601.

10

15

CONCLUSIONS

As described above, the file management system accord- 35
ing to this embodiment includes a server device that non-
transitorily stores a file and an offset for the file, and a
collection system. In this file management system,

(a) the server device executes an editing program, thereby
functioning as an updater that updates the file by an editing 40
process that includes an adding process that adds a record to
the end of the file,

(b) the server device executes a collection program,
thereby functioning as a collector that reads, in order of
location 1n the file, a record included 1n the file, causes the 45
collection system to associate and collect the read record and
a position where a beginning of the read record 1s located 1n
the file, and updates the non-transitorily stored oflset to a
position where the end of the collected record is located in
the file, and 50

(c) the server device functions as

an estimator that, when execution of the collection pro-
gram 1s started, estimates whether any header records
located between the beginning of the file and the non-
transitorily stored offset are updated and, 55

a starter that, when 1t 1s estimated that any of the header
records are updated, causes the collector to start reading the
record of the file from the beginning of the file, and when 1t
1s estimated that none of the header records are updated,
causes the collector to start reading the record of the file 60
from the non-transitorily stored oflset.

In the file management system according to this embodi-
ment, a configuration i1s possible 1n which:

the collector acquires an extraction position between the
beginning of the file and the non-transitorily stored oflset, 65
reads data located at the extraction position acquired from

the file, calculates a hash value of the read data, and

12

non-transitorily stores the acquired extraction position and
the calculated hash value, and

the starter acquires the non-transitorily stored extraction
position, reads the data located at the extraction position
acquired from the file, and calculates a hash value of the read
data and, when the calculated hash value 1s equivalent to the
non-transitorily stored hash value, the estimator estimates
that none of the header records are updated.

In the file management system, a configuration 1s possible
in which the collector randomly determines the extraction
position between the beginning of the file and the non-
transitorily stored offset.

In the file management system, a configuration 1s possible
in which the extraction position 1s randomly determined
using random numbers having a probability distribution that
attenuates from one of the non-transitorily stored oflset and
the beginning of the file to the other of the non-transitorily
stored oflset and the beginning of the file.

In the file management system according to this embodi-
ment, a configuration 1s possible 1n which:

the collector acquires an extraction position uniquely
associated with the non-transitorily stored oflset, reads the
data located at the extraction position acquired from the file,
calculates a hash value of the read data, and non-transitorily
stores the calculated hash value, and

the starter acquires an extraction position that 1s uniquely
associated with the non-transitorily stored oilset, reads data
located at the extraction position acquired from the file, and
calculates a hash value of the read data and, when the
calculated hash value i1s equivalent to the non-transitorily
stored hash value, estimates that none of the header records
are updated.

In the file management system according to this embodi-
ment, a configuration 1s possible 1n which:

when a first record located at the beginning of the file 1s
read by the collector and the first record 1s collected by the
collection system, the collector calculates a hash value of the
first record and non-transitorily stores the calculated hash
value, and

the starter calculates a hash value of the first record
located at the beginning of the file and, 1n cases 1n which the
calculated hash value 1s equivalent to the non-transitorily
stored hash value, estimates that none of the header records
are updated.

In the file management system according to this embodi-
ment, a configuration 1s possible 1n which:

estimation by the estimator 1s performed periodically or
intermittently after the execution of the collection program
1s started, and

when, as a result of the periodically or intermittently
performed estimation, it 1s estimated that any of the header
records are updated, the collector reads the record of the file
again from the beginning of the file.

In the file management system according to this embodi-
ment, a configuration 1s possible 1n which the file 1s restored
by concatenating, 1n an order of the positions associated with
the collected records, the records collected by the collection
system.

In the file management system according to this embodi-
ment, a configuration 1s possible 1n which:

the collection system includes a plurality of collection
devices,

cach of the records collected by the collection system 1s
stored 1n one of the plurality of collection devices, together
with a position associated with each of the records, and

when the collection system receives a query from a client
terminal, each of the plurality of collection devices extracts

US 11,169,962 B2

13

a record satisiying the query from among the records stored
therein, and responds to the chient terminal with the
extracted record.

The file management method according to this embodi-
ment 1s executed by a server device that non-transitorily
stores a file and an oflset for the file, and a collection system,
the method comprising:

(a) the server device executing an editing program,
thereby updating the file by an editing process that includes
an adding process that adds a record to an end of the file;

(b) the server device executing a collection program,
thereby reading, 1n order located in the file, a record included
in the file, causing the collection system to associate and
collect the read record and a position where a beginning of
the read record 1s located in the file, and updating the
non-transitorily stored oflset to a position where the end of
the collected record is located 1n the file; and

(c) when the execution of the collection program 1is
started, the server device estimating whether any header
records located between the beginning of the file and the
non-transitorily stored oflset are updated and,

when 1t 1s estimated that any of the header records are
updated, starting reading the record of the file from the
beginning of the file, and when 1t 1s estimated that none of
the header records are updated, starting reading the record of
the file from the non-transitorily stored oflset.

The foregoing describes some example embodiments for
explanatory purposes. Although the foregoing discussion
has presented specific embodiments, persons skilled in the
art will recognize that changes may be made i form and
detail without departing from the broader spirit and scope of
the mvention. Accordingly, the specification and drawings
are to be regarded 1n an 1llustrative rather than a restrictive
sense. This detailed description, therefore, 1s not to be taken
in a limiting sense, and the scope of the invention 1s defined
only by the included claims, along with the full range of
equivalents to which such claims are entitled.

INDUSTRIAL APPLICABILITY

According to the present disclosure, a file management
system can be provided in which a server device, which
performs an adding process that adds a record to an end of
a file, causes a collection device to collect the records
included in the file. This file management system 1s suited to
suppress the calculation load of the server device and the
communication load between the server device and the
collection device. Additionally, a file management method,
a collection program for realizing the server device using a
computer, and a non-transitory computer-readable informa-
tion recording medium on which the collection program 1s
recorded can be provided.

The 1nvention claimed 1s:

1. A file management system, comprising;

a server device that non-transitorily stores a file and an
oflset for the file; and

a collection system, wherein

(a) the server device executes an editing program, thereby
functioning as an updater that updates the file by an
editing process that includes an adding process that
adds a record to an end of the file,

(b) the server device executes a collection program,
thereby functioning as a collector that, 1n a first execu-
tion of the collection program, reads, in order of
location 1n the file, a record included in the file, causes
the collection system to associate and collect the read
record and a position where a beginning of the read

10

15

20

25

30

35

40

45

50

55

60

65

14

record 1s located in the file, and updates the non-
transitorily stored oflset to a position where an end of
the collected record 1s located 1n the file, and

(c) the server device functions as

an estimator that, based on a second execution, subse-

quent to the first execution, of the collection program
being started, estimates whether any header records
located between a beginning of the file and the non-
transitorily stored offset are updated, and

a starter that, in the second execution of the collection

program, based on an estimation that any of the header
records are updated, causes the collector to start reading
the record of the file from the beginning of the file, and
based on an estimation that none of the header records
are updated, causes the collector to start reading the
record of the file from the non-transitorily stored oilset
and to skip reading the record from the beginning of the
file to the non-transitorily stored offset.

2. The file management system according to claim 1,
wherein

the collector acquires an extraction position between the

beginning of the file and the non-transitorily stored
offset, reads data located at the extraction position
acquired from the file, calculates a hash value of the
read data, and non-transitorily stores the acquired
extraction position and the calculated hash value, and
the starter acquires the non-transitorily stored extraction
position, reads the data located at the extraction posi-
tion acquired from the file, and calculates the hash
value of the read data and, based on the calculated hash
value being equivalent to the non-transitorily stored
hash value, the estimator estimates that none of the
header records are updated.

3. The file management system according to claim 2,
wherein the collector randomly determines the extraction
position between the beginning of the file and the non-
transitorily stored oiffset.

4. The file management system according to claim 3,
wherein the extraction position 1s randomly determined
using random numbers having a probability distribution that
attenuates from one of the non-transitorily stored oflset and
the beginning of the file to the other of the non-transitorily
stored oflset and the beginning of the file.

5. The file management system according to claim 1,
wherein

the collector acquires an extraction position uniquely

associated with the non-transitorily stored offset, reads
data located at the extraction position acquired from the
file, calculates a hash wvalue of the read data, and
non-transitorily stores the calculated hash value, and
the starter acquires the extraction position uniquely asso-
ciated with the non-transitorily stored offset, reads the
data located at the extraction position acquired from the
file, and calculates a hash value of the read data and,
based on the calculated hash value 1s being equivalent
to the non-transitorily stored hash value, the estimator
estimates that none of the header records are updated.

6. The file management system according to claim 1,
wherein

when a first record located at the beginning of the file 1s

read by the collector and the first record 1s collected by
the collection system, the collector calculates a hash
value of the first record and non-transitorily stores the
calculated hash value, and

the starter calculates a hash value of the first record

located at the beginning of the file and, 1n cases 1n

which the calculated hash value 1s equivalent to the

US 11,169,962 B2

15

non-transitorily stored hash value, estimates that none
of the header records are updated.

7. The file management system according to claim 1,
wherein

an estimation by the estimator 1s performed periodically
or intermittently after the first execution of the collec-
tion program 1s started, and

in cases 1n which, as a result of the periodically or the
intermittently performed estimation, 1t 1s estimated that
any ol the header records are updated, the collector
reads the record of the file again from the beginning of
the file.

8. The file management system according to claim 1,
wherein the file 1s restored by concatenating, 1n an order of
the positions associated with the collected records, the
records collected by the collection system.

9. The file management system according to claim 1,
wherein

the collection system includes a plurality of collection
devices,

cach of the records collected by the collection system 1s
stored 1n one of the plurality of collection devices,
together with a position associated with each of the
records, and

when the collection system receives a query from a client
terminal, each of the plurality of collection devices
extracts a record satisiying the query from among the
records stored therein, and responds to the client ter-
minal with the extracted record.

10. A file management method executed by a server
device that non-transitorily stores a file and an oflset for the
file, and a collection system, the method comprising:

(a) the server device executing an editing program,
thereby updating the file by an editing process that
includes an adding process that adds a record to an end
of the file;

(b) the server device executing a collection program,
thereby, 1n a first execution of the collection program,
reading, in order of location in the file, a record
included in the file, causing the collection system to
associate and collect the read record and a position
where a beginning of the read record 1s located 1n the
file, and updating the non-transitorily stored offset to a

position where an end of the collected record 1s located
in the file; and

10

15

20

25

30

35

40

16

(c) based on a second execution, subsequent to the first
execution, of the collection program being started, the
server device estimating whether any header records
located between a beginning of the file and the non-
transitorily stored oflset are updated and,

in the second execution of the collection program, based
on an estimation that any of the header records are
updated, starting reading the record of the file from the
beginning of the file, and based on an estimation that
none of the header records are updated, starting reading
the record of the file from the non-transitorily stored

offset and skipping reading the record from the begin-

ning of the file to the non-transitorily stored oflset.
11. A non-transitory computer-readable information
recording medium on which a collection program 1s stored,
the collection program being executable by a server device
in a file management system, the file management system

comprising the server device that non-transitorily stores a

file and an ofiset for the file, and a collection system,

wherein the collection program executed by the server
device causes the server device to:
function as a collector that, 1n a first execution of the
collection program, reads, 1in order of location in the
file, a record included 1n the file, causes the collection
system to associate and collect the read record and a
position where a beginming of the read record 1s located
in the file, and updates the non-transitorily stored offset
to a position where an end of the collected record 1s
located 1n the file;
function as an estimator that, based on a second execu-
tion, subsequent to the first execution, of the collection
program being started, estimates whether any header
records located between a beginning of the file and the
non-transitorily stored ofiset are updated; and
function as a starter that, in the second execution of the
collection program, based on an estimation that any of
the header records are updated, causes the collector to
start reading the record of the file from the beginning of
the file, and based on an estimation that none of the
header records are updated, causes the collector to start
reading the record of the file from the non-transitorily
stored oflset and to skip reading the record from the
beginning of the file to the non-transitorily stored
offset.

	Front Page
	Drawings
	Specification
	Claims

